1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
36 DEFINE_MUTEX(pci_slot_mutex
);
38 const char *pci_power_names
[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 EXPORT_SYMBOL_GPL(pci_power_names
);
44 int isa_dma_bridge_buggy
;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
49 EXPORT_SYMBOL(pci_pci_problems
);
51 unsigned int pci_pm_d3hot_delay
;
53 static void pci_pme_list_scan(struct work_struct
*work
);
55 static LIST_HEAD(pci_pme_list
);
56 static DEFINE_MUTEX(pci_pme_list_mutex
);
57 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
59 struct pci_pme_device
{
60 struct list_head list
;
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
71 #define PCI_RESET_WAIT 1000 /* msec */
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
83 unsigned int delay_ms
= max(dev
->d3hot_delay
, pci_pm_d3hot_delay
);
87 /* Use a 20% upper bound, 1ms minimum */
88 upper
= max(DIV_ROUND_CLOSEST(delay_ms
, 5), 1U);
89 usleep_range(delay_ms
* USEC_PER_MSEC
,
90 (delay_ms
+ upper
) * USEC_PER_MSEC
);
94 bool pci_reset_supported(struct pci_dev
*dev
)
96 return dev
->reset_methods
[0] != 0;
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported
= 1;
103 #define DEFAULT_CARDBUS_IO_SIZE (256)
104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
107 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
109 #define DEFAULT_HOTPLUG_IO_SIZE (256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
119 unsigned long pci_hotplug_mmio_size
= DEFAULT_HOTPLUG_MMIO_SIZE
;
120 unsigned long pci_hotplug_mmio_pref_size
= DEFAULT_HOTPLUG_MMIO_PREF_SIZE
;
122 #define DEFAULT_HOTPLUG_BUS_SIZE 1
123 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_SAFE
;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_PEER2PEER
;
136 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
145 u8 pci_dfl_cache_line_size __ro_after_init
= L1_CACHE_BYTES
>> 2;
146 u8 pci_cache_line_size __ro_after_init
;
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
152 unsigned int pcibios_max_latency
= 255;
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled
;
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled
;
160 /* If set, the PCI config space of each device is printed during boot. */
163 bool pci_ats_disabled(void)
165 return pcie_ats_disabled
;
167 EXPORT_SYMBOL_GPL(pci_ats_disabled
);
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable
;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force
;
174 static int __init
pcie_port_pm_setup(char *str
)
176 if (!strcmp(str
, "off"))
177 pci_bridge_d3_disable
= true;
178 else if (!strcmp(str
, "force"))
179 pci_bridge_d3_force
= true;
182 __setup("pcie_port_pm=", pcie_port_pm_setup
);
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
191 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
194 unsigned char max
, n
;
196 max
= bus
->busn_res
.end
;
197 list_for_each_entry(tmp
, &bus
->children
, node
) {
198 n
= pci_bus_max_busnr(tmp
);
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
210 * Returns error bits set in PCI_STATUS and clears them.
212 int pci_status_get_and_clear_errors(struct pci_dev
*pdev
)
217 ret
= pci_read_config_word(pdev
, PCI_STATUS
, &status
);
218 if (ret
!= PCIBIOS_SUCCESSFUL
)
221 status
&= PCI_STATUS_ERROR_BITS
;
223 pci_write_config_word(pdev
, PCI_STATUS
, status
);
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors
);
229 #ifdef CONFIG_HAS_IOMEM
230 static void __iomem
*__pci_ioremap_resource(struct pci_dev
*pdev
, int bar
,
233 struct resource
*res
= &pdev
->resource
[bar
];
234 resource_size_t start
= res
->start
;
235 resource_size_t size
= resource_size(res
);
238 * Make sure the BAR is actually a memory resource, not an IO resource
240 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
241 pci_err(pdev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
246 return ioremap_wc(start
, size
);
248 return ioremap(start
, size
);
251 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
253 return __pci_ioremap_resource(pdev
, bar
, false);
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
257 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
259 return __pci_ioremap_resource(pdev
, bar
, true);
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
283 static int pci_dev_str_match_path(struct pci_dev
*dev
, const char *path
,
287 unsigned int seg
, bus
, slot
, func
;
291 *endptr
= strchrnul(path
, ';');
293 wpath
= kmemdup_nul(path
, *endptr
- path
, GFP_ATOMIC
);
298 p
= strrchr(wpath
, '/');
301 ret
= sscanf(p
, "/%x.%x%c", &slot
, &func
, &end
);
307 if (dev
->devfn
!= PCI_DEVFN(slot
, func
)) {
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
318 dev
= pci_upstream_bridge(dev
);
327 ret
= sscanf(wpath
, "%x:%x:%x.%x%c", &seg
, &bus
, &slot
,
331 ret
= sscanf(wpath
, "%x:%x.%x%c", &bus
, &slot
, &func
, &end
);
338 ret
= (seg
== pci_domain_nr(dev
->bus
) &&
339 bus
== dev
->bus
->number
&&
340 dev
->devfn
== PCI_DEVFN(slot
, func
));
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
377 static int pci_dev_str_match(struct pci_dev
*dev
, const char *p
,
382 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
384 if (strncmp(p
, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 ret
= sscanf(p
, "%hx:%hx:%hx:%hx%n", &vendor
, &device
,
388 &subsystem_vendor
, &subsystem_device
, &count
);
390 ret
= sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
);
394 subsystem_vendor
= 0;
395 subsystem_device
= 0;
400 if ((!vendor
|| vendor
== dev
->vendor
) &&
401 (!device
|| device
== dev
->device
) &&
402 (!subsystem_vendor
||
403 subsystem_vendor
== dev
->subsystem_vendor
) &&
404 (!subsystem_device
||
405 subsystem_device
== dev
->subsystem_device
))
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
412 ret
= pci_dev_str_match_path(dev
, p
, &p
);
427 static u8
__pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
428 u8 pos
, int cap
, int *ttl
)
433 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
439 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
451 static u8
__pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
454 int ttl
= PCI_FIND_CAP_TTL
;
456 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
459 u8
pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
461 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
462 pos
+ PCI_CAP_LIST_NEXT
, cap
);
464 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
466 static u8
__pci_bus_find_cap_start(struct pci_bus
*bus
,
467 unsigned int devfn
, u8 hdr_type
)
471 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
472 if (!(status
& PCI_STATUS_CAP_LIST
))
476 case PCI_HEADER_TYPE_NORMAL
:
477 case PCI_HEADER_TYPE_BRIDGE
:
478 return PCI_CAPABILITY_LIST
;
479 case PCI_HEADER_TYPE_CARDBUS
:
480 return PCI_CB_CAPABILITY_LIST
;
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
505 u8
pci_find_capability(struct pci_dev
*dev
, int cap
)
509 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
511 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
515 EXPORT_SYMBOL(pci_find_capability
);
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
530 u8
pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
534 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
536 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& PCI_HEADER_TYPE_MASK
);
538 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
542 EXPORT_SYMBOL(pci_bus_find_capability
);
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
555 u16
pci_find_next_ext_capability(struct pci_dev
*dev
, u16 start
, int cap
)
559 u16 pos
= PCI_CFG_SPACE_SIZE
;
561 /* minimum 8 bytes per capability */
562 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
564 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
570 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
581 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
584 pos
= PCI_EXT_CAP_NEXT(header
);
585 if (pos
< PCI_CFG_SPACE_SIZE
)
588 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
610 u16
pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
612 return pci_find_next_ext_capability(dev
, 0, cap
);
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
623 * Returns the DSN, or zero if the capability does not exist.
625 u64
pci_get_dsn(struct pci_dev
*dev
)
631 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_DSN
);
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
641 pci_read_config_dword(dev
, pos
, &dword
);
643 pci_read_config_dword(dev
, pos
+ 4, &dword
);
644 dsn
|= ((u64
)dword
) << 32;
648 EXPORT_SYMBOL_GPL(pci_get_dsn
);
650 static u8
__pci_find_next_ht_cap(struct pci_dev
*dev
, u8 pos
, int ht_cap
)
652 int rc
, ttl
= PCI_FIND_CAP_TTL
;
655 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
656 mask
= HT_3BIT_CAP_MASK
;
658 mask
= HT_5BIT_CAP_MASK
;
660 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
661 PCI_CAP_ID_HT
, &ttl
);
663 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
664 if (rc
!= PCIBIOS_SUCCESSFUL
)
667 if ((cap
& mask
) == ht_cap
)
670 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
671 pos
+ PCI_CAP_LIST_NEXT
,
672 PCI_CAP_ID_HT
, &ttl
);
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
691 u8
pci_find_next_ht_capability(struct pci_dev
*dev
, u8 pos
, int ht_cap
)
693 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
708 u8
pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
712 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
714 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
730 u16
pci_find_vsec_capability(struct pci_dev
*dev
, u16 vendor
, int cap
)
736 if (vendor
!= dev
->vendor
)
739 while ((vsec
= pci_find_next_ext_capability(dev
, vsec
,
740 PCI_EXT_CAP_ID_VNDR
))) {
741 ret
= pci_read_config_dword(dev
, vsec
+ PCI_VNDR_HEADER
, &header
);
742 if (ret
!= PCIBIOS_SUCCESSFUL
)
745 if (PCI_VNDR_HEADER_ID(header
) == cap
)
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability
);
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
762 u16
pci_find_dvsec_capability(struct pci_dev
*dev
, u16 vendor
, u16 dvsec
)
766 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_DVSEC
);
773 pci_read_config_word(dev
, pos
+ PCI_DVSEC_HEADER1
, &v
);
774 pci_read_config_word(dev
, pos
+ PCI_DVSEC_HEADER2
, &id
);
775 if (vendor
== v
&& dvsec
== id
)
778 pos
= pci_find_next_ext_capability(dev
, pos
, PCI_EXT_CAP_ID_DVSEC
);
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability
);
786 * pci_find_parent_resource - return resource region of parent bus of given
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
794 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
795 struct resource
*res
)
797 const struct pci_bus
*bus
= dev
->bus
;
800 pci_bus_for_each_resource(bus
, r
) {
803 if (resource_contains(r
, res
)) {
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
809 if (r
->flags
& IORESOURCE_PREFETCH
&&
810 !(res
->flags
& IORESOURCE_PREFETCH
))
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
826 EXPORT_SYMBOL(pci_find_parent_resource
);
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
837 struct resource
*pci_find_resource(struct pci_dev
*dev
, struct resource
*res
)
841 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++) {
842 struct resource
*r
= &dev
->resource
[i
];
844 if (r
->start
&& resource_contains(r
, res
))
850 EXPORT_SYMBOL(pci_find_resource
);
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
857 * Return the standard PCI resource (BAR) name according to their index.
859 const char *pci_resource_name(struct pci_dev
*dev
, unsigned int i
)
861 static const char * const bar_name
[] = {
869 #ifdef CONFIG_PCI_IOV
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
881 static const char * const cardbus_name
[] = {
888 #ifdef CONFIG_PCI_IOV
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
902 if (dev
->hdr_type
== PCI_HEADER_TYPE_CARDBUS
&&
903 i
< ARRAY_SIZE(cardbus_name
))
904 return cardbus_name
[i
];
906 if (i
< ARRAY_SIZE(bar_name
))
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
920 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
924 /* Wait for Transaction Pending bit clean */
925 for (i
= 0; i
< 4; i
++) {
928 msleep((1 << (i
- 1)) * 100);
930 pci_read_config_word(dev
, pos
, &status
);
931 if (!(status
& mask
))
938 static int pci_acs_enable
;
941 * pci_request_acs - ask for ACS to be enabled if supported
943 void pci_request_acs(void)
948 static const char *disable_acs_redir_param
;
949 static const char *config_acs_param
;
957 static void __pci_config_acs(struct pci_dev
*dev
, struct pci_acs
*caps
,
958 const char *p
, u16 mask
, u16 flags
)
968 /* Check for ACS flags */
969 delimit
= strstr(p
, "@");
974 end
= delimit
- p
- 1;
977 if (*(p
+ end
) == '0') {
981 } else if (*(p
+ end
) == '1') {
986 } else if ((*(p
+ end
) == 'x') || (*(p
+ end
) == 'X')) {
990 pci_err(dev
, "Invalid ACS flags... Ignoring\n");
996 pci_err(dev
, "ACS Flags missing\n");
1001 if (mask
& ~(PCI_ACS_SV
| PCI_ACS_TB
| PCI_ACS_RR
| PCI_ACS_CR
|
1002 PCI_ACS_UF
| PCI_ACS_EC
| PCI_ACS_DT
)) {
1003 pci_err(dev
, "Invalid ACS flags specified\n");
1007 ret
= pci_dev_str_match(dev
, p
, &p
);
1009 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1011 } else if (ret
== 1) {
1016 if (*p
!= ';' && *p
!= ',') {
1017 /* End of param or invalid format */
1026 if (!pci_dev_specific_disable_acs_redir(dev
))
1029 pci_dbg(dev
, "ACS mask = %#06x\n", mask
);
1030 pci_dbg(dev
, "ACS flags = %#06x\n", flags
);
1032 /* If mask is 0 then we copy the bit from the firmware setting. */
1033 caps
->ctrl
= (caps
->ctrl
& ~mask
) | (caps
->fw_ctrl
& mask
);
1034 caps
->ctrl
|= flags
;
1036 pci_info(dev
, "Configured ACS to %#06x\n", caps
->ctrl
);
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1044 static void pci_std_enable_acs(struct pci_dev
*dev
, struct pci_acs
*caps
)
1046 /* Source Validation */
1047 caps
->ctrl
|= (caps
->cap
& PCI_ACS_SV
);
1049 /* P2P Request Redirect */
1050 caps
->ctrl
|= (caps
->cap
& PCI_ACS_RR
);
1052 /* P2P Completion Redirect */
1053 caps
->ctrl
|= (caps
->cap
& PCI_ACS_CR
);
1055 /* Upstream Forwarding */
1056 caps
->ctrl
|= (caps
->cap
& PCI_ACS_UF
);
1058 /* Enable Translation Blocking for external devices and noats */
1059 if (pci_ats_disabled() || dev
->external_facing
|| dev
->untrusted
)
1060 caps
->ctrl
|= (caps
->cap
& PCI_ACS_TB
);
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1067 static void pci_enable_acs(struct pci_dev
*dev
)
1069 struct pci_acs caps
;
1070 bool enable_acs
= false;
1073 /* If an iommu is present we start with kernel default caps */
1074 if (pci_acs_enable
) {
1075 if (pci_dev_specific_enable_acs(dev
))
1083 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &caps
.cap
);
1084 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &caps
.ctrl
);
1085 caps
.fw_ctrl
= caps
.ctrl
;
1088 pci_std_enable_acs(dev
, &caps
);
1091 * Always apply caps from the command line, even if there is no iommu.
1092 * Trust that the admin has a reason to change the ACS settings.
1094 __pci_config_acs(dev
, &caps
, disable_acs_redir_param
,
1095 PCI_ACS_RR
| PCI_ACS_CR
| PCI_ACS_EC
,
1096 ~(PCI_ACS_RR
| PCI_ACS_CR
| PCI_ACS_EC
));
1097 __pci_config_acs(dev
, &caps
, config_acs_param
, 0, 0);
1099 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, caps
.ctrl
);
1103 * pcie_read_tlp_log - read TLP Header Log
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1112 int pcie_read_tlp_log(struct pci_dev
*dev
, int where
,
1113 struct pcie_tlp_log
*tlp_log
)
1117 memset(tlp_log
, 0, sizeof(*tlp_log
));
1119 for (i
= 0; i
< 4; i
++) {
1120 ret
= pci_read_config_dword(dev
, where
+ i
* 4,
1123 return pcibios_err_to_errno(ret
);
1128 EXPORT_SYMBOL_GPL(pcie_read_tlp_log
);
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1137 static void pci_restore_bars(struct pci_dev
*dev
)
1141 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
1142 pci_update_resource(dev
, i
);
1145 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
1147 if (pci_use_mid_pm())
1150 return acpi_pci_power_manageable(dev
);
1153 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
1156 if (pci_use_mid_pm())
1157 return mid_pci_set_power_state(dev
, t
);
1159 return acpi_pci_set_power_state(dev
, t
);
1162 static inline pci_power_t
platform_pci_get_power_state(struct pci_dev
*dev
)
1164 if (pci_use_mid_pm())
1165 return mid_pci_get_power_state(dev
);
1167 return acpi_pci_get_power_state(dev
);
1170 static inline void platform_pci_refresh_power_state(struct pci_dev
*dev
)
1172 if (!pci_use_mid_pm())
1173 acpi_pci_refresh_power_state(dev
);
1176 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
1178 if (pci_use_mid_pm())
1179 return PCI_POWER_ERROR
;
1181 return acpi_pci_choose_state(dev
);
1184 static inline int platform_pci_set_wakeup(struct pci_dev
*dev
, bool enable
)
1186 if (pci_use_mid_pm())
1187 return PCI_POWER_ERROR
;
1189 return acpi_pci_wakeup(dev
, enable
);
1192 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
1194 if (pci_use_mid_pm())
1197 return acpi_pci_need_resume(dev
);
1200 static inline bool platform_pci_bridge_d3(struct pci_dev
*dev
)
1202 if (pci_use_mid_pm())
1205 return acpi_pci_bridge_d3(dev
);
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold. The platform firmware is therefore queried first
1215 * to detect accessibility of the register. In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1220 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
1222 if (platform_pci_get_power_state(dev
) == PCI_D3cold
) {
1223 dev
->current_state
= PCI_D3cold
;
1224 } else if (dev
->pm_cap
) {
1227 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1228 if (PCI_POSSIBLE_ERROR(pmcsr
)) {
1229 dev
->current_state
= PCI_D3cold
;
1232 dev
->current_state
= pmcsr
& PCI_PM_CTRL_STATE_MASK
;
1234 dev
->current_state
= state
;
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1245 void pci_refresh_power_state(struct pci_dev
*dev
)
1247 platform_pci_refresh_power_state(dev
);
1248 pci_update_current_state(dev
, dev
->current_state
);
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1256 int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
1260 error
= platform_pci_set_power_state(dev
, state
);
1262 pci_update_current_state(dev
, state
);
1263 else if (!dev
->pm_cap
) /* Fall back to PCI_D0 */
1264 dev
->current_state
= PCI_D0
;
1268 EXPORT_SYMBOL_GPL(pci_platform_power_transition
);
1270 static int pci_resume_one(struct pci_dev
*pci_dev
, void *ign
)
1272 pm_request_resume(&pci_dev
->dev
);
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1280 void pci_resume_bus(struct pci_bus
*bus
)
1283 pci_walk_bus(bus
, pci_resume_one
, NULL
);
1286 static int pci_dev_wait(struct pci_dev
*dev
, char *reset_type
, int timeout
)
1289 bool retrain
= false;
1290 struct pci_dev
*root
, *bridge
;
1292 root
= pcie_find_root_port(dev
);
1294 if (pci_is_pcie(dev
)) {
1295 bridge
= pci_upstream_bridge(dev
);
1301 * The caller has already waited long enough after a reset that the
1302 * device should respond to config requests, but it may respond
1303 * with Request Retry Status (RRS) if it needs more time to
1306 * If the device is below a Root Port with Configuration RRS
1307 * Software Visibility enabled, reading the Vendor ID returns a
1308 * special data value if the device responded with RRS. Read the
1309 * Vendor ID until we get non-RRS status.
1311 * If there's no Root Port or Configuration RRS Software Visibility
1312 * is not enabled, the device may still respond with RRS, but
1313 * hardware may retry the config request. If no retries receive
1314 * Successful Completion, hardware generally synthesizes ~0
1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1316 * ID for VFs and non-existent devices also returns ~0, so read the
1317 * Command register until it returns something other than ~0.
1322 if (pci_dev_is_disconnected(dev
)) {
1323 pci_dbg(dev
, "disconnected; not waiting\n");
1327 if (root
&& root
->config_rrs_sv
) {
1328 pci_read_config_dword(dev
, PCI_VENDOR_ID
, &id
);
1329 if (!pci_bus_rrs_vendor_id(id
))
1332 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
1333 if (!PCI_POSSIBLE_ERROR(id
))
1337 if (delay
> timeout
) {
1338 pci_warn(dev
, "not ready %dms after %s; giving up\n",
1339 delay
- 1, reset_type
);
1343 if (delay
> PCI_RESET_WAIT
) {
1346 if (pcie_failed_link_retrain(bridge
) == 0) {
1351 pci_info(dev
, "not ready %dms after %s; waiting\n",
1352 delay
- 1, reset_type
);
1359 if (delay
> PCI_RESET_WAIT
)
1360 pci_info(dev
, "ready %dms after %s\n", delay
- 1,
1363 pci_dbg(dev
, "ready %dms after %s\n", delay
- 1,
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1376 * On failure, return a negative error code. Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1380 int pci_power_up(struct pci_dev
*dev
)
1386 platform_pci_set_power_state(dev
, PCI_D0
);
1389 state
= platform_pci_get_power_state(dev
);
1390 if (state
== PCI_UNKNOWN
)
1391 dev
->current_state
= PCI_D0
;
1393 dev
->current_state
= state
;
1398 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1399 if (PCI_POSSIBLE_ERROR(pmcsr
)) {
1400 pci_err(dev
, "Unable to change power state from %s to D0, device inaccessible\n",
1401 pci_power_name(dev
->current_state
));
1402 dev
->current_state
= PCI_D3cold
;
1406 state
= pmcsr
& PCI_PM_CTRL_STATE_MASK
;
1408 need_restore
= (state
== PCI_D3hot
|| dev
->current_state
>= PCI_D3hot
) &&
1409 !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
);
1411 if (state
== PCI_D0
)
1415 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 * PME_En, and sets PowerState to 0.
1418 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, 0);
1420 /* Mandatory transition delays; see PCI PM 1.2. */
1421 if (state
== PCI_D3hot
)
1422 pci_dev_d3_sleep(dev
);
1423 else if (state
== PCI_D2
)
1424 udelay(PCI_PM_D2_DELAY
);
1427 dev
->current_state
= PCI_D0
;
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1447 static int pci_set_full_power_state(struct pci_dev
*dev
, bool locked
)
1452 ret
= pci_power_up(dev
);
1454 if (dev
->current_state
== PCI_D0
)
1460 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1461 dev
->current_state
= pmcsr
& PCI_PM_CTRL_STATE_MASK
;
1462 if (dev
->current_state
!= PCI_D0
) {
1463 pci_info_ratelimited(dev
, "Refused to change power state from %s to D0\n",
1464 pci_power_name(dev
->current_state
));
1465 } else if (ret
> 0) {
1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 * For example, at least some versions of the 3c905B and the
1472 * 3c556B exhibit this behaviour.
1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 * devices in a D3hot state at boot. Consequently, we need to
1476 * restore at least the BARs so that the device will be
1477 * accessible to its driver.
1479 pci_restore_bars(dev
);
1483 pcie_aspm_pm_state_change(dev
->bus
->self
, locked
);
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1493 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
1495 pci_power_t state
= *(pci_power_t
*)data
;
1497 dev
->current_state
= state
;
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1506 void pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
1509 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
1512 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
, bool locked
)
1518 pci_walk_bus_locked(bus
, __pci_dev_set_current_state
, &state
);
1520 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1538 static int pci_set_low_power_state(struct pci_dev
*dev
, pci_power_t state
, bool locked
)
1546 * Validate transition: We can enter D0 from any state, but if
1547 * we're already in a low-power state, we can only go deeper. E.g.,
1548 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 * we'd have to go from D3 to D0, then to D1.
1551 if (dev
->current_state
<= PCI_D3cold
&& dev
->current_state
> state
) {
1552 pci_dbg(dev
, "Invalid power transition (from %s to %s)\n",
1553 pci_power_name(dev
->current_state
),
1554 pci_power_name(state
));
1558 /* Check if this device supports the desired state */
1559 if ((state
== PCI_D1
&& !dev
->d1_support
)
1560 || (state
== PCI_D2
&& !dev
->d2_support
))
1563 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1564 if (PCI_POSSIBLE_ERROR(pmcsr
)) {
1565 pci_err(dev
, "Unable to change power state from %s to %s, device inaccessible\n",
1566 pci_power_name(dev
->current_state
),
1567 pci_power_name(state
));
1568 dev
->current_state
= PCI_D3cold
;
1572 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
1575 /* Enter specified state */
1576 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1578 /* Mandatory power management transition delays; see PCI PM 1.2. */
1579 if (state
== PCI_D3hot
)
1580 pci_dev_d3_sleep(dev
);
1581 else if (state
== PCI_D2
)
1582 udelay(PCI_PM_D2_DELAY
);
1584 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1585 dev
->current_state
= pmcsr
& PCI_PM_CTRL_STATE_MASK
;
1586 if (dev
->current_state
!= state
)
1587 pci_info_ratelimited(dev
, "Refused to change power state from %s to %s\n",
1588 pci_power_name(dev
->current_state
),
1589 pci_power_name(state
));
1592 pcie_aspm_pm_state_change(dev
->bus
->self
, locked
);
1597 static int __pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
, bool locked
)
1601 /* Bound the state we're entering */
1602 if (state
> PCI_D3cold
)
1604 else if (state
< PCI_D0
)
1606 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
1609 * If the device or the parent bridge do not support PCI
1610 * PM, ignore the request if we're doing anything other
1611 * than putting it into D0 (which would only happen on
1616 /* Check if we're already there */
1617 if (dev
->current_state
== state
)
1620 if (state
== PCI_D0
)
1621 return pci_set_full_power_state(dev
, locked
);
1624 * This device is quirked not to be put into D3, so don't put it in
1627 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
1630 if (state
== PCI_D3cold
) {
1632 * To put the device in D3cold, put it into D3hot in the native
1633 * way, then put it into D3cold using platform ops.
1635 error
= pci_set_low_power_state(dev
, PCI_D3hot
, locked
);
1637 if (pci_platform_power_transition(dev
, PCI_D3cold
))
1640 /* Powering off a bridge may power off the whole hierarchy */
1641 if (dev
->current_state
== PCI_D3cold
)
1642 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
, locked
);
1644 error
= pci_set_low_power_state(dev
, state
, locked
);
1646 if (pci_platform_power_transition(dev
, state
))
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1670 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
1672 return __pci_set_power_state(dev
, state
, false);
1674 EXPORT_SYMBOL(pci_set_power_state
);
1676 int pci_set_power_state_locked(struct pci_dev
*dev
, pci_power_t state
)
1678 lockdep_assert_held(&pci_bus_sem
);
1680 return __pci_set_power_state(dev
, state
, true);
1682 EXPORT_SYMBOL(pci_set_power_state_locked
);
1684 #define PCI_EXP_SAVE_REGS 7
1686 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
1687 u16 cap
, bool extended
)
1689 struct pci_cap_saved_state
*tmp
;
1691 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
1692 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
1698 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
1700 return _pci_find_saved_cap(dev
, cap
, false);
1703 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
1705 return _pci_find_saved_cap(dev
, cap
, true);
1708 static int pci_save_pcie_state(struct pci_dev
*dev
)
1711 struct pci_cap_saved_state
*save_state
;
1714 if (!pci_is_pcie(dev
))
1717 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1719 pci_err(dev
, "buffer not found in %s\n", __func__
);
1723 cap
= (u16
*)&save_state
->cap
.data
[0];
1724 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
1725 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1726 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1727 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1728 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1729 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1730 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1732 pci_save_aspm_l1ss_state(dev
);
1733 pci_save_ltr_state(dev
);
1738 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1741 struct pci_cap_saved_state
*save_state
;
1745 * Restore max latencies (in the LTR capability) before enabling
1746 * LTR itself in PCI_EXP_DEVCTL2.
1748 pci_restore_ltr_state(dev
);
1749 pci_restore_aspm_l1ss_state(dev
);
1751 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1756 * Downstream ports reset the LTR enable bit when link goes down.
1757 * Check and re-configure the bit here before restoring device.
1758 * PCIe r5.0, sec 7.5.3.16.
1760 pci_bridge_reconfigure_ltr(dev
);
1762 cap
= (u16
*)&save_state
->cap
.data
[0];
1763 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1764 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1765 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1766 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1767 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1768 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1769 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1772 static int pci_save_pcix_state(struct pci_dev
*dev
)
1775 struct pci_cap_saved_state
*save_state
;
1777 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1781 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1783 pci_err(dev
, "buffer not found in %s\n", __func__
);
1787 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1788 (u16
*)save_state
->cap
.data
);
1793 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1796 struct pci_cap_saved_state
*save_state
;
1799 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1800 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1801 if (!save_state
|| !pos
)
1803 cap
= (u16
*)&save_state
->cap
.data
[0];
1805 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1809 * pci_save_state - save the PCI configuration space of a device before
1811 * @dev: PCI device that we're dealing with
1813 int pci_save_state(struct pci_dev
*dev
)
1816 /* XXX: 100% dword access ok here? */
1817 for (i
= 0; i
< 16; i
++) {
1818 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1819 pci_dbg(dev
, "save config %#04x: %#010x\n",
1820 i
* 4, dev
->saved_config_space
[i
]);
1822 dev
->state_saved
= true;
1824 i
= pci_save_pcie_state(dev
);
1828 i
= pci_save_pcix_state(dev
);
1832 pci_save_dpc_state(dev
);
1833 pci_save_aer_state(dev
);
1834 pci_save_ptm_state(dev
);
1835 pci_save_tph_state(dev
);
1836 return pci_save_vc_state(dev
);
1838 EXPORT_SYMBOL(pci_save_state
);
1840 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1841 u32 saved_val
, int retry
, bool force
)
1845 pci_read_config_dword(pdev
, offset
, &val
);
1846 if (!force
&& val
== saved_val
)
1850 pci_dbg(pdev
, "restore config %#04x: %#010x -> %#010x\n",
1851 offset
, val
, saved_val
);
1852 pci_write_config_dword(pdev
, offset
, saved_val
);
1856 pci_read_config_dword(pdev
, offset
, &val
);
1857 if (val
== saved_val
)
1864 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1865 int start
, int end
, int retry
,
1870 for (index
= end
; index
>= start
; index
--)
1871 pci_restore_config_dword(pdev
, 4 * index
,
1872 pdev
->saved_config_space
[index
],
1876 static void pci_restore_config_space(struct pci_dev
*pdev
)
1878 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1879 pci_restore_config_space_range(pdev
, 10, 15, 0, false);
1880 /* Restore BARs before the command register. */
1881 pci_restore_config_space_range(pdev
, 4, 9, 10, false);
1882 pci_restore_config_space_range(pdev
, 0, 3, 0, false);
1883 } else if (pdev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1884 pci_restore_config_space_range(pdev
, 12, 15, 0, false);
1887 * Force rewriting of prefetch registers to avoid S3 resume
1888 * issues on Intel PCI bridges that occur when these
1889 * registers are not explicitly written.
1891 pci_restore_config_space_range(pdev
, 9, 11, 0, true);
1892 pci_restore_config_space_range(pdev
, 0, 8, 0, false);
1894 pci_restore_config_space_range(pdev
, 0, 15, 0, false);
1898 static void pci_restore_rebar_state(struct pci_dev
*pdev
)
1900 unsigned int pos
, nbars
, i
;
1903 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
1907 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1908 nbars
= FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK
, ctrl
);
1910 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
1911 struct resource
*res
;
1914 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1915 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
1916 res
= pdev
->resource
+ bar_idx
;
1917 size
= pci_rebar_bytes_to_size(resource_size(res
));
1918 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
1919 ctrl
|= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE
, size
);
1920 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
1925 * pci_restore_state - Restore the saved state of a PCI device
1926 * @dev: PCI device that we're dealing with
1928 void pci_restore_state(struct pci_dev
*dev
)
1930 if (!dev
->state_saved
)
1933 pci_restore_pcie_state(dev
);
1934 pci_restore_pasid_state(dev
);
1935 pci_restore_pri_state(dev
);
1936 pci_restore_ats_state(dev
);
1937 pci_restore_vc_state(dev
);
1938 pci_restore_rebar_state(dev
);
1939 pci_restore_dpc_state(dev
);
1940 pci_restore_ptm_state(dev
);
1941 pci_restore_tph_state(dev
);
1943 pci_aer_clear_status(dev
);
1944 pci_restore_aer_state(dev
);
1946 pci_restore_config_space(dev
);
1948 pci_restore_pcix_state(dev
);
1949 pci_restore_msi_state(dev
);
1951 /* Restore ACS and IOV configuration state */
1952 pci_enable_acs(dev
);
1953 pci_restore_iov_state(dev
);
1955 dev
->state_saved
= false;
1957 EXPORT_SYMBOL(pci_restore_state
);
1959 struct pci_saved_state
{
1960 u32 config_space
[16];
1961 struct pci_cap_saved_data cap
[];
1965 * pci_store_saved_state - Allocate and return an opaque struct containing
1966 * the device saved state.
1967 * @dev: PCI device that we're dealing with
1969 * Return NULL if no state or error.
1971 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1973 struct pci_saved_state
*state
;
1974 struct pci_cap_saved_state
*tmp
;
1975 struct pci_cap_saved_data
*cap
;
1978 if (!dev
->state_saved
)
1981 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1983 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1984 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1986 state
= kzalloc(size
, GFP_KERNEL
);
1990 memcpy(state
->config_space
, dev
->saved_config_space
,
1991 sizeof(state
->config_space
));
1994 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1995 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1996 memcpy(cap
, &tmp
->cap
, len
);
1997 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1999 /* Empty cap_save terminates list */
2003 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007 * @dev: PCI device that we're dealing with
2008 * @state: Saved state returned from pci_store_saved_state()
2010 int pci_load_saved_state(struct pci_dev
*dev
,
2011 struct pci_saved_state
*state
)
2013 struct pci_cap_saved_data
*cap
;
2015 dev
->state_saved
= false;
2020 memcpy(dev
->saved_config_space
, state
->config_space
,
2021 sizeof(state
->config_space
));
2025 struct pci_cap_saved_state
*tmp
;
2027 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
2028 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
2031 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
2032 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
2033 sizeof(struct pci_cap_saved_data
) + cap
->size
);
2036 dev
->state_saved
= true;
2039 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043 * and free the memory allocated for it.
2044 * @dev: PCI device that we're dealing with
2045 * @state: Pointer to saved state returned from pci_store_saved_state()
2047 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
2048 struct pci_saved_state
**state
)
2050 int ret
= pci_load_saved_state(dev
, *state
);
2055 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
2057 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
2059 return pci_enable_resources(dev
, bars
);
2062 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
2065 struct pci_dev
*bridge
;
2069 err
= pci_set_power_state(dev
, PCI_D0
);
2070 if (err
< 0 && err
!= -EIO
)
2073 bridge
= pci_upstream_bridge(dev
);
2075 pcie_aspm_powersave_config_link(bridge
);
2077 err
= pcibios_enable_device(dev
, bars
);
2080 pci_fixup_device(pci_fixup_enable
, dev
);
2082 if (dev
->msi_enabled
|| dev
->msix_enabled
)
2085 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
2087 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2088 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
2089 pci_write_config_word(dev
, PCI_COMMAND
,
2090 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
2097 * pci_reenable_device - Resume abandoned device
2098 * @dev: PCI device to be resumed
2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101 * to be called by normal code, write proper resume handler and use it instead.
2103 int pci_reenable_device(struct pci_dev
*dev
)
2105 if (pci_is_enabled(dev
))
2106 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
2109 EXPORT_SYMBOL(pci_reenable_device
);
2111 static void pci_enable_bridge(struct pci_dev
*dev
)
2113 struct pci_dev
*bridge
;
2116 bridge
= pci_upstream_bridge(dev
);
2118 pci_enable_bridge(bridge
);
2120 if (pci_is_enabled(dev
)) {
2121 if (!dev
->is_busmaster
)
2122 pci_set_master(dev
);
2126 retval
= pci_enable_device(dev
);
2128 pci_err(dev
, "Error enabling bridge (%d), continuing\n",
2130 pci_set_master(dev
);
2133 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
2135 struct pci_dev
*bridge
;
2140 * Power state could be unknown at this point, either due to a fresh
2141 * boot or a device removal call. So get the current power state
2142 * so that things like MSI message writing will behave as expected
2143 * (e.g. if the device really is in D0 at enable time).
2145 pci_update_current_state(dev
, dev
->current_state
);
2147 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
2148 return 0; /* already enabled */
2150 bridge
= pci_upstream_bridge(dev
);
2152 pci_enable_bridge(bridge
);
2154 /* only skip sriov related */
2155 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
2156 if (dev
->resource
[i
].flags
& flags
)
2158 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
2159 if (dev
->resource
[i
].flags
& flags
)
2162 err
= do_pci_enable_device(dev
, bars
);
2164 atomic_dec(&dev
->enable_cnt
);
2169 * pci_enable_device_mem - Initialize a device for use with Memory space
2170 * @dev: PCI device to be initialized
2172 * Initialize device before it's used by a driver. Ask low-level code
2173 * to enable Memory resources. Wake up the device if it was suspended.
2174 * Beware, this function can fail.
2176 int pci_enable_device_mem(struct pci_dev
*dev
)
2178 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
2180 EXPORT_SYMBOL(pci_enable_device_mem
);
2183 * pci_enable_device - Initialize device before it's used by a driver.
2184 * @dev: PCI device to be initialized
2186 * Initialize device before it's used by a driver. Ask low-level code
2187 * to enable I/O and memory. Wake up the device if it was suspended.
2188 * Beware, this function can fail.
2190 * Note we don't actually enable the device many times if we call
2191 * this function repeatedly (we just increment the count).
2193 int pci_enable_device(struct pci_dev
*dev
)
2195 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
2197 EXPORT_SYMBOL(pci_enable_device
);
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2207 int __weak
pcibios_device_add(struct pci_dev
*dev
)
2213 * pcibios_release_device - provide arch specific hooks when releasing
2215 * @dev: the PCI device being released
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2221 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2231 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
2233 static void do_pci_disable_device(struct pci_dev
*dev
)
2237 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
2238 if (pci_command
& PCI_COMMAND_MASTER
) {
2239 pci_command
&= ~PCI_COMMAND_MASTER
;
2240 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
2243 pcibios_disable_device(dev
);
2247 * pci_disable_enabled_device - Disable device without updating enable_cnt
2248 * @dev: PCI device to disable
2250 * NOTE: This function is a backend of PCI power management routines and is
2251 * not supposed to be called drivers.
2253 void pci_disable_enabled_device(struct pci_dev
*dev
)
2255 if (pci_is_enabled(dev
))
2256 do_pci_disable_device(dev
);
2260 * pci_disable_device - Disable PCI device after use
2261 * @dev: PCI device to be disabled
2263 * Signal to the system that the PCI device is not in use by the system
2264 * anymore. This only involves disabling PCI bus-mastering, if active.
2266 * Note we don't actually disable the device until all callers of
2267 * pci_enable_device() have called pci_disable_device().
2269 void pci_disable_device(struct pci_dev
*dev
)
2271 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
2272 "disabling already-disabled device");
2274 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
2277 do_pci_disable_device(dev
);
2279 dev
->is_busmaster
= 0;
2281 EXPORT_SYMBOL(pci_disable_device
);
2284 * pcibios_set_pcie_reset_state - set reset state for device dev
2285 * @dev: the PCIe device reset
2286 * @state: Reset state to enter into
2288 * Set the PCIe reset state for the device. This is the default
2289 * implementation. Architecture implementations can override this.
2291 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
2292 enum pcie_reset_state state
)
2298 * pci_set_pcie_reset_state - set reset state for device dev
2299 * @dev: the PCIe device reset
2300 * @state: Reset state to enter into
2302 * Sets the PCI reset state for the device.
2304 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
2306 return pcibios_set_pcie_reset_state(dev
, state
);
2308 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
2310 #ifdef CONFIG_PCIEAER
2311 void pcie_clear_device_status(struct pci_dev
*dev
)
2315 pcie_capability_read_word(dev
, PCI_EXP_DEVSTA
, &sta
);
2316 pcie_capability_write_word(dev
, PCI_EXP_DEVSTA
, sta
);
2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322 * @dev: PCIe root port or event collector.
2324 void pcie_clear_root_pme_status(struct pci_dev
*dev
)
2326 pcie_capability_set_dword(dev
, PCI_EXP_RTSTA
, PCI_EXP_RTSTA_PME
);
2330 * pci_check_pme_status - Check if given device has generated PME.
2331 * @dev: Device to check.
2333 * Check the PME status of the device and if set, clear it and clear PME enable
2334 * (if set). Return 'true' if PME status and PME enable were both set or
2335 * 'false' otherwise.
2337 bool pci_check_pme_status(struct pci_dev
*dev
)
2346 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
2347 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
2348 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
2351 /* Clear PME status. */
2352 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2353 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
2354 /* Disable PME to avoid interrupt flood. */
2355 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2359 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366 * @dev: Device to handle.
2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2369 * Check if @dev has generated PME and queue a resume request for it in that
2372 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
2374 if (pme_poll_reset
&& dev
->pme_poll
)
2375 dev
->pme_poll
= false;
2377 if (pci_check_pme_status(dev
)) {
2378 pci_wakeup_event(dev
);
2379 pm_request_resume(&dev
->dev
);
2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386 * @bus: Top bus of the subtree to walk.
2388 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
2391 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
2396 * pci_pme_capable - check the capability of PCI device to generate PME#
2397 * @dev: PCI device to handle.
2398 * @state: PCI state from which device will issue PME#.
2400 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
2405 return !!(dev
->pme_support
& (1 << state
));
2407 EXPORT_SYMBOL(pci_pme_capable
);
2409 static void pci_pme_list_scan(struct work_struct
*work
)
2411 struct pci_pme_device
*pme_dev
, *n
;
2413 mutex_lock(&pci_pme_list_mutex
);
2414 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
2415 struct pci_dev
*pdev
= pme_dev
->dev
;
2417 if (pdev
->pme_poll
) {
2418 struct pci_dev
*bridge
= pdev
->bus
->self
;
2419 struct device
*dev
= &pdev
->dev
;
2420 struct device
*bdev
= bridge
? &bridge
->dev
: NULL
;
2424 * If we have a bridge, it should be in an active/D0
2425 * state or the configuration space of subordinate
2426 * devices may not be accessible or stable over the
2427 * course of the call.
2430 bref
= pm_runtime_get_if_active(bdev
);
2434 if (bridge
->current_state
!= PCI_D0
)
2439 * The device itself should be suspended but config
2440 * space must be accessible, therefore it cannot be in
2443 if (pm_runtime_suspended(dev
) &&
2444 pdev
->current_state
!= PCI_D3cold
)
2445 pci_pme_wakeup(pdev
, NULL
);
2449 pm_runtime_put(bdev
);
2451 list_del(&pme_dev
->list
);
2455 if (!list_empty(&pci_pme_list
))
2456 queue_delayed_work(system_freezable_wq
, &pci_pme_work
,
2457 msecs_to_jiffies(PME_TIMEOUT
));
2458 mutex_unlock(&pci_pme_list_mutex
);
2461 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
2465 if (!dev
->pme_support
)
2468 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2469 /* Clear PME_Status by writing 1 to it and enable PME# */
2470 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
2472 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2474 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2478 * pci_pme_restore - Restore PME configuration after config space restore.
2479 * @dev: PCI device to update.
2481 void pci_pme_restore(struct pci_dev
*dev
)
2485 if (!dev
->pme_support
)
2488 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2489 if (dev
->wakeup_prepared
) {
2490 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2491 pmcsr
&= ~PCI_PM_CTRL_PME_STATUS
;
2493 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2494 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2496 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2500 * pci_pme_active - enable or disable PCI device's PME# function
2501 * @dev: PCI device to handle.
2502 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2504 * The caller must verify that the device is capable of generating PME# before
2505 * calling this function with @enable equal to 'true'.
2507 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
2509 __pci_pme_active(dev
, enable
);
2512 * PCI (as opposed to PCIe) PME requires that the device have
2513 * its PME# line hooked up correctly. Not all hardware vendors
2514 * do this, so the PME never gets delivered and the device
2515 * remains asleep. The easiest way around this is to
2516 * periodically walk the list of suspended devices and check
2517 * whether any have their PME flag set. The assumption is that
2518 * we'll wake up often enough anyway that this won't be a huge
2519 * hit, and the power savings from the devices will still be a
2522 * Although PCIe uses in-band PME message instead of PME# line
2523 * to report PME, PME does not work for some PCIe devices in
2524 * reality. For example, there are devices that set their PME
2525 * status bits, but don't really bother to send a PME message;
2526 * there are PCI Express Root Ports that don't bother to
2527 * trigger interrupts when they receive PME messages from the
2528 * devices below. So PME poll is used for PCIe devices too.
2531 if (dev
->pme_poll
) {
2532 struct pci_pme_device
*pme_dev
;
2534 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
2537 pci_warn(dev
, "can't enable PME#\n");
2541 mutex_lock(&pci_pme_list_mutex
);
2542 list_add(&pme_dev
->list
, &pci_pme_list
);
2543 if (list_is_singular(&pci_pme_list
))
2544 queue_delayed_work(system_freezable_wq
,
2546 msecs_to_jiffies(PME_TIMEOUT
));
2547 mutex_unlock(&pci_pme_list_mutex
);
2549 mutex_lock(&pci_pme_list_mutex
);
2550 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
2551 if (pme_dev
->dev
== dev
) {
2552 list_del(&pme_dev
->list
);
2557 mutex_unlock(&pci_pme_list_mutex
);
2561 pci_dbg(dev
, "PME# %s\n", enable
? "enabled" : "disabled");
2563 EXPORT_SYMBOL(pci_pme_active
);
2566 * __pci_enable_wake - enable PCI device as wakeup event source
2567 * @dev: PCI device affected
2568 * @state: PCI state from which device will issue wakeup events
2569 * @enable: True to enable event generation; false to disable
2571 * This enables the device as a wakeup event source, or disables it.
2572 * When such events involves platform-specific hooks, those hooks are
2573 * called automatically by this routine.
2575 * Devices with legacy power management (no standard PCI PM capabilities)
2576 * always require such platform hooks.
2579 * 0 is returned on success
2580 * -EINVAL is returned if device is not supposed to wake up the system
2581 * Error code depending on the platform is returned if both the platform and
2582 * the native mechanism fail to enable the generation of wake-up events
2584 static int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
, bool enable
)
2589 * Bridges that are not power-manageable directly only signal
2590 * wakeup on behalf of subordinate devices which is set up
2591 * elsewhere, so skip them. However, bridges that are
2592 * power-manageable may signal wakeup for themselves (for example,
2593 * on a hotplug event) and they need to be covered here.
2595 if (!pci_power_manageable(dev
))
2598 /* Don't do the same thing twice in a row for one device. */
2599 if (!!enable
== !!dev
->wakeup_prepared
)
2603 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605 * enable. To disable wake-up we call the platform first, for symmetry.
2612 * Enable PME signaling if the device can signal PME from
2613 * D3cold regardless of whether or not it can signal PME from
2614 * the current target state, because that will allow it to
2615 * signal PME when the hierarchy above it goes into D3cold and
2616 * the device itself ends up in D3cold as a result of that.
2618 if (pci_pme_capable(dev
, state
) || pci_pme_capable(dev
, PCI_D3cold
))
2619 pci_pme_active(dev
, true);
2622 error
= platform_pci_set_wakeup(dev
, true);
2626 dev
->wakeup_prepared
= true;
2628 platform_pci_set_wakeup(dev
, false);
2629 pci_pme_active(dev
, false);
2630 dev
->wakeup_prepared
= false;
2637 * pci_enable_wake - change wakeup settings for a PCI device
2638 * @pci_dev: Target device
2639 * @state: PCI state from which device will issue wakeup events
2640 * @enable: Whether or not to enable event generation
2642 * If @enable is set, check device_may_wakeup() for the device before calling
2643 * __pci_enable_wake() for it.
2645 int pci_enable_wake(struct pci_dev
*pci_dev
, pci_power_t state
, bool enable
)
2647 if (enable
&& !device_may_wakeup(&pci_dev
->dev
))
2650 return __pci_enable_wake(pci_dev
, state
, enable
);
2652 EXPORT_SYMBOL(pci_enable_wake
);
2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656 * @dev: PCI device to prepare
2657 * @enable: True to enable wake-up event generation; false to disable
2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660 * and this function allows them to set that up cleanly - pci_enable_wake()
2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662 * ordering constraints.
2664 * This function only returns error code if the device is not allowed to wake
2665 * up the system from sleep or it is not capable of generating PME# from both
2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2668 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
2670 return pci_pme_capable(dev
, PCI_D3cold
) ?
2671 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
2672 pci_enable_wake(dev
, PCI_D3hot
, enable
);
2674 EXPORT_SYMBOL(pci_wake_from_d3
);
2677 * pci_target_state - find an appropriate low power state for a given PCI dev
2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2681 * Use underlying platform code to find a supported low power state for @dev.
2682 * If the platform can't manage @dev, return the deepest state from which it
2683 * can generate wake events, based on any available PME info.
2685 static pci_power_t
pci_target_state(struct pci_dev
*dev
, bool wakeup
)
2687 if (platform_pci_power_manageable(dev
)) {
2689 * Call the platform to find the target state for the device.
2691 pci_power_t state
= platform_pci_choose_state(dev
);
2694 case PCI_POWER_ERROR
:
2700 if (pci_no_d1d2(dev
))
2708 * If the device is in D3cold even though it's not power-manageable by
2709 * the platform, it may have been powered down by non-standard means.
2710 * Best to let it slumber.
2712 if (dev
->current_state
== PCI_D3cold
)
2714 else if (!dev
->pm_cap
)
2717 if (wakeup
&& dev
->pme_support
) {
2718 pci_power_t state
= PCI_D3hot
;
2721 * Find the deepest state from which the device can generate
2724 while (state
&& !(dev
->pme_support
& (1 << state
)))
2729 else if (dev
->pme_support
& 1)
2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738 * into a sleep state
2739 * @dev: Device to handle.
2741 * Choose the power state appropriate for the device depending on whether
2742 * it can wake up the system and/or is power manageable by the platform
2743 * (PCI_D3hot is the default) and put the device into that state.
2745 int pci_prepare_to_sleep(struct pci_dev
*dev
)
2747 bool wakeup
= device_may_wakeup(&dev
->dev
);
2748 pci_power_t target_state
= pci_target_state(dev
, wakeup
);
2751 if (target_state
== PCI_POWER_ERROR
)
2754 pci_enable_wake(dev
, target_state
, wakeup
);
2756 error
= pci_set_power_state(dev
, target_state
);
2759 pci_enable_wake(dev
, target_state
, false);
2763 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2766 * pci_back_from_sleep - turn PCI device on during system-wide transition
2767 * into working state
2768 * @dev: Device to handle.
2770 * Disable device's system wake-up capability and put it into D0.
2772 int pci_back_from_sleep(struct pci_dev
*dev
)
2774 int ret
= pci_set_power_state(dev
, PCI_D0
);
2779 pci_enable_wake(dev
, PCI_D0
, false);
2782 EXPORT_SYMBOL(pci_back_from_sleep
);
2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786 * @dev: PCI device being suspended.
2788 * Prepare @dev to generate wake-up events at run time and put it into a low
2791 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2793 pci_power_t target_state
;
2796 target_state
= pci_target_state(dev
, device_can_wakeup(&dev
->dev
));
2797 if (target_state
== PCI_POWER_ERROR
)
2800 __pci_enable_wake(dev
, target_state
, pci_dev_run_wake(dev
));
2802 error
= pci_set_power_state(dev
, target_state
);
2805 pci_enable_wake(dev
, target_state
, false);
2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812 * @dev: Device to check.
2814 * Return true if the device itself is capable of generating wake-up events
2815 * (through the platform or using the native PCIe PME) or if the device supports
2816 * PME and one of its upstream bridges can generate wake-up events.
2818 bool pci_dev_run_wake(struct pci_dev
*dev
)
2820 struct pci_bus
*bus
= dev
->bus
;
2822 if (!dev
->pme_support
)
2825 /* PME-capable in principle, but not from the target power state */
2826 if (!pci_pme_capable(dev
, pci_target_state(dev
, true)))
2829 if (device_can_wakeup(&dev
->dev
))
2832 while (bus
->parent
) {
2833 struct pci_dev
*bridge
= bus
->self
;
2835 if (device_can_wakeup(&bridge
->dev
))
2841 /* We have reached the root bus. */
2843 return device_can_wakeup(bus
->bridge
);
2847 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2850 * pci_dev_need_resume - Check if it is necessary to resume the device.
2851 * @pci_dev: Device to check.
2853 * Return 'true' if the device is not runtime-suspended or it has to be
2854 * reconfigured due to wakeup settings difference between system and runtime
2855 * suspend, or the current power state of it is not suitable for the upcoming
2856 * (system-wide) transition.
2858 bool pci_dev_need_resume(struct pci_dev
*pci_dev
)
2860 struct device
*dev
= &pci_dev
->dev
;
2861 pci_power_t target_state
;
2863 if (!pm_runtime_suspended(dev
) || platform_pci_need_resume(pci_dev
))
2866 target_state
= pci_target_state(pci_dev
, device_may_wakeup(dev
));
2869 * If the earlier platform check has not triggered, D3cold is just power
2870 * removal on top of D3hot, so no need to resume the device in that
2873 return target_state
!= pci_dev
->current_state
&&
2874 target_state
!= PCI_D3cold
&&
2875 pci_dev
->current_state
!= PCI_D3hot
;
2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880 * @pci_dev: Device to check.
2882 * If the device is suspended and it is not configured for system wakeup,
2883 * disable PME for it to prevent it from waking up the system unnecessarily.
2885 * Note that if the device's power state is D3cold and the platform check in
2886 * pci_dev_need_resume() has not triggered, the device's configuration need not
2889 void pci_dev_adjust_pme(struct pci_dev
*pci_dev
)
2891 struct device
*dev
= &pci_dev
->dev
;
2893 spin_lock_irq(&dev
->power
.lock
);
2895 if (pm_runtime_suspended(dev
) && !device_may_wakeup(dev
) &&
2896 pci_dev
->current_state
< PCI_D3cold
)
2897 __pci_pme_active(pci_dev
, false);
2899 spin_unlock_irq(&dev
->power
.lock
);
2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904 * @pci_dev: Device to handle.
2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907 * it might have been disabled during the prepare phase of system suspend if
2908 * the device was not configured for system wakeup.
2910 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2912 struct device
*dev
= &pci_dev
->dev
;
2914 if (!pci_dev_run_wake(pci_dev
))
2917 spin_lock_irq(&dev
->power
.lock
);
2919 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2920 __pci_pme_active(pci_dev
, true);
2922 spin_unlock_irq(&dev
->power
.lock
);
2926 * pci_choose_state - Choose the power state of a PCI device.
2927 * @dev: Target PCI device.
2928 * @state: Target state for the whole system.
2930 * Returns PCI power state suitable for @dev and @state.
2932 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
2934 if (state
.event
== PM_EVENT_ON
)
2937 return pci_target_state(dev
, false);
2939 EXPORT_SYMBOL(pci_choose_state
);
2941 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2943 struct device
*dev
= &pdev
->dev
;
2944 struct device
*parent
= dev
->parent
;
2947 pm_runtime_get_sync(parent
);
2948 pm_runtime_get_noresume(dev
);
2950 * pdev->current_state is set to PCI_D3cold during suspending,
2951 * so wait until suspending completes
2953 pm_runtime_barrier(dev
);
2955 * Only need to resume devices in D3cold, because config
2956 * registers are still accessible for devices suspended but
2959 if (pdev
->current_state
== PCI_D3cold
)
2960 pm_runtime_resume(dev
);
2963 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2965 struct device
*dev
= &pdev
->dev
;
2966 struct device
*parent
= dev
->parent
;
2968 pm_runtime_put(dev
);
2970 pm_runtime_put_sync(parent
);
2973 static const struct dmi_system_id bridge_d3_blacklist
[] = {
2977 * Gigabyte X299 root port is not marked as hotplug capable
2978 * which allows Linux to power manage it. However, this
2979 * confuses the BIOS SMI handler so don't power manage root
2980 * ports on that system.
2982 .ident
= "X299 DESIGNARE EX-CF",
2984 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co., Ltd."),
2985 DMI_MATCH(DMI_BOARD_NAME
, "X299 DESIGNARE EX-CF"),
2990 * Downstream device is not accessible after putting a root port
2991 * into D3cold and back into D0 on Elo Continental Z2 board
2993 .ident
= "Elo Continental Z2",
2995 DMI_MATCH(DMI_BOARD_VENDOR
, "Elo Touch Solutions"),
2996 DMI_MATCH(DMI_BOARD_NAME
, "Geminilake"),
2997 DMI_MATCH(DMI_BOARD_VERSION
, "Continental Z2"),
3002 * Changing power state of root port dGPU is connected fails
3003 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3005 .ident
= "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3007 DMI_MATCH(DMI_BOARD_VENDOR
, "Hewlett-Packard"),
3008 DMI_MATCH(DMI_BOARD_NAME
, "1972"),
3009 DMI_MATCH(DMI_BOARD_VERSION
, "95.33"),
3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018 * @bridge: Bridge to check
3020 * This function checks if it is possible to move the bridge to D3.
3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3023 bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
3025 if (!pci_is_pcie(bridge
))
3028 switch (pci_pcie_type(bridge
)) {
3029 case PCI_EXP_TYPE_ROOT_PORT
:
3030 case PCI_EXP_TYPE_UPSTREAM
:
3031 case PCI_EXP_TYPE_DOWNSTREAM
:
3032 if (pci_bridge_d3_disable
)
3036 * Hotplug ports handled by firmware in System Management Mode
3037 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3039 if (bridge
->is_hotplug_bridge
&& !pciehp_is_native(bridge
))
3042 if (pci_bridge_d3_force
)
3045 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3046 if (bridge
->is_thunderbolt
)
3049 /* Platform might know better if the bridge supports D3 */
3050 if (platform_pci_bridge_d3(bridge
))
3054 * Hotplug ports handled natively by the OS were not validated
3055 * by vendors for runtime D3 at least until 2018 because there
3056 * was no OS support.
3058 if (bridge
->is_hotplug_bridge
)
3061 if (dmi_check_system(bridge_d3_blacklist
))
3065 * It should be safe to put PCIe ports from 2015 or newer
3068 if (dmi_get_bios_year() >= 2015)
3076 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
3078 bool *d3cold_ok
= data
;
3080 if (/* The device needs to be allowed to go D3cold ... */
3081 dev
->no_d3cold
|| !dev
->d3cold_allowed
||
3083 /* ... and if it is wakeup capable to do so from D3cold. */
3084 (device_may_wakeup(&dev
->dev
) &&
3085 !pci_pme_capable(dev
, PCI_D3cold
)) ||
3087 /* If it is a bridge it must be allowed to go to D3. */
3088 !pci_power_manageable(dev
))
3096 * pci_bridge_d3_update - Update bridge D3 capabilities
3097 * @dev: PCI device which is changed
3099 * Update upstream bridge PM capabilities accordingly depending on if the
3100 * device PM configuration was changed or the device is being removed. The
3101 * change is also propagated upstream.
3103 void pci_bridge_d3_update(struct pci_dev
*dev
)
3105 bool remove
= !device_is_registered(&dev
->dev
);
3106 struct pci_dev
*bridge
;
3107 bool d3cold_ok
= true;
3109 bridge
= pci_upstream_bridge(dev
);
3110 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
3114 * If D3 is currently allowed for the bridge, removing one of its
3115 * children won't change that.
3117 if (remove
&& bridge
->bridge_d3
)
3121 * If D3 is currently allowed for the bridge and a child is added or
3122 * changed, disallowance of D3 can only be caused by that child, so
3123 * we only need to check that single device, not any of its siblings.
3125 * If D3 is currently not allowed for the bridge, checking the device
3126 * first may allow us to skip checking its siblings.
3129 pci_dev_check_d3cold(dev
, &d3cold_ok
);
3132 * If D3 is currently not allowed for the bridge, this may be caused
3133 * either by the device being changed/removed or any of its siblings,
3134 * so we need to go through all children to find out if one of them
3135 * continues to block D3.
3137 if (d3cold_ok
&& !bridge
->bridge_d3
)
3138 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
3141 if (bridge
->bridge_d3
!= d3cold_ok
) {
3142 bridge
->bridge_d3
= d3cold_ok
;
3143 /* Propagate change to upstream bridges */
3144 pci_bridge_d3_update(bridge
);
3149 * pci_d3cold_enable - Enable D3cold for device
3150 * @dev: PCI device to handle
3152 * This function can be used in drivers to enable D3cold from the device
3153 * they handle. It also updates upstream PCI bridge PM capabilities
3156 void pci_d3cold_enable(struct pci_dev
*dev
)
3158 if (dev
->no_d3cold
) {
3159 dev
->no_d3cold
= false;
3160 pci_bridge_d3_update(dev
);
3163 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
3166 * pci_d3cold_disable - Disable D3cold for device
3167 * @dev: PCI device to handle
3169 * This function can be used in drivers to disable D3cold from the device
3170 * they handle. It also updates upstream PCI bridge PM capabilities
3173 void pci_d3cold_disable(struct pci_dev
*dev
)
3175 if (!dev
->no_d3cold
) {
3176 dev
->no_d3cold
= true;
3177 pci_bridge_d3_update(dev
);
3180 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
3183 * pci_pm_init - Initialize PM functions of given PCI device
3184 * @dev: PCI device to handle.
3186 void pci_pm_init(struct pci_dev
*dev
)
3192 pm_runtime_forbid(&dev
->dev
);
3193 pm_runtime_set_active(&dev
->dev
);
3194 pm_runtime_enable(&dev
->dev
);
3195 device_enable_async_suspend(&dev
->dev
);
3196 dev
->wakeup_prepared
= false;
3199 dev
->pme_support
= 0;
3201 /* find PCI PM capability in list */
3202 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
3205 /* Check device's ability to generate PME# */
3206 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
3208 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
3209 pci_err(dev
, "unsupported PM cap regs version (%u)\n",
3210 pmc
& PCI_PM_CAP_VER_MASK
);
3215 dev
->d3hot_delay
= PCI_PM_D3HOT_WAIT
;
3216 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
3217 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
3218 dev
->d3cold_allowed
= true;
3220 dev
->d1_support
= false;
3221 dev
->d2_support
= false;
3222 if (!pci_no_d1d2(dev
)) {
3223 if (pmc
& PCI_PM_CAP_D1
)
3224 dev
->d1_support
= true;
3225 if (pmc
& PCI_PM_CAP_D2
)
3226 dev
->d2_support
= true;
3228 if (dev
->d1_support
|| dev
->d2_support
)
3229 pci_info(dev
, "supports%s%s\n",
3230 dev
->d1_support
? " D1" : "",
3231 dev
->d2_support
? " D2" : "");
3234 pmc
&= PCI_PM_CAP_PME_MASK
;
3236 pci_info(dev
, "PME# supported from%s%s%s%s%s\n",
3237 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
3238 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
3239 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
3240 (pmc
& PCI_PM_CAP_PME_D3hot
) ? " D3hot" : "",
3241 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
3242 dev
->pme_support
= FIELD_GET(PCI_PM_CAP_PME_MASK
, pmc
);
3243 dev
->pme_poll
= true;
3245 * Make device's PM flags reflect the wake-up capability, but
3246 * let the user space enable it to wake up the system as needed.
3248 device_set_wakeup_capable(&dev
->dev
, true);
3249 /* Disable the PME# generation functionality */
3250 pci_pme_active(dev
, false);
3253 pci_read_config_word(dev
, PCI_STATUS
, &status
);
3254 if (status
& PCI_STATUS_IMM_READY
)
3258 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
3260 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
3264 case PCI_EA_P_VF_MEM
:
3265 flags
|= IORESOURCE_MEM
;
3267 case PCI_EA_P_MEM_PREFETCH
:
3268 case PCI_EA_P_VF_MEM_PREFETCH
:
3269 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
3272 flags
|= IORESOURCE_IO
;
3281 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
3284 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
3285 return &dev
->resource
[bei
];
3286 #ifdef CONFIG_PCI_IOV
3287 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
3288 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
3289 return &dev
->resource
[PCI_IOV_RESOURCES
+
3290 bei
- PCI_EA_BEI_VF_BAR0
];
3292 else if (bei
== PCI_EA_BEI_ROM
)
3293 return &dev
->resource
[PCI_ROM_RESOURCE
];
3298 /* Read an Enhanced Allocation (EA) entry */
3299 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
3301 struct resource
*res
;
3302 const char *res_name
;
3303 int ent_size
, ent_offset
= offset
;
3304 resource_size_t start
, end
;
3305 unsigned long flags
;
3306 u32 dw0
, bei
, base
, max_offset
;
3308 bool support_64
= (sizeof(resource_size_t
) >= 8);
3310 pci_read_config_dword(dev
, ent_offset
, &dw0
);
3313 /* Entry size field indicates DWORDs after 1st */
3314 ent_size
= (FIELD_GET(PCI_EA_ES
, dw0
) + 1) << 2;
3316 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
3319 bei
= FIELD_GET(PCI_EA_BEI
, dw0
);
3320 prop
= FIELD_GET(PCI_EA_PP
, dw0
);
3323 * If the Property is in the reserved range, try the Secondary
3326 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
3327 prop
= FIELD_GET(PCI_EA_SP
, dw0
);
3328 if (prop
> PCI_EA_P_BRIDGE_IO
)
3331 res
= pci_ea_get_resource(dev
, bei
, prop
);
3332 res_name
= pci_resource_name(dev
, bei
);
3334 pci_err(dev
, "Unsupported EA entry BEI: %u\n", bei
);
3338 flags
= pci_ea_flags(dev
, prop
);
3340 pci_err(dev
, "Unsupported EA properties: %#x\n", prop
);
3345 pci_read_config_dword(dev
, ent_offset
, &base
);
3346 start
= (base
& PCI_EA_FIELD_MASK
);
3349 /* Read MaxOffset */
3350 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
3353 /* Read Base MSBs (if 64-bit entry) */
3354 if (base
& PCI_EA_IS_64
) {
3357 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
3360 flags
|= IORESOURCE_MEM_64
;
3362 /* entry starts above 32-bit boundary, can't use */
3363 if (!support_64
&& base_upper
)
3367 start
|= ((u64
)base_upper
<< 32);
3370 end
= start
+ (max_offset
| 0x03);
3372 /* Read MaxOffset MSBs (if 64-bit entry) */
3373 if (max_offset
& PCI_EA_IS_64
) {
3374 u32 max_offset_upper
;
3376 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
3379 flags
|= IORESOURCE_MEM_64
;
3381 /* entry too big, can't use */
3382 if (!support_64
&& max_offset_upper
)
3386 end
+= ((u64
)max_offset_upper
<< 32);
3390 pci_err(dev
, "EA Entry crosses address boundary\n");
3394 if (ent_size
!= ent_offset
- offset
) {
3395 pci_err(dev
, "EA Entry Size (%d) does not match length read (%d)\n",
3396 ent_size
, ent_offset
- offset
);
3400 res
->name
= pci_name(dev
);
3405 if (bei
<= PCI_EA_BEI_BAR5
)
3406 pci_info(dev
, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407 res_name
, res
, prop
);
3408 else if (bei
== PCI_EA_BEI_ROM
)
3409 pci_info(dev
, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410 res_name
, res
, prop
);
3411 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
3412 pci_info(dev
, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413 res_name
, res
, prop
);
3415 pci_info(dev
, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3419 return offset
+ ent_size
;
3422 /* Enhanced Allocation Initialization */
3423 void pci_ea_init(struct pci_dev
*dev
)
3430 /* find PCI EA capability in list */
3431 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
3435 /* determine the number of entries */
3436 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
3438 num_ent
&= PCI_EA_NUM_ENT_MASK
;
3440 offset
= ea
+ PCI_EA_FIRST_ENT
;
3442 /* Skip DWORD 2 for type 1 functions */
3443 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
3446 /* parse each EA entry */
3447 for (i
= 0; i
< num_ent
; ++i
)
3448 offset
= pci_ea_read(dev
, offset
);
3451 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
3452 struct pci_cap_saved_state
*new_cap
)
3454 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
3458 * _pci_add_cap_save_buffer - allocate buffer for saving given
3459 * capability registers
3460 * @dev: the PCI device
3461 * @cap: the capability to allocate the buffer for
3462 * @extended: Standard or Extended capability ID
3463 * @size: requested size of the buffer
3465 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
3466 bool extended
, unsigned int size
)
3469 struct pci_cap_saved_state
*save_state
;
3472 pos
= pci_find_ext_capability(dev
, cap
);
3474 pos
= pci_find_capability(dev
, cap
);
3479 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
3483 save_state
->cap
.cap_nr
= cap
;
3484 save_state
->cap
.cap_extended
= extended
;
3485 save_state
->cap
.size
= size
;
3486 pci_add_saved_cap(dev
, save_state
);
3491 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
3493 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
3496 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
3498 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503 * @dev: the PCI device
3505 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
3509 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
3510 PCI_EXP_SAVE_REGS
* sizeof(u16
));
3512 pci_err(dev
, "unable to preallocate PCI Express save buffer\n");
3514 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
3516 pci_err(dev
, "unable to preallocate PCI-X save buffer\n");
3518 error
= pci_add_ext_cap_save_buffer(dev
, PCI_EXT_CAP_ID_LTR
,
3521 pci_err(dev
, "unable to allocate suspend buffer for LTR\n");
3523 pci_allocate_vc_save_buffers(dev
);
3526 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
3528 struct pci_cap_saved_state
*tmp
;
3529 struct hlist_node
*n
;
3531 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
3536 * pci_configure_ari - enable or disable ARI forwarding
3537 * @dev: the PCI device
3539 * If @dev and its upstream bridge both support ARI, enable ARI in the
3540 * bridge. Otherwise, disable ARI in the bridge.
3542 void pci_configure_ari(struct pci_dev
*dev
)
3545 struct pci_dev
*bridge
;
3547 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
3550 bridge
= dev
->bus
->self
;
3554 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3555 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
3558 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
3559 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
3560 PCI_EXP_DEVCTL2_ARI
);
3561 bridge
->ari_enabled
= 1;
3563 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
3564 PCI_EXP_DEVCTL2_ARI
);
3565 bridge
->ari_enabled
= 0;
3569 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3574 pos
= pdev
->acs_cap
;
3579 * Except for egress control, capabilities are either required
3580 * or only required if controllable. Features missing from the
3581 * capability field can therefore be assumed as hard-wired enabled.
3583 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
3584 acs_flags
&= (cap
| PCI_ACS_EC
);
3586 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3587 return (ctrl
& acs_flags
) == acs_flags
;
3591 * pci_acs_enabled - test ACS against required flags for a given device
3592 * @pdev: device to test
3593 * @acs_flags: required PCI ACS flags
3595 * Return true if the device supports the provided flags. Automatically
3596 * filters out flags that are not implemented on multifunction devices.
3598 * Note that this interface checks the effective ACS capabilities of the
3599 * device rather than the actual capabilities. For instance, most single
3600 * function endpoints are not required to support ACS because they have no
3601 * opportunity for peer-to-peer access. We therefore return 'true'
3602 * regardless of whether the device exposes an ACS capability. This makes
3603 * it much easier for callers of this function to ignore the actual type
3604 * or topology of the device when testing ACS support.
3606 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3610 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
3615 * Conventional PCI and PCI-X devices never support ACS, either
3616 * effectively or actually. The shared bus topology implies that
3617 * any device on the bus can receive or snoop DMA.
3619 if (!pci_is_pcie(pdev
))
3622 switch (pci_pcie_type(pdev
)) {
3624 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625 * but since their primary interface is PCI/X, we conservatively
3626 * handle them as we would a non-PCIe device.
3628 case PCI_EXP_TYPE_PCIE_BRIDGE
:
3630 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3631 * applicable... must never implement an ACS Extended Capability...".
3632 * This seems arbitrary, but we take a conservative interpretation
3633 * of this statement.
3635 case PCI_EXP_TYPE_PCI_BRIDGE
:
3636 case PCI_EXP_TYPE_RC_EC
:
3639 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640 * implement ACS in order to indicate their peer-to-peer capabilities,
3641 * regardless of whether they are single- or multi-function devices.
3643 case PCI_EXP_TYPE_DOWNSTREAM
:
3644 case PCI_EXP_TYPE_ROOT_PORT
:
3645 return pci_acs_flags_enabled(pdev
, acs_flags
);
3647 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648 * implemented by the remaining PCIe types to indicate peer-to-peer
3649 * capabilities, but only when they are part of a multifunction
3650 * device. The footnote for section 6.12 indicates the specific
3651 * PCIe types included here.
3653 case PCI_EXP_TYPE_ENDPOINT
:
3654 case PCI_EXP_TYPE_UPSTREAM
:
3655 case PCI_EXP_TYPE_LEG_END
:
3656 case PCI_EXP_TYPE_RC_END
:
3657 if (!pdev
->multifunction
)
3660 return pci_acs_flags_enabled(pdev
, acs_flags
);
3664 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665 * to single function devices with the exception of downstream ports.
3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672 * @start: starting downstream device
3673 * @end: ending upstream device or NULL to search to the root bus
3674 * @acs_flags: required flags
3676 * Walk up a device tree from start to end testing PCI ACS support. If
3677 * any step along the way does not support the required flags, return false.
3679 bool pci_acs_path_enabled(struct pci_dev
*start
,
3680 struct pci_dev
*end
, u16 acs_flags
)
3682 struct pci_dev
*pdev
, *parent
= start
;
3687 if (!pci_acs_enabled(pdev
, acs_flags
))
3690 if (pci_is_root_bus(pdev
->bus
))
3691 return (end
== NULL
);
3693 parent
= pdev
->bus
->self
;
3694 } while (pdev
!= end
);
3700 * pci_acs_init - Initialize ACS if hardware supports it
3701 * @dev: the PCI device
3703 void pci_acs_init(struct pci_dev
*dev
)
3705 dev
->acs_cap
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3708 * Attempt to enable ACS regardless of capability because some Root
3709 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710 * the standard ACS capability but still support ACS via those
3713 pci_enable_acs(dev
);
3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3721 * Helper to find the position of the ctrl register for a BAR.
3722 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723 * Returns -ENOENT if no ctrl register for the BAR could be found.
3725 static int pci_rebar_find_pos(struct pci_dev
*pdev
, int bar
)
3727 unsigned int pos
, nbars
, i
;
3730 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
3734 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3735 nbars
= FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK
, ctrl
);
3737 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
3740 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3741 bar_idx
= FIELD_GET(PCI_REBAR_CTRL_BAR_IDX
, ctrl
);
3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3752 * @bar: BAR to query
3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3757 u32
pci_rebar_get_possible_sizes(struct pci_dev
*pdev
, int bar
)
3762 pos
= pci_rebar_find_pos(pdev
, bar
);
3766 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CAP
, &cap
);
3767 cap
= FIELD_GET(PCI_REBAR_CAP_SIZES
, cap
);
3769 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770 if (pdev
->vendor
== PCI_VENDOR_ID_ATI
&& pdev
->device
== 0x731f &&
3771 bar
== 0 && cap
== 0x700)
3776 EXPORT_SYMBOL(pci_rebar_get_possible_sizes
);
3779 * pci_rebar_get_current_size - get the current size of a BAR
3781 * @bar: BAR to set size to
3783 * Read the size of a BAR from the resizable BAR config.
3784 * Returns size if found or negative error code.
3786 int pci_rebar_get_current_size(struct pci_dev
*pdev
, int bar
)
3791 pos
= pci_rebar_find_pos(pdev
, bar
);
3795 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3796 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE
, ctrl
);
3800 * pci_rebar_set_size - set a new size for a BAR
3802 * @bar: BAR to set size to
3803 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3805 * Set the new size of a BAR as defined in the spec.
3806 * Returns zero if resizing was successful, error code otherwise.
3808 int pci_rebar_set_size(struct pci_dev
*pdev
, int bar
, int size
)
3813 pos
= pci_rebar_find_pos(pdev
, bar
);
3817 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3818 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
3819 ctrl
|= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE
, size
);
3820 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826 * @dev: the PCI device
3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3832 * Return 0 if all upstream bridges support AtomicOp routing, egress
3833 * blocking is disabled on all upstream ports, and the root port supports
3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835 * AtomicOp completion), or negative otherwise.
3837 int pci_enable_atomic_ops_to_root(struct pci_dev
*dev
, u32 cap_mask
)
3839 struct pci_bus
*bus
= dev
->bus
;
3840 struct pci_dev
*bridge
;
3844 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845 * in Device Control 2 is reserved in VFs and the PF value applies
3846 * to all associated VFs.
3851 if (!pci_is_pcie(dev
))
3855 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856 * AtomicOp requesters. For now, we only support endpoints as
3857 * requesters and root ports as completers. No endpoints as
3858 * completers, and no peer-to-peer.
3861 switch (pci_pcie_type(dev
)) {
3862 case PCI_EXP_TYPE_ENDPOINT
:
3863 case PCI_EXP_TYPE_LEG_END
:
3864 case PCI_EXP_TYPE_RC_END
:
3870 while (bus
->parent
) {
3873 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3875 switch (pci_pcie_type(bridge
)) {
3876 /* Ensure switch ports support AtomicOp routing */
3877 case PCI_EXP_TYPE_UPSTREAM
:
3878 case PCI_EXP_TYPE_DOWNSTREAM
:
3879 if (!(cap
& PCI_EXP_DEVCAP2_ATOMIC_ROUTE
))
3883 /* Ensure root port supports all the sizes we care about */
3884 case PCI_EXP_TYPE_ROOT_PORT
:
3885 if ((cap
& cap_mask
) != cap_mask
)
3890 /* Ensure upstream ports don't block AtomicOps on egress */
3891 if (pci_pcie_type(bridge
) == PCI_EXP_TYPE_UPSTREAM
) {
3892 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCTL2
,
3894 if (ctl2
& PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK
)
3901 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL2
,
3902 PCI_EXP_DEVCTL2_ATOMIC_REQ
);
3905 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root
);
3908 * pci_release_region - Release a PCI bar
3909 * @pdev: PCI device whose resources were previously reserved by
3910 * pci_request_region()
3911 * @bar: BAR to release
3913 * Releases the PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_region(). Call this function only
3915 * after all use of the PCI regions has ceased.
3917 void pci_release_region(struct pci_dev
*pdev
, int bar
)
3920 * This is done for backwards compatibility, because the old PCI devres
3921 * API had a mode in which the function became managed if it had been
3922 * enabled with pcim_enable_device() instead of pci_enable_device().
3924 if (pci_is_managed(pdev
)) {
3925 pcim_release_region(pdev
, bar
);
3929 if (pci_resource_len(pdev
, bar
) == 0)
3931 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
3932 release_region(pci_resource_start(pdev
, bar
),
3933 pci_resource_len(pdev
, bar
));
3934 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
3935 release_mem_region(pci_resource_start(pdev
, bar
),
3936 pci_resource_len(pdev
, bar
));
3938 EXPORT_SYMBOL(pci_release_region
);
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3947 * Returns: 0 on success, negative error code on failure.
3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950 * being reserved by owner @res_name. Do not access any
3951 * address inside the PCI regions unless this call returns
3954 * If @exclusive is set, then the region is marked so that userspace
3955 * is explicitly not allowed to map the resource via /dev/mem or
3956 * sysfs MMIO access.
3958 * Returns 0 on success, or %EBUSY on error. A warning
3959 * message is also printed on failure.
3961 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3962 const char *res_name
, int exclusive
)
3964 if (pci_is_managed(pdev
)) {
3965 if (exclusive
== IORESOURCE_EXCLUSIVE
)
3966 return pcim_request_region_exclusive(pdev
, bar
, res_name
);
3968 return pcim_request_region(pdev
, bar
, res_name
);
3971 if (pci_resource_len(pdev
, bar
) == 0)
3974 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3975 if (!request_region(pci_resource_start(pdev
, bar
),
3976 pci_resource_len(pdev
, bar
), res_name
))
3978 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3979 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3980 pci_resource_len(pdev
, bar
), res_name
,
3988 pci_warn(pdev
, "BAR %d: can't reserve %pR\n", bar
,
3989 &pdev
->resource
[bar
]);
3994 * pci_request_region - Reserve PCI I/O and memory resource
3995 * @pdev: PCI device whose resources are to be reserved
3996 * @bar: BAR to be reserved
3997 * @res_name: Name to be associated with resource
3999 * Returns: 0 on success, negative error code on failure.
4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002 * being reserved by owner @res_name. Do not access any
4003 * address inside the PCI regions unless this call returns
4006 * Returns 0 on success, or %EBUSY on error. A warning
4007 * message is also printed on failure.
4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011 * when pcim_enable_device() has been called in advance. This hybrid feature is
4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4014 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
4016 return __pci_request_region(pdev
, bar
, res_name
, 0);
4018 EXPORT_SYMBOL(pci_request_region
);
4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022 * @pdev: PCI device whose resources were previously reserved
4023 * @bars: Bitmask of BARs to be released
4025 * Release selected PCI I/O and memory resources previously reserved.
4026 * Call this function only after all use of the PCI regions has ceased.
4028 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
4032 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++)
4033 if (bars
& (1 << i
))
4034 pci_release_region(pdev
, i
);
4036 EXPORT_SYMBOL(pci_release_selected_regions
);
4038 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
4039 const char *res_name
, int excl
)
4043 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++)
4044 if (bars
& (1 << i
))
4045 if (__pci_request_region(pdev
, i
, res_name
, excl
))
4051 if (bars
& (1 << i
))
4052 pci_release_region(pdev
, i
);
4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources are to be reserved
4061 * @bars: Bitmask of BARs to be requested
4062 * @res_name: Name to be associated with resource
4064 * Returns: 0 on success, negative error code on failure.
4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068 * when pcim_enable_device() has been called in advance. This hybrid feature is
4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4071 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
4072 const char *res_name
)
4074 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
4076 EXPORT_SYMBOL(pci_request_selected_regions
);
4079 * pci_request_selected_regions_exclusive - Request regions exclusively
4080 * @pdev: PCI device to request regions from
4081 * @bars: bit mask of BARs to request
4082 * @res_name: name to be associated with the requests
4084 * Returns: 0 on success, negative error code on failure.
4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088 * when pcim_enable_device() has been called in advance. This hybrid feature is
4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4091 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
4092 const char *res_name
)
4094 return __pci_request_selected_regions(pdev
, bars
, res_name
,
4095 IORESOURCE_EXCLUSIVE
);
4097 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 * pci_request_regions()
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions(). Call this function only
4106 * after all use of the PCI regions has ceased.
4108 void pci_release_regions(struct pci_dev
*pdev
)
4110 pci_release_selected_regions(pdev
, (1 << PCI_STD_NUM_BARS
) - 1);
4112 EXPORT_SYMBOL(pci_release_regions
);
4115 * pci_request_regions - Reserve PCI I/O and memory resources
4116 * @pdev: PCI device whose resources are to be reserved
4117 * @res_name: Name to be associated with resource.
4119 * Mark all PCI regions associated with PCI device @pdev as
4120 * being reserved by owner @res_name. Do not access any
4121 * address inside the PCI regions unless this call returns
4124 * Returns 0 on success, or %EBUSY on error. A warning
4125 * message is also printed on failure.
4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129 * when pcim_enable_device() has been called in advance. This hybrid feature is
4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4132 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
4134 return pci_request_selected_regions(pdev
,
4135 ((1 << PCI_STD_NUM_BARS
) - 1), res_name
);
4137 EXPORT_SYMBOL(pci_request_regions
);
4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @res_name: Name to be associated with resource.
4144 * Returns: 0 on success, negative error code on failure.
4146 * Mark all PCI regions associated with PCI device @pdev as being reserved
4147 * by owner @res_name. Do not access any address inside the PCI regions
4148 * unless this call returns successfully.
4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151 * and the sysfs MMIO access will not be allowed.
4153 * Returns 0 on success, or %EBUSY on error. A warning message is also
4154 * printed on failure.
4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158 * when pcim_enable_device() has been called in advance. This hybrid feature is
4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4161 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
4163 return pci_request_selected_regions_exclusive(pdev
,
4164 ((1 << PCI_STD_NUM_BARS
) - 1), res_name
);
4166 EXPORT_SYMBOL(pci_request_regions_exclusive
);
4169 * Record the PCI IO range (expressed as CPU physical address + size).
4170 * Return a negative value if an error has occurred, zero otherwise
4172 int pci_register_io_range(const struct fwnode_handle
*fwnode
, phys_addr_t addr
,
4173 resource_size_t size
)
4177 struct logic_pio_hwaddr
*range
;
4179 if (!size
|| addr
+ size
< addr
)
4182 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
4186 range
->fwnode
= fwnode
;
4188 range
->hw_start
= addr
;
4189 range
->flags
= LOGIC_PIO_CPU_MMIO
;
4191 ret
= logic_pio_register_range(range
);
4195 /* Ignore duplicates due to deferred probing */
4203 phys_addr_t
pci_pio_to_address(unsigned long pio
)
4206 if (pio
< MMIO_UPPER_LIMIT
)
4207 return logic_pio_to_hwaddr(pio
);
4210 return (phys_addr_t
) OF_BAD_ADDR
;
4212 EXPORT_SYMBOL_GPL(pci_pio_to_address
);
4214 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
4217 return logic_pio_trans_cpuaddr(address
);
4219 if (address
> IO_SPACE_LIMIT
)
4220 return (unsigned long)-1;
4222 return (unsigned long) address
;
4227 * pci_remap_iospace - Remap the memory mapped I/O space
4228 * @res: Resource describing the I/O space
4229 * @phys_addr: physical address of range to be mapped
4231 * Remap the memory mapped I/O space described by the @res and the CPU
4232 * physical address @phys_addr into virtual address space. Only
4233 * architectures that have memory mapped IO functions defined (and the
4234 * PCI_IOBASE value defined) should call this function.
4236 #ifndef pci_remap_iospace
4237 int pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
4239 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
4242 if (!(res
->flags
& IORESOURCE_IO
))
4245 if (res
->end
> IO_SPACE_LIMIT
)
4248 return vmap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
4249 pgprot_device(PAGE_KERNEL
));
4252 * This architecture does not have memory mapped I/O space,
4253 * so this function should never be called
4255 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4259 EXPORT_SYMBOL(pci_remap_iospace
);
4263 * pci_unmap_iospace - Unmap the memory mapped I/O space
4264 * @res: resource to be unmapped
4266 * Unmap the CPU virtual address @res from virtual address space. Only
4267 * architectures that have memory mapped IO functions defined (and the
4268 * PCI_IOBASE value defined) should call this function.
4270 void pci_unmap_iospace(struct resource
*res
)
4272 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
4275 vunmap_range(vaddr
, vaddr
+ resource_size(res
));
4278 EXPORT_SYMBOL(pci_unmap_iospace
);
4280 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
4284 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
4286 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
4288 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
4289 if (cmd
!= old_cmd
) {
4290 pci_dbg(dev
, "%s bus mastering\n",
4291 enable
? "enabling" : "disabling");
4292 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4294 dev
->is_busmaster
= enable
;
4298 * pcibios_setup - process "pci=" kernel boot arguments
4299 * @str: string used to pass in "pci=" kernel boot arguments
4301 * Process kernel boot arguments. This is the default implementation.
4302 * Architecture specific implementations can override this as necessary.
4304 char * __weak __init
pcibios_setup(char *str
)
4310 * pcibios_set_master - enable PCI bus-mastering for device dev
4311 * @dev: the PCI device to enable
4313 * Enables PCI bus-mastering for the device. This is the default
4314 * implementation. Architecture specific implementations can override
4315 * this if necessary.
4317 void __weak
pcibios_set_master(struct pci_dev
*dev
)
4321 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322 if (pci_is_pcie(dev
))
4325 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
4327 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
4328 else if (lat
> pcibios_max_latency
)
4329 lat
= pcibios_max_latency
;
4333 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
4337 * pci_set_master - enables bus-mastering for device dev
4338 * @dev: the PCI device to enable
4340 * Enables bus-mastering on the device and calls pcibios_set_master()
4341 * to do the needed arch specific settings.
4343 void pci_set_master(struct pci_dev
*dev
)
4345 __pci_set_master(dev
, true);
4346 pcibios_set_master(dev
);
4348 EXPORT_SYMBOL(pci_set_master
);
4351 * pci_clear_master - disables bus-mastering for device dev
4352 * @dev: the PCI device to disable
4354 void pci_clear_master(struct pci_dev
*dev
)
4356 __pci_set_master(dev
, false);
4358 EXPORT_SYMBOL(pci_clear_master
);
4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362 * @dev: the PCI device for which MWI is to be enabled
4364 * Helper function for pci_set_mwi.
4365 * Originally copied from drivers/net/acenic.c.
4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4370 int pci_set_cacheline_size(struct pci_dev
*dev
)
4374 if (!pci_cache_line_size
)
4377 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378 equal to or multiple of the right value. */
4379 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4380 if (cacheline_size
>= pci_cache_line_size
&&
4381 (cacheline_size
% pci_cache_line_size
) == 0)
4384 /* Write the correct value. */
4385 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
4387 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4388 if (cacheline_size
== pci_cache_line_size
)
4391 pci_dbg(dev
, "cache line size of %d is not supported\n",
4392 pci_cache_line_size
<< 2);
4396 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400 * @dev: the PCI device for which MWI is enabled
4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4406 int pci_set_mwi(struct pci_dev
*dev
)
4408 #ifdef PCI_DISABLE_MWI
4414 rc
= pci_set_cacheline_size(dev
);
4418 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4419 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
4420 pci_dbg(dev
, "enabling Mem-Wr-Inval\n");
4421 cmd
|= PCI_COMMAND_INVALIDATE
;
4422 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4427 EXPORT_SYMBOL(pci_set_mwi
);
4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431 * @dev: the PCI device for which MWI is enabled
4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434 * Callers are not required to check the return value.
4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4438 int pci_try_set_mwi(struct pci_dev
*dev
)
4440 #ifdef PCI_DISABLE_MWI
4443 return pci_set_mwi(dev
);
4446 EXPORT_SYMBOL(pci_try_set_mwi
);
4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450 * @dev: the PCI device to disable
4452 * Disables PCI Memory-Write-Invalidate transaction on the device
4454 void pci_clear_mwi(struct pci_dev
*dev
)
4456 #ifndef PCI_DISABLE_MWI
4459 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4460 if (cmd
& PCI_COMMAND_INVALIDATE
) {
4461 cmd
&= ~PCI_COMMAND_INVALIDATE
;
4462 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4466 EXPORT_SYMBOL(pci_clear_mwi
);
4469 * pci_disable_parity - disable parity checking for device
4470 * @dev: the PCI device to operate on
4472 * Disable parity checking for device @dev
4474 void pci_disable_parity(struct pci_dev
*dev
)
4478 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4479 if (cmd
& PCI_COMMAND_PARITY
) {
4480 cmd
&= ~PCI_COMMAND_PARITY
;
4481 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4486 * pci_intx - enables/disables PCI INTx for device dev
4487 * @pdev: the PCI device to operate on
4488 * @enable: boolean: whether to enable or disable PCI INTx
4490 * Enables/disables PCI INTx for device @pdev
4493 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4494 * when pcim_enable_device() has been called in advance. This hybrid feature is
4495 * DEPRECATED! If you want managed cleanup, use pcim_intx() instead.
4497 void pci_intx(struct pci_dev
*pdev
, int enable
)
4499 u16 pci_command
, new;
4501 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
4504 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
4506 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
4508 if (new != pci_command
) {
4509 /* Preserve the "hybrid" behavior for backwards compatibility */
4510 if (pci_is_managed(pdev
)) {
4511 WARN_ON_ONCE(pcim_intx(pdev
, enable
) != 0);
4515 pci_write_config_word(pdev
, PCI_COMMAND
, new);
4518 EXPORT_SYMBOL_GPL(pci_intx
);
4521 * pci_wait_for_pending_transaction - wait for pending transaction
4522 * @dev: the PCI device to operate on
4524 * Return 0 if transaction is pending 1 otherwise.
4526 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
4528 if (!pci_is_pcie(dev
))
4531 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
4532 PCI_EXP_DEVSTA_TRPND
);
4534 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
4537 * pcie_flr - initiate a PCIe function level reset
4538 * @dev: device to reset
4540 * Initiate a function level reset unconditionally on @dev without
4541 * checking any flags and DEVCAP
4543 int pcie_flr(struct pci_dev
*dev
)
4545 if (!pci_wait_for_pending_transaction(dev
))
4546 pci_err(dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
4548 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
4554 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4555 * 100ms, but may silently discard requests while the FLR is in
4556 * progress. Wait 100ms before trying to access the device.
4560 return pci_dev_wait(dev
, "FLR", PCIE_RESET_READY_POLL_MS
);
4562 EXPORT_SYMBOL_GPL(pcie_flr
);
4565 * pcie_reset_flr - initiate a PCIe function level reset
4566 * @dev: device to reset
4567 * @probe: if true, return 0 if device can be reset this way
4569 * Initiate a function level reset on @dev.
4571 int pcie_reset_flr(struct pci_dev
*dev
, bool probe
)
4573 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4576 if (!(dev
->devcap
& PCI_EXP_DEVCAP_FLR
))
4582 return pcie_flr(dev
);
4584 EXPORT_SYMBOL_GPL(pcie_reset_flr
);
4586 static int pci_af_flr(struct pci_dev
*dev
, bool probe
)
4591 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
4595 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4598 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
4599 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
4606 * Wait for Transaction Pending bit to clear. A word-aligned test
4607 * is used, so we use the control offset rather than status and shift
4608 * the test bit to match.
4610 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
4611 PCI_AF_STATUS_TP
<< 8))
4612 pci_err(dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4614 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
4620 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4621 * updated 27 July 2006; a device must complete an FLR within
4622 * 100ms, but may silently discard requests while the FLR is in
4623 * progress. Wait 100ms before trying to access the device.
4627 return pci_dev_wait(dev
, "AF_FLR", PCIE_RESET_READY_POLL_MS
);
4631 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4632 * @dev: Device to reset.
4633 * @probe: if true, return 0 if the device can be reset this way.
4635 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4636 * unset, it will be reinitialized internally when going from PCI_D3hot to
4637 * PCI_D0. If that's the case and the device is not in a low-power state
4638 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4640 * NOTE: This causes the caller to sleep for twice the device power transition
4641 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4642 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4643 * Moreover, only devices in D0 can be reset by this function.
4645 static int pci_pm_reset(struct pci_dev
*dev
, bool probe
)
4649 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
4652 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
4653 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
4659 if (dev
->current_state
!= PCI_D0
)
4662 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4664 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4665 pci_dev_d3_sleep(dev
);
4667 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4669 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4670 pci_dev_d3_sleep(dev
);
4672 return pci_dev_wait(dev
, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS
);
4676 * pcie_wait_for_link_status - Wait for link status change
4677 * @pdev: Device whose link to wait for.
4678 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4679 * @active: Waiting for active or inactive?
4681 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4682 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4684 static int pcie_wait_for_link_status(struct pci_dev
*pdev
,
4685 bool use_lt
, bool active
)
4687 u16 lnksta_mask
, lnksta_match
;
4688 unsigned long end_jiffies
;
4691 lnksta_mask
= use_lt
? PCI_EXP_LNKSTA_LT
: PCI_EXP_LNKSTA_DLLLA
;
4692 lnksta_match
= active
? lnksta_mask
: 0;
4694 end_jiffies
= jiffies
+ msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS
);
4696 pcie_capability_read_word(pdev
, PCI_EXP_LNKSTA
, &lnksta
);
4697 if ((lnksta
& lnksta_mask
) == lnksta_match
)
4700 } while (time_before(jiffies
, end_jiffies
));
4706 * pcie_retrain_link - Request a link retrain and wait for it to complete
4707 * @pdev: Device whose link to retrain.
4708 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4710 * Retrain completion status is retrieved from the Link Status Register
4711 * according to @use_lt. It is not verified whether the use of the DLLLA
4714 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4715 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4717 int pcie_retrain_link(struct pci_dev
*pdev
, bool use_lt
)
4722 * Ensure the updated LNKCTL parameters are used during link
4723 * training by checking that there is no ongoing link training that
4724 * may have started before link parameters were changed, so as to
4725 * avoid LTSSM race as recommended in Implementation Note at the end
4726 * of PCIe r6.1 sec 7.5.3.7.
4728 rc
= pcie_wait_for_link_status(pdev
, true, false);
4732 pcie_capability_set_word(pdev
, PCI_EXP_LNKCTL
, PCI_EXP_LNKCTL_RL
);
4733 if (pdev
->clear_retrain_link
) {
4735 * Due to an erratum in some devices the Retrain Link bit
4736 * needs to be cleared again manually to allow the link
4737 * training to succeed.
4739 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, PCI_EXP_LNKCTL_RL
);
4742 rc
= pcie_wait_for_link_status(pdev
, use_lt
, !use_lt
);
4745 * Clear LBMS after a manual retrain so that the bit can be used
4746 * to track link speed or width changes made by hardware itself
4747 * in attempt to correct unreliable link operation.
4749 pcie_reset_lbms_count(pdev
);
4754 * pcie_wait_for_link_delay - Wait until link is active or inactive
4755 * @pdev: Bridge device
4756 * @active: waiting for active or inactive?
4757 * @delay: Delay to wait after link has become active (in ms)
4759 * Use this to wait till link becomes active or inactive.
4761 static bool pcie_wait_for_link_delay(struct pci_dev
*pdev
, bool active
,
4767 * Some controllers might not implement link active reporting. In this
4768 * case, we wait for 1000 ms + any delay requested by the caller.
4770 if (!pdev
->link_active_reporting
) {
4771 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS
+ delay
);
4776 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4777 * after which we should expect an link active if the reset was
4778 * successful. If so, software must wait a minimum 100ms before sending
4779 * configuration requests to devices downstream this port.
4781 * If the link fails to activate, either the device was physically
4782 * removed or the link is permanently failed.
4786 rc
= pcie_wait_for_link_status(pdev
, false, active
);
4789 rc
= pcie_failed_link_retrain(pdev
);
4804 * pcie_wait_for_link - Wait until link is active or inactive
4805 * @pdev: Bridge device
4806 * @active: waiting for active or inactive?
4808 * Use this to wait till link becomes active or inactive.
4810 bool pcie_wait_for_link(struct pci_dev
*pdev
, bool active
)
4812 return pcie_wait_for_link_delay(pdev
, active
, 100);
4816 * Find maximum D3cold delay required by all the devices on the bus. The
4817 * spec says 100 ms, but firmware can lower it and we allow drivers to
4818 * increase it as well.
4820 * Called with @pci_bus_sem locked for reading.
4822 static int pci_bus_max_d3cold_delay(const struct pci_bus
*bus
)
4824 const struct pci_dev
*pdev
;
4825 int min_delay
= 100;
4828 list_for_each_entry(pdev
, &bus
->devices
, bus_list
) {
4829 if (pdev
->d3cold_delay
< min_delay
)
4830 min_delay
= pdev
->d3cold_delay
;
4831 if (pdev
->d3cold_delay
> max_delay
)
4832 max_delay
= pdev
->d3cold_delay
;
4835 return max(min_delay
, max_delay
);
4839 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4841 * @reset_type: reset type in human-readable form
4843 * Handle necessary delays before access to the devices on the secondary
4844 * side of the bridge are permitted after D3cold to D0 transition
4845 * or Conventional Reset.
4847 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4848 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4851 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4852 * failed to become accessible.
4854 int pci_bridge_wait_for_secondary_bus(struct pci_dev
*dev
, char *reset_type
)
4856 struct pci_dev
*child
__free(pci_dev_put
) = NULL
;
4859 if (pci_dev_is_disconnected(dev
))
4862 if (!pci_is_bridge(dev
))
4865 down_read(&pci_bus_sem
);
4868 * We only deal with devices that are present currently on the bus.
4869 * For any hot-added devices the access delay is handled in pciehp
4870 * board_added(). In case of ACPI hotplug the firmware is expected
4871 * to configure the devices before OS is notified.
4873 if (!dev
->subordinate
|| list_empty(&dev
->subordinate
->devices
)) {
4874 up_read(&pci_bus_sem
);
4878 /* Take d3cold_delay requirements into account */
4879 delay
= pci_bus_max_d3cold_delay(dev
->subordinate
);
4881 up_read(&pci_bus_sem
);
4885 child
= pci_dev_get(list_first_entry(&dev
->subordinate
->devices
,
4886 struct pci_dev
, bus_list
));
4887 up_read(&pci_bus_sem
);
4890 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4891 * accessing the device after reset (that is 1000 ms + 100 ms).
4893 if (!pci_is_pcie(dev
)) {
4894 pci_dbg(dev
, "waiting %d ms for secondary bus\n", 1000 + delay
);
4895 msleep(1000 + delay
);
4900 * For PCIe downstream and root ports that do not support speeds
4901 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4902 * speeds (gen3) we need to wait first for the data link layer to
4905 * However, 100 ms is the minimum and the PCIe spec says the
4906 * software must allow at least 1s before it can determine that the
4907 * device that did not respond is a broken device. Also device can
4908 * take longer than that to respond if it indicates so through Request
4909 * Retry Status completions.
4911 * Therefore we wait for 100 ms and check for the device presence
4912 * until the timeout expires.
4914 if (!pcie_downstream_port(dev
))
4917 if (pcie_get_speed_cap(dev
) <= PCIE_SPEED_5_0GT
) {
4920 pci_dbg(dev
, "waiting %d ms for downstream link\n", delay
);
4923 if (!pci_dev_wait(child
, reset_type
, PCI_RESET_WAIT
- delay
))
4927 * If the port supports active link reporting we now check
4928 * whether the link is active and if not bail out early with
4929 * the assumption that the device is not present anymore.
4931 if (!dev
->link_active_reporting
)
4934 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &status
);
4935 if (!(status
& PCI_EXP_LNKSTA_DLLLA
))
4938 return pci_dev_wait(child
, reset_type
,
4939 PCIE_RESET_READY_POLL_MS
- PCI_RESET_WAIT
);
4942 pci_dbg(dev
, "waiting %d ms for downstream link, after activation\n",
4944 if (!pcie_wait_for_link_delay(dev
, true, delay
)) {
4945 /* Did not train, no need to wait any further */
4946 pci_info(dev
, "Data Link Layer Link Active not set in 1000 msec\n");
4950 return pci_dev_wait(child
, reset_type
,
4951 PCIE_RESET_READY_POLL_MS
- delay
);
4954 void pci_reset_secondary_bus(struct pci_dev
*dev
)
4958 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
4959 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
4960 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4963 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4964 * this to 2ms to ensure that we meet the minimum requirement.
4968 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
4969 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4972 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
4974 pci_reset_secondary_bus(dev
);
4978 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4979 * @dev: Bridge device
4981 * Use the bridge control register to assert reset on the secondary bus.
4982 * Devices on the secondary bus are left in power-on state.
4984 int pci_bridge_secondary_bus_reset(struct pci_dev
*dev
)
4986 if (!dev
->block_cfg_access
)
4987 pci_warn_once(dev
, "unlocked secondary bus reset via: %pS\n",
4988 __builtin_return_address(0));
4989 pcibios_reset_secondary_bus(dev
);
4991 return pci_bridge_wait_for_secondary_bus(dev
, "bus reset");
4993 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset
);
4995 static int pci_parent_bus_reset(struct pci_dev
*dev
, bool probe
)
4997 struct pci_dev
*pdev
;
4999 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
5000 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
5003 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
5010 return pci_bridge_secondary_bus_reset(dev
->bus
->self
);
5013 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, bool probe
)
5017 if (!hotplug
|| !try_module_get(hotplug
->owner
))
5020 if (hotplug
->ops
->reset_slot
)
5021 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
5023 module_put(hotplug
->owner
);
5028 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, bool probe
)
5030 if (dev
->multifunction
|| dev
->subordinate
|| !dev
->slot
||
5031 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
5034 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
5037 static u16
cxl_port_dvsec(struct pci_dev
*dev
)
5039 return pci_find_dvsec_capability(dev
, PCI_VENDOR_ID_CXL
,
5040 PCI_DVSEC_CXL_PORT
);
5043 static bool cxl_sbr_masked(struct pci_dev
*dev
)
5048 dvsec
= cxl_port_dvsec(dev
);
5052 rc
= pci_read_config_word(dev
, dvsec
+ PCI_DVSEC_CXL_PORT_CTL
, ®
);
5053 if (rc
|| PCI_POSSIBLE_ERROR(reg
))
5057 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5058 * bit in Bridge Control has no effect. When 1, the Port generates
5059 * hot reset when the SBR bit is set to 1.
5061 if (reg
& PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR
)
5067 static int pci_reset_bus_function(struct pci_dev
*dev
, bool probe
)
5069 struct pci_dev
*bridge
= pci_upstream_bridge(dev
);
5073 * If "dev" is below a CXL port that has SBR control masked, SBR
5074 * won't do anything, so return error.
5076 if (bridge
&& cxl_sbr_masked(bridge
)) {
5083 rc
= pci_dev_reset_slot_function(dev
, probe
);
5086 return pci_parent_bus_reset(dev
, probe
);
5089 static int cxl_reset_bus_function(struct pci_dev
*dev
, bool probe
)
5091 struct pci_dev
*bridge
;
5092 u16 dvsec
, reg
, val
;
5095 bridge
= pci_upstream_bridge(dev
);
5099 dvsec
= cxl_port_dvsec(bridge
);
5106 rc
= pci_read_config_word(bridge
, dvsec
+ PCI_DVSEC_CXL_PORT_CTL
, ®
);
5110 if (reg
& PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR
) {
5113 val
= reg
| PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR
;
5114 pci_write_config_word(bridge
, dvsec
+ PCI_DVSEC_CXL_PORT_CTL
,
5118 rc
= pci_reset_bus_function(dev
, probe
);
5121 pci_write_config_word(bridge
, dvsec
+ PCI_DVSEC_CXL_PORT_CTL
,
5127 void pci_dev_lock(struct pci_dev
*dev
)
5129 /* block PM suspend, driver probe, etc. */
5130 device_lock(&dev
->dev
);
5131 pci_cfg_access_lock(dev
);
5133 EXPORT_SYMBOL_GPL(pci_dev_lock
);
5135 /* Return 1 on successful lock, 0 on contention */
5136 int pci_dev_trylock(struct pci_dev
*dev
)
5138 if (device_trylock(&dev
->dev
)) {
5139 if (pci_cfg_access_trylock(dev
))
5141 device_unlock(&dev
->dev
);
5146 EXPORT_SYMBOL_GPL(pci_dev_trylock
);
5148 void pci_dev_unlock(struct pci_dev
*dev
)
5150 pci_cfg_access_unlock(dev
);
5151 device_unlock(&dev
->dev
);
5153 EXPORT_SYMBOL_GPL(pci_dev_unlock
);
5155 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
5157 const struct pci_error_handlers
*err_handler
=
5158 dev
->driver
? dev
->driver
->err_handler
: NULL
;
5161 * dev->driver->err_handler->reset_prepare() is protected against
5162 * races with ->remove() by the device lock, which must be held by
5165 if (err_handler
&& err_handler
->reset_prepare
)
5166 err_handler
->reset_prepare(dev
);
5167 else if (dev
->driver
)
5168 pci_warn(dev
, "resetting");
5171 * Wake-up device prior to save. PM registers default to D0 after
5172 * reset and a simple register restore doesn't reliably return
5173 * to a non-D0 state anyway.
5175 pci_set_power_state(dev
, PCI_D0
);
5177 pci_save_state(dev
);
5179 * Disable the device by clearing the Command register, except for
5180 * INTx-disable which is set. This not only disables MMIO and I/O port
5181 * BARs, but also prevents the device from being Bus Master, preventing
5182 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5183 * compliant devices, INTx-disable prevents legacy interrupts.
5185 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
5188 static void pci_dev_restore(struct pci_dev
*dev
)
5190 const struct pci_error_handlers
*err_handler
=
5191 dev
->driver
? dev
->driver
->err_handler
: NULL
;
5193 pci_restore_state(dev
);
5196 * dev->driver->err_handler->reset_done() is protected against
5197 * races with ->remove() by the device lock, which must be held by
5200 if (err_handler
&& err_handler
->reset_done
)
5201 err_handler
->reset_done(dev
);
5202 else if (dev
->driver
)
5203 pci_warn(dev
, "reset done");
5206 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5207 static const struct pci_reset_fn_method pci_reset_fn_methods
[] = {
5209 { pci_dev_specific_reset
, .name
= "device_specific" },
5210 { pci_dev_acpi_reset
, .name
= "acpi" },
5211 { pcie_reset_flr
, .name
= "flr" },
5212 { pci_af_flr
, .name
= "af_flr" },
5213 { pci_pm_reset
, .name
= "pm" },
5214 { pci_reset_bus_function
, .name
= "bus" },
5215 { cxl_reset_bus_function
, .name
= "cxl_bus" },
5218 static ssize_t
reset_method_show(struct device
*dev
,
5219 struct device_attribute
*attr
, char *buf
)
5221 struct pci_dev
*pdev
= to_pci_dev(dev
);
5225 for (i
= 0; i
< PCI_NUM_RESET_METHODS
; i
++) {
5226 m
= pdev
->reset_methods
[i
];
5230 len
+= sysfs_emit_at(buf
, len
, "%s%s", len
? " " : "",
5231 pci_reset_fn_methods
[m
].name
);
5235 len
+= sysfs_emit_at(buf
, len
, "\n");
5240 static int reset_method_lookup(const char *name
)
5244 for (m
= 1; m
< PCI_NUM_RESET_METHODS
; m
++) {
5245 if (sysfs_streq(name
, pci_reset_fn_methods
[m
].name
))
5249 return 0; /* not found */
5252 static ssize_t
reset_method_store(struct device
*dev
,
5253 struct device_attribute
*attr
,
5254 const char *buf
, size_t count
)
5256 struct pci_dev
*pdev
= to_pci_dev(dev
);
5257 char *options
, *tmp_options
, *name
;
5259 u8 reset_methods
[PCI_NUM_RESET_METHODS
] = { 0 };
5261 if (sysfs_streq(buf
, "")) {
5262 pdev
->reset_methods
[0] = 0;
5263 pci_warn(pdev
, "All device reset methods disabled by user");
5267 if (sysfs_streq(buf
, "default")) {
5268 pci_init_reset_methods(pdev
);
5272 options
= kstrndup(buf
, count
, GFP_KERNEL
);
5277 tmp_options
= options
;
5278 while ((name
= strsep(&tmp_options
, " ")) != NULL
) {
5279 if (sysfs_streq(name
, ""))
5284 m
= reset_method_lookup(name
);
5286 pci_err(pdev
, "Invalid reset method '%s'", name
);
5290 if (pci_reset_fn_methods
[m
].reset_fn(pdev
, PCI_RESET_PROBE
)) {
5291 pci_err(pdev
, "Unsupported reset method '%s'", name
);
5295 if (n
== PCI_NUM_RESET_METHODS
- 1) {
5296 pci_err(pdev
, "Too many reset methods\n");
5300 reset_methods
[n
++] = m
;
5303 reset_methods
[n
] = 0;
5305 /* Warn if dev-specific supported but not highest priority */
5306 if (pci_reset_fn_methods
[1].reset_fn(pdev
, PCI_RESET_PROBE
) == 0 &&
5307 reset_methods
[0] != 1)
5308 pci_warn(pdev
, "Device-specific reset disabled/de-prioritized by user");
5309 memcpy(pdev
->reset_methods
, reset_methods
, sizeof(pdev
->reset_methods
));
5314 /* Leave previous methods unchanged */
5318 static DEVICE_ATTR_RW(reset_method
);
5320 static struct attribute
*pci_dev_reset_method_attrs
[] = {
5321 &dev_attr_reset_method
.attr
,
5325 static umode_t
pci_dev_reset_method_attr_is_visible(struct kobject
*kobj
,
5326 struct attribute
*a
, int n
)
5328 struct pci_dev
*pdev
= to_pci_dev(kobj_to_dev(kobj
));
5330 if (!pci_reset_supported(pdev
))
5336 const struct attribute_group pci_dev_reset_method_attr_group
= {
5337 .attrs
= pci_dev_reset_method_attrs
,
5338 .is_visible
= pci_dev_reset_method_attr_is_visible
,
5342 * __pci_reset_function_locked - reset a PCI device function while holding
5343 * the @dev mutex lock.
5344 * @dev: PCI device to reset
5346 * Some devices allow an individual function to be reset without affecting
5347 * other functions in the same device. The PCI device must be responsive
5348 * to PCI config space in order to use this function.
5350 * The device function is presumed to be unused and the caller is holding
5351 * the device mutex lock when this function is called.
5353 * Resetting the device will make the contents of PCI configuration space
5354 * random, so any caller of this must be prepared to reinitialise the
5355 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5358 * Returns 0 if the device function was successfully reset or negative if the
5359 * device doesn't support resetting a single function.
5361 int __pci_reset_function_locked(struct pci_dev
*dev
)
5368 * A reset method returns -ENOTTY if it doesn't support this device and
5369 * we should try the next method.
5371 * If it returns 0 (success), we're finished. If it returns any other
5372 * error, we're also finished: this indicates that further reset
5373 * mechanisms might be broken on the device.
5375 for (i
= 0; i
< PCI_NUM_RESET_METHODS
; i
++) {
5376 m
= dev
->reset_methods
[i
];
5380 rc
= pci_reset_fn_methods
[m
].reset_fn(dev
, PCI_RESET_DO_RESET
);
5389 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
5392 * pci_init_reset_methods - check whether device can be safely reset
5393 * and store supported reset mechanisms.
5394 * @dev: PCI device to check for reset mechanisms
5396 * Some devices allow an individual function to be reset without affecting
5397 * other functions in the same device. The PCI device must be in D0-D3hot
5400 * Stores reset mechanisms supported by device in reset_methods byte array
5401 * which is a member of struct pci_dev.
5403 void pci_init_reset_methods(struct pci_dev
*dev
)
5407 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods
) != PCI_NUM_RESET_METHODS
);
5412 for (m
= 1; m
< PCI_NUM_RESET_METHODS
; m
++) {
5413 rc
= pci_reset_fn_methods
[m
].reset_fn(dev
, PCI_RESET_PROBE
);
5415 dev
->reset_methods
[i
++] = m
;
5416 else if (rc
!= -ENOTTY
)
5420 dev
->reset_methods
[i
] = 0;
5424 * pci_reset_function - quiesce and reset a PCI device function
5425 * @dev: PCI device to reset
5427 * Some devices allow an individual function to be reset without affecting
5428 * other functions in the same device. The PCI device must be responsive
5429 * to PCI config space in order to use this function.
5431 * This function does not just reset the PCI portion of a device, but
5432 * clears all the state associated with the device. This function differs
5433 * from __pci_reset_function_locked() in that it saves and restores device state
5434 * over the reset and takes the PCI device lock.
5436 * Returns 0 if the device function was successfully reset or negative if the
5437 * device doesn't support resetting a single function.
5439 int pci_reset_function(struct pci_dev
*dev
)
5441 struct pci_dev
*bridge
;
5444 if (!pci_reset_supported(dev
))
5448 * If there's no upstream bridge, no locking is needed since there is
5449 * no upstream bridge configuration to hold consistent.
5451 bridge
= pci_upstream_bridge(dev
);
5453 pci_dev_lock(bridge
);
5456 pci_dev_save_and_disable(dev
);
5458 rc
= __pci_reset_function_locked(dev
);
5460 pci_dev_restore(dev
);
5461 pci_dev_unlock(dev
);
5464 pci_dev_unlock(bridge
);
5468 EXPORT_SYMBOL_GPL(pci_reset_function
);
5471 * pci_reset_function_locked - quiesce and reset a PCI device function
5472 * @dev: PCI device to reset
5474 * Some devices allow an individual function to be reset without affecting
5475 * other functions in the same device. The PCI device must be responsive
5476 * to PCI config space in order to use this function.
5478 * This function does not just reset the PCI portion of a device, but
5479 * clears all the state associated with the device. This function differs
5480 * from __pci_reset_function_locked() in that it saves and restores device state
5481 * over the reset. It also differs from pci_reset_function() in that it
5482 * requires the PCI device lock to be held.
5484 * Returns 0 if the device function was successfully reset or negative if the
5485 * device doesn't support resetting a single function.
5487 int pci_reset_function_locked(struct pci_dev
*dev
)
5491 if (!pci_reset_supported(dev
))
5494 pci_dev_save_and_disable(dev
);
5496 rc
= __pci_reset_function_locked(dev
);
5498 pci_dev_restore(dev
);
5502 EXPORT_SYMBOL_GPL(pci_reset_function_locked
);
5505 * pci_try_reset_function - quiesce and reset a PCI device function
5506 * @dev: PCI device to reset
5508 * Same as above, except return -EAGAIN if unable to lock device.
5510 int pci_try_reset_function(struct pci_dev
*dev
)
5514 if (!pci_reset_supported(dev
))
5517 if (!pci_dev_trylock(dev
))
5520 pci_dev_save_and_disable(dev
);
5521 rc
= __pci_reset_function_locked(dev
);
5522 pci_dev_restore(dev
);
5523 pci_dev_unlock(dev
);
5527 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
5529 /* Do any devices on or below this bus prevent a bus reset? */
5530 static bool pci_bus_resettable(struct pci_bus
*bus
)
5532 struct pci_dev
*dev
;
5535 if (bus
->self
&& (bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5538 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5539 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5540 (dev
->subordinate
&& !pci_bus_resettable(dev
->subordinate
)))
5547 /* Lock devices from the top of the tree down */
5548 static void pci_bus_lock(struct pci_bus
*bus
)
5550 struct pci_dev
*dev
;
5552 pci_dev_lock(bus
->self
);
5553 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5554 if (dev
->subordinate
)
5555 pci_bus_lock(dev
->subordinate
);
5561 /* Unlock devices from the bottom of the tree up */
5562 static void pci_bus_unlock(struct pci_bus
*bus
)
5564 struct pci_dev
*dev
;
5566 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5567 if (dev
->subordinate
)
5568 pci_bus_unlock(dev
->subordinate
);
5570 pci_dev_unlock(dev
);
5572 pci_dev_unlock(bus
->self
);
5575 /* Return 1 on successful lock, 0 on contention */
5576 static int pci_bus_trylock(struct pci_bus
*bus
)
5578 struct pci_dev
*dev
;
5580 if (!pci_dev_trylock(bus
->self
))
5583 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5584 if (dev
->subordinate
) {
5585 if (!pci_bus_trylock(dev
->subordinate
))
5587 } else if (!pci_dev_trylock(dev
))
5593 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
5594 if (dev
->subordinate
)
5595 pci_bus_unlock(dev
->subordinate
);
5597 pci_dev_unlock(dev
);
5599 pci_dev_unlock(bus
->self
);
5603 /* Do any devices on or below this slot prevent a bus reset? */
5604 static bool pci_slot_resettable(struct pci_slot
*slot
)
5606 struct pci_dev
*dev
;
5608 if (slot
->bus
->self
&&
5609 (slot
->bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5612 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5613 if (!dev
->slot
|| dev
->slot
!= slot
)
5615 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5616 (dev
->subordinate
&& !pci_bus_resettable(dev
->subordinate
)))
5623 /* Lock devices from the top of the tree down */
5624 static void pci_slot_lock(struct pci_slot
*slot
)
5626 struct pci_dev
*dev
;
5628 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5629 if (!dev
->slot
|| dev
->slot
!= slot
)
5631 if (dev
->subordinate
)
5632 pci_bus_lock(dev
->subordinate
);
5638 /* Unlock devices from the bottom of the tree up */
5639 static void pci_slot_unlock(struct pci_slot
*slot
)
5641 struct pci_dev
*dev
;
5643 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5644 if (!dev
->slot
|| dev
->slot
!= slot
)
5646 if (dev
->subordinate
)
5647 pci_bus_unlock(dev
->subordinate
);
5648 pci_dev_unlock(dev
);
5652 /* Return 1 on successful lock, 0 on contention */
5653 static int pci_slot_trylock(struct pci_slot
*slot
)
5655 struct pci_dev
*dev
;
5657 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5658 if (!dev
->slot
|| dev
->slot
!= slot
)
5660 if (dev
->subordinate
) {
5661 if (!pci_bus_trylock(dev
->subordinate
)) {
5662 pci_dev_unlock(dev
);
5665 } else if (!pci_dev_trylock(dev
))
5671 list_for_each_entry_continue_reverse(dev
,
5672 &slot
->bus
->devices
, bus_list
) {
5673 if (!dev
->slot
|| dev
->slot
!= slot
)
5675 if (dev
->subordinate
)
5676 pci_bus_unlock(dev
->subordinate
);
5678 pci_dev_unlock(dev
);
5684 * Save and disable devices from the top of the tree down while holding
5685 * the @dev mutex lock for the entire tree.
5687 static void pci_bus_save_and_disable_locked(struct pci_bus
*bus
)
5689 struct pci_dev
*dev
;
5691 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5692 pci_dev_save_and_disable(dev
);
5693 if (dev
->subordinate
)
5694 pci_bus_save_and_disable_locked(dev
->subordinate
);
5699 * Restore devices from top of the tree down while holding @dev mutex lock
5700 * for the entire tree. Parent bridges need to be restored before we can
5701 * get to subordinate devices.
5703 static void pci_bus_restore_locked(struct pci_bus
*bus
)
5705 struct pci_dev
*dev
;
5707 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5708 pci_dev_restore(dev
);
5709 if (dev
->subordinate
) {
5710 pci_bridge_wait_for_secondary_bus(dev
, "bus reset");
5711 pci_bus_restore_locked(dev
->subordinate
);
5717 * Save and disable devices from the top of the tree down while holding
5718 * the @dev mutex lock for the entire tree.
5720 static void pci_slot_save_and_disable_locked(struct pci_slot
*slot
)
5722 struct pci_dev
*dev
;
5724 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5725 if (!dev
->slot
|| dev
->slot
!= slot
)
5727 pci_dev_save_and_disable(dev
);
5728 if (dev
->subordinate
)
5729 pci_bus_save_and_disable_locked(dev
->subordinate
);
5734 * Restore devices from top of the tree down while holding @dev mutex lock
5735 * for the entire tree. Parent bridges need to be restored before we can
5736 * get to subordinate devices.
5738 static void pci_slot_restore_locked(struct pci_slot
*slot
)
5740 struct pci_dev
*dev
;
5742 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5743 if (!dev
->slot
|| dev
->slot
!= slot
)
5745 pci_dev_restore(dev
);
5746 if (dev
->subordinate
) {
5747 pci_bridge_wait_for_secondary_bus(dev
, "slot reset");
5748 pci_bus_restore_locked(dev
->subordinate
);
5753 static int pci_slot_reset(struct pci_slot
*slot
, bool probe
)
5757 if (!slot
|| !pci_slot_resettable(slot
))
5761 pci_slot_lock(slot
);
5765 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
5768 pci_slot_unlock(slot
);
5774 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5775 * @slot: PCI slot to probe
5777 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5779 int pci_probe_reset_slot(struct pci_slot
*slot
)
5781 return pci_slot_reset(slot
, PCI_RESET_PROBE
);
5783 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
5786 * __pci_reset_slot - Try to reset a PCI slot
5787 * @slot: PCI slot to reset
5789 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5790 * independent of other slots. For instance, some slots may support slot power
5791 * control. In the case of a 1:1 bus to slot architecture, this function may
5792 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5793 * Generally a slot reset should be attempted before a bus reset. All of the
5794 * function of the slot and any subordinate buses behind the slot are reset
5795 * through this function. PCI config space of all devices in the slot and
5796 * behind the slot is saved before and restored after reset.
5798 * Same as above except return -EAGAIN if the slot cannot be locked
5800 static int __pci_reset_slot(struct pci_slot
*slot
)
5804 rc
= pci_slot_reset(slot
, PCI_RESET_PROBE
);
5808 if (pci_slot_trylock(slot
)) {
5809 pci_slot_save_and_disable_locked(slot
);
5811 rc
= pci_reset_hotplug_slot(slot
->hotplug
, PCI_RESET_DO_RESET
);
5812 pci_slot_restore_locked(slot
);
5813 pci_slot_unlock(slot
);
5820 static int pci_bus_reset(struct pci_bus
*bus
, bool probe
)
5824 if (!bus
->self
|| !pci_bus_resettable(bus
))
5834 ret
= pci_bridge_secondary_bus_reset(bus
->self
);
5836 pci_bus_unlock(bus
);
5842 * pci_bus_error_reset - reset the bridge's subordinate bus
5843 * @bridge: The parent device that connects to the bus to reset
5845 * This function will first try to reset the slots on this bus if the method is
5846 * available. If slot reset fails or is not available, this will fall back to a
5847 * secondary bus reset.
5849 int pci_bus_error_reset(struct pci_dev
*bridge
)
5851 struct pci_bus
*bus
= bridge
->subordinate
;
5852 struct pci_slot
*slot
;
5857 mutex_lock(&pci_slot_mutex
);
5858 if (list_empty(&bus
->slots
))
5861 list_for_each_entry(slot
, &bus
->slots
, list
)
5862 if (pci_probe_reset_slot(slot
))
5865 list_for_each_entry(slot
, &bus
->slots
, list
)
5866 if (pci_slot_reset(slot
, PCI_RESET_DO_RESET
))
5869 mutex_unlock(&pci_slot_mutex
);
5872 mutex_unlock(&pci_slot_mutex
);
5873 return pci_bus_reset(bridge
->subordinate
, PCI_RESET_DO_RESET
);
5877 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5878 * @bus: PCI bus to probe
5880 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5882 int pci_probe_reset_bus(struct pci_bus
*bus
)
5884 return pci_bus_reset(bus
, PCI_RESET_PROBE
);
5886 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
5889 * __pci_reset_bus - Try to reset a PCI bus
5890 * @bus: top level PCI bus to reset
5892 * Same as above except return -EAGAIN if the bus cannot be locked
5894 int __pci_reset_bus(struct pci_bus
*bus
)
5898 rc
= pci_bus_reset(bus
, PCI_RESET_PROBE
);
5902 if (pci_bus_trylock(bus
)) {
5903 pci_bus_save_and_disable_locked(bus
);
5905 rc
= pci_bridge_secondary_bus_reset(bus
->self
);
5906 pci_bus_restore_locked(bus
);
5907 pci_bus_unlock(bus
);
5915 * pci_reset_bus - Try to reset a PCI bus
5916 * @pdev: top level PCI device to reset via slot/bus
5918 * Same as above except return -EAGAIN if the bus cannot be locked
5920 int pci_reset_bus(struct pci_dev
*pdev
)
5922 return (!pci_probe_reset_slot(pdev
->slot
)) ?
5923 __pci_reset_slot(pdev
->slot
) : __pci_reset_bus(pdev
->bus
);
5925 EXPORT_SYMBOL_GPL(pci_reset_bus
);
5928 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5929 * @dev: PCI device to query
5931 * Returns mmrbc: maximum designed memory read count in bytes or
5932 * appropriate error value.
5934 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
5939 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5943 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5946 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ
, stat
);
5948 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
5951 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5952 * @dev: PCI device to query
5954 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5957 int pcix_get_mmrbc(struct pci_dev
*dev
)
5962 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5966 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5969 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ
, cmd
);
5971 EXPORT_SYMBOL(pcix_get_mmrbc
);
5974 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5975 * @dev: PCI device to query
5976 * @mmrbc: maximum memory read count in bytes
5977 * valid values are 512, 1024, 2048, 4096
5979 * If possible sets maximum memory read byte count, some bridges have errata
5980 * that prevent this.
5982 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
5988 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
5991 v
= ffs(mmrbc
) - 10;
5993 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5997 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
6000 if (v
> FIELD_GET(PCI_X_STATUS_MAX_READ
, stat
))
6003 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
6006 o
= FIELD_GET(PCI_X_CMD_MAX_READ
, cmd
);
6008 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
6011 cmd
&= ~PCI_X_CMD_MAX_READ
;
6012 cmd
|= FIELD_PREP(PCI_X_CMD_MAX_READ
, v
);
6013 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
6018 EXPORT_SYMBOL(pcix_set_mmrbc
);
6021 * pcie_get_readrq - get PCI Express read request size
6022 * @dev: PCI device to query
6024 * Returns maximum memory read request in bytes or appropriate error value.
6026 int pcie_get_readrq(struct pci_dev
*dev
)
6030 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
6032 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ
, ctl
);
6034 EXPORT_SYMBOL(pcie_get_readrq
);
6037 * pcie_set_readrq - set PCI Express maximum memory read request
6038 * @dev: PCI device to query
6039 * @rq: maximum memory read count in bytes
6040 * valid values are 128, 256, 512, 1024, 2048, 4096
6042 * If possible sets maximum memory read request in bytes
6044 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
6048 struct pci_host_bridge
*bridge
= pci_find_host_bridge(dev
->bus
);
6050 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
6054 * If using the "performance" PCIe config, we clamp the read rq
6055 * size to the max packet size to keep the host bridge from
6056 * generating requests larger than we can cope with.
6058 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
6059 int mps
= pcie_get_mps(dev
);
6065 v
= FIELD_PREP(PCI_EXP_DEVCTL_READRQ
, ffs(rq
) - 8);
6067 if (bridge
->no_inc_mrrs
) {
6068 int max_mrrs
= pcie_get_readrq(dev
);
6070 if (rq
> max_mrrs
) {
6071 pci_info(dev
, "can't set Max_Read_Request_Size to %d; max is %d\n", rq
, max_mrrs
);
6076 ret
= pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
6077 PCI_EXP_DEVCTL_READRQ
, v
);
6079 return pcibios_err_to_errno(ret
);
6081 EXPORT_SYMBOL(pcie_set_readrq
);
6084 * pcie_get_mps - get PCI Express maximum payload size
6085 * @dev: PCI device to query
6087 * Returns maximum payload size in bytes
6089 int pcie_get_mps(struct pci_dev
*dev
)
6093 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
6095 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD
, ctl
);
6097 EXPORT_SYMBOL(pcie_get_mps
);
6100 * pcie_set_mps - set PCI Express maximum payload size
6101 * @dev: PCI device to query
6102 * @mps: maximum payload size in bytes
6103 * valid values are 128, 256, 512, 1024, 2048, 4096
6105 * If possible sets maximum payload size
6107 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
6112 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
6116 if (v
> dev
->pcie_mpss
)
6118 v
= FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD
, v
);
6120 ret
= pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
6121 PCI_EXP_DEVCTL_PAYLOAD
, v
);
6123 return pcibios_err_to_errno(ret
);
6125 EXPORT_SYMBOL(pcie_set_mps
);
6127 static enum pci_bus_speed
to_pcie_link_speed(u16 lnksta
)
6129 return pcie_link_speed
[FIELD_GET(PCI_EXP_LNKSTA_CLS
, lnksta
)];
6132 int pcie_link_speed_mbps(struct pci_dev
*pdev
)
6137 err
= pcie_capability_read_word(pdev
, PCI_EXP_LNKSTA
, &lnksta
);
6141 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta
));
6143 EXPORT_SYMBOL(pcie_link_speed_mbps
);
6146 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6147 * device and its bandwidth limitation
6148 * @dev: PCI device to query
6149 * @limiting_dev: storage for device causing the bandwidth limitation
6150 * @speed: storage for speed of limiting device
6151 * @width: storage for width of limiting device
6153 * Walk up the PCI device chain and find the point where the minimum
6154 * bandwidth is available. Return the bandwidth available there and (if
6155 * limiting_dev, speed, and width pointers are supplied) information about
6156 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6159 u32
pcie_bandwidth_available(struct pci_dev
*dev
, struct pci_dev
**limiting_dev
,
6160 enum pci_bus_speed
*speed
,
6161 enum pcie_link_width
*width
)
6164 enum pci_bus_speed next_speed
;
6165 enum pcie_link_width next_width
;
6169 *speed
= PCI_SPEED_UNKNOWN
;
6171 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
6176 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
6178 next_speed
= to_pcie_link_speed(lnksta
);
6179 next_width
= FIELD_GET(PCI_EXP_LNKSTA_NLW
, lnksta
);
6181 next_bw
= next_width
* PCIE_SPEED2MBS_ENC(next_speed
);
6183 /* Check if current device limits the total bandwidth */
6184 if (!bw
|| next_bw
<= bw
) {
6188 *limiting_dev
= dev
;
6190 *speed
= next_speed
;
6192 *width
= next_width
;
6195 dev
= pci_upstream_bridge(dev
);
6200 EXPORT_SYMBOL(pcie_bandwidth_available
);
6203 * pcie_get_supported_speeds - query Supported Link Speed Vector
6204 * @dev: PCI device to query
6206 * Query @dev supported link speeds.
6208 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6209 * supported link speeds using the Supported Link Speeds Vector in the Link
6210 * Capabilities 2 Register (when available).
6212 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6214 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6215 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6216 * speeds were defined.
6218 * For @dev without Supported Link Speed Vector, the field is synthesized
6219 * from the Max Link Speed field in the Link Capabilities Register.
6221 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6223 u8
pcie_get_supported_speeds(struct pci_dev
*dev
)
6225 u32 lnkcap2
, lnkcap
;
6229 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6230 * Speeds Vector to allow using SLS Vector bit defines directly.
6232 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP2
, &lnkcap2
);
6233 speeds
= lnkcap2
& PCI_EXP_LNKCAP2_SLS
;
6235 /* PCIe r3.0-compliant */
6239 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
6241 /* Synthesize from the Max Link Speed field */
6242 if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_5_0GB
)
6243 speeds
= PCI_EXP_LNKCAP2_SLS_5_0GB
| PCI_EXP_LNKCAP2_SLS_2_5GB
;
6244 else if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_2_5GB
)
6245 speeds
= PCI_EXP_LNKCAP2_SLS_2_5GB
;
6251 * pcie_get_speed_cap - query for the PCI device's link speed capability
6252 * @dev: PCI device to query
6254 * Query the PCI device speed capability.
6256 * Return: the maximum link speed supported by the device.
6258 enum pci_bus_speed
pcie_get_speed_cap(struct pci_dev
*dev
)
6260 return PCIE_LNKCAP2_SLS2SPEED(dev
->supported_speeds
);
6262 EXPORT_SYMBOL(pcie_get_speed_cap
);
6265 * pcie_get_width_cap - query for the PCI device's link width capability
6266 * @dev: PCI device to query
6268 * Query the PCI device width capability. Return the maximum link width
6269 * supported by the device.
6271 enum pcie_link_width
pcie_get_width_cap(struct pci_dev
*dev
)
6275 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
6277 return FIELD_GET(PCI_EXP_LNKCAP_MLW
, lnkcap
);
6279 return PCIE_LNK_WIDTH_UNKNOWN
;
6281 EXPORT_SYMBOL(pcie_get_width_cap
);
6284 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6286 * @speed: storage for link speed
6287 * @width: storage for link width
6289 * Calculate a PCI device's link bandwidth by querying for its link speed
6290 * and width, multiplying them, and applying encoding overhead. The result
6291 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6293 static u32
pcie_bandwidth_capable(struct pci_dev
*dev
,
6294 enum pci_bus_speed
*speed
,
6295 enum pcie_link_width
*width
)
6297 *speed
= pcie_get_speed_cap(dev
);
6298 *width
= pcie_get_width_cap(dev
);
6300 if (*speed
== PCI_SPEED_UNKNOWN
|| *width
== PCIE_LNK_WIDTH_UNKNOWN
)
6303 return *width
* PCIE_SPEED2MBS_ENC(*speed
);
6307 * __pcie_print_link_status - Report the PCI device's link speed and width
6308 * @dev: PCI device to query
6309 * @verbose: Print info even when enough bandwidth is available
6311 * If the available bandwidth at the device is less than the device is
6312 * capable of, report the device's maximum possible bandwidth and the
6313 * upstream link that limits its performance. If @verbose, always print
6314 * the available bandwidth, even if the device isn't constrained.
6316 void __pcie_print_link_status(struct pci_dev
*dev
, bool verbose
)
6318 enum pcie_link_width width
, width_cap
;
6319 enum pci_bus_speed speed
, speed_cap
;
6320 struct pci_dev
*limiting_dev
= NULL
;
6321 u32 bw_avail
, bw_cap
;
6323 bw_cap
= pcie_bandwidth_capable(dev
, &speed_cap
, &width_cap
);
6324 bw_avail
= pcie_bandwidth_available(dev
, &limiting_dev
, &speed
, &width
);
6326 if (bw_avail
>= bw_cap
&& verbose
)
6327 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6328 bw_cap
/ 1000, bw_cap
% 1000,
6329 pci_speed_string(speed_cap
), width_cap
);
6330 else if (bw_avail
< bw_cap
)
6331 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6332 bw_avail
/ 1000, bw_avail
% 1000,
6333 pci_speed_string(speed
), width
,
6334 limiting_dev
? pci_name(limiting_dev
) : "<unknown>",
6335 bw_cap
/ 1000, bw_cap
% 1000,
6336 pci_speed_string(speed_cap
), width_cap
);
6340 * pcie_print_link_status - Report the PCI device's link speed and width
6341 * @dev: PCI device to query
6343 * Report the available bandwidth at the device.
6345 void pcie_print_link_status(struct pci_dev
*dev
)
6347 __pcie_print_link_status(dev
, true);
6349 EXPORT_SYMBOL(pcie_print_link_status
);
6352 * pci_select_bars - Make BAR mask from the type of resource
6353 * @dev: the PCI device for which BAR mask is made
6354 * @flags: resource type mask to be selected
6356 * This helper routine makes bar mask from the type of resource.
6358 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
6361 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
6362 if (pci_resource_flags(dev
, i
) & flags
)
6366 EXPORT_SYMBOL(pci_select_bars
);
6368 /* Some architectures require additional programming to enable VGA */
6369 static arch_set_vga_state_t arch_set_vga_state
;
6371 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
6373 arch_set_vga_state
= func
; /* NULL disables */
6376 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
6377 unsigned int command_bits
, u32 flags
)
6379 if (arch_set_vga_state
)
6380 return arch_set_vga_state(dev
, decode
, command_bits
,
6386 * pci_set_vga_state - set VGA decode state on device and parents if requested
6387 * @dev: the PCI device
6388 * @decode: true = enable decoding, false = disable decoding
6389 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6390 * @flags: traverse ancestors and change bridges
6391 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6393 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
6394 unsigned int command_bits
, u32 flags
)
6396 struct pci_bus
*bus
;
6397 struct pci_dev
*bridge
;
6401 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
6403 /* ARCH specific VGA enables */
6404 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
6408 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
6409 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
6411 cmd
|= command_bits
;
6413 cmd
&= ~command_bits
;
6414 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
6417 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
6424 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
6427 cmd
|= PCI_BRIDGE_CTL_VGA
;
6429 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
6430 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
6439 bool pci_pr3_present(struct pci_dev
*pdev
)
6441 struct acpi_device
*adev
;
6446 adev
= ACPI_COMPANION(&pdev
->dev
);
6450 return adev
->power
.flags
.power_resources
&&
6451 acpi_has_method(adev
->handle
, "_PR3");
6453 EXPORT_SYMBOL_GPL(pci_pr3_present
);
6457 * pci_add_dma_alias - Add a DMA devfn alias for a device
6458 * @dev: the PCI device for which alias is added
6459 * @devfn_from: alias slot and function
6460 * @nr_devfns: number of subsequent devfns to alias
6462 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6463 * which is used to program permissible bus-devfn source addresses for DMA
6464 * requests in an IOMMU. These aliases factor into IOMMU group creation
6465 * and are useful for devices generating DMA requests beyond or different
6466 * from their logical bus-devfn. Examples include device quirks where the
6467 * device simply uses the wrong devfn, as well as non-transparent bridges
6468 * where the alias may be a proxy for devices in another domain.
6470 * IOMMU group creation is performed during device discovery or addition,
6471 * prior to any potential DMA mapping and therefore prior to driver probing
6472 * (especially for userspace assigned devices where IOMMU group definition
6473 * cannot be left as a userspace activity). DMA aliases should therefore
6474 * be configured via quirks, such as the PCI fixup header quirk.
6476 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn_from
,
6477 unsigned int nr_devfns
)
6481 nr_devfns
= min(nr_devfns
, (unsigned int)MAX_NR_DEVFNS
- devfn_from
);
6482 devfn_to
= devfn_from
+ nr_devfns
- 1;
6484 if (!dev
->dma_alias_mask
)
6485 dev
->dma_alias_mask
= bitmap_zalloc(MAX_NR_DEVFNS
, GFP_KERNEL
);
6486 if (!dev
->dma_alias_mask
) {
6487 pci_warn(dev
, "Unable to allocate DMA alias mask\n");
6491 bitmap_set(dev
->dma_alias_mask
, devfn_from
, nr_devfns
);
6494 pci_info(dev
, "Enabling fixed DMA alias to %02x.%d\n",
6495 PCI_SLOT(devfn_from
), PCI_FUNC(devfn_from
));
6496 else if (nr_devfns
> 1)
6497 pci_info(dev
, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6498 PCI_SLOT(devfn_from
), PCI_FUNC(devfn_from
),
6499 PCI_SLOT(devfn_to
), PCI_FUNC(devfn_to
));
6502 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
6504 return (dev1
->dma_alias_mask
&&
6505 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
6506 (dev2
->dma_alias_mask
&&
6507 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
)) ||
6508 pci_real_dma_dev(dev1
) == dev2
||
6509 pci_real_dma_dev(dev2
) == dev1
;
6512 bool pci_device_is_present(struct pci_dev
*pdev
)
6516 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6517 pdev
= pci_physfn(pdev
);
6518 if (pci_dev_is_disconnected(pdev
))
6520 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
6522 EXPORT_SYMBOL_GPL(pci_device_is_present
);
6524 void pci_ignore_hotplug(struct pci_dev
*dev
)
6526 struct pci_dev
*bridge
= dev
->bus
->self
;
6528 dev
->ignore_hotplug
= 1;
6529 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6531 bridge
->ignore_hotplug
= 1;
6533 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
6536 * pci_real_dma_dev - Get PCI DMA device for PCI device
6537 * @dev: the PCI device that may have a PCI DMA alias
6539 * Permits the platform to provide architecture-specific functionality to
6540 * devices needing to alias DMA to another PCI device on another PCI bus. If
6541 * the PCI device is on the same bus, it is recommended to use
6542 * pci_add_dma_alias(). This is the default implementation. Architecture
6543 * implementations can override this.
6545 struct pci_dev __weak
*pci_real_dma_dev(struct pci_dev
*dev
)
6550 resource_size_t __weak
pcibios_default_alignment(void)
6556 * Arches that don't want to expose struct resource to userland as-is in
6557 * sysfs and /proc can implement their own pci_resource_to_user().
6559 void __weak
pci_resource_to_user(const struct pci_dev
*dev
, int bar
,
6560 const struct resource
*rsrc
,
6561 resource_size_t
*start
, resource_size_t
*end
)
6563 *start
= rsrc
->start
;
6567 static char *resource_alignment_param
;
6568 static DEFINE_SPINLOCK(resource_alignment_lock
);
6571 * pci_specified_resource_alignment - get resource alignment specified by user.
6572 * @dev: the PCI device to get
6573 * @resize: whether or not to change resources' size when reassigning alignment
6575 * RETURNS: Resource alignment if it is specified.
6576 * Zero if it is not specified.
6578 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
,
6581 int align_order
, count
;
6582 resource_size_t align
= pcibios_default_alignment();
6586 spin_lock(&resource_alignment_lock
);
6587 p
= resource_alignment_param
;
6590 if (pci_has_flag(PCI_PROBE_ONLY
)) {
6592 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6598 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
6601 if (align_order
> 63) {
6602 pr_err("PCI: Invalid requested alignment (order %d)\n",
6604 align_order
= PAGE_SHIFT
;
6607 align_order
= PAGE_SHIFT
;
6610 ret
= pci_dev_str_match(dev
, p
, &p
);
6613 align
= 1ULL << align_order
;
6615 } else if (ret
< 0) {
6616 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6621 if (*p
!= ';' && *p
!= ',') {
6622 /* End of param or invalid format */
6628 spin_unlock(&resource_alignment_lock
);
6632 static void pci_request_resource_alignment(struct pci_dev
*dev
, int bar
,
6633 resource_size_t align
, bool resize
)
6635 struct resource
*r
= &dev
->resource
[bar
];
6636 const char *r_name
= pci_resource_name(dev
, bar
);
6637 resource_size_t size
;
6639 if (!(r
->flags
& IORESOURCE_MEM
))
6642 if (r
->flags
& IORESOURCE_PCI_FIXED
) {
6643 pci_info(dev
, "%s %pR: ignoring requested alignment %#llx\n",
6644 r_name
, r
, (unsigned long long)align
);
6648 size
= resource_size(r
);
6653 * Increase the alignment of the resource. There are two ways we
6656 * 1) Increase the size of the resource. BARs are aligned on their
6657 * size, so when we reallocate space for this resource, we'll
6658 * allocate it with the larger alignment. This also prevents
6659 * assignment of any other BARs inside the alignment region, so
6660 * if we're requesting page alignment, this means no other BARs
6661 * will share the page.
6663 * The disadvantage is that this makes the resource larger than
6664 * the hardware BAR, which may break drivers that compute things
6665 * based on the resource size, e.g., to find registers at a
6666 * fixed offset before the end of the BAR.
6668 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6669 * set r->start to the desired alignment. By itself this
6670 * doesn't prevent other BARs being put inside the alignment
6671 * region, but if we realign *every* resource of every device in
6672 * the system, none of them will share an alignment region.
6674 * When the user has requested alignment for only some devices via
6675 * the "pci=resource_alignment" argument, "resize" is true and we
6676 * use the first method. Otherwise we assume we're aligning all
6677 * devices and we use the second.
6680 pci_info(dev
, "%s %pR: requesting alignment to %#llx\n",
6681 r_name
, r
, (unsigned long long)align
);
6687 r
->flags
&= ~IORESOURCE_SIZEALIGN
;
6688 r
->flags
|= IORESOURCE_STARTALIGN
;
6689 resource_set_range(r
, align
, size
);
6691 r
->flags
|= IORESOURCE_UNSET
;
6695 * This function disables memory decoding and releases memory resources
6696 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6697 * It also rounds up size to specified alignment.
6698 * Later on, the kernel will assign page-aligned memory resource back
6701 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
6705 resource_size_t align
;
6707 bool resize
= false;
6710 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6711 * 3.4.1.11. Their resources are allocated from the space
6712 * described by the VF BARx register in the PF's SR-IOV capability.
6713 * We can't influence their alignment here.
6718 /* check if specified PCI is target device to reassign */
6719 align
= pci_specified_resource_alignment(dev
, &resize
);
6723 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
6724 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
6725 pci_warn(dev
, "Can't reassign resources to host bridge\n");
6729 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
6730 command
&= ~PCI_COMMAND_MEMORY
;
6731 pci_write_config_word(dev
, PCI_COMMAND
, command
);
6733 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
6734 pci_request_resource_alignment(dev
, i
, align
, resize
);
6737 * Need to disable bridge's resource window,
6738 * to enable the kernel to reassign new resource
6741 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
6742 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
6743 r
= &dev
->resource
[i
];
6744 if (!(r
->flags
& IORESOURCE_MEM
))
6746 r
->flags
|= IORESOURCE_UNSET
;
6747 r
->end
= resource_size(r
) - 1;
6750 pci_disable_bridge_window(dev
);
6754 static ssize_t
resource_alignment_show(const struct bus_type
*bus
, char *buf
)
6758 spin_lock(&resource_alignment_lock
);
6759 if (resource_alignment_param
)
6760 count
= sysfs_emit(buf
, "%s\n", resource_alignment_param
);
6761 spin_unlock(&resource_alignment_lock
);
6766 static ssize_t
resource_alignment_store(const struct bus_type
*bus
,
6767 const char *buf
, size_t count
)
6769 char *param
, *old
, *end
;
6771 if (count
>= (PAGE_SIZE
- 1))
6774 param
= kstrndup(buf
, count
, GFP_KERNEL
);
6778 end
= strchr(param
, '\n');
6782 spin_lock(&resource_alignment_lock
);
6783 old
= resource_alignment_param
;
6784 if (strlen(param
)) {
6785 resource_alignment_param
= param
;
6788 resource_alignment_param
= NULL
;
6790 spin_unlock(&resource_alignment_lock
);
6797 static BUS_ATTR_RW(resource_alignment
);
6799 static int __init
pci_resource_alignment_sysfs_init(void)
6801 return bus_create_file(&pci_bus_type
,
6802 &bus_attr_resource_alignment
);
6804 late_initcall(pci_resource_alignment_sysfs_init
);
6806 static void pci_no_domains(void)
6808 #ifdef CONFIG_PCI_DOMAINS
6809 pci_domains_supported
= 0;
6813 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6814 static DEFINE_IDA(pci_domain_nr_static_ida
);
6815 static DEFINE_IDA(pci_domain_nr_dynamic_ida
);
6817 static void of_pci_reserve_static_domain_nr(void)
6819 struct device_node
*np
;
6822 for_each_node_by_type(np
, "pci") {
6823 domain_nr
= of_get_pci_domain_nr(np
);
6827 * Permanently allocate domain_nr in dynamic_ida
6828 * to prevent it from dynamic allocation.
6830 ida_alloc_range(&pci_domain_nr_dynamic_ida
,
6831 domain_nr
, domain_nr
, GFP_KERNEL
);
6835 static int of_pci_bus_find_domain_nr(struct device
*parent
)
6837 static bool static_domains_reserved
= false;
6840 /* On the first call scan device tree for static allocations. */
6841 if (!static_domains_reserved
) {
6842 of_pci_reserve_static_domain_nr();
6843 static_domains_reserved
= true;
6848 * If domain is in DT, allocate it in static IDA. This
6849 * prevents duplicate static allocations in case of errors
6852 domain_nr
= of_get_pci_domain_nr(parent
->of_node
);
6854 return ida_alloc_range(&pci_domain_nr_static_ida
,
6855 domain_nr
, domain_nr
,
6860 * If domain was not specified in DT, choose a free ID from dynamic
6861 * allocations. All domain numbers from DT are permanently in
6862 * dynamic allocations to prevent assigning them to other DT nodes
6863 * without static domain.
6865 return ida_alloc(&pci_domain_nr_dynamic_ida
, GFP_KERNEL
);
6868 static void of_pci_bus_release_domain_nr(struct device
*parent
, int domain_nr
)
6873 /* Release domain from IDA where it was allocated. */
6874 if (of_get_pci_domain_nr(parent
->of_node
) == domain_nr
)
6875 ida_free(&pci_domain_nr_static_ida
, domain_nr
);
6877 ida_free(&pci_domain_nr_dynamic_ida
, domain_nr
);
6880 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
6882 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
6883 acpi_pci_bus_find_domain_nr(bus
);
6886 void pci_bus_release_domain_nr(struct device
*parent
, int domain_nr
)
6890 of_pci_bus_release_domain_nr(parent
, domain_nr
);
6895 * pci_ext_cfg_avail - can we access extended PCI config space?
6897 * Returns 1 if we can access PCI extended config space (offsets
6898 * greater than 0xff). This is the default implementation. Architecture
6899 * implementations can override this.
6901 int __weak
pci_ext_cfg_avail(void)
6906 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
6909 EXPORT_SYMBOL(pci_fixup_cardbus
);
6911 static int __init
pci_setup(char *str
)
6914 char *k
= strchr(str
, ',');
6917 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
6918 if (!strcmp(str
, "nomsi")) {
6920 } else if (!strncmp(str
, "noats", 5)) {
6921 pr_info("PCIe: ATS is disabled\n");
6922 pcie_ats_disabled
= true;
6923 } else if (!strcmp(str
, "noaer")) {
6925 } else if (!strcmp(str
, "earlydump")) {
6926 pci_early_dump
= true;
6927 } else if (!strncmp(str
, "realloc=", 8)) {
6928 pci_realloc_get_opt(str
+ 8);
6929 } else if (!strncmp(str
, "realloc", 7)) {
6930 pci_realloc_get_opt("on");
6931 } else if (!strcmp(str
, "nodomains")) {
6933 } else if (!strncmp(str
, "noari", 5)) {
6934 pcie_ari_disabled
= true;
6935 } else if (!strncmp(str
, "notph", 5)) {
6937 } else if (!strncmp(str
, "cbiosize=", 9)) {
6938 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
6939 } else if (!strncmp(str
, "cbmemsize=", 10)) {
6940 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
6941 } else if (!strncmp(str
, "resource_alignment=", 19)) {
6942 resource_alignment_param
= str
+ 19;
6943 } else if (!strncmp(str
, "ecrc=", 5)) {
6944 pcie_ecrc_get_policy(str
+ 5);
6945 } else if (!strncmp(str
, "hpiosize=", 9)) {
6946 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
6947 } else if (!strncmp(str
, "hpmmiosize=", 11)) {
6948 pci_hotplug_mmio_size
= memparse(str
+ 11, &str
);
6949 } else if (!strncmp(str
, "hpmmioprefsize=", 15)) {
6950 pci_hotplug_mmio_pref_size
= memparse(str
+ 15, &str
);
6951 } else if (!strncmp(str
, "hpmemsize=", 10)) {
6952 pci_hotplug_mmio_size
= memparse(str
+ 10, &str
);
6953 pci_hotplug_mmio_pref_size
= pci_hotplug_mmio_size
;
6954 } else if (!strncmp(str
, "hpbussize=", 10)) {
6955 pci_hotplug_bus_size
=
6956 simple_strtoul(str
+ 10, &str
, 0);
6957 if (pci_hotplug_bus_size
> 0xff)
6958 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
6959 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
6960 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
6961 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
6962 pcie_bus_config
= PCIE_BUS_SAFE
;
6963 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
6964 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
6965 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
6966 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
6967 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
6968 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
6969 } else if (!strncmp(str
, "disable_acs_redir=", 18)) {
6970 disable_acs_redir_param
= str
+ 18;
6971 } else if (!strncmp(str
, "config_acs=", 11)) {
6972 config_acs_param
= str
+ 11;
6974 pr_err("PCI: Unknown option `%s'\n", str
);
6981 early_param("pci", pci_setup
);
6984 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6985 * in pci_setup(), above, to point to data in the __initdata section which
6986 * will be freed after the init sequence is complete. We can't allocate memory
6987 * in pci_setup() because some architectures do not have any memory allocation
6988 * service available during an early_param() call. So we allocate memory and
6989 * copy the variable here before the init section is freed.
6992 static int __init
pci_realloc_setup_params(void)
6994 resource_alignment_param
= kstrdup(resource_alignment_param
,
6996 disable_acs_redir_param
= kstrdup(disable_acs_redir_param
, GFP_KERNEL
);
6997 config_acs_param
= kstrdup(config_acs_param
, GFP_KERNEL
);
7001 pure_initcall(pci_realloc_setup_params
);