Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / opp / of.c
blobfd5ed285825881a12a126776f290bef80459b7d5
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP OF helpers
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
22 #include "opp.h"
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
28 * Returns opp descriptor node for a device node, caller must
29 * do of_node_put().
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 int index)
34 /* "operating-points-v2" can be an array for power domain providers */
35 return of_parse_phandle(np, "operating-points-v2", index);
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
41 return _opp_of_get_opp_desc_node(dev->of_node, 0);
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
45 struct opp_table *_managed_opp(struct device *dev, int index)
47 struct opp_table *opp_table, *managed_table = NULL;
48 struct device_node *np;
50 np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 if (!np)
52 return NULL;
54 list_for_each_entry(opp_table, &opp_tables, node) {
55 if (opp_table->np == np) {
57 * Multiple devices can point to the same OPP table and
58 * so will have same node-pointer, np.
60 * But the OPPs will be considered as shared only if the
61 * OPP table contains a "opp-shared" property.
63 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 _get_opp_table_kref(opp_table);
65 managed_table = opp_table;
68 break;
72 of_node_put(np);
74 return managed_table;
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 struct device_node *opp_np)
81 struct dev_pm_opp *opp;
83 mutex_lock(&opp_table->lock);
85 list_for_each_entry(opp, &opp_table->opp_list, node) {
86 if (opp->np == opp_np) {
87 dev_pm_opp_get(opp);
88 mutex_unlock(&opp_table->lock);
89 return opp;
93 mutex_unlock(&opp_table->lock);
95 return NULL;
98 static struct device_node *of_parse_required_opp(struct device_node *np,
99 int index)
101 return of_parse_phandle(np, "required-opps", index);
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
107 struct opp_table *opp_table;
108 struct device_node *opp_table_np;
110 opp_table_np = of_get_parent(opp_np);
111 if (!opp_table_np)
112 goto err;
114 /* It is safe to put the node now as all we need now is its address */
115 of_node_put(opp_table_np);
117 mutex_lock(&opp_table_lock);
118 list_for_each_entry(opp_table, &opp_tables, node) {
119 if (opp_table_np == opp_table->np) {
120 _get_opp_table_kref(opp_table);
121 mutex_unlock(&opp_table_lock);
122 return opp_table;
125 mutex_unlock(&opp_table_lock);
127 err:
128 return ERR_PTR(-ENODEV);
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
134 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135 int i;
137 if (!required_opp_tables)
138 return;
140 for (i = 0; i < opp_table->required_opp_count; i++) {
141 if (IS_ERR_OR_NULL(required_opp_tables[i]))
142 continue;
144 dev_pm_opp_put_opp_table(required_opp_tables[i]);
147 kfree(required_opp_tables);
149 opp_table->required_opp_count = 0;
150 opp_table->required_opp_tables = NULL;
152 mutex_lock(&opp_table_lock);
153 list_del(&opp_table->lazy);
154 mutex_unlock(&opp_table_lock);
158 * Populate all devices and opp tables which are part of "required-opps" list.
159 * Checking only the first OPP node should be enough.
161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162 struct device *dev,
163 struct device_node *opp_np)
165 struct opp_table **required_opp_tables;
166 struct device_node *required_np, *np;
167 bool lazy = false;
168 int count, i, size;
170 /* Traversing the first OPP node is all we need */
171 np = of_get_next_available_child(opp_np, NULL);
172 if (!np) {
173 dev_warn(dev, "Empty OPP table\n");
175 return;
178 count = of_count_phandle_with_args(np, "required-opps", NULL);
179 if (count <= 0)
180 goto put_np;
182 size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183 required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184 if (!required_opp_tables)
185 goto put_np;
187 opp_table->required_opp_tables = required_opp_tables;
188 opp_table->required_devs = (void *)(required_opp_tables + count);
189 opp_table->required_opp_count = count;
191 for (i = 0; i < count; i++) {
192 required_np = of_parse_required_opp(np, i);
193 if (!required_np)
194 goto free_required_tables;
196 required_opp_tables[i] = _find_table_of_opp_np(required_np);
197 of_node_put(required_np);
199 if (IS_ERR(required_opp_tables[i]))
200 lazy = true;
203 /* Let's do the linking later on */
204 if (lazy) {
206 * The OPP table is not held while allocating the table, take it
207 * now to avoid corruption to the lazy_opp_tables list.
209 mutex_lock(&opp_table_lock);
210 list_add(&opp_table->lazy, &lazy_opp_tables);
211 mutex_unlock(&opp_table_lock);
214 goto put_np;
216 free_required_tables:
217 _opp_table_free_required_tables(opp_table);
218 put_np:
219 of_node_put(np);
222 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223 int index)
225 struct device_node *np, *opp_np;
226 u32 val;
229 * Only required for backward compatibility with v1 bindings, but isn't
230 * harmful for other cases. And so we do it unconditionally.
232 np = of_node_get(dev->of_node);
233 if (!np)
234 return;
236 if (!of_property_read_u32(np, "clock-latency", &val))
237 opp_table->clock_latency_ns_max = val;
238 of_property_read_u32(np, "voltage-tolerance",
239 &opp_table->voltage_tolerance_v1);
241 if (of_property_present(np, "#power-domain-cells"))
242 opp_table->is_genpd = true;
244 /* Get OPP table node */
245 opp_np = _opp_of_get_opp_desc_node(np, index);
246 of_node_put(np);
248 if (!opp_np)
249 return;
251 if (of_property_read_bool(opp_np, "opp-shared"))
252 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253 else
254 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
256 opp_table->np = opp_np;
258 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
261 void _of_clear_opp_table(struct opp_table *opp_table)
263 _opp_table_free_required_tables(opp_table);
264 of_node_put(opp_table->np);
268 * Release all resources previously acquired with a call to
269 * _of_opp_alloc_required_opps().
271 static void _of_opp_free_required_opps(struct opp_table *opp_table,
272 struct dev_pm_opp *opp)
274 struct dev_pm_opp **required_opps = opp->required_opps;
275 int i;
277 if (!required_opps)
278 return;
280 for (i = 0; i < opp_table->required_opp_count; i++) {
281 if (!required_opps[i])
282 continue;
284 /* Put the reference back */
285 dev_pm_opp_put(required_opps[i]);
288 opp->required_opps = NULL;
289 kfree(required_opps);
292 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
294 _of_opp_free_required_opps(opp_table, opp);
295 of_node_put(opp->np);
298 static int _link_required_opps(struct dev_pm_opp *opp,
299 struct opp_table *required_table, int index)
301 struct device_node *np;
303 np = of_parse_required_opp(opp->np, index);
304 if (unlikely(!np))
305 return -ENODEV;
307 opp->required_opps[index] = _find_opp_of_np(required_table, np);
308 of_node_put(np);
310 if (!opp->required_opps[index]) {
311 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312 __func__, opp->np, index);
313 return -ENODEV;
316 return 0;
319 /* Populate all required OPPs which are part of "required-opps" list */
320 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
321 struct dev_pm_opp *opp)
323 struct opp_table *required_table;
324 int i, ret, count = opp_table->required_opp_count;
326 if (!count)
327 return 0;
329 opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
330 if (!opp->required_opps)
331 return -ENOMEM;
333 for (i = 0; i < count; i++) {
334 required_table = opp_table->required_opp_tables[i];
336 /* Required table not added yet, we will link later */
337 if (IS_ERR_OR_NULL(required_table))
338 continue;
340 ret = _link_required_opps(opp, required_table, i);
341 if (ret)
342 goto free_required_opps;
345 return 0;
347 free_required_opps:
348 _of_opp_free_required_opps(opp_table, opp);
350 return ret;
353 /* Link required OPPs for an individual OPP */
354 static int lazy_link_required_opps(struct opp_table *opp_table,
355 struct opp_table *new_table, int index)
357 struct dev_pm_opp *opp;
358 int ret;
360 list_for_each_entry(opp, &opp_table->opp_list, node) {
361 ret = _link_required_opps(opp, new_table, index);
362 if (ret)
363 return ret;
366 return 0;
369 /* Link required OPPs for all OPPs of the newly added OPP table */
370 static void lazy_link_required_opp_table(struct opp_table *new_table)
372 struct opp_table *opp_table, *temp, **required_opp_tables;
373 struct device_node *required_np, *opp_np, *required_table_np;
374 struct dev_pm_opp *opp;
375 int i, ret;
377 mutex_lock(&opp_table_lock);
379 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
380 bool lazy = false;
382 /* opp_np can't be invalid here */
383 opp_np = of_get_next_available_child(opp_table->np, NULL);
385 for (i = 0; i < opp_table->required_opp_count; i++) {
386 required_opp_tables = opp_table->required_opp_tables;
388 /* Required opp-table is already parsed */
389 if (!IS_ERR(required_opp_tables[i]))
390 continue;
392 /* required_np can't be invalid here */
393 required_np = of_parse_required_opp(opp_np, i);
394 required_table_np = of_get_parent(required_np);
396 of_node_put(required_table_np);
397 of_node_put(required_np);
400 * Newly added table isn't the required opp-table for
401 * opp_table.
403 if (required_table_np != new_table->np) {
404 lazy = true;
405 continue;
408 required_opp_tables[i] = new_table;
409 _get_opp_table_kref(new_table);
411 /* Link OPPs now */
412 ret = lazy_link_required_opps(opp_table, new_table, i);
413 if (ret) {
414 /* The OPPs will be marked unusable */
415 lazy = false;
416 break;
420 of_node_put(opp_np);
422 /* All required opp-tables found, remove from lazy list */
423 if (!lazy) {
424 list_del_init(&opp_table->lazy);
426 list_for_each_entry(opp, &opp_table->opp_list, node)
427 _required_opps_available(opp, opp_table->required_opp_count);
431 mutex_unlock(&opp_table_lock);
434 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
436 struct device_node *np, *opp_np;
437 struct property *prop;
439 if (!opp_table) {
440 np = of_node_get(dev->of_node);
441 if (!np)
442 return -ENODEV;
444 opp_np = _opp_of_get_opp_desc_node(np, 0);
445 of_node_put(np);
446 } else {
447 opp_np = of_node_get(opp_table->np);
450 /* Lets not fail in case we are parsing opp-v1 bindings */
451 if (!opp_np)
452 return 0;
454 /* Checking only first OPP is sufficient */
455 np = of_get_next_available_child(opp_np, NULL);
456 of_node_put(opp_np);
457 if (!np) {
458 dev_err(dev, "OPP table empty\n");
459 return -EINVAL;
462 prop = of_find_property(np, "opp-peak-kBps", NULL);
463 of_node_put(np);
465 if (!prop || !prop->length)
466 return 0;
468 return 1;
471 int dev_pm_opp_of_find_icc_paths(struct device *dev,
472 struct opp_table *opp_table)
474 struct device_node *np;
475 int ret, i, count, num_paths;
476 struct icc_path **paths;
478 ret = _bandwidth_supported(dev, opp_table);
479 if (ret == -EINVAL)
480 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
481 else if (ret <= 0)
482 return ret;
484 ret = 0;
486 np = of_node_get(dev->of_node);
487 if (!np)
488 return 0;
490 count = of_count_phandle_with_args(np, "interconnects",
491 "#interconnect-cells");
492 of_node_put(np);
493 if (count < 0)
494 return 0;
496 /* two phandles when #interconnect-cells = <1> */
497 if (count % 2) {
498 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
499 return -EINVAL;
502 num_paths = count / 2;
503 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
504 if (!paths)
505 return -ENOMEM;
507 for (i = 0; i < num_paths; i++) {
508 paths[i] = of_icc_get_by_index(dev, i);
509 if (IS_ERR(paths[i])) {
510 ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
511 goto err;
515 if (opp_table) {
516 opp_table->paths = paths;
517 opp_table->path_count = num_paths;
518 return 0;
521 err:
522 while (i--)
523 icc_put(paths[i]);
525 kfree(paths);
527 return ret;
529 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
531 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
532 struct device_node *np)
534 unsigned int levels = opp_table->supported_hw_count;
535 int count, versions, ret, i, j;
536 u32 val;
538 if (!opp_table->supported_hw) {
540 * In the case that no supported_hw has been set by the
541 * platform but there is an opp-supported-hw value set for
542 * an OPP then the OPP should not be enabled as there is
543 * no way to see if the hardware supports it.
545 if (of_property_present(np, "opp-supported-hw"))
546 return false;
547 else
548 return true;
551 count = of_property_count_u32_elems(np, "opp-supported-hw");
552 if (count <= 0 || count % levels) {
553 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
554 __func__, count);
555 return false;
558 versions = count / levels;
560 /* All levels in at least one of the versions should match */
561 for (i = 0; i < versions; i++) {
562 bool supported = true;
564 for (j = 0; j < levels; j++) {
565 ret = of_property_read_u32_index(np, "opp-supported-hw",
566 i * levels + j, &val);
567 if (ret) {
568 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
569 __func__, i * levels + j, ret);
570 return false;
573 /* Check if the level is supported */
574 if (!(val & opp_table->supported_hw[j])) {
575 supported = false;
576 break;
580 if (supported)
581 return true;
584 return false;
587 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
588 struct opp_table *opp_table,
589 const char *prop_type, bool *triplet)
591 struct property *prop = NULL;
592 char name[NAME_MAX];
593 int count, ret;
594 u32 *out;
596 /* Search for "opp-<prop_type>-<name>" */
597 if (opp_table->prop_name) {
598 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
599 opp_table->prop_name);
600 prop = of_find_property(opp->np, name, NULL);
603 if (!prop) {
604 /* Search for "opp-<prop_type>" */
605 snprintf(name, sizeof(name), "opp-%s", prop_type);
606 prop = of_find_property(opp->np, name, NULL);
607 if (!prop)
608 return NULL;
611 count = of_property_count_u32_elems(opp->np, name);
612 if (count < 0) {
613 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
614 count);
615 return ERR_PTR(count);
619 * Initialize regulator_count, if regulator information isn't provided
620 * by the platform. Now that one of the properties is available, fix the
621 * regulator_count to 1.
623 if (unlikely(opp_table->regulator_count == -1))
624 opp_table->regulator_count = 1;
626 if (count != opp_table->regulator_count &&
627 (!triplet || count != opp_table->regulator_count * 3)) {
628 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
629 __func__, prop_type, count, opp_table->regulator_count);
630 return ERR_PTR(-EINVAL);
633 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
634 if (!out)
635 return ERR_PTR(-EINVAL);
637 ret = of_property_read_u32_array(opp->np, name, out, count);
638 if (ret) {
639 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
640 kfree(out);
641 return ERR_PTR(-EINVAL);
644 if (triplet)
645 *triplet = count != opp_table->regulator_count;
647 return out;
650 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
651 struct opp_table *opp_table, bool *triplet)
653 u32 *microvolt;
655 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
656 if (IS_ERR(microvolt))
657 return microvolt;
659 if (!microvolt) {
661 * Missing property isn't a problem, but an invalid
662 * entry is. This property isn't optional if regulator
663 * information is provided. Check only for the first OPP, as
664 * regulator_count may get initialized after that to a valid
665 * value.
667 if (list_empty(&opp_table->opp_list) &&
668 opp_table->regulator_count > 0) {
669 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
670 __func__);
671 return ERR_PTR(-EINVAL);
675 return microvolt;
678 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
679 struct opp_table *opp_table)
681 u32 *microvolt, *microamp, *microwatt;
682 int ret = 0, i, j;
683 bool triplet;
685 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
686 if (IS_ERR(microvolt))
687 return PTR_ERR(microvolt);
689 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
690 if (IS_ERR(microamp)) {
691 ret = PTR_ERR(microamp);
692 goto free_microvolt;
695 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
696 if (IS_ERR(microwatt)) {
697 ret = PTR_ERR(microwatt);
698 goto free_microamp;
702 * Initialize regulator_count if it is uninitialized and no properties
703 * are found.
705 if (unlikely(opp_table->regulator_count == -1)) {
706 opp_table->regulator_count = 0;
707 return 0;
710 for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
711 if (microvolt) {
712 opp->supplies[i].u_volt = microvolt[j++];
714 if (triplet) {
715 opp->supplies[i].u_volt_min = microvolt[j++];
716 opp->supplies[i].u_volt_max = microvolt[j++];
717 } else {
718 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
719 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
723 if (microamp)
724 opp->supplies[i].u_amp = microamp[i];
726 if (microwatt)
727 opp->supplies[i].u_watt = microwatt[i];
730 kfree(microwatt);
731 free_microamp:
732 kfree(microamp);
733 free_microvolt:
734 kfree(microvolt);
736 return ret;
740 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
741 * entries
742 * @dev: device pointer used to lookup OPP table.
744 * Free OPPs created using static entries present in DT.
746 void dev_pm_opp_of_remove_table(struct device *dev)
748 dev_pm_opp_remove_table(dev);
750 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
752 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
753 struct device_node *np)
755 struct property *prop;
756 int i, count, ret;
757 u64 *rates;
759 prop = of_find_property(np, "opp-hz", NULL);
760 if (!prop)
761 return -ENODEV;
763 count = prop->length / sizeof(u64);
764 if (opp_table->clk_count != count) {
765 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
766 __func__, count, opp_table->clk_count);
767 return -EINVAL;
770 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
771 if (!rates)
772 return -ENOMEM;
774 ret = of_property_read_u64_array(np, "opp-hz", rates, count);
775 if (ret) {
776 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
777 } else {
779 * Rate is defined as an unsigned long in clk API, and so
780 * casting explicitly to its type. Must be fixed once rate is 64
781 * bit guaranteed in clk API.
783 for (i = 0; i < count; i++) {
784 new_opp->rates[i] = (unsigned long)rates[i];
786 /* This will happen for frequencies > 4.29 GHz */
787 WARN_ON(new_opp->rates[i] != rates[i]);
791 kfree(rates);
793 return ret;
796 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
797 struct device_node *np, bool peak)
799 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
800 struct property *prop;
801 int i, count, ret;
802 u32 *bw;
804 prop = of_find_property(np, name, NULL);
805 if (!prop)
806 return -ENODEV;
808 count = prop->length / sizeof(u32);
809 if (opp_table->path_count != count) {
810 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
811 __func__, name, count, opp_table->path_count);
812 return -EINVAL;
815 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
816 if (!bw)
817 return -ENOMEM;
819 ret = of_property_read_u32_array(np, name, bw, count);
820 if (ret) {
821 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
822 goto out;
825 for (i = 0; i < count; i++) {
826 if (peak)
827 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
828 else
829 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
832 out:
833 kfree(bw);
834 return ret;
837 static int _read_opp_key(struct dev_pm_opp *new_opp,
838 struct opp_table *opp_table, struct device_node *np)
840 bool found = false;
841 int ret;
843 ret = _read_rate(new_opp, opp_table, np);
844 if (!ret)
845 found = true;
846 else if (ret != -ENODEV)
847 return ret;
850 * Bandwidth consists of peak and average (optional) values:
851 * opp-peak-kBps = <path1_value path2_value>;
852 * opp-avg-kBps = <path1_value path2_value>;
854 ret = _read_bw(new_opp, opp_table, np, true);
855 if (!ret) {
856 found = true;
857 ret = _read_bw(new_opp, opp_table, np, false);
860 /* The properties were found but we failed to parse them */
861 if (ret && ret != -ENODEV)
862 return ret;
864 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
865 found = true;
867 if (found)
868 return 0;
870 return ret;
874 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
875 * @opp_table: OPP table
876 * @dev: device for which we do this operation
877 * @np: device node
879 * This function adds an opp definition to the opp table and returns status. The
880 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
881 * removed by dev_pm_opp_remove.
883 * Return:
884 * Valid OPP pointer:
885 * On success
886 * NULL:
887 * Duplicate OPPs (both freq and volt are same) and opp->available
888 * OR if the OPP is not supported by hardware.
889 * ERR_PTR(-EEXIST):
890 * Freq are same and volt are different OR
891 * Duplicate OPPs (both freq and volt are same) and !opp->available
892 * ERR_PTR(-ENOMEM):
893 * Memory allocation failure
894 * ERR_PTR(-EINVAL):
895 * Failed parsing the OPP node
897 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
898 struct device *dev, struct device_node *np)
900 struct dev_pm_opp *new_opp;
901 u32 val;
902 int ret;
904 new_opp = _opp_allocate(opp_table);
905 if (!new_opp)
906 return ERR_PTR(-ENOMEM);
908 ret = _read_opp_key(new_opp, opp_table, np);
909 if (ret < 0) {
910 dev_err(dev, "%s: opp key field not found\n", __func__);
911 goto free_opp;
914 /* Check if the OPP supports hardware's hierarchy of versions or not */
915 if (!_opp_is_supported(dev, opp_table, np)) {
916 dev_dbg(dev, "OPP not supported by hardware: %s\n",
917 of_node_full_name(np));
918 goto free_opp;
921 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
923 new_opp->np = of_node_get(np);
924 new_opp->dynamic = false;
925 new_opp->available = true;
927 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
928 if (ret)
929 goto free_opp;
931 if (!of_property_read_u32(np, "clock-latency-ns", &val))
932 new_opp->clock_latency_ns = val;
934 ret = opp_parse_supplies(new_opp, dev, opp_table);
935 if (ret)
936 goto free_required_opps;
938 ret = _opp_add(dev, new_opp, opp_table);
939 if (ret) {
940 /* Don't return error for duplicate OPPs */
941 if (ret == -EBUSY)
942 ret = 0;
943 goto free_required_opps;
946 /* OPP to select on device suspend */
947 if (of_property_read_bool(np, "opp-suspend")) {
948 if (opp_table->suspend_opp) {
949 /* Pick the OPP with higher rate/bw/level as suspend OPP */
950 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
951 opp_table->suspend_opp->suspend = false;
952 new_opp->suspend = true;
953 opp_table->suspend_opp = new_opp;
955 } else {
956 new_opp->suspend = true;
957 opp_table->suspend_opp = new_opp;
961 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
962 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
964 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
965 __func__, new_opp->turbo, new_opp->rates[0],
966 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
967 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
968 new_opp->level);
971 * Notify the changes in the availability of the operable
972 * frequency/voltage list.
974 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
975 return new_opp;
977 free_required_opps:
978 _of_opp_free_required_opps(opp_table, new_opp);
979 free_opp:
980 _opp_free(new_opp);
982 return ret ? ERR_PTR(ret) : NULL;
985 /* Initializes OPP tables based on new bindings */
986 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
988 struct device_node *np;
989 int ret, count = 0;
990 struct dev_pm_opp *opp;
992 /* OPP table is already initialized for the device */
993 mutex_lock(&opp_table->lock);
994 if (opp_table->parsed_static_opps) {
995 opp_table->parsed_static_opps++;
996 mutex_unlock(&opp_table->lock);
997 return 0;
1000 opp_table->parsed_static_opps = 1;
1001 mutex_unlock(&opp_table->lock);
1003 /* We have opp-table node now, iterate over it and add OPPs */
1004 for_each_available_child_of_node(opp_table->np, np) {
1005 opp = _opp_add_static_v2(opp_table, dev, np);
1006 if (IS_ERR(opp)) {
1007 ret = PTR_ERR(opp);
1008 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1009 ret);
1010 of_node_put(np);
1011 goto remove_static_opp;
1012 } else if (opp) {
1013 count++;
1017 /* There should be one or more OPPs defined */
1018 if (!count) {
1019 dev_err(dev, "%s: no supported OPPs", __func__);
1020 ret = -ENOENT;
1021 goto remove_static_opp;
1024 lazy_link_required_opp_table(opp_table);
1026 return 0;
1028 remove_static_opp:
1029 _opp_remove_all_static(opp_table);
1031 return ret;
1034 /* Initializes OPP tables based on old-deprecated bindings */
1035 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1037 const struct property *prop;
1038 const __be32 *val;
1039 int nr, ret = 0;
1041 mutex_lock(&opp_table->lock);
1042 if (opp_table->parsed_static_opps) {
1043 opp_table->parsed_static_opps++;
1044 mutex_unlock(&opp_table->lock);
1045 return 0;
1048 opp_table->parsed_static_opps = 1;
1049 mutex_unlock(&opp_table->lock);
1051 prop = of_find_property(dev->of_node, "operating-points", NULL);
1052 if (!prop) {
1053 ret = -ENODEV;
1054 goto remove_static_opp;
1056 if (!prop->value) {
1057 ret = -ENODATA;
1058 goto remove_static_opp;
1062 * Each OPP is a set of tuples consisting of frequency and
1063 * voltage like <freq-kHz vol-uV>.
1065 nr = prop->length / sizeof(u32);
1066 if (nr % 2) {
1067 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1068 ret = -EINVAL;
1069 goto remove_static_opp;
1072 val = prop->value;
1073 while (nr) {
1074 unsigned long freq = be32_to_cpup(val++) * 1000;
1075 unsigned long volt = be32_to_cpup(val++);
1076 struct dev_pm_opp_data data = {
1077 .freq = freq,
1078 .u_volt = volt,
1081 ret = _opp_add_v1(opp_table, dev, &data, false);
1082 if (ret) {
1083 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1084 __func__, data.freq, ret);
1085 goto remove_static_opp;
1087 nr -= 2;
1090 return 0;
1092 remove_static_opp:
1093 _opp_remove_all_static(opp_table);
1095 return ret;
1098 static int _of_add_table_indexed(struct device *dev, int index)
1100 struct opp_table *opp_table;
1101 int ret, count;
1103 if (index) {
1105 * If only one phandle is present, then the same OPP table
1106 * applies for all index requests.
1108 count = of_count_phandle_with_args(dev->of_node,
1109 "operating-points-v2", NULL);
1110 if (count == 1)
1111 index = 0;
1114 opp_table = _add_opp_table_indexed(dev, index, true);
1115 if (IS_ERR(opp_table))
1116 return PTR_ERR(opp_table);
1119 * OPPs have two version of bindings now. Also try the old (v1)
1120 * bindings for backward compatibility with older dtbs.
1122 if (opp_table->np)
1123 ret = _of_add_opp_table_v2(dev, opp_table);
1124 else
1125 ret = _of_add_opp_table_v1(dev, opp_table);
1127 if (ret)
1128 dev_pm_opp_put_opp_table(opp_table);
1130 return ret;
1133 static void devm_pm_opp_of_table_release(void *data)
1135 dev_pm_opp_of_remove_table(data);
1138 static int _devm_of_add_table_indexed(struct device *dev, int index)
1140 int ret;
1142 ret = _of_add_table_indexed(dev, index);
1143 if (ret)
1144 return ret;
1146 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1150 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1151 * @dev: device pointer used to lookup OPP table.
1153 * Register the initial OPP table with the OPP library for given device.
1155 * The opp_table structure will be freed after the device is destroyed.
1157 * Return:
1158 * 0 On success OR
1159 * Duplicate OPPs (both freq and volt are same) and opp->available
1160 * -EEXIST Freq are same and volt are different OR
1161 * Duplicate OPPs (both freq and volt are same) and !opp->available
1162 * -ENOMEM Memory allocation failure
1163 * -ENODEV when 'operating-points' property is not found or is invalid data
1164 * in device node.
1165 * -ENODATA when empty 'operating-points' property is found
1166 * -EINVAL when invalid entries are found in opp-v2 table
1168 int devm_pm_opp_of_add_table(struct device *dev)
1170 return _devm_of_add_table_indexed(dev, 0);
1172 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1175 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1176 * @dev: device pointer used to lookup OPP table.
1178 * Register the initial OPP table with the OPP library for given device.
1180 * Return:
1181 * 0 On success OR
1182 * Duplicate OPPs (both freq and volt are same) and opp->available
1183 * -EEXIST Freq are same and volt are different OR
1184 * Duplicate OPPs (both freq and volt are same) and !opp->available
1185 * -ENOMEM Memory allocation failure
1186 * -ENODEV when 'operating-points' property is not found or is invalid data
1187 * in device node.
1188 * -ENODATA when empty 'operating-points' property is found
1189 * -EINVAL when invalid entries are found in opp-v2 table
1191 int dev_pm_opp_of_add_table(struct device *dev)
1193 return _of_add_table_indexed(dev, 0);
1195 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1198 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1199 * @dev: device pointer used to lookup OPP table.
1200 * @index: Index number.
1202 * Register the initial OPP table with the OPP library for given device only
1203 * using the "operating-points-v2" property.
1205 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1207 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1209 return _of_add_table_indexed(dev, index);
1211 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1214 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1215 * @dev: device pointer used to lookup OPP table.
1216 * @index: Index number.
1218 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1220 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1222 return _devm_of_add_table_indexed(dev, index);
1224 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1226 /* CPU device specific helpers */
1229 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1230 * @cpumask: cpumask for which OPP table needs to be removed
1232 * This removes the OPP tables for CPUs present in the @cpumask.
1233 * This should be used only to remove static entries created from DT.
1235 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1237 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1239 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1242 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1243 * @cpumask: cpumask for which OPP table needs to be added.
1245 * This adds the OPP tables for CPUs present in the @cpumask.
1247 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1249 struct device *cpu_dev;
1250 int cpu, ret;
1252 if (WARN_ON(cpumask_empty(cpumask)))
1253 return -ENODEV;
1255 for_each_cpu(cpu, cpumask) {
1256 cpu_dev = get_cpu_device(cpu);
1257 if (!cpu_dev) {
1258 pr_err("%s: failed to get cpu%d device\n", __func__,
1259 cpu);
1260 ret = -ENODEV;
1261 goto remove_table;
1264 ret = dev_pm_opp_of_add_table(cpu_dev);
1265 if (ret) {
1267 * OPP may get registered dynamically, don't print error
1268 * message here.
1270 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1271 __func__, cpu, ret);
1273 goto remove_table;
1277 return 0;
1279 remove_table:
1280 /* Free all other OPPs */
1281 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1283 return ret;
1285 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1288 * Works only for OPP v2 bindings.
1290 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1293 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1294 * @cpu_dev using operating-points-v2
1295 * bindings.
1297 * @cpu_dev: CPU device for which we do this operation
1298 * @cpumask: cpumask to update with information of sharing CPUs
1300 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1302 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1304 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1305 struct cpumask *cpumask)
1307 struct device_node *np, *tmp_np, *cpu_np;
1308 int cpu, ret = 0;
1310 /* Get OPP descriptor node */
1311 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1312 if (!np) {
1313 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1314 return -ENOENT;
1317 cpumask_set_cpu(cpu_dev->id, cpumask);
1319 /* OPPs are shared ? */
1320 if (!of_property_read_bool(np, "opp-shared"))
1321 goto put_cpu_node;
1323 for_each_possible_cpu(cpu) {
1324 if (cpu == cpu_dev->id)
1325 continue;
1327 cpu_np = of_cpu_device_node_get(cpu);
1328 if (!cpu_np) {
1329 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1330 __func__, cpu);
1331 ret = -ENOENT;
1332 goto put_cpu_node;
1335 /* Get OPP descriptor node */
1336 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1337 of_node_put(cpu_np);
1338 if (!tmp_np) {
1339 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1340 ret = -ENOENT;
1341 goto put_cpu_node;
1344 /* CPUs are sharing opp node */
1345 if (np == tmp_np)
1346 cpumask_set_cpu(cpu, cpumask);
1348 of_node_put(tmp_np);
1351 put_cpu_node:
1352 of_node_put(np);
1353 return ret;
1355 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1358 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1359 * @np: Node that contains the "required-opps" property.
1360 * @index: Index of the phandle to parse.
1362 * Returns the performance state of the OPP pointed out by the "required-opps"
1363 * property at @index in @np.
1365 * Return: Zero or positive performance state on success, otherwise negative
1366 * value on errors.
1368 int of_get_required_opp_performance_state(struct device_node *np, int index)
1370 struct dev_pm_opp *opp;
1371 struct device_node *required_np;
1372 struct opp_table *opp_table;
1373 int pstate = -EINVAL;
1375 required_np = of_parse_required_opp(np, index);
1376 if (!required_np)
1377 return -ENODEV;
1379 opp_table = _find_table_of_opp_np(required_np);
1380 if (IS_ERR(opp_table)) {
1381 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1382 __func__, np, PTR_ERR(opp_table));
1383 goto put_required_np;
1386 /* The OPP tables must belong to a genpd */
1387 if (unlikely(!opp_table->is_genpd)) {
1388 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1389 goto put_required_np;
1392 opp = _find_opp_of_np(opp_table, required_np);
1393 if (opp) {
1394 if (opp->level == OPP_LEVEL_UNSET) {
1395 pr_err("%s: OPP levels aren't available for %pOF\n",
1396 __func__, np);
1397 } else {
1398 pstate = opp->level;
1400 dev_pm_opp_put(opp);
1404 dev_pm_opp_put_opp_table(opp_table);
1406 put_required_np:
1407 of_node_put(required_np);
1409 return pstate;
1411 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1414 * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1415 * @dev: The device to investigate.
1417 * Returns true if the device's node has a "operating-points-v2" property and if
1418 * the corresponding node for the opp-table describes opp nodes that uses the
1419 * "required-opps" property.
1421 * Return: True if a required-opps is present, else false.
1423 bool dev_pm_opp_of_has_required_opp(struct device *dev)
1425 struct device_node *opp_np, *np;
1426 int count;
1428 opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1429 if (!opp_np)
1430 return false;
1432 np = of_get_next_available_child(opp_np, NULL);
1433 of_node_put(opp_np);
1434 if (!np) {
1435 dev_warn(dev, "Empty OPP table\n");
1436 return false;
1439 count = of_count_phandle_with_args(np, "required-opps", NULL);
1440 of_node_put(np);
1442 return count > 0;
1446 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1447 * @opp: opp for which DT node has to be returned for
1449 * Return: DT node corresponding to the opp, else 0 on success.
1451 * The caller needs to put the node with of_node_put() after using it.
1453 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1455 if (IS_ERR_OR_NULL(opp)) {
1456 pr_err("%s: Invalid parameters\n", __func__);
1457 return NULL;
1460 return of_node_get(opp->np);
1462 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1465 * Callback function provided to the Energy Model framework upon registration.
1466 * It provides the power used by @dev at @kHz if it is the frequency of an
1467 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1468 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1469 * frequency and @uW to the associated power.
1471 * Returns 0 on success or a proper -EINVAL value in case of error.
1473 static int __maybe_unused
1474 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1476 struct dev_pm_opp *opp;
1477 unsigned long opp_freq, opp_power;
1479 /* Find the right frequency and related OPP */
1480 opp_freq = *kHz * 1000;
1481 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1482 if (IS_ERR(opp))
1483 return -EINVAL;
1485 opp_power = dev_pm_opp_get_power(opp);
1486 dev_pm_opp_put(opp);
1487 if (!opp_power)
1488 return -EINVAL;
1490 *kHz = opp_freq / 1000;
1491 *uW = opp_power;
1493 return 0;
1497 * dev_pm_opp_calc_power() - Calculate power value for device with EM
1498 * @dev : Device for which an Energy Model has to be registered
1499 * @uW : New power value that is calculated
1500 * @kHz : Frequency for which the new power is calculated
1502 * This computes the power estimated by @dev at @kHz if it is the frequency
1503 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1504 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1505 * frequency and @uW to the associated power. The power is estimated as
1506 * P = C * V^2 * f with C being the device's capacitance and V and f
1507 * respectively the voltage and frequency of the OPP.
1508 * It is also used as a callback function provided to the Energy Model
1509 * framework upon registration.
1511 * Returns -EINVAL if the power calculation failed because of missing
1512 * parameters, 0 otherwise.
1514 int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1515 unsigned long *kHz)
1517 struct dev_pm_opp *opp;
1518 struct device_node *np;
1519 unsigned long mV, Hz;
1520 u32 cap;
1521 u64 tmp;
1522 int ret;
1524 np = of_node_get(dev->of_node);
1525 if (!np)
1526 return -EINVAL;
1528 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1529 of_node_put(np);
1530 if (ret)
1531 return -EINVAL;
1533 Hz = *kHz * 1000;
1534 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1535 if (IS_ERR(opp))
1536 return -EINVAL;
1538 mV = dev_pm_opp_get_voltage(opp) / 1000;
1539 dev_pm_opp_put(opp);
1540 if (!mV)
1541 return -EINVAL;
1543 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1544 /* Provide power in micro-Watts */
1545 do_div(tmp, 1000000);
1547 *uW = (unsigned long)tmp;
1548 *kHz = Hz / 1000;
1550 return 0;
1552 EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1554 static bool _of_has_opp_microwatt_property(struct device *dev)
1556 unsigned long power, freq = 0;
1557 struct dev_pm_opp *opp;
1559 /* Check if at least one OPP has needed property */
1560 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1561 if (IS_ERR(opp))
1562 return false;
1564 power = dev_pm_opp_get_power(opp);
1565 dev_pm_opp_put(opp);
1566 if (!power)
1567 return false;
1569 return true;
1573 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1574 * @dev : Device for which an Energy Model has to be registered
1575 * @cpus : CPUs for which an Energy Model has to be registered. For
1576 * other type of devices it should be set to NULL.
1578 * This checks whether the "dynamic-power-coefficient" devicetree property has
1579 * been specified, and tries to register an Energy Model with it if it has.
1580 * Having this property means the voltages are known for OPPs and the EM
1581 * might be calculated.
1583 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1585 struct em_data_callback em_cb;
1586 struct device_node *np;
1587 int ret, nr_opp;
1588 u32 cap;
1590 if (IS_ERR_OR_NULL(dev)) {
1591 ret = -EINVAL;
1592 goto failed;
1595 nr_opp = dev_pm_opp_get_opp_count(dev);
1596 if (nr_opp <= 0) {
1597 ret = -EINVAL;
1598 goto failed;
1601 /* First, try to find more precised Energy Model in DT */
1602 if (_of_has_opp_microwatt_property(dev)) {
1603 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1604 goto register_em;
1607 np = of_node_get(dev->of_node);
1608 if (!np) {
1609 ret = -EINVAL;
1610 goto failed;
1614 * Register an EM only if the 'dynamic-power-coefficient' property is
1615 * set in devicetree. It is assumed the voltage values are known if that
1616 * property is set since it is useless otherwise. If voltages are not
1617 * known, just let the EM registration fail with an error to alert the
1618 * user about the inconsistent configuration.
1620 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1621 of_node_put(np);
1622 if (ret || !cap) {
1623 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1624 ret = -EINVAL;
1625 goto failed;
1628 EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1630 register_em:
1631 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1632 if (ret)
1633 goto failed;
1635 return 0;
1637 failed:
1638 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1639 return ret;
1641 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);