Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / of / address.c
blobc5b925ac469f16b8ae4b8275b60210a2d583ff83
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/overflow.h>
12 #include <linux/pci.h>
13 #include <linux/pci_regs.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/dma-direct.h> /* for bus_dma_region */
19 #include "of_private.h"
21 /* Max address size we deal with */
22 #define OF_MAX_ADDR_CELLS 4
23 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
24 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
26 /* Debug utility */
27 #ifdef DEBUG
28 static void of_dump_addr(const char *s, const __be32 *addr, int na)
30 pr_debug("%s", s);
31 while (na--)
32 pr_cont(" %08x", be32_to_cpu(*(addr++)));
33 pr_cont("\n");
35 #else
36 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
37 #endif
39 /* Callbacks for bus specific translators */
40 struct of_bus {
41 const char *name;
42 const char *addresses;
43 int (*match)(struct device_node *parent);
44 void (*count_cells)(struct device_node *child,
45 int *addrc, int *sizec);
46 u64 (*map)(__be32 *addr, const __be32 *range,
47 int na, int ns, int pna, int fna);
48 int (*translate)(__be32 *addr, u64 offset, int na);
49 int flag_cells;
50 unsigned int (*get_flags)(const __be32 *addr);
54 * Default translator (generic bus)
57 static void of_bus_default_count_cells(struct device_node *dev,
58 int *addrc, int *sizec)
60 if (addrc)
61 *addrc = of_n_addr_cells(dev);
62 if (sizec)
63 *sizec = of_n_size_cells(dev);
66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 int na, int ns, int pna, int fna)
69 u64 cp, s, da;
71 cp = of_read_number(range + fna, na - fna);
72 s = of_read_number(range + na + pna, ns);
73 da = of_read_number(addr + fna, na - fna);
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
77 if (da < cp || da >= (cp + s))
78 return OF_BAD_ADDR;
79 return da - cp;
82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
84 u64 a = of_read_number(addr, na);
85 memset(addr, 0, na * 4);
86 a += offset;
87 if (na > 1)
88 addr[na - 2] = cpu_to_be32(a >> 32);
89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
91 return 0;
94 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
96 return of_read_number(addr, 1);
99 static unsigned int of_bus_default_get_flags(const __be32 *addr)
101 return IORESOURCE_MEM;
104 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
105 int ns, int pna, int fna)
107 /* Check that flags match */
108 if (*addr != *range)
109 return OF_BAD_ADDR;
111 return of_bus_default_map(addr, range, na, ns, pna, fna);
114 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
116 /* Keep "flags" part (high cell) in translated address */
117 return of_bus_default_translate(addr + 1, offset, na - 1);
120 #ifdef CONFIG_PCI
121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
123 unsigned int flags = 0;
124 u32 w = be32_to_cpup(addr);
126 if (!IS_ENABLED(CONFIG_PCI))
127 return 0;
129 switch((w >> 24) & 0x03) {
130 case 0x01:
131 flags |= IORESOURCE_IO;
132 break;
133 case 0x02: /* 32 bits */
134 flags |= IORESOURCE_MEM;
135 break;
137 case 0x03: /* 64 bits */
138 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
139 break;
141 if (w & 0x40000000)
142 flags |= IORESOURCE_PREFETCH;
143 return flags;
147 * PCI bus specific translator
150 static bool of_node_is_pcie(const struct device_node *np)
152 bool is_pcie = of_node_name_eq(np, "pcie");
154 if (is_pcie)
155 pr_warn_once("%pOF: Missing device_type\n", np);
157 return is_pcie;
160 static int of_bus_pci_match(struct device_node *np)
163 * "pciex" is PCI Express
164 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
165 * "ht" is hypertransport
167 * If none of the device_type match, and that the node name is
168 * "pcie", accept the device as PCI (with a warning).
170 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
171 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
172 of_node_is_pcie(np);
175 static void of_bus_pci_count_cells(struct device_node *np,
176 int *addrc, int *sizec)
178 if (addrc)
179 *addrc = 3;
180 if (sizec)
181 *sizec = 2;
184 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
185 int pna, int fna)
187 unsigned int af, rf;
189 af = of_bus_pci_get_flags(addr);
190 rf = of_bus_pci_get_flags(range);
192 /* Check address type match */
193 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
194 return OF_BAD_ADDR;
196 return of_bus_default_map(addr, range, na, ns, pna, fna);
199 #endif /* CONFIG_PCI */
201 static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
203 u64 end = start;
205 if (overflows_type(start, r->start))
206 return -EOVERFLOW;
207 if (size && check_add_overflow(end, size - 1, &end))
208 return -EOVERFLOW;
209 if (overflows_type(end, r->end))
210 return -EOVERFLOW;
212 r->start = start;
213 r->end = end;
215 return 0;
219 * of_pci_range_to_resource - Create a resource from an of_pci_range
220 * @range: the PCI range that describes the resource
221 * @np: device node where the range belongs to
222 * @res: pointer to a valid resource that will be updated to
223 * reflect the values contained in the range.
225 * Returns -EINVAL if the range cannot be converted to resource.
227 * Note that if the range is an IO range, the resource will be converted
228 * using pci_address_to_pio() which can fail if it is called too early or
229 * if the range cannot be matched to any host bridge IO space (our case here).
230 * To guard against that we try to register the IO range first.
231 * If that fails we know that pci_address_to_pio() will do too.
233 int of_pci_range_to_resource(const struct of_pci_range *range,
234 const struct device_node *np, struct resource *res)
236 u64 start;
237 int err;
238 res->flags = range->flags;
239 res->parent = res->child = res->sibling = NULL;
240 res->name = np->full_name;
242 if (res->flags & IORESOURCE_IO) {
243 unsigned long port;
244 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
245 range->size);
246 if (err)
247 goto invalid_range;
248 port = pci_address_to_pio(range->cpu_addr);
249 if (port == (unsigned long)-1) {
250 err = -EINVAL;
251 goto invalid_range;
253 start = port;
254 } else {
255 start = range->cpu_addr;
257 return __of_address_resource_bounds(res, start, range->size);
259 invalid_range:
260 res->start = (resource_size_t)OF_BAD_ADDR;
261 res->end = (resource_size_t)OF_BAD_ADDR;
262 return err;
264 EXPORT_SYMBOL(of_pci_range_to_resource);
267 * of_range_to_resource - Create a resource from a ranges entry
268 * @np: device node where the range belongs to
269 * @index: the 'ranges' index to convert to a resource
270 * @res: pointer to a valid resource that will be updated to
271 * reflect the values contained in the range.
273 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
274 * cannot be converted to resource.
276 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
278 int ret, i = 0;
279 struct of_range_parser parser;
280 struct of_range range;
282 ret = of_range_parser_init(&parser, np);
283 if (ret)
284 return ret;
286 for_each_of_range(&parser, &range)
287 if (i++ == index)
288 return of_pci_range_to_resource(&range, np, res);
290 return -ENOENT;
292 EXPORT_SYMBOL(of_range_to_resource);
295 * ISA bus specific translator
298 static int of_bus_isa_match(struct device_node *np)
300 return of_node_name_eq(np, "isa");
303 static void of_bus_isa_count_cells(struct device_node *child,
304 int *addrc, int *sizec)
306 if (addrc)
307 *addrc = 2;
308 if (sizec)
309 *sizec = 1;
312 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
313 int pna, int fna)
315 /* Check address type match */
316 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
317 return OF_BAD_ADDR;
319 return of_bus_default_map(addr, range, na, ns, pna, fna);
322 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
324 unsigned int flags = 0;
325 u32 w = be32_to_cpup(addr);
327 if (w & 1)
328 flags |= IORESOURCE_IO;
329 else
330 flags |= IORESOURCE_MEM;
331 return flags;
334 static int of_bus_default_flags_match(struct device_node *np)
337 * Check for presence first since of_bus_n_addr_cells() will warn when
338 * walking parent nodes.
340 return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3);
344 * Array of bus specific translators
347 static const struct of_bus of_busses[] = {
348 #ifdef CONFIG_PCI
349 /* PCI */
351 .name = "pci",
352 .addresses = "assigned-addresses",
353 .match = of_bus_pci_match,
354 .count_cells = of_bus_pci_count_cells,
355 .map = of_bus_pci_map,
356 .translate = of_bus_default_flags_translate,
357 .flag_cells = 1,
358 .get_flags = of_bus_pci_get_flags,
360 #endif /* CONFIG_PCI */
361 /* ISA */
363 .name = "isa",
364 .addresses = "reg",
365 .match = of_bus_isa_match,
366 .count_cells = of_bus_isa_count_cells,
367 .map = of_bus_isa_map,
368 .translate = of_bus_default_flags_translate,
369 .flag_cells = 1,
370 .get_flags = of_bus_isa_get_flags,
372 /* Default with flags cell */
374 .name = "default-flags",
375 .addresses = "reg",
376 .match = of_bus_default_flags_match,
377 .count_cells = of_bus_default_count_cells,
378 .map = of_bus_default_flags_map,
379 .translate = of_bus_default_flags_translate,
380 .flag_cells = 1,
381 .get_flags = of_bus_default_flags_get_flags,
383 /* Default */
385 .name = "default",
386 .addresses = "reg",
387 .match = NULL,
388 .count_cells = of_bus_default_count_cells,
389 .map = of_bus_default_map,
390 .translate = of_bus_default_translate,
391 .get_flags = of_bus_default_get_flags,
395 static const struct of_bus *of_match_bus(struct device_node *np)
397 int i;
399 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
400 if (!of_busses[i].match || of_busses[i].match(np))
401 return &of_busses[i];
402 BUG();
403 return NULL;
406 static int of_empty_ranges_quirk(const struct device_node *np)
408 if (IS_ENABLED(CONFIG_PPC)) {
409 /* To save cycles, we cache the result for global "Mac" setting */
410 static int quirk_state = -1;
412 /* PA-SEMI sdc DT bug */
413 if (of_device_is_compatible(np, "1682m-sdc"))
414 return true;
416 /* Make quirk cached */
417 if (quirk_state < 0)
418 quirk_state =
419 of_machine_is_compatible("Power Macintosh") ||
420 of_machine_is_compatible("MacRISC");
421 return quirk_state;
423 return false;
426 static int of_translate_one(const struct device_node *parent, const struct of_bus *bus,
427 const struct of_bus *pbus, __be32 *addr,
428 int na, int ns, int pna, const char *rprop)
430 const __be32 *ranges;
431 unsigned int rlen;
432 int rone;
433 u64 offset = OF_BAD_ADDR;
436 * Normally, an absence of a "ranges" property means we are
437 * crossing a non-translatable boundary, and thus the addresses
438 * below the current cannot be converted to CPU physical ones.
439 * Unfortunately, while this is very clear in the spec, it's not
440 * what Apple understood, and they do have things like /uni-n or
441 * /ht nodes with no "ranges" property and a lot of perfectly
442 * useable mapped devices below them. Thus we treat the absence of
443 * "ranges" as equivalent to an empty "ranges" property which means
444 * a 1:1 translation at that level. It's up to the caller not to try
445 * to translate addresses that aren't supposed to be translated in
446 * the first place. --BenH.
448 * As far as we know, this damage only exists on Apple machines, so
449 * This code is only enabled on powerpc. --gcl
451 * This quirk also applies for 'dma-ranges' which frequently exist in
452 * child nodes without 'dma-ranges' in the parent nodes. --RobH
454 ranges = of_get_property(parent, rprop, &rlen);
455 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
456 strcmp(rprop, "dma-ranges")) {
457 pr_debug("no ranges; cannot translate\n");
458 return 1;
460 if (ranges == NULL || rlen == 0) {
461 offset = of_read_number(addr, na);
462 memset(addr, 0, pna * 4);
463 pr_debug("empty ranges; 1:1 translation\n");
464 goto finish;
467 pr_debug("walking ranges...\n");
469 /* Now walk through the ranges */
470 rlen /= 4;
471 rone = na + pna + ns;
472 for (; rlen >= rone; rlen -= rone, ranges += rone) {
473 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
474 if (offset != OF_BAD_ADDR)
475 break;
477 if (offset == OF_BAD_ADDR) {
478 pr_debug("not found !\n");
479 return 1;
481 memcpy(addr, ranges + na, 4 * pna);
483 finish:
484 of_dump_addr("parent translation for:", addr, pna);
485 pr_debug("with offset: %llx\n", offset);
487 /* Translate it into parent bus space */
488 return pbus->translate(addr, offset, pna);
492 * Translate an address from the device-tree into a CPU physical address,
493 * this walks up the tree and applies the various bus mappings on the
494 * way.
496 * Note: We consider that crossing any level with #size-cells == 0 to mean
497 * that translation is impossible (that is we are not dealing with a value
498 * that can be mapped to a cpu physical address). This is not really specified
499 * that way, but this is traditionally the way IBM at least do things
501 * Whenever the translation fails, the *host pointer will be set to the
502 * device that had registered logical PIO mapping, and the return code is
503 * relative to that node.
505 static u64 __of_translate_address(struct device_node *node,
506 struct device_node *(*get_parent)(const struct device_node *),
507 const __be32 *in_addr, const char *rprop,
508 struct device_node **host)
510 struct device_node *dev __free(device_node) = of_node_get(node);
511 struct device_node *parent __free(device_node) = get_parent(dev);
512 const struct of_bus *bus, *pbus;
513 __be32 addr[OF_MAX_ADDR_CELLS];
514 int na, ns, pna, pns;
516 pr_debug("** translation for device %pOF **\n", dev);
518 *host = NULL;
520 if (parent == NULL)
521 return OF_BAD_ADDR;
522 bus = of_match_bus(parent);
524 /* Count address cells & copy address locally */
525 bus->count_cells(dev, &na, &ns);
526 if (!OF_CHECK_COUNTS(na, ns)) {
527 pr_debug("Bad cell count for %pOF\n", dev);
528 return OF_BAD_ADDR;
530 memcpy(addr, in_addr, na * 4);
532 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
533 bus->name, na, ns, parent);
534 of_dump_addr("translating address:", addr, na);
536 /* Translate */
537 for (;;) {
538 struct logic_pio_hwaddr *iorange;
540 /* Switch to parent bus */
541 of_node_put(dev);
542 dev = parent;
543 parent = get_parent(dev);
545 /* If root, we have finished */
546 if (parent == NULL) {
547 pr_debug("reached root node\n");
548 return of_read_number(addr, na);
552 * For indirectIO device which has no ranges property, get
553 * the address from reg directly.
555 iorange = find_io_range_by_fwnode(&dev->fwnode);
556 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
557 u64 result = of_read_number(addr + 1, na - 1);
558 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
559 dev, result);
560 *host = no_free_ptr(dev);
561 return result;
564 /* Get new parent bus and counts */
565 pbus = of_match_bus(parent);
566 pbus->count_cells(dev, &pna, &pns);
567 if (!OF_CHECK_COUNTS(pna, pns)) {
568 pr_err("Bad cell count for %pOF\n", dev);
569 return OF_BAD_ADDR;
572 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
573 pbus->name, pna, pns, parent);
575 /* Apply bus translation */
576 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
577 return OF_BAD_ADDR;
579 /* Complete the move up one level */
580 na = pna;
581 ns = pns;
582 bus = pbus;
584 of_dump_addr("one level translation:", addr, na);
587 unreachable();
590 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
592 struct device_node *host;
593 u64 ret;
595 ret = __of_translate_address(dev, of_get_parent,
596 in_addr, "ranges", &host);
597 if (host) {
598 of_node_put(host);
599 return OF_BAD_ADDR;
602 return ret;
604 EXPORT_SYMBOL(of_translate_address);
606 #ifdef CONFIG_HAS_DMA
607 struct device_node *__of_get_dma_parent(const struct device_node *np)
609 struct of_phandle_args args;
610 int ret, index;
612 index = of_property_match_string(np, "interconnect-names", "dma-mem");
613 if (index < 0)
614 return of_get_parent(np);
616 ret = of_parse_phandle_with_args(np, "interconnects",
617 "#interconnect-cells",
618 index, &args);
619 if (ret < 0)
620 return of_get_parent(np);
622 return of_node_get(args.np);
624 #endif
626 static struct device_node *of_get_next_dma_parent(struct device_node *np)
628 struct device_node *parent;
630 parent = __of_get_dma_parent(np);
631 of_node_put(np);
633 return parent;
636 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
638 struct device_node *host;
639 u64 ret;
641 ret = __of_translate_address(dev, __of_get_dma_parent,
642 in_addr, "dma-ranges", &host);
644 if (host) {
645 of_node_put(host);
646 return OF_BAD_ADDR;
649 return ret;
651 EXPORT_SYMBOL(of_translate_dma_address);
654 * of_translate_dma_region - Translate device tree address and size tuple
655 * @dev: device tree node for which to translate
656 * @prop: pointer into array of cells
657 * @start: return value for the start of the DMA range
658 * @length: return value for the length of the DMA range
660 * Returns a pointer to the cell immediately following the translated DMA region.
662 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
663 phys_addr_t *start, size_t *length)
665 struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
666 u64 address, size;
667 int na, ns;
669 if (!parent)
670 return NULL;
672 na = of_bus_n_addr_cells(parent);
673 ns = of_bus_n_size_cells(parent);
675 address = of_translate_dma_address(dev, prop);
676 if (address == OF_BAD_ADDR)
677 return NULL;
679 size = of_read_number(prop + na, ns);
681 if (start)
682 *start = address;
684 if (length)
685 *length = size;
687 return prop + na + ns;
689 EXPORT_SYMBOL(of_translate_dma_region);
691 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
692 u64 *size, unsigned int *flags)
694 const __be32 *prop;
695 unsigned int psize;
696 struct device_node *parent __free(device_node) = of_get_parent(dev);
697 const struct of_bus *bus;
698 int onesize, i, na, ns;
700 if (parent == NULL)
701 return NULL;
703 /* match the parent's bus type */
704 bus = of_match_bus(parent);
705 if (strcmp(bus->name, "pci") && (bar_no >= 0))
706 return NULL;
708 /* Get "reg" or "assigned-addresses" property */
709 prop = of_get_property(dev, bus->addresses, &psize);
710 if (prop == NULL)
711 return NULL;
712 psize /= 4;
714 bus->count_cells(dev, &na, &ns);
715 if (!OF_CHECK_ADDR_COUNT(na))
716 return NULL;
718 onesize = na + ns;
719 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
720 u32 val = be32_to_cpu(prop[0]);
721 /* PCI bus matches on BAR number instead of index */
722 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
723 ((index >= 0) && (i == index))) {
724 if (size)
725 *size = of_read_number(prop + na, ns);
726 if (flags)
727 *flags = bus->get_flags(prop);
728 return prop;
731 return NULL;
733 EXPORT_SYMBOL(__of_get_address);
736 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
737 * @np: device tree node for which to retrieve "reg" from
738 * @idx: "reg" entry index to read
739 * @addr: return value for the untranslated address
740 * @size: return value for the entry size
742 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
743 * size values filled in.
745 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
747 const __be32 *prop = of_get_address(np, idx, size, NULL);
749 if (!prop)
750 return -EINVAL;
752 *addr = of_read_number(prop, of_n_addr_cells(np));
754 return 0;
756 EXPORT_SYMBOL(of_property_read_reg);
758 static int parser_init(struct of_pci_range_parser *parser,
759 struct device_node *node, const char *name)
761 int rlen;
763 parser->node = node;
764 parser->pna = of_n_addr_cells(node);
765 parser->na = of_bus_n_addr_cells(node);
766 parser->ns = of_bus_n_size_cells(node);
767 parser->dma = !strcmp(name, "dma-ranges");
768 parser->bus = of_match_bus(node);
770 parser->range = of_get_property(node, name, &rlen);
771 if (parser->range == NULL)
772 return -ENOENT;
774 parser->end = parser->range + rlen / sizeof(__be32);
776 return 0;
779 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
780 struct device_node *node)
782 return parser_init(parser, node, "ranges");
784 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
786 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
787 struct device_node *node)
789 return parser_init(parser, node, "dma-ranges");
791 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
792 #define of_dma_range_parser_init of_pci_dma_range_parser_init
794 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
795 struct of_pci_range *range)
797 int na = parser->na;
798 int ns = parser->ns;
799 int np = parser->pna + na + ns;
800 int busflag_na = parser->bus->flag_cells;
802 if (!range)
803 return NULL;
805 if (!parser->range || parser->range + np > parser->end)
806 return NULL;
808 range->flags = parser->bus->get_flags(parser->range);
810 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
812 if (parser->dma)
813 range->cpu_addr = of_translate_dma_address(parser->node,
814 parser->range + na);
815 else
816 range->cpu_addr = of_translate_address(parser->node,
817 parser->range + na);
818 range->size = of_read_number(parser->range + parser->pna + na, ns);
820 parser->range += np;
822 /* Now consume following elements while they are contiguous */
823 while (parser->range + np <= parser->end) {
824 u32 flags = 0;
825 u64 bus_addr, cpu_addr, size;
827 flags = parser->bus->get_flags(parser->range);
828 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
829 if (parser->dma)
830 cpu_addr = of_translate_dma_address(parser->node,
831 parser->range + na);
832 else
833 cpu_addr = of_translate_address(parser->node,
834 parser->range + na);
835 size = of_read_number(parser->range + parser->pna + na, ns);
837 if (flags != range->flags)
838 break;
839 if (bus_addr != range->bus_addr + range->size ||
840 cpu_addr != range->cpu_addr + range->size)
841 break;
843 range->size += size;
844 parser->range += np;
847 return range;
849 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
851 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
852 u64 size)
854 u64 taddr;
855 unsigned long port;
856 struct device_node *host;
858 taddr = __of_translate_address(dev, of_get_parent,
859 in_addr, "ranges", &host);
860 if (host) {
861 /* host-specific port access */
862 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
863 of_node_put(host);
864 } else {
865 /* memory-mapped I/O range */
866 port = pci_address_to_pio(taddr);
869 if (port == (unsigned long)-1)
870 return OF_BAD_ADDR;
872 return port;
875 #ifdef CONFIG_HAS_DMA
877 * of_dma_get_range - Get DMA range info and put it into a map array
878 * @np: device node to get DMA range info
879 * @map: dma range structure to return
881 * Look in bottom up direction for the first "dma-ranges" property
882 * and parse it. Put the information into a DMA offset map array.
884 * dma-ranges format:
885 * DMA addr (dma_addr) : naddr cells
886 * CPU addr (phys_addr_t) : pna cells
887 * size : nsize cells
889 * It returns -ENODEV if "dma-ranges" property was not found for this
890 * device in the DT.
892 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
894 struct device_node *node __free(device_node) = of_node_get(np);
895 const __be32 *ranges = NULL;
896 bool found_dma_ranges = false;
897 struct of_range_parser parser;
898 struct of_range range;
899 struct bus_dma_region *r;
900 int len, num_ranges = 0;
902 while (node) {
903 ranges = of_get_property(node, "dma-ranges", &len);
905 /* Ignore empty ranges, they imply no translation required */
906 if (ranges && len > 0)
907 break;
909 /* Once we find 'dma-ranges', then a missing one is an error */
910 if (found_dma_ranges && !ranges)
911 return -ENODEV;
913 found_dma_ranges = true;
915 node = of_get_next_dma_parent(node);
918 if (!node || !ranges) {
919 pr_debug("no dma-ranges found for node(%pOF)\n", np);
920 return -ENODEV;
922 of_dma_range_parser_init(&parser, node);
923 for_each_of_range(&parser, &range) {
924 if (range.cpu_addr == OF_BAD_ADDR) {
925 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
926 range.bus_addr, node);
927 continue;
929 num_ranges++;
932 if (!num_ranges)
933 return -EINVAL;
935 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
936 if (!r)
937 return -ENOMEM;
940 * Record all info in the generic DMA ranges array for struct device,
941 * returning an error if we don't find any parsable ranges.
943 *map = r;
944 of_dma_range_parser_init(&parser, node);
945 for_each_of_range(&parser, &range) {
946 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
947 range.bus_addr, range.cpu_addr, range.size);
948 if (range.cpu_addr == OF_BAD_ADDR)
949 continue;
950 r->cpu_start = range.cpu_addr;
951 r->dma_start = range.bus_addr;
952 r->size = range.size;
953 r++;
955 return 0;
957 #endif /* CONFIG_HAS_DMA */
960 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
961 * @np: The node to start searching from or NULL to start from the root
963 * Gets the highest CPU physical address that is addressable by all DMA masters
964 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
965 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
967 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
969 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
970 struct of_range_parser parser;
971 phys_addr_t subtree_max_addr;
972 struct device_node *child;
973 struct of_range range;
974 const __be32 *ranges;
975 u64 cpu_end = 0;
976 int len;
978 if (!np)
979 np = of_root;
981 ranges = of_get_property(np, "dma-ranges", &len);
982 if (ranges && len) {
983 of_dma_range_parser_init(&parser, np);
984 for_each_of_range(&parser, &range)
985 if (range.cpu_addr + range.size > cpu_end)
986 cpu_end = range.cpu_addr + range.size - 1;
988 if (max_cpu_addr > cpu_end)
989 max_cpu_addr = cpu_end;
992 for_each_available_child_of_node(np, child) {
993 subtree_max_addr = of_dma_get_max_cpu_address(child);
994 if (max_cpu_addr > subtree_max_addr)
995 max_cpu_addr = subtree_max_addr;
998 return max_cpu_addr;
1002 * of_dma_is_coherent - Check if device is coherent
1003 * @np: device node
1005 * It returns true if "dma-coherent" property was found
1006 * for this device in the DT, or if DMA is coherent by
1007 * default for OF devices on the current platform and no
1008 * "dma-noncoherent" property was found for this device.
1010 bool of_dma_is_coherent(struct device_node *np)
1012 struct device_node *node __free(device_node) = of_node_get(np);
1014 while (node) {
1015 if (of_property_read_bool(node, "dma-coherent"))
1016 return true;
1018 if (of_property_read_bool(node, "dma-noncoherent"))
1019 return false;
1021 node = of_get_next_dma_parent(node);
1023 return dma_default_coherent;
1025 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1028 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1029 * @np: device node
1031 * Returns true if the "nonposted-mmio" property was found for
1032 * the device's bus.
1034 * This is currently only enabled on builds that support Apple ARM devices, as
1035 * an optimization.
1037 static bool of_mmio_is_nonposted(const struct device_node *np)
1039 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1040 return false;
1042 struct device_node *parent __free(device_node) = of_get_parent(np);
1043 if (!parent)
1044 return false;
1046 return of_property_read_bool(parent, "nonposted-mmio");
1049 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1050 struct resource *r)
1052 u64 taddr;
1053 const __be32 *addrp;
1054 u64 size;
1055 unsigned int flags;
1056 const char *name = NULL;
1058 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1059 if (addrp == NULL)
1060 return -EINVAL;
1062 /* Get optional "reg-names" property to add a name to a resource */
1063 if (index >= 0)
1064 of_property_read_string_index(dev, "reg-names", index, &name);
1066 if (flags & IORESOURCE_MEM)
1067 taddr = of_translate_address(dev, addrp);
1068 else if (flags & IORESOURCE_IO)
1069 taddr = of_translate_ioport(dev, addrp, size);
1070 else
1071 return -EINVAL;
1073 if (taddr == OF_BAD_ADDR)
1074 return -EINVAL;
1075 memset(r, 0, sizeof(struct resource));
1077 if (of_mmio_is_nonposted(dev))
1078 flags |= IORESOURCE_MEM_NONPOSTED;
1080 r->flags = flags;
1081 r->name = name ? name : dev->full_name;
1083 return __of_address_resource_bounds(r, taddr, size);
1087 * of_address_to_resource - Translate device tree address and return as resource
1088 * @dev: Caller's Device Node
1089 * @index: Index into the array
1090 * @r: Pointer to resource array
1092 * Returns -EINVAL if the range cannot be converted to resource.
1094 * Note that if your address is a PIO address, the conversion will fail if
1095 * the physical address can't be internally converted to an IO token with
1096 * pci_address_to_pio(), that is because it's either called too early or it
1097 * can't be matched to any host bridge IO space
1099 int of_address_to_resource(struct device_node *dev, int index,
1100 struct resource *r)
1102 return __of_address_to_resource(dev, index, -1, r);
1104 EXPORT_SYMBOL_GPL(of_address_to_resource);
1106 int of_pci_address_to_resource(struct device_node *dev, int bar,
1107 struct resource *r)
1110 if (!IS_ENABLED(CONFIG_PCI))
1111 return -ENOSYS;
1113 return __of_address_to_resource(dev, -1, bar, r);
1115 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1118 * of_iomap - Maps the memory mapped IO for a given device_node
1119 * @np: the device whose io range will be mapped
1120 * @index: index of the io range
1122 * Returns a pointer to the mapped memory
1124 void __iomem *of_iomap(struct device_node *np, int index)
1126 struct resource res;
1128 if (of_address_to_resource(np, index, &res))
1129 return NULL;
1131 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1132 return ioremap_np(res.start, resource_size(&res));
1133 else
1134 return ioremap(res.start, resource_size(&res));
1136 EXPORT_SYMBOL(of_iomap);
1139 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1140 * for a given device_node
1141 * @device: the device whose io range will be mapped
1142 * @index: index of the io range
1143 * @name: name "override" for the memory region request or NULL
1145 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1146 * error code on failure. Usage example:
1148 * base = of_io_request_and_map(node, 0, "foo");
1149 * if (IS_ERR(base))
1150 * return PTR_ERR(base);
1152 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1153 const char *name)
1155 struct resource res;
1156 void __iomem *mem;
1158 if (of_address_to_resource(np, index, &res))
1159 return IOMEM_ERR_PTR(-EINVAL);
1161 if (!name)
1162 name = res.name;
1163 if (!request_mem_region(res.start, resource_size(&res), name))
1164 return IOMEM_ERR_PTR(-EBUSY);
1166 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1167 mem = ioremap_np(res.start, resource_size(&res));
1168 else
1169 mem = ioremap(res.start, resource_size(&res));
1171 if (!mem) {
1172 release_mem_region(res.start, resource_size(&res));
1173 return IOMEM_ERR_PTR(-ENOMEM);
1176 return mem;
1178 EXPORT_SYMBOL(of_io_request_and_map);