1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Low-level parallel port routines for built-in port on SGI IP32
4 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
6 * Based on parport_pc.c by
7 * Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
8 * Andrea Arcangeli, et al.
10 * Thanks to Ilya A. Volynets-Evenbakh for his help.
12 * Copyright (C) 2005, 2006 Arnaud Giersch.
17 * Basic SPP and PS2 modes are supported.
18 * Support for parallel port IRQ is present.
19 * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
21 * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with
22 * or without interrupt support.
24 * Hardware ECP mode is not fully implemented (ecp_read_data and
25 * ecp_write_addr are actually missing).
29 * Fully implement ECP mode.
30 * EPP and ECP mode need to be tested. I currently do not own any
31 * peripheral supporting these extended mode, and cannot test them.
32 * If DMA mode works well, decide if support for PIO FIFO modes should be
34 * Use the io{read,write} family functions when they become available in
35 * the linux-mips.org tree. Note: the MIPS specific functions readsb()
36 * and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
40 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
41 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
42 * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte
43 * FIFO buffer and supports DMA transfers.
45 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
47 * Theoretically, we could simply use the parport_pc module. It is however
48 * not so simple. The parport_pc code assumes that the parallel port
49 * registers are port-mapped. On the O2, they are memory-mapped.
50 * Furthermore, each register is replicated on 256 consecutive addresses (as
51 * it is for the built-in serial ports on the same chip).
54 /*--- Some configuration defines ---------------------------------------*/
58 * 1 standard level: pr_debug1 is enabled
59 * 2 parport_ip32_dump_state is enabled
60 * >=3 verbose level: pr_debug is enabled
62 #if !defined(DEBUG_PARPORT_IP32)
63 # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */
66 /*----------------------------------------------------------------------*/
68 /* Setup DEBUG macros. This is done before any includes, just in case we
69 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
71 #if DEBUG_PARPORT_IP32 == 1
72 # warning DEBUG_PARPORT_IP32 == 1
73 #elif DEBUG_PARPORT_IP32 == 2
74 # warning DEBUG_PARPORT_IP32 == 2
75 #elif DEBUG_PARPORT_IP32 >= 3
76 # warning DEBUG_PARPORT_IP32 >= 3
78 # define DEBUG /* enable pr_debug() in kernel.h */
82 #include <linux/completion.h>
83 #include <linux/delay.h>
84 #include <linux/dma-mapping.h>
85 #include <linux/err.h>
86 #include <linux/init.h>
87 #include <linux/interrupt.h>
88 #include <linux/jiffies.h>
89 #include <linux/kernel.h>
90 #include <linux/module.h>
91 #include <linux/parport.h>
92 #include <linux/sched/signal.h>
93 #include <linux/slab.h>
94 #include <linux/spinlock.h>
95 #include <linux/stddef.h>
96 #include <linux/types.h>
98 #include <asm/ip32/ip32_ints.h>
99 #include <asm/ip32/mace.h>
101 /*--- Global variables -------------------------------------------------*/
103 /* Verbose probing on by default for debugging. */
104 #if DEBUG_PARPORT_IP32 >= 1
105 # define DEFAULT_VERBOSE_PROBING 1
107 # define DEFAULT_VERBOSE_PROBING 0
110 /* Default prefix for printk */
111 #define PPIP32 "parport_ip32: "
114 * These are the module parameters:
115 * @features: bit mask of features to enable/disable
116 * (all enabled by default)
117 * @verbose_probing: log chit-chat during initialization
119 #define PARPORT_IP32_ENABLE_IRQ (1U << 0)
120 #define PARPORT_IP32_ENABLE_DMA (1U << 1)
121 #define PARPORT_IP32_ENABLE_SPP (1U << 2)
122 #define PARPORT_IP32_ENABLE_EPP (1U << 3)
123 #define PARPORT_IP32_ENABLE_ECP (1U << 4)
124 static unsigned int features
= ~0U;
125 static bool verbose_probing
= DEFAULT_VERBOSE_PROBING
;
127 /* We do not support more than one port. */
128 static struct parport
*this_port
;
130 /* Timing constants for FIFO modes. */
131 #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */
132 #define FIFO_POLLING_INTERVAL 50 /* microseconds */
134 /*--- I/O register definitions -----------------------------------------*/
137 * struct parport_ip32_regs - virtual addresses of parallel port registers
138 * @data: Data Register
139 * @dsr: Device Status Register
140 * @dcr: Device Control Register
141 * @eppAddr: EPP Address Register
142 * @eppData0: EPP Data Register 0
143 * @eppData1: EPP Data Register 1
144 * @eppData2: EPP Data Register 2
145 * @eppData3: EPP Data Register 3
146 * @ecpAFifo: ECP Address FIFO
147 * @fifo: General FIFO register. The same address is used for:
148 * - cFifo, the Parallel Port DATA FIFO
149 * - ecpDFifo, the ECP Data FIFO
150 * - tFifo, the ECP Test FIFO
151 * @cnfgA: Configuration Register A
152 * @cnfgB: Configuration Register B
153 * @ecr: Extended Control Register
155 struct parport_ip32_regs
{
159 void __iomem
*eppAddr
;
160 void __iomem
*eppData0
;
161 void __iomem
*eppData1
;
162 void __iomem
*eppData2
;
163 void __iomem
*eppData3
;
164 void __iomem
*ecpAFifo
;
171 /* Device Status Register */
172 #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */
173 #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */
174 #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */
175 #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */
176 #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */
177 #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */
178 /* #define DSR_reserved (1U << 1) */
179 #define DSR_TIMEOUT (1U << 0) /* EPP timeout */
181 /* Device Control Register */
182 /* #define DCR_reserved (1U << 7) | (1U << 6) */
183 #define DCR_DIR (1U << 5) /* direction */
184 #define DCR_IRQ (1U << 4) /* interrupt on nAck */
185 #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */
186 #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */
187 #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */
188 #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */
190 /* ECP Configuration Register A */
191 #define CNFGA_IRQ (1U << 7)
192 #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4))
193 #define CNFGA_ID_SHIFT 4
194 #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT)
195 #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT)
196 #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT)
197 /* #define CNFGA_reserved (1U << 3) */
198 #define CNFGA_nBYTEINTRANS (1U << 2)
199 #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0))
201 /* ECP Configuration Register B */
202 #define CNFGB_COMPRESS (1U << 7)
203 #define CNFGB_INTRVAL (1U << 6)
204 #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3))
205 #define CNFGB_IRQ_SHIFT 3
206 #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0))
207 #define CNFGB_DMA_SHIFT 0
209 /* Extended Control Register */
210 #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5))
211 #define ECR_MODE_SHIFT 5
212 #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT)
213 #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT)
214 #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT)
215 #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT)
216 #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT)
217 /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */
218 #define ECR_MODE_TST (06U << ECR_MODE_SHIFT)
219 #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT)
220 #define ECR_nERRINTR (1U << 4)
221 #define ECR_DMAEN (1U << 3)
222 #define ECR_SERVINTR (1U << 2)
223 #define ECR_F_FULL (1U << 1)
224 #define ECR_F_EMPTY (1U << 0)
226 /*--- Private data -----------------------------------------------------*/
229 * enum parport_ip32_irq_mode - operation mode of interrupt handler
230 * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer
231 * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally
233 enum parport_ip32_irq_mode
{ PARPORT_IP32_IRQ_FWD
, PARPORT_IP32_IRQ_HERE
};
236 * struct parport_ip32_private - private stuff for &struct parport
237 * @regs: register addresses
238 * @dcr_cache: cached contents of DCR
239 * @dcr_writable: bit mask of writable DCR bits
240 * @pword: number of bytes per PWord
241 * @fifo_depth: number of PWords that FIFO will hold
242 * @readIntrThreshold: minimum number of PWords we can read
243 * if we get an interrupt
244 * @writeIntrThreshold: minimum number of PWords we can write
245 * if we get an interrupt
246 * @irq_mode: operation mode of interrupt handler for this port
247 * @irq_complete: mutex used to wait for an interrupt to occur
249 struct parport_ip32_private
{
250 struct parport_ip32_regs regs
;
251 unsigned int dcr_cache
;
252 unsigned int dcr_writable
;
254 unsigned int fifo_depth
;
255 unsigned int readIntrThreshold
;
256 unsigned int writeIntrThreshold
;
257 enum parport_ip32_irq_mode irq_mode
;
258 struct completion irq_complete
;
261 /*--- Debug code -------------------------------------------------------*/
264 * pr_debug1 - print debug messages
266 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
268 #if DEBUG_PARPORT_IP32 >= 1
269 # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__)
270 #else /* DEBUG_PARPORT_IP32 < 1 */
271 # define pr_debug1(...) do { } while (0)
275 * pr_trace, pr_trace1 - trace function calls
276 * @p: pointer to &struct parport
277 * @fmt: printk format string
278 * @...: parameters for format string
280 * Macros used to trace function calls. The given string is formatted after
281 * function name. pr_trace() uses pr_debug(), and pr_trace1() uses
282 * pr_debug1(). __pr_trace() is the low-level macro and is not to be used
285 #define __pr_trace(pr, p, fmt, ...) \
286 pr("%s: %s" fmt "\n", \
287 ({ const struct parport *__p = (p); \
288 __p ? __p->name : "parport_ip32"; }), \
289 __func__ , ##__VA_ARGS__)
290 #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
291 #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
294 * __pr_probe, pr_probe - print message if @verbose_probing is true
295 * @p: pointer to &struct parport
296 * @fmt: printk format string
297 * @...: parameters for format string
299 * For new lines, use pr_probe(). Use __pr_probe() for continued lines.
301 #define __pr_probe(...) \
302 do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
303 #define pr_probe(p, fmt, ...) \
304 __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
307 * parport_ip32_dump_state - print register status of parport
308 * @p: pointer to &struct parport
309 * @str: string to add in message
310 * @show_ecp_config: shall we dump ECP configuration registers too?
312 * This function is only here for debugging purpose, and should be used with
313 * care. Reading the parallel port registers may have undesired side effects.
314 * Especially if @show_ecp_config is true, the parallel port is resetted.
315 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
317 #if DEBUG_PARPORT_IP32 >= 2
318 static void parport_ip32_dump_state(struct parport
*p
, char *str
,
319 unsigned int show_ecp_config
)
321 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
324 printk(KERN_DEBUG PPIP32
"%s: state (%s):\n", p
->name
, str
);
326 static const char ecr_modes
[8][4] = {"SPP", "PS2", "PPF",
329 unsigned int ecr
= readb(priv
->regs
.ecr
);
330 printk(KERN_DEBUG PPIP32
" ecr=0x%02x", ecr
);
332 ecr_modes
[(ecr
& ECR_MODE_MASK
) >> ECR_MODE_SHIFT
]);
333 if (ecr
& ECR_nERRINTR
)
334 pr_cont(",nErrIntrEn");
337 if (ecr
& ECR_SERVINTR
)
338 pr_cont(",serviceIntr");
339 if (ecr
& ECR_F_FULL
)
341 if (ecr
& ECR_F_EMPTY
)
345 if (show_ecp_config
) {
346 unsigned int oecr
, cnfgA
, cnfgB
;
347 oecr
= readb(priv
->regs
.ecr
);
348 writeb(ECR_MODE_PS2
, priv
->regs
.ecr
);
349 writeb(ECR_MODE_CFG
, priv
->regs
.ecr
);
350 cnfgA
= readb(priv
->regs
.cnfgA
);
351 cnfgB
= readb(priv
->regs
.cnfgB
);
352 writeb(ECR_MODE_PS2
, priv
->regs
.ecr
);
353 writeb(oecr
, priv
->regs
.ecr
);
354 printk(KERN_DEBUG PPIP32
" cnfgA=0x%02x", cnfgA
);
355 pr_cont(" ISA-%s", (cnfgA
& CNFGA_IRQ
) ? "Level" : "Pulses");
356 switch (cnfgA
& CNFGA_ID_MASK
) {
367 pr_cont(",unknown ID");
370 if (!(cnfgA
& CNFGA_nBYTEINTRANS
))
371 pr_cont(",ByteInTrans");
372 if ((cnfgA
& CNFGA_ID_MASK
) != CNFGA_ID_8
)
373 pr_cont(",%d byte%s left",
374 cnfgA
& CNFGA_PWORDLEFT
,
375 ((cnfgA
& CNFGA_PWORDLEFT
) > 1) ? "s" : "");
377 printk(KERN_DEBUG PPIP32
" cnfgB=0x%02x", cnfgB
);
378 pr_cont(" irq=%u,dma=%u",
379 (cnfgB
& CNFGB_IRQ_MASK
) >> CNFGB_IRQ_SHIFT
,
380 (cnfgB
& CNFGB_DMA_MASK
) >> CNFGB_DMA_SHIFT
);
381 pr_cont(",intrValue=%d", !!(cnfgB
& CNFGB_INTRVAL
));
382 if (cnfgB
& CNFGB_COMPRESS
)
383 pr_cont(",compress");
386 for (i
= 0; i
< 2; i
++) {
387 unsigned int dcr
= i
? priv
->dcr_cache
: readb(priv
->regs
.dcr
);
388 printk(KERN_DEBUG PPIP32
" dcr(%s)=0x%02x",
389 i
? "soft" : "hard", dcr
);
390 pr_cont(" %s", (dcr
& DCR_DIR
) ? "rev" : "fwd");
392 pr_cont(",ackIntEn");
393 if (!(dcr
& DCR_SELECT
))
394 pr_cont(",nSelectIn");
397 if (!(dcr
& DCR_AUTOFD
))
399 if (!(dcr
& DCR_STROBE
))
403 #define sep (f++ ? ',' : ' ')
406 unsigned int dsr
= readb(priv
->regs
.dsr
);
407 printk(KERN_DEBUG PPIP32
" dsr=0x%02x", dsr
);
408 if (!(dsr
& DSR_nBUSY
))
409 pr_cont("%cBusy", sep
);
411 pr_cont("%cnAck", sep
);
412 if (dsr
& DSR_PERROR
)
413 pr_cont("%cPError", sep
);
414 if (dsr
& DSR_SELECT
)
415 pr_cont("%cSelect", sep
);
416 if (dsr
& DSR_nFAULT
)
417 pr_cont("%cnFault", sep
);
418 if (!(dsr
& DSR_nPRINT
))
419 pr_cont("%c(Print)", sep
);
420 if (dsr
& DSR_TIMEOUT
)
421 pr_cont("%cTimeout", sep
);
426 #else /* DEBUG_PARPORT_IP32 < 2 */
427 #define parport_ip32_dump_state(...) do { } while (0)
431 * CHECK_EXTRA_BITS - track and log extra bits
432 * @p: pointer to &struct parport
433 * @b: byte to inspect
434 * @m: bit mask of authorized bits
436 * This is used to track and log extra bits that should not be there in
437 * parport_ip32_write_control() and parport_ip32_frob_control(). It is only
438 * defined if %DEBUG_PARPORT_IP32 >= 1.
440 #if DEBUG_PARPORT_IP32 >= 1
441 #define CHECK_EXTRA_BITS(p, b, m) \
443 unsigned int __b = (b), __m = (m); \
445 pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \
447 (p)->name, __func__, #b, __b, __m); \
449 #else /* DEBUG_PARPORT_IP32 < 1 */
450 #define CHECK_EXTRA_BITS(...) do { } while (0)
453 /*--- IP32 parallel port DMA operations --------------------------------*/
456 * struct parport_ip32_dma_data - private data needed for DMA operation
457 * @dir: DMA direction (from or to device)
458 * @buf: buffer physical address
459 * @len: buffer length
460 * @next: address of next bytes to DMA transfer
461 * @left: number of bytes remaining
462 * @ctx: next context to write (0: context_a; 1: context_b)
463 * @irq_on: are the DMA IRQs currently enabled?
464 * @lock: spinlock to protect access to the structure
466 struct parport_ip32_dma_data
{
467 enum dma_data_direction dir
;
476 static struct parport_ip32_dma_data parport_ip32_dma
;
479 * parport_ip32_dma_setup_context - setup next DMA context
480 * @limit: maximum data size for the context
482 * The alignment constraints must be verified in caller function, and the
483 * parameter @limit must be set accordingly.
485 static void parport_ip32_dma_setup_context(unsigned int limit
)
489 spin_lock_irqsave(&parport_ip32_dma
.lock
, flags
);
490 if (parport_ip32_dma
.left
> 0) {
491 /* Note: ctxreg is "volatile" here only because
492 * mace->perif.ctrl.parport.context_a and context_b are
494 volatile u64 __iomem
*ctxreg
= (parport_ip32_dma
.ctx
== 0) ?
495 &mace
->perif
.ctrl
.parport
.context_a
:
496 &mace
->perif
.ctrl
.parport
.context_b
;
499 if (parport_ip32_dma
.left
<= limit
) {
500 count
= parport_ip32_dma
.left
;
501 ctxval
= MACEPAR_CONTEXT_LASTFLAG
;
508 "(%u): 0x%04x:0x%04x, %u -> %u%s",
510 (unsigned int)parport_ip32_dma
.buf
,
511 (unsigned int)parport_ip32_dma
.next
,
513 parport_ip32_dma
.ctx
, ctxval
? "*" : "");
515 ctxval
|= parport_ip32_dma
.next
&
516 MACEPAR_CONTEXT_BASEADDR_MASK
;
517 ctxval
|= ((count
- 1) << MACEPAR_CONTEXT_DATALEN_SHIFT
) &
518 MACEPAR_CONTEXT_DATALEN_MASK
;
519 writeq(ctxval
, ctxreg
);
520 parport_ip32_dma
.next
+= count
;
521 parport_ip32_dma
.left
-= count
;
522 parport_ip32_dma
.ctx
^= 1U;
524 /* If there is nothing more to send, disable IRQs to avoid to
525 * face an IRQ storm which can lock the machine. Disable them
527 if (parport_ip32_dma
.left
== 0 && parport_ip32_dma
.irq_on
) {
528 pr_debug(PPIP32
"IRQ off (ctx)\n");
529 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ
);
530 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ
);
531 parport_ip32_dma
.irq_on
= 0;
533 spin_unlock_irqrestore(&parport_ip32_dma
.lock
, flags
);
537 * parport_ip32_dma_interrupt - DMA interrupt handler
538 * @irq: interrupt number
541 static irqreturn_t
parport_ip32_dma_interrupt(int irq
, void *dev_id
)
543 if (parport_ip32_dma
.left
)
544 pr_trace(NULL
, "(%d): ctx=%d", irq
, parport_ip32_dma
.ctx
);
545 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND
);
549 #if DEBUG_PARPORT_IP32
550 static irqreturn_t
parport_ip32_merr_interrupt(int irq
, void *dev_id
)
552 pr_trace1(NULL
, "(%d)", irq
);
558 * parport_ip32_dma_start - begins a DMA transfer
559 * @p: partport to work on
560 * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
561 * @addr: pointer to data buffer
562 * @count: buffer size
564 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
565 * correctly balanced.
567 static int parport_ip32_dma_start(struct parport
*p
,
568 enum dma_data_direction dir
, void *addr
, size_t count
)
573 pr_trace(NULL
, "(%d, %lu)", dir
, (unsigned long)count
);
575 /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must
576 * be 64 bytes aligned. */
577 BUG_ON(dir
!= DMA_TO_DEVICE
);
579 /* Reset DMA controller */
580 ctrl
= MACEPAR_CTLSTAT_RESET
;
581 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
583 /* DMA IRQs should normally be enabled */
584 if (!parport_ip32_dma
.irq_on
) {
586 enable_irq(MACEISA_PAR_CTXA_IRQ
);
587 enable_irq(MACEISA_PAR_CTXB_IRQ
);
588 parport_ip32_dma
.irq_on
= 1;
591 /* Prepare DMA pointers */
592 parport_ip32_dma
.dir
= dir
;
593 parport_ip32_dma
.buf
= dma_map_single(&p
->bus_dev
, addr
, count
, dir
);
594 parport_ip32_dma
.len
= count
;
595 parport_ip32_dma
.next
= parport_ip32_dma
.buf
;
596 parport_ip32_dma
.left
= parport_ip32_dma
.len
;
597 parport_ip32_dma
.ctx
= 0;
599 /* Setup DMA direction and first two contexts */
600 ctrl
= (dir
== DMA_TO_DEVICE
) ? 0 : MACEPAR_CTLSTAT_DIRECTION
;
601 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
602 /* Single transfer should not cross a 4K page boundary */
603 limit
= MACEPAR_CONTEXT_DATA_BOUND
-
604 (parport_ip32_dma
.next
& (MACEPAR_CONTEXT_DATA_BOUND
- 1));
605 parport_ip32_dma_setup_context(limit
);
606 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND
);
608 /* Real start of DMA transfer */
609 ctrl
|= MACEPAR_CTLSTAT_ENABLE
;
610 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
616 * parport_ip32_dma_stop - ends a running DMA transfer
617 * @p: partport to work on
619 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
620 * correctly balanced.
622 static void parport_ip32_dma_stop(struct parport
*p
)
628 size_t res
[2]; /* {[0] = res_a, [1] = res_b} */
630 pr_trace(NULL
, "()");
633 spin_lock_irq(&parport_ip32_dma
.lock
);
634 if (parport_ip32_dma
.irq_on
) {
635 pr_debug(PPIP32
"IRQ off (stop)\n");
636 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ
);
637 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ
);
638 parport_ip32_dma
.irq_on
= 0;
640 spin_unlock_irq(&parport_ip32_dma
.lock
);
641 /* Force IRQ synchronization, even if the IRQs were disabled
643 synchronize_irq(MACEISA_PAR_CTXA_IRQ
);
644 synchronize_irq(MACEISA_PAR_CTXB_IRQ
);
646 /* Stop DMA transfer */
647 ctrl
= readq(&mace
->perif
.ctrl
.parport
.cntlstat
);
648 ctrl
&= ~MACEPAR_CTLSTAT_ENABLE
;
649 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
651 /* Adjust residue (parport_ip32_dma.left) */
652 ctx_a
= readq(&mace
->perif
.ctrl
.parport
.context_a
);
653 ctx_b
= readq(&mace
->perif
.ctrl
.parport
.context_b
);
654 ctrl
= readq(&mace
->perif
.ctrl
.parport
.cntlstat
);
655 diag
= readq(&mace
->perif
.ctrl
.parport
.diagnostic
);
656 res
[0] = (ctrl
& MACEPAR_CTLSTAT_CTXA_VALID
) ?
657 1 + ((ctx_a
& MACEPAR_CONTEXT_DATALEN_MASK
) >>
658 MACEPAR_CONTEXT_DATALEN_SHIFT
) :
660 res
[1] = (ctrl
& MACEPAR_CTLSTAT_CTXB_VALID
) ?
661 1 + ((ctx_b
& MACEPAR_CONTEXT_DATALEN_MASK
) >>
662 MACEPAR_CONTEXT_DATALEN_SHIFT
) :
664 if (diag
& MACEPAR_DIAG_DMACTIVE
)
665 res
[(diag
& MACEPAR_DIAG_CTXINUSE
) != 0] =
666 1 + ((diag
& MACEPAR_DIAG_CTRMASK
) >>
667 MACEPAR_DIAG_CTRSHIFT
);
668 parport_ip32_dma
.left
+= res
[0] + res
[1];
670 /* Reset DMA controller, and re-enable IRQs */
671 ctrl
= MACEPAR_CTLSTAT_RESET
;
672 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
673 pr_debug(PPIP32
"IRQ on (stop)\n");
674 enable_irq(MACEISA_PAR_CTXA_IRQ
);
675 enable_irq(MACEISA_PAR_CTXB_IRQ
);
676 parport_ip32_dma
.irq_on
= 1;
678 dma_unmap_single(&p
->bus_dev
, parport_ip32_dma
.buf
,
679 parport_ip32_dma
.len
, parport_ip32_dma
.dir
);
683 * parport_ip32_dma_get_residue - get residue from last DMA transfer
685 * Returns the number of bytes remaining from last DMA transfer.
687 static inline size_t parport_ip32_dma_get_residue(void)
689 return parport_ip32_dma
.left
;
693 * parport_ip32_dma_register - initialize DMA engine
695 * Returns zero for success.
697 static int parport_ip32_dma_register(void)
701 spin_lock_init(&parport_ip32_dma
.lock
);
702 parport_ip32_dma
.irq_on
= 1;
704 /* Reset DMA controller */
705 writeq(MACEPAR_CTLSTAT_RESET
, &mace
->perif
.ctrl
.parport
.cntlstat
);
708 err
= request_irq(MACEISA_PAR_CTXA_IRQ
, parport_ip32_dma_interrupt
,
709 0, "parport_ip32", NULL
);
712 err
= request_irq(MACEISA_PAR_CTXB_IRQ
, parport_ip32_dma_interrupt
,
713 0, "parport_ip32", NULL
);
716 #if DEBUG_PARPORT_IP32
717 /* FIXME - what is this IRQ for? */
718 err
= request_irq(MACEISA_PAR_MERR_IRQ
, parport_ip32_merr_interrupt
,
719 0, "parport_ip32", NULL
);
725 #if DEBUG_PARPORT_IP32
727 free_irq(MACEISA_PAR_CTXB_IRQ
, NULL
);
730 free_irq(MACEISA_PAR_CTXA_IRQ
, NULL
);
736 * parport_ip32_dma_unregister - release and free resources for DMA engine
738 static void parport_ip32_dma_unregister(void)
740 #if DEBUG_PARPORT_IP32
741 free_irq(MACEISA_PAR_MERR_IRQ
, NULL
);
743 free_irq(MACEISA_PAR_CTXB_IRQ
, NULL
);
744 free_irq(MACEISA_PAR_CTXA_IRQ
, NULL
);
747 /*--- Interrupt handlers and associates --------------------------------*/
750 * parport_ip32_wakeup - wakes up code waiting for an interrupt
751 * @p: pointer to &struct parport
753 static inline void parport_ip32_wakeup(struct parport
*p
)
755 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
756 complete(&priv
->irq_complete
);
760 * parport_ip32_interrupt - interrupt handler
761 * @irq: interrupt number
762 * @dev_id: pointer to &struct parport
764 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
765 * %PARPORT_IP32_IRQ_FWD.
767 static irqreturn_t
parport_ip32_interrupt(int irq
, void *dev_id
)
769 struct parport
* const p
= dev_id
;
770 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
771 enum parport_ip32_irq_mode irq_mode
= priv
->irq_mode
;
774 case PARPORT_IP32_IRQ_FWD
:
775 return parport_irq_handler(irq
, dev_id
);
777 case PARPORT_IP32_IRQ_HERE
:
778 parport_ip32_wakeup(p
);
785 /*--- Some utility function to manipulate ECR register -----------------*/
788 * parport_ip32_read_econtrol - read contents of the ECR register
789 * @p: pointer to &struct parport
791 static inline unsigned int parport_ip32_read_econtrol(struct parport
*p
)
793 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
794 return readb(priv
->regs
.ecr
);
798 * parport_ip32_write_econtrol - write new contents to the ECR register
799 * @p: pointer to &struct parport
800 * @c: new value to write
802 static inline void parport_ip32_write_econtrol(struct parport
*p
,
805 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
806 writeb(c
, priv
->regs
.ecr
);
810 * parport_ip32_frob_econtrol - change bits from the ECR register
811 * @p: pointer to &struct parport
812 * @mask: bit mask of bits to change
813 * @val: new value for changed bits
815 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
816 * in @val, and write the result to the ECR.
818 static inline void parport_ip32_frob_econtrol(struct parport
*p
,
823 c
= (parport_ip32_read_econtrol(p
) & ~mask
) ^ val
;
824 parport_ip32_write_econtrol(p
, c
);
828 * parport_ip32_set_mode - change mode of ECP port
829 * @p: pointer to &struct parport
830 * @mode: new mode to write in ECR
832 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
833 * mode @mode. Go through PS2 mode if needed.
835 static void parport_ip32_set_mode(struct parport
*p
, unsigned int mode
)
839 mode
&= ECR_MODE_MASK
;
840 omode
= parport_ip32_read_econtrol(p
) & ECR_MODE_MASK
;
842 if (!(mode
== ECR_MODE_SPP
|| mode
== ECR_MODE_PS2
843 || omode
== ECR_MODE_SPP
|| omode
== ECR_MODE_PS2
)) {
844 /* We have to go through PS2 mode */
845 unsigned int ecr
= ECR_MODE_PS2
| ECR_nERRINTR
| ECR_SERVINTR
;
846 parport_ip32_write_econtrol(p
, ecr
);
848 parport_ip32_write_econtrol(p
, mode
| ECR_nERRINTR
| ECR_SERVINTR
);
851 /*--- Basic functions needed for parport -------------------------------*/
854 * parport_ip32_read_data - return current contents of the DATA register
855 * @p: pointer to &struct parport
857 static inline unsigned char parport_ip32_read_data(struct parport
*p
)
859 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
860 return readb(priv
->regs
.data
);
864 * parport_ip32_write_data - set new contents for the DATA register
865 * @p: pointer to &struct parport
866 * @d: new value to write
868 static inline void parport_ip32_write_data(struct parport
*p
, unsigned char d
)
870 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
871 writeb(d
, priv
->regs
.data
);
875 * parport_ip32_read_status - return current contents of the DSR register
876 * @p: pointer to &struct parport
878 static inline unsigned char parport_ip32_read_status(struct parport
*p
)
880 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
881 return readb(priv
->regs
.dsr
);
885 * __parport_ip32_read_control - return cached contents of the DCR register
886 * @p: pointer to &struct parport
888 static inline unsigned int __parport_ip32_read_control(struct parport
*p
)
890 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
891 return priv
->dcr_cache
; /* use soft copy */
895 * __parport_ip32_write_control - set new contents for the DCR register
896 * @p: pointer to &struct parport
897 * @c: new value to write
899 static inline void __parport_ip32_write_control(struct parport
*p
,
902 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
903 CHECK_EXTRA_BITS(p
, c
, priv
->dcr_writable
);
904 c
&= priv
->dcr_writable
; /* only writable bits */
905 writeb(c
, priv
->regs
.dcr
);
906 priv
->dcr_cache
= c
; /* update soft copy */
910 * __parport_ip32_frob_control - change bits from the DCR register
911 * @p: pointer to &struct parport
912 * @mask: bit mask of bits to change
913 * @val: new value for changed bits
915 * This is equivalent to read from the DCR, mask out the bits in @mask,
916 * exclusive-or with the bits in @val, and write the result to the DCR.
917 * Actually, the cached contents of the DCR is used.
919 static inline void __parport_ip32_frob_control(struct parport
*p
,
924 c
= (__parport_ip32_read_control(p
) & ~mask
) ^ val
;
925 __parport_ip32_write_control(p
, c
);
929 * parport_ip32_read_control - return cached contents of the DCR register
930 * @p: pointer to &struct parport
932 * The return value is masked so as to only return the value of %DCR_STROBE,
933 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
935 static inline unsigned char parport_ip32_read_control(struct parport
*p
)
937 const unsigned int rm
=
938 DCR_STROBE
| DCR_AUTOFD
| DCR_nINIT
| DCR_SELECT
;
939 return __parport_ip32_read_control(p
) & rm
;
943 * parport_ip32_write_control - set new contents for the DCR register
944 * @p: pointer to &struct parport
945 * @c: new value to write
947 * The value is masked so as to only change the value of %DCR_STROBE,
948 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
950 static inline void parport_ip32_write_control(struct parport
*p
,
953 const unsigned int wm
=
954 DCR_STROBE
| DCR_AUTOFD
| DCR_nINIT
| DCR_SELECT
;
955 CHECK_EXTRA_BITS(p
, c
, wm
);
956 __parport_ip32_frob_control(p
, wm
, c
& wm
);
960 * parport_ip32_frob_control - change bits from the DCR register
961 * @p: pointer to &struct parport
962 * @mask: bit mask of bits to change
963 * @val: new value for changed bits
965 * This differs from __parport_ip32_frob_control() in that it only allows to
966 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
968 static inline unsigned char parport_ip32_frob_control(struct parport
*p
,
972 const unsigned int wm
=
973 DCR_STROBE
| DCR_AUTOFD
| DCR_nINIT
| DCR_SELECT
;
974 CHECK_EXTRA_BITS(p
, mask
, wm
);
975 CHECK_EXTRA_BITS(p
, val
, wm
);
976 __parport_ip32_frob_control(p
, mask
& wm
, val
& wm
);
977 return parport_ip32_read_control(p
);
981 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
982 * @p: pointer to &struct parport
984 static inline void parport_ip32_disable_irq(struct parport
*p
)
986 __parport_ip32_frob_control(p
, DCR_IRQ
, 0);
990 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
991 * @p: pointer to &struct parport
993 static inline void parport_ip32_enable_irq(struct parport
*p
)
995 __parport_ip32_frob_control(p
, DCR_IRQ
, DCR_IRQ
);
999 * parport_ip32_data_forward - enable host-to-peripheral communications
1000 * @p: pointer to &struct parport
1002 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1004 static inline void parport_ip32_data_forward(struct parport
*p
)
1006 __parport_ip32_frob_control(p
, DCR_DIR
, 0);
1010 * parport_ip32_data_reverse - enable peripheral-to-host communications
1011 * @p: pointer to &struct parport
1013 * Place the data bus in a high impedance state, if @p->modes has the
1014 * PARPORT_MODE_TRISTATE bit set.
1016 static inline void parport_ip32_data_reverse(struct parport
*p
)
1018 __parport_ip32_frob_control(p
, DCR_DIR
, DCR_DIR
);
1022 * parport_ip32_init_state - for core parport code
1023 * @dev: pointer to &struct pardevice
1024 * @s: pointer to &struct parport_state to initialize
1026 static void parport_ip32_init_state(struct pardevice
*dev
,
1027 struct parport_state
*s
)
1029 s
->u
.ip32
.dcr
= DCR_SELECT
| DCR_nINIT
;
1030 s
->u
.ip32
.ecr
= ECR_MODE_PS2
| ECR_nERRINTR
| ECR_SERVINTR
;
1034 * parport_ip32_save_state - for core parport code
1035 * @p: pointer to &struct parport
1036 * @s: pointer to &struct parport_state to save state to
1038 static void parport_ip32_save_state(struct parport
*p
,
1039 struct parport_state
*s
)
1041 s
->u
.ip32
.dcr
= __parport_ip32_read_control(p
);
1042 s
->u
.ip32
.ecr
= parport_ip32_read_econtrol(p
);
1046 * parport_ip32_restore_state - for core parport code
1047 * @p: pointer to &struct parport
1048 * @s: pointer to &struct parport_state to restore state from
1050 static void parport_ip32_restore_state(struct parport
*p
,
1051 struct parport_state
*s
)
1053 parport_ip32_set_mode(p
, s
->u
.ip32
.ecr
& ECR_MODE_MASK
);
1054 parport_ip32_write_econtrol(p
, s
->u
.ip32
.ecr
);
1055 __parport_ip32_write_control(p
, s
->u
.ip32
.dcr
);
1058 /*--- EPP mode functions -----------------------------------------------*/
1061 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1062 * @p: pointer to &struct parport
1064 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1066 static unsigned int parport_ip32_clear_epp_timeout(struct parport
*p
)
1068 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1069 unsigned int cleared
;
1071 if (!(parport_ip32_read_status(p
) & DSR_TIMEOUT
))
1075 /* To clear timeout some chips require double read */
1076 parport_ip32_read_status(p
);
1077 r
= parport_ip32_read_status(p
);
1078 /* Some reset by writing 1 */
1079 writeb(r
| DSR_TIMEOUT
, priv
->regs
.dsr
);
1080 /* Others by writing 0 */
1081 writeb(r
& ~DSR_TIMEOUT
, priv
->regs
.dsr
);
1083 r
= parport_ip32_read_status(p
);
1084 cleared
= !(r
& DSR_TIMEOUT
);
1087 pr_trace(p
, "(): %s", cleared
? "cleared" : "failed");
1092 * parport_ip32_epp_read - generic EPP read function
1093 * @eppreg: I/O register to read from
1094 * @p: pointer to &struct parport
1095 * @buf: buffer to store read data
1096 * @len: length of buffer @buf
1097 * @flags: may be PARPORT_EPP_FAST
1099 static size_t parport_ip32_epp_read(void __iomem
*eppreg
,
1100 struct parport
*p
, void *buf
,
1101 size_t len
, int flags
)
1103 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1105 parport_ip32_set_mode(p
, ECR_MODE_EPP
);
1106 parport_ip32_data_reverse(p
);
1107 parport_ip32_write_control(p
, DCR_nINIT
);
1108 if ((flags
& PARPORT_EPP_FAST
) && (len
> 1)) {
1109 readsb(eppreg
, buf
, len
);
1110 if (readb(priv
->regs
.dsr
) & DSR_TIMEOUT
) {
1111 parport_ip32_clear_epp_timeout(p
);
1117 for (got
= 0; got
< len
; got
++) {
1118 *bufp
++ = readb(eppreg
);
1119 if (readb(priv
->regs
.dsr
) & DSR_TIMEOUT
) {
1120 parport_ip32_clear_epp_timeout(p
);
1125 parport_ip32_data_forward(p
);
1126 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1131 * parport_ip32_epp_write - generic EPP write function
1132 * @eppreg: I/O register to write to
1133 * @p: pointer to &struct parport
1134 * @buf: buffer of data to write
1135 * @len: length of buffer @buf
1136 * @flags: may be PARPORT_EPP_FAST
1138 static size_t parport_ip32_epp_write(void __iomem
*eppreg
,
1139 struct parport
*p
, const void *buf
,
1140 size_t len
, int flags
)
1142 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1144 parport_ip32_set_mode(p
, ECR_MODE_EPP
);
1145 parport_ip32_data_forward(p
);
1146 parport_ip32_write_control(p
, DCR_nINIT
);
1147 if ((flags
& PARPORT_EPP_FAST
) && (len
> 1)) {
1148 writesb(eppreg
, buf
, len
);
1149 if (readb(priv
->regs
.dsr
) & DSR_TIMEOUT
) {
1150 parport_ip32_clear_epp_timeout(p
);
1155 const u8
*bufp
= buf
;
1156 for (written
= 0; written
< len
; written
++) {
1157 writeb(*bufp
++, eppreg
);
1158 if (readb(priv
->regs
.dsr
) & DSR_TIMEOUT
) {
1159 parport_ip32_clear_epp_timeout(p
);
1164 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1169 * parport_ip32_epp_read_data - read a block of data in EPP mode
1170 * @p: pointer to &struct parport
1171 * @buf: buffer to store read data
1172 * @len: length of buffer @buf
1173 * @flags: may be PARPORT_EPP_FAST
1175 static size_t parport_ip32_epp_read_data(struct parport
*p
, void *buf
,
1176 size_t len
, int flags
)
1178 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1179 return parport_ip32_epp_read(priv
->regs
.eppData0
, p
, buf
, len
, flags
);
1183 * parport_ip32_epp_write_data - write a block of data in EPP mode
1184 * @p: pointer to &struct parport
1185 * @buf: buffer of data to write
1186 * @len: length of buffer @buf
1187 * @flags: may be PARPORT_EPP_FAST
1189 static size_t parport_ip32_epp_write_data(struct parport
*p
, const void *buf
,
1190 size_t len
, int flags
)
1192 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1193 return parport_ip32_epp_write(priv
->regs
.eppData0
, p
, buf
, len
, flags
);
1197 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1198 * @p: pointer to &struct parport
1199 * @buf: buffer to store read data
1200 * @len: length of buffer @buf
1201 * @flags: may be PARPORT_EPP_FAST
1203 static size_t parport_ip32_epp_read_addr(struct parport
*p
, void *buf
,
1204 size_t len
, int flags
)
1206 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1207 return parport_ip32_epp_read(priv
->regs
.eppAddr
, p
, buf
, len
, flags
);
1211 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1212 * @p: pointer to &struct parport
1213 * @buf: buffer of data to write
1214 * @len: length of buffer @buf
1215 * @flags: may be PARPORT_EPP_FAST
1217 static size_t parport_ip32_epp_write_addr(struct parport
*p
, const void *buf
,
1218 size_t len
, int flags
)
1220 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1221 return parport_ip32_epp_write(priv
->regs
.eppAddr
, p
, buf
, len
, flags
);
1224 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1227 * parport_ip32_fifo_wait_break - check if the waiting function should return
1228 * @p: pointer to &struct parport
1229 * @expire: timeout expiring date, in jiffies
1231 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1232 * immediately or not. The break conditions are:
1233 * - expired timeout;
1234 * - a pending signal;
1235 * - nFault asserted low.
1236 * This function also calls cond_resched().
1238 static unsigned int parport_ip32_fifo_wait_break(struct parport
*p
,
1239 unsigned long expire
)
1242 if (time_after(jiffies
, expire
)) {
1243 pr_debug1(PPIP32
"%s: FIFO write timed out\n", p
->name
);
1246 if (signal_pending(current
)) {
1247 pr_debug1(PPIP32
"%s: Signal pending\n", p
->name
);
1250 if (!(parport_ip32_read_status(p
) & DSR_nFAULT
)) {
1251 pr_debug1(PPIP32
"%s: nFault asserted low\n", p
->name
);
1258 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1259 * @p: pointer to &struct parport
1261 * Returns the number of bytes that can safely be written in the FIFO. A
1262 * return value of zero means that the calling function should terminate as
1265 static unsigned int parport_ip32_fwp_wait_polling(struct parport
*p
)
1267 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1268 struct parport
* const physport
= p
->physport
;
1269 unsigned long expire
;
1273 expire
= jiffies
+ physport
->cad
->timeout
;
1276 if (parport_ip32_fifo_wait_break(p
, expire
))
1279 /* Check FIFO state. We do nothing when the FIFO is nor full,
1280 * nor empty. It appears that the FIFO full bit is not always
1281 * reliable, the FIFO state is sometimes wrongly reported, and
1282 * the chip gets confused if we give it another byte. */
1283 ecr
= parport_ip32_read_econtrol(p
);
1284 if (ecr
& ECR_F_EMPTY
) {
1285 /* FIFO is empty, fill it up */
1286 count
= priv
->fifo_depth
;
1290 /* Wait a moment... */
1291 udelay(FIFO_POLLING_INTERVAL
);
1298 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1299 * @p: pointer to &struct parport
1301 * Returns the number of bytes that can safely be written in the FIFO. A
1302 * return value of zero means that the calling function should terminate as
1305 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport
*p
)
1307 static unsigned int lost_interrupt
= 0;
1308 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1309 struct parport
* const physport
= p
->physport
;
1310 unsigned long nfault_timeout
;
1311 unsigned long expire
;
1315 nfault_timeout
= min((unsigned long)physport
->cad
->timeout
,
1316 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT
));
1317 expire
= jiffies
+ physport
->cad
->timeout
;
1320 if (parport_ip32_fifo_wait_break(p
, expire
))
1323 /* Initialize mutex used to take interrupts into account */
1324 reinit_completion(&priv
->irq_complete
);
1326 /* Enable serviceIntr */
1327 parport_ip32_frob_econtrol(p
, ECR_SERVINTR
, 0);
1329 /* Enabling serviceIntr while the FIFO is empty does not
1330 * always generate an interrupt, so check for emptiness
1332 ecr
= parport_ip32_read_econtrol(p
);
1333 if (!(ecr
& ECR_F_EMPTY
)) {
1334 /* FIFO is not empty: wait for an interrupt or a
1335 * timeout to occur */
1336 wait_for_completion_interruptible_timeout(
1337 &priv
->irq_complete
, nfault_timeout
);
1338 ecr
= parport_ip32_read_econtrol(p
);
1339 if ((ecr
& ECR_F_EMPTY
) && !(ecr
& ECR_SERVINTR
)
1340 && !lost_interrupt
) {
1341 pr_warn(PPIP32
"%s: lost interrupt in %s\n",
1347 /* Disable serviceIntr */
1348 parport_ip32_frob_econtrol(p
, ECR_SERVINTR
, ECR_SERVINTR
);
1350 /* Check FIFO state */
1351 if (ecr
& ECR_F_EMPTY
) {
1352 /* FIFO is empty, fill it up */
1353 count
= priv
->fifo_depth
;
1355 } else if (ecr
& ECR_SERVINTR
) {
1356 /* FIFO is not empty, but we know that can safely push
1357 * writeIntrThreshold bytes into it */
1358 count
= priv
->writeIntrThreshold
;
1361 /* FIFO is not empty, and we did not get any interrupt.
1362 * Either it's time to check for nFault, or a signal is
1363 * pending. This is verified in
1364 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1371 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1372 * @p: pointer to &struct parport
1373 * @buf: buffer of data to write
1374 * @len: length of buffer @buf
1376 * Uses PIO to write the contents of the buffer @buf into the parallel port
1377 * FIFO. Returns the number of bytes that were actually written. It can work
1378 * with or without the help of interrupts. The parallel port must be
1379 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1381 static size_t parport_ip32_fifo_write_block_pio(struct parport
*p
,
1382 const void *buf
, size_t len
)
1384 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1385 const u8
*bufp
= buf
;
1388 priv
->irq_mode
= PARPORT_IP32_IRQ_HERE
;
1393 count
= (p
->irq
== PARPORT_IRQ_NONE
) ?
1394 parport_ip32_fwp_wait_polling(p
) :
1395 parport_ip32_fwp_wait_interrupt(p
);
1397 break; /* Transmission should be stopped */
1401 writeb(*bufp
, priv
->regs
.fifo
);
1404 writesb(priv
->regs
.fifo
, bufp
, count
);
1405 bufp
+= count
, left
-= count
;
1409 priv
->irq_mode
= PARPORT_IP32_IRQ_FWD
;
1415 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1416 * @p: pointer to &struct parport
1417 * @buf: buffer of data to write
1418 * @len: length of buffer @buf
1420 * Uses DMA to write the contents of the buffer @buf into the parallel port
1421 * FIFO. Returns the number of bytes that were actually written. The
1422 * parallel port must be correctly initialized before calling
1423 * parport_ip32_fifo_write_block_dma().
1425 static size_t parport_ip32_fifo_write_block_dma(struct parport
*p
,
1426 const void *buf
, size_t len
)
1428 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1429 struct parport
* const physport
= p
->physport
;
1430 unsigned long nfault_timeout
;
1431 unsigned long expire
;
1435 priv
->irq_mode
= PARPORT_IP32_IRQ_HERE
;
1437 parport_ip32_dma_start(p
, DMA_TO_DEVICE
, (void *)buf
, len
);
1438 reinit_completion(&priv
->irq_complete
);
1439 parport_ip32_frob_econtrol(p
, ECR_DMAEN
| ECR_SERVINTR
, ECR_DMAEN
);
1441 nfault_timeout
= min((unsigned long)physport
->cad
->timeout
,
1442 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT
));
1443 expire
= jiffies
+ physport
->cad
->timeout
;
1445 if (parport_ip32_fifo_wait_break(p
, expire
))
1447 wait_for_completion_interruptible_timeout(&priv
->irq_complete
,
1449 ecr
= parport_ip32_read_econtrol(p
);
1450 if (ecr
& ECR_SERVINTR
)
1451 break; /* DMA transfer just finished */
1453 parport_ip32_dma_stop(p
);
1454 written
= len
- parport_ip32_dma_get_residue();
1456 priv
->irq_mode
= PARPORT_IP32_IRQ_FWD
;
1462 * parport_ip32_fifo_write_block - write a block of data
1463 * @p: pointer to &struct parport
1464 * @buf: buffer of data to write
1465 * @len: length of buffer @buf
1467 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1468 * p FIFO. Returns the number of bytes that were actually written.
1470 static size_t parport_ip32_fifo_write_block(struct parport
*p
,
1471 const void *buf
, size_t len
)
1475 /* FIXME - Maybe some threshold value should be set for @len
1476 * under which we revert to PIO mode? */
1477 written
= (p
->modes
& PARPORT_MODE_DMA
) ?
1478 parport_ip32_fifo_write_block_dma(p
, buf
, len
) :
1479 parport_ip32_fifo_write_block_pio(p
, buf
, len
);
1484 * parport_ip32_drain_fifo - wait for FIFO to empty
1485 * @p: pointer to &struct parport
1486 * @timeout: timeout, in jiffies
1488 * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or
1489 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1491 static unsigned int parport_ip32_drain_fifo(struct parport
*p
,
1492 unsigned long timeout
)
1494 unsigned long expire
= jiffies
+ timeout
;
1495 unsigned int polling_interval
;
1496 unsigned int counter
;
1498 /* Busy wait for approx. 200us */
1499 for (counter
= 0; counter
< 40; counter
++) {
1500 if (parport_ip32_read_econtrol(p
) & ECR_F_EMPTY
)
1502 if (time_after(jiffies
, expire
))
1504 if (signal_pending(current
))
1508 /* Poll slowly. Polling interval starts with 1 millisecond, and is
1509 * increased exponentially until 128. */
1510 polling_interval
= 1; /* msecs */
1511 while (!(parport_ip32_read_econtrol(p
) & ECR_F_EMPTY
)) {
1512 if (time_after_eq(jiffies
, expire
))
1514 msleep_interruptible(polling_interval
);
1515 if (signal_pending(current
))
1517 if (polling_interval
< 128)
1518 polling_interval
*= 2;
1521 return !!(parport_ip32_read_econtrol(p
) & ECR_F_EMPTY
);
1525 * parport_ip32_get_fifo_residue - reset FIFO
1526 * @p: pointer to &struct parport
1527 * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1529 * This function resets FIFO, and returns the number of bytes remaining in it.
1531 static unsigned int parport_ip32_get_fifo_residue(struct parport
*p
,
1534 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1535 unsigned int residue
;
1538 /* FIXME - We are missing one byte if the printer is off-line. I
1539 * don't know how to detect this. It looks that the full bit is not
1540 * always reliable. For the moment, the problem is avoided in most
1541 * cases by testing for BUSY in parport_ip32_compat_write_data().
1543 if (parport_ip32_read_econtrol(p
) & ECR_F_EMPTY
)
1546 pr_debug1(PPIP32
"%s: FIFO is stuck\n", p
->name
);
1548 /* Stop all transfers.
1550 * Microsoft's document instructs to drive DCR_STROBE to 0,
1551 * but it doesn't work (at least in Compatibility mode, not
1552 * tested in ECP mode). Switching directly to Test mode (as
1553 * in parport_pc) is not an option: it does confuse the port,
1554 * ECP service interrupts are no more working after that. A
1555 * hard reset is then needed to revert to a sane state.
1557 * Let's hope that the FIFO is really stuck and that the
1558 * peripheral doesn't wake up now.
1560 parport_ip32_frob_control(p
, DCR_STROBE
, 0);
1563 for (residue
= priv
->fifo_depth
; residue
> 0; residue
--) {
1564 if (parport_ip32_read_econtrol(p
) & ECR_F_FULL
)
1566 writeb(0x00, priv
->regs
.fifo
);
1570 pr_debug1(PPIP32
"%s: %d PWord%s left in FIFO\n",
1572 (residue
== 1) ? " was" : "s were");
1574 /* Now reset the FIFO */
1575 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1577 /* Host recovery for ECP mode */
1578 if (mode
== ECR_MODE_ECP
) {
1579 parport_ip32_data_reverse(p
);
1580 parport_ip32_frob_control(p
, DCR_nINIT
, 0);
1581 if (parport_wait_peripheral(p
, DSR_PERROR
, 0))
1582 pr_debug1(PPIP32
"%s: PEerror timeout 1 in %s\n",
1584 parport_ip32_frob_control(p
, DCR_STROBE
, DCR_STROBE
);
1585 parport_ip32_frob_control(p
, DCR_nINIT
, DCR_nINIT
);
1586 if (parport_wait_peripheral(p
, DSR_PERROR
, DSR_PERROR
))
1587 pr_debug1(PPIP32
"%s: PEerror timeout 2 in %s\n",
1591 /* Adjust residue if needed */
1592 parport_ip32_set_mode(p
, ECR_MODE_CFG
);
1593 cnfga
= readb(priv
->regs
.cnfgA
);
1594 if (!(cnfga
& CNFGA_nBYTEINTRANS
)) {
1595 pr_debug1(PPIP32
"%s: cnfgA contains 0x%02x\n",
1597 pr_debug1(PPIP32
"%s: Accounting for extra byte\n",
1602 /* Don't care about partial PWords since we do not support
1603 * PWord != 1 byte. */
1605 /* Back to forward PS2 mode. */
1606 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1607 parport_ip32_data_forward(p
);
1613 * parport_ip32_compat_write_data - write a block of data in SPP mode
1614 * @p: pointer to &struct parport
1615 * @buf: buffer of data to write
1616 * @len: length of buffer @buf
1619 static size_t parport_ip32_compat_write_data(struct parport
*p
,
1620 const void *buf
, size_t len
,
1623 static unsigned int ready_before
= 1;
1624 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1625 struct parport
* const physport
= p
->physport
;
1628 /* Special case: a timeout of zero means we cannot call schedule().
1629 * Also if O_NONBLOCK is set then use the default implementation. */
1630 if (physport
->cad
->timeout
<= PARPORT_INACTIVITY_O_NONBLOCK
)
1631 return parport_ieee1284_write_compat(p
, buf
, len
, flags
);
1633 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1634 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1635 parport_ip32_write_control(p
, DCR_SELECT
| DCR_nINIT
);
1636 parport_ip32_data_forward(p
);
1637 parport_ip32_disable_irq(p
);
1638 parport_ip32_set_mode(p
, ECR_MODE_PPF
);
1639 physport
->ieee1284
.phase
= IEEE1284_PH_FWD_DATA
;
1641 /* Wait for peripheral to become ready */
1642 if (parport_wait_peripheral(p
, DSR_nBUSY
| DSR_nFAULT
,
1643 DSR_nBUSY
| DSR_nFAULT
)) {
1644 /* Avoid to flood the logs */
1646 pr_info(PPIP32
"%s: not ready in %s\n",
1653 written
= parport_ip32_fifo_write_block(p
, buf
, len
);
1655 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1656 parport_ip32_drain_fifo(p
, physport
->cad
->timeout
* priv
->fifo_depth
);
1658 /* Check for a potential residue */
1659 written
-= parport_ip32_get_fifo_residue(p
, ECR_MODE_PPF
);
1661 /* Then, wait for BUSY to get low. */
1662 if (parport_wait_peripheral(p
, DSR_nBUSY
, DSR_nBUSY
))
1663 printk(KERN_DEBUG PPIP32
"%s: BUSY timeout in %s\n",
1668 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1669 physport
->ieee1284
.phase
= IEEE1284_PH_FWD_IDLE
;
1675 * FIXME - Insert here parport_ip32_ecp_read_data().
1679 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1680 * @p: pointer to &struct parport
1681 * @buf: buffer of data to write
1682 * @len: length of buffer @buf
1685 static size_t parport_ip32_ecp_write_data(struct parport
*p
,
1686 const void *buf
, size_t len
,
1689 static unsigned int ready_before
= 1;
1690 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1691 struct parport
* const physport
= p
->physport
;
1694 /* Special case: a timeout of zero means we cannot call schedule().
1695 * Also if O_NONBLOCK is set then use the default implementation. */
1696 if (physport
->cad
->timeout
<= PARPORT_INACTIVITY_O_NONBLOCK
)
1697 return parport_ieee1284_ecp_write_data(p
, buf
, len
, flags
);
1699 /* Negotiate to forward mode if necessary. */
1700 if (physport
->ieee1284
.phase
!= IEEE1284_PH_FWD_IDLE
) {
1701 /* Event 47: Set nInit high. */
1702 parport_ip32_frob_control(p
, DCR_nINIT
| DCR_AUTOFD
,
1703 DCR_nINIT
| DCR_AUTOFD
);
1705 /* Event 49: PError goes high. */
1706 if (parport_wait_peripheral(p
, DSR_PERROR
, DSR_PERROR
)) {
1707 printk(KERN_DEBUG PPIP32
"%s: PError timeout in %s\n",
1709 physport
->ieee1284
.phase
= IEEE1284_PH_ECP_DIR_UNKNOWN
;
1714 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1715 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1716 parport_ip32_write_control(p
, DCR_SELECT
| DCR_nINIT
);
1717 parport_ip32_data_forward(p
);
1718 parport_ip32_disable_irq(p
);
1719 parport_ip32_set_mode(p
, ECR_MODE_ECP
);
1720 physport
->ieee1284
.phase
= IEEE1284_PH_FWD_DATA
;
1722 /* Wait for peripheral to become ready */
1723 if (parport_wait_peripheral(p
, DSR_nBUSY
| DSR_nFAULT
,
1724 DSR_nBUSY
| DSR_nFAULT
)) {
1725 /* Avoid to flood the logs */
1727 pr_info(PPIP32
"%s: not ready in %s\n",
1734 written
= parport_ip32_fifo_write_block(p
, buf
, len
);
1736 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1737 parport_ip32_drain_fifo(p
, physport
->cad
->timeout
* priv
->fifo_depth
);
1739 /* Check for a potential residue */
1740 written
-= parport_ip32_get_fifo_residue(p
, ECR_MODE_ECP
);
1742 /* Then, wait for BUSY to get low. */
1743 if (parport_wait_peripheral(p
, DSR_nBUSY
, DSR_nBUSY
))
1744 printk(KERN_DEBUG PPIP32
"%s: BUSY timeout in %s\n",
1749 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1750 physport
->ieee1284
.phase
= IEEE1284_PH_FWD_IDLE
;
1756 * FIXME - Insert here parport_ip32_ecp_write_addr().
1759 /*--- Default parport operations ---------------------------------------*/
1761 static const struct parport_operations parport_ip32_ops __initconst
= {
1762 .write_data
= parport_ip32_write_data
,
1763 .read_data
= parport_ip32_read_data
,
1765 .write_control
= parport_ip32_write_control
,
1766 .read_control
= parport_ip32_read_control
,
1767 .frob_control
= parport_ip32_frob_control
,
1769 .read_status
= parport_ip32_read_status
,
1771 .enable_irq
= parport_ip32_enable_irq
,
1772 .disable_irq
= parport_ip32_disable_irq
,
1774 .data_forward
= parport_ip32_data_forward
,
1775 .data_reverse
= parport_ip32_data_reverse
,
1777 .init_state
= parport_ip32_init_state
,
1778 .save_state
= parport_ip32_save_state
,
1779 .restore_state
= parport_ip32_restore_state
,
1781 .epp_write_data
= parport_ieee1284_epp_write_data
,
1782 .epp_read_data
= parport_ieee1284_epp_read_data
,
1783 .epp_write_addr
= parport_ieee1284_epp_write_addr
,
1784 .epp_read_addr
= parport_ieee1284_epp_read_addr
,
1786 .ecp_write_data
= parport_ieee1284_ecp_write_data
,
1787 .ecp_read_data
= parport_ieee1284_ecp_read_data
,
1788 .ecp_write_addr
= parport_ieee1284_ecp_write_addr
,
1790 .compat_write_data
= parport_ieee1284_write_compat
,
1791 .nibble_read_data
= parport_ieee1284_read_nibble
,
1792 .byte_read_data
= parport_ieee1284_read_byte
,
1794 .owner
= THIS_MODULE
,
1797 /*--- Device detection -------------------------------------------------*/
1800 * parport_ip32_ecp_supported - check for an ECP port
1801 * @p: pointer to the &parport structure
1803 * Returns 1 if an ECP port is found, and 0 otherwise. This function actually
1804 * checks if an Extended Control Register seems to be present. On successful
1805 * return, the port is placed in SPP mode.
1807 static __init
unsigned int parport_ip32_ecp_supported(struct parport
*p
)
1809 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1812 ecr
= ECR_MODE_PS2
| ECR_nERRINTR
| ECR_SERVINTR
;
1813 writeb(ecr
, priv
->regs
.ecr
);
1814 if (readb(priv
->regs
.ecr
) != (ecr
| ECR_F_EMPTY
))
1817 pr_probe(p
, "Found working ECR register\n");
1818 parport_ip32_set_mode(p
, ECR_MODE_SPP
);
1819 parport_ip32_write_control(p
, DCR_SELECT
| DCR_nINIT
);
1823 pr_probe(p
, "ECR register not found\n");
1828 * parport_ip32_fifo_supported - check for FIFO parameters
1829 * @p: pointer to the &parport structure
1831 * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on
1832 * success, and 0 otherwise. Adjust FIFO parameters in the parport structure.
1833 * On return, the port is placed in SPP mode.
1835 static __init
unsigned int parport_ip32_fifo_supported(struct parport
*p
)
1837 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1838 unsigned int configa
, configb
;
1842 /* Configuration mode */
1843 parport_ip32_set_mode(p
, ECR_MODE_CFG
);
1844 configa
= readb(priv
->regs
.cnfgA
);
1845 configb
= readb(priv
->regs
.cnfgB
);
1847 /* Find out PWord size */
1848 switch (configa
& CNFGA_ID_MASK
) {
1859 pr_probe(p
, "Unknown implementation ID: 0x%0x\n",
1860 (configa
& CNFGA_ID_MASK
) >> CNFGA_ID_SHIFT
);
1865 pr_probe(p
, "Unsupported PWord size: %u\n", pword
);
1868 priv
->pword
= pword
;
1869 pr_probe(p
, "PWord is %u bits\n", 8 * priv
->pword
);
1871 /* Check for compression support */
1872 writeb(configb
| CNFGB_COMPRESS
, priv
->regs
.cnfgB
);
1873 if (readb(priv
->regs
.cnfgB
) & CNFGB_COMPRESS
)
1874 pr_probe(p
, "Hardware compression detected (unsupported)\n");
1875 writeb(configb
& ~CNFGB_COMPRESS
, priv
->regs
.cnfgB
);
1877 /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1878 parport_ip32_set_mode(p
, ECR_MODE_TST
);
1880 /* FIFO must be empty now */
1881 if (!(readb(priv
->regs
.ecr
) & ECR_F_EMPTY
)) {
1882 pr_probe(p
, "FIFO not reset\n");
1886 /* Find out FIFO depth. */
1887 priv
->fifo_depth
= 0;
1888 for (i
= 0; i
< 1024; i
++) {
1889 if (readb(priv
->regs
.ecr
) & ECR_F_FULL
) {
1891 priv
->fifo_depth
= i
;
1894 writeb((u8
)i
, priv
->regs
.fifo
);
1897 pr_probe(p
, "Can't fill FIFO\n");
1900 if (!priv
->fifo_depth
) {
1901 pr_probe(p
, "Can't get FIFO depth\n");
1904 pr_probe(p
, "FIFO is %u PWords deep\n", priv
->fifo_depth
);
1906 /* Enable interrupts */
1907 parport_ip32_frob_econtrol(p
, ECR_SERVINTR
, 0);
1909 /* Find out writeIntrThreshold: number of PWords we know we can write
1910 * if we get an interrupt. */
1911 priv
->writeIntrThreshold
= 0;
1912 for (i
= 0; i
< priv
->fifo_depth
; i
++) {
1913 if (readb(priv
->regs
.fifo
) != (u8
)i
) {
1914 pr_probe(p
, "Invalid data in FIFO\n");
1917 if (!priv
->writeIntrThreshold
1918 && readb(priv
->regs
.ecr
) & ECR_SERVINTR
)
1919 /* writeIntrThreshold reached */
1920 priv
->writeIntrThreshold
= i
+ 1;
1921 if (i
+ 1 < priv
->fifo_depth
1922 && readb(priv
->regs
.ecr
) & ECR_F_EMPTY
) {
1923 /* FIFO empty before the last byte? */
1924 pr_probe(p
, "Data lost in FIFO\n");
1928 if (!priv
->writeIntrThreshold
) {
1929 pr_probe(p
, "Can't get writeIntrThreshold\n");
1932 pr_probe(p
, "writeIntrThreshold is %u\n", priv
->writeIntrThreshold
);
1934 /* FIFO must be empty now */
1935 if (!(readb(priv
->regs
.ecr
) & ECR_F_EMPTY
)) {
1936 pr_probe(p
, "Can't empty FIFO\n");
1941 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1942 /* Set reverse direction (must be in PS2 mode) */
1943 parport_ip32_data_reverse(p
);
1944 /* Test FIFO, no interrupt, no DMA */
1945 parport_ip32_set_mode(p
, ECR_MODE_TST
);
1946 /* Enable interrupts */
1947 parport_ip32_frob_econtrol(p
, ECR_SERVINTR
, 0);
1949 /* Find out readIntrThreshold: number of PWords we can read if we get
1951 priv
->readIntrThreshold
= 0;
1952 for (i
= 0; i
< priv
->fifo_depth
; i
++) {
1953 writeb(0xaa, priv
->regs
.fifo
);
1954 if (readb(priv
->regs
.ecr
) & ECR_SERVINTR
) {
1955 /* readIntrThreshold reached */
1956 priv
->readIntrThreshold
= i
+ 1;
1960 if (!priv
->readIntrThreshold
) {
1961 pr_probe(p
, "Can't get readIntrThreshold\n");
1964 pr_probe(p
, "readIntrThreshold is %u\n", priv
->readIntrThreshold
);
1967 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1968 parport_ip32_data_forward(p
);
1969 parport_ip32_set_mode(p
, ECR_MODE_SPP
);
1973 priv
->fifo_depth
= 0;
1974 parport_ip32_set_mode(p
, ECR_MODE_SPP
);
1978 /*--- Initialization code ----------------------------------------------*/
1981 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1982 * @regs: pointer to &struct parport_ip32_regs to fill
1983 * @base: base address of standard and EPP registers
1984 * @base_hi: base address of ECP registers
1985 * @regshift: how much to shift register offset by
1987 * Compute register addresses, according to the ISA standard. The addresses
1988 * of the standard and EPP registers are computed from address @base. The
1989 * addresses of the ECP registers are computed from address @base_hi.
1992 parport_ip32_make_isa_registers(struct parport_ip32_regs
*regs
,
1993 void __iomem
*base
, void __iomem
*base_hi
,
1994 unsigned int regshift
)
1996 #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift))
1997 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
1998 *regs
= (struct parport_ip32_regs
){
2002 .eppAddr
= r_base(3),
2003 .eppData0
= r_base(4),
2004 .eppData1
= r_base(5),
2005 .eppData2
= r_base(6),
2006 .eppData3
= r_base(7),
2007 .ecpAFifo
= r_base(0),
2008 .fifo
= r_base_hi(0),
2009 .cnfgA
= r_base_hi(0),
2010 .cnfgB
= r_base_hi(1),
2018 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2020 * Returns the new allocated &parport structure. On error, an error code is
2021 * encoded in return value with the ERR_PTR function.
2023 static __init
struct parport
*parport_ip32_probe_port(void)
2025 struct parport_ip32_regs regs
;
2026 struct parport_ip32_private
*priv
= NULL
;
2027 struct parport_operations
*ops
= NULL
;
2028 struct parport
*p
= NULL
;
2031 parport_ip32_make_isa_registers(®s
, &mace
->isa
.parallel
,
2032 &mace
->isa
.ecp1284
, 8 /* regshift */);
2034 ops
= kmalloc(sizeof(struct parport_operations
), GFP_KERNEL
);
2035 priv
= kmalloc(sizeof(struct parport_ip32_private
), GFP_KERNEL
);
2036 p
= parport_register_port(0, PARPORT_IRQ_NONE
, PARPORT_DMA_NONE
, ops
);
2037 if (ops
== NULL
|| priv
== NULL
|| p
== NULL
) {
2041 p
->base
= MACE_BASE
+ offsetof(struct sgi_mace
, isa
.parallel
);
2042 p
->base_hi
= MACE_BASE
+ offsetof(struct sgi_mace
, isa
.ecp1284
);
2043 p
->private_data
= priv
;
2045 *ops
= parport_ip32_ops
;
2046 *priv
= (struct parport_ip32_private
){
2048 .dcr_writable
= DCR_DIR
| DCR_SELECT
| DCR_nINIT
|
2049 DCR_AUTOFD
| DCR_STROBE
,
2050 .irq_mode
= PARPORT_IP32_IRQ_FWD
,
2052 init_completion(&priv
->irq_complete
);
2055 if (!parport_ip32_ecp_supported(p
)) {
2059 parport_ip32_dump_state(p
, "begin init", 0);
2061 /* We found what looks like a working ECR register. Simply assume
2062 * that all modes are correctly supported. Enable basic modes. */
2063 p
->modes
= PARPORT_MODE_PCSPP
| PARPORT_MODE_SAFEININT
;
2064 p
->modes
|= PARPORT_MODE_TRISTATE
;
2066 if (!parport_ip32_fifo_supported(p
)) {
2067 pr_warn(PPIP32
"%s: error: FIFO disabled\n", p
->name
);
2068 /* Disable hardware modes depending on a working FIFO. */
2069 features
&= ~PARPORT_IP32_ENABLE_SPP
;
2070 features
&= ~PARPORT_IP32_ENABLE_ECP
;
2071 /* DMA is not needed if FIFO is not supported. */
2072 features
&= ~PARPORT_IP32_ENABLE_DMA
;
2076 if (features
& PARPORT_IP32_ENABLE_IRQ
) {
2077 int irq
= MACEISA_PARALLEL_IRQ
;
2078 if (request_irq(irq
, parport_ip32_interrupt
, 0, p
->name
, p
)) {
2079 pr_warn(PPIP32
"%s: error: IRQ disabled\n", p
->name
);
2080 /* DMA cannot work without interrupts. */
2081 features
&= ~PARPORT_IP32_ENABLE_DMA
;
2083 pr_probe(p
, "Interrupt support enabled\n");
2085 priv
->dcr_writable
|= DCR_IRQ
;
2089 /* Allocate DMA resources */
2090 if (features
& PARPORT_IP32_ENABLE_DMA
) {
2091 if (parport_ip32_dma_register())
2092 pr_warn(PPIP32
"%s: error: DMA disabled\n", p
->name
);
2094 pr_probe(p
, "DMA support enabled\n");
2095 p
->dma
= 0; /* arbitrary value != PARPORT_DMA_NONE */
2096 p
->modes
|= PARPORT_MODE_DMA
;
2100 if (features
& PARPORT_IP32_ENABLE_SPP
) {
2101 /* Enable compatibility FIFO mode */
2102 p
->ops
->compat_write_data
= parport_ip32_compat_write_data
;
2103 p
->modes
|= PARPORT_MODE_COMPAT
;
2104 pr_probe(p
, "Hardware support for SPP mode enabled\n");
2106 if (features
& PARPORT_IP32_ENABLE_EPP
) {
2107 /* Set up access functions to use EPP hardware. */
2108 p
->ops
->epp_read_data
= parport_ip32_epp_read_data
;
2109 p
->ops
->epp_write_data
= parport_ip32_epp_write_data
;
2110 p
->ops
->epp_read_addr
= parport_ip32_epp_read_addr
;
2111 p
->ops
->epp_write_addr
= parport_ip32_epp_write_addr
;
2112 p
->modes
|= PARPORT_MODE_EPP
;
2113 pr_probe(p
, "Hardware support for EPP mode enabled\n");
2115 if (features
& PARPORT_IP32_ENABLE_ECP
) {
2116 /* Enable ECP FIFO mode */
2117 p
->ops
->ecp_write_data
= parport_ip32_ecp_write_data
;
2118 /* FIXME - not implemented */
2119 /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */
2120 /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2121 p
->modes
|= PARPORT_MODE_ECP
;
2122 pr_probe(p
, "Hardware support for ECP mode enabled\n");
2125 /* Initialize the port with sensible values */
2126 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
2127 parport_ip32_write_control(p
, DCR_SELECT
| DCR_nINIT
);
2128 parport_ip32_data_forward(p
);
2129 parport_ip32_disable_irq(p
);
2130 parport_ip32_write_data(p
, 0x00);
2131 parport_ip32_dump_state(p
, "end init", 0);
2133 /* Print out what we found */
2134 pr_info("%s: SGI IP32 at 0x%lx (0x%lx)", p
->name
, p
->base
, p
->base_hi
);
2135 if (p
->irq
!= PARPORT_IRQ_NONE
)
2136 pr_cont(", irq %d", p
->irq
);
2138 #define printmode(x) \
2140 if (p->modes & PARPORT_MODE_##x) \
2141 pr_cont("%s%s", f++ ? "," : "", #x); \
2146 printmode(TRISTATE
);
2155 parport_announce_port(p
);
2160 parport_put_port(p
);
2163 return ERR_PTR(err
);
2167 * parport_ip32_unregister_port - unregister a parallel port
2168 * @p: pointer to the &struct parport
2170 * Unregisters a parallel port and free previously allocated resources
2171 * (memory, IRQ, ...).
2173 static __exit
void parport_ip32_unregister_port(struct parport
*p
)
2175 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
2176 struct parport_operations
*ops
= p
->ops
;
2178 parport_remove_port(p
);
2179 if (p
->modes
& PARPORT_MODE_DMA
)
2180 parport_ip32_dma_unregister();
2181 if (p
->irq
!= PARPORT_IRQ_NONE
)
2182 free_irq(p
->irq
, p
);
2183 parport_put_port(p
);
2189 * parport_ip32_init - module initialization function
2191 static int __init
parport_ip32_init(void)
2193 pr_info(PPIP32
"SGI IP32 built-in parallel port driver v0.6\n");
2194 this_port
= parport_ip32_probe_port();
2195 return PTR_ERR_OR_ZERO(this_port
);
2199 * parport_ip32_exit - module termination function
2201 static void __exit
parport_ip32_exit(void)
2203 parport_ip32_unregister_port(this_port
);
2206 /*--- Module stuff -----------------------------------------------------*/
2208 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2209 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2210 MODULE_LICENSE("GPL");
2211 MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */
2213 module_init(parport_ip32_init
);
2214 module_exit(parport_ip32_exit
);
2216 module_param(verbose_probing
, bool, S_IRUGO
);
2217 MODULE_PARM_DESC(verbose_probing
, "Log chit-chat during initialization");
2219 module_param(features
, uint
, S_IRUGO
);
2220 MODULE_PARM_DESC(features
,
2221 "Bit mask of features to enable"
2222 ", bit 0: IRQ support"
2223 ", bit 1: DMA support"
2224 ", bit 2: hardware SPP mode"
2225 ", bit 3: hardware EPP mode"
2226 ", bit 4: hardware ECP mode");