1 // SPDX-License-Identifier: GPL-2.0-only
3 * PCMCIA high-level CIS access functions
5 * The initial developer of the original code is David A. Hinds
6 * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
7 * are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
9 * Copyright (C) 1999 David A. Hinds
10 * Copyright (C) 2004-2010 Dominik Brodowski
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
19 #include <pcmcia/cisreg.h>
20 #include <pcmcia/cistpl.h>
21 #include <pcmcia/ss.h>
22 #include <pcmcia/ds.h>
23 #include "cs_internal.h"
27 * pccard_read_tuple() - internal CIS tuple access
28 * @s: the struct pcmcia_socket where the card is inserted
29 * @function: the device function we loop for
30 * @code: which CIS code shall we look for?
31 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
33 * pccard_read_tuple() reads out one tuple and attempts to parse it
35 int pccard_read_tuple(struct pcmcia_socket
*s
, unsigned int function
,
36 cisdata_t code
, void *parse
)
42 buf
= kmalloc(256, GFP_KERNEL
);
44 dev_warn(&s
->dev
, "no memory to read tuple\n");
47 tuple
.DesiredTuple
= code
;
49 if (function
== BIND_FN_ALL
)
50 tuple
.Attributes
= TUPLE_RETURN_COMMON
;
51 ret
= pccard_get_first_tuple(s
, function
, &tuple
);
54 tuple
.TupleData
= buf
;
55 tuple
.TupleOffset
= 0;
56 tuple
.TupleDataMax
= 255;
57 ret
= pccard_get_tuple_data(s
, &tuple
);
60 ret
= pcmcia_parse_tuple(&tuple
, parse
);
68 * pccard_loop_tuple() - loop over tuples in the CIS
69 * @s: the struct pcmcia_socket where the card is inserted
70 * @function: the device function we loop for
71 * @code: which CIS code shall we look for?
72 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
73 * @priv_data: private data to be passed to the loop_tuple function.
74 * @loop_tuple: function to call for each CIS entry of type @function. IT
75 * gets passed the raw tuple, the paresed tuple (if @parse is
76 * set) and @priv_data.
78 * pccard_loop_tuple() loops over all CIS entries of type @function, and
79 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
80 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
82 static int pccard_loop_tuple(struct pcmcia_socket
*s
, unsigned int function
,
83 cisdata_t code
, cisparse_t
*parse
, void *priv_data
,
84 int (*loop_tuple
) (tuple_t
*tuple
,
92 buf
= kzalloc(256, GFP_KERNEL
);
94 dev_warn(&s
->dev
, "no memory to read tuple\n");
98 tuple
.TupleData
= buf
;
99 tuple
.TupleDataMax
= 255;
100 tuple
.TupleOffset
= 0;
101 tuple
.DesiredTuple
= code
;
102 tuple
.Attributes
= 0;
104 ret
= pccard_get_first_tuple(s
, function
, &tuple
);
106 if (pccard_get_tuple_data(s
, &tuple
))
110 if (pcmcia_parse_tuple(&tuple
, parse
))
113 ret
= loop_tuple(&tuple
, parse
, priv_data
);
118 ret
= pccard_get_next_tuple(s
, function
, &tuple
);
127 * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
129 static int pcmcia_io_cfg_data_width(unsigned int flags
)
131 if (!(flags
& CISTPL_IO_8BIT
))
132 return IO_DATA_PATH_WIDTH_16
;
133 if (!(flags
& CISTPL_IO_16BIT
))
134 return IO_DATA_PATH_WIDTH_8
;
135 return IO_DATA_PATH_WIDTH_AUTO
;
139 struct pcmcia_cfg_mem
{
140 struct pcmcia_device
*p_dev
;
141 int (*conf_check
) (struct pcmcia_device
*p_dev
, void *priv_data
);
144 cistpl_cftable_entry_t dflt
;
148 * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
150 * pcmcia_do_loop_config() is the internal callback for the call from
151 * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
152 * by a struct pcmcia_cfg_mem.
154 static int pcmcia_do_loop_config(tuple_t
*tuple
, cisparse_t
*parse
, void *priv
)
156 struct pcmcia_cfg_mem
*cfg_mem
= priv
;
157 struct pcmcia_device
*p_dev
= cfg_mem
->p_dev
;
158 cistpl_cftable_entry_t
*cfg
= &parse
->cftable_entry
;
159 cistpl_cftable_entry_t
*dflt
= &cfg_mem
->dflt
;
160 unsigned int flags
= p_dev
->config_flags
;
161 unsigned int vcc
= p_dev
->socket
->socket
.Vcc
;
163 dev_dbg(&p_dev
->dev
, "testing configuration %x, autoconf %x\n",
167 cfg_mem
->p_dev
->config_index
= cfg
->index
;
168 if (cfg
->flags
& CISTPL_CFTABLE_DEFAULT
)
169 cfg_mem
->dflt
= *cfg
;
171 /* check for matching Vcc? */
172 if (flags
& CONF_AUTO_CHECK_VCC
) {
173 if (cfg
->vcc
.present
& (1 << CISTPL_POWER_VNOM
)) {
174 if (vcc
!= cfg
->vcc
.param
[CISTPL_POWER_VNOM
] / 10000)
176 } else if (dflt
->vcc
.present
& (1 << CISTPL_POWER_VNOM
)) {
177 if (vcc
!= dflt
->vcc
.param
[CISTPL_POWER_VNOM
] / 10000)
183 if (flags
& CONF_AUTO_SET_VPP
) {
184 if (cfg
->vpp1
.present
& (1 << CISTPL_POWER_VNOM
))
185 p_dev
->vpp
= cfg
->vpp1
.param
[CISTPL_POWER_VNOM
] / 10000;
186 else if (dflt
->vpp1
.present
& (1 << CISTPL_POWER_VNOM
))
188 dflt
->vpp1
.param
[CISTPL_POWER_VNOM
] / 10000;
192 if ((flags
& CONF_AUTO_AUDIO
) && (cfg
->flags
& CISTPL_CFTABLE_AUDIO
))
193 p_dev
->config_flags
|= CONF_ENABLE_SPKR
;
196 /* IO window settings? */
197 if (flags
& CONF_AUTO_SET_IO
) {
198 cistpl_io_t
*io
= (cfg
->io
.nwin
) ? &cfg
->io
: &dflt
->io
;
201 p_dev
->resource
[0]->start
= p_dev
->resource
[0]->end
= 0;
202 p_dev
->resource
[1]->start
= p_dev
->resource
[1]->end
= 0;
206 p_dev
->resource
[0]->flags
&= ~IO_DATA_PATH_WIDTH
;
207 p_dev
->resource
[0]->flags
|=
208 pcmcia_io_cfg_data_width(io
->flags
);
210 /* For multifunction cards, by convention, we
211 * configure the network function with window 0,
212 * and serial with window 1 */
213 i
= (io
->win
[1].len
> io
->win
[0].len
);
214 p_dev
->resource
[1]->flags
= p_dev
->resource
[0]->flags
;
215 p_dev
->resource
[1]->start
= io
->win
[1-i
].base
;
216 p_dev
->resource
[1]->end
= io
->win
[1-i
].len
;
218 p_dev
->resource
[0]->start
= io
->win
[i
].base
;
219 p_dev
->resource
[0]->end
= io
->win
[i
].len
;
220 p_dev
->io_lines
= io
->flags
& CISTPL_IO_LINES_MASK
;
223 /* MEM window settings? */
224 if (flags
& CONF_AUTO_SET_IOMEM
) {
225 /* so far, we only set one memory window */
226 cistpl_mem_t
*mem
= (cfg
->mem
.nwin
) ? &cfg
->mem
: &dflt
->mem
;
228 p_dev
->resource
[2]->start
= p_dev
->resource
[2]->end
= 0;
232 p_dev
->resource
[2]->start
= mem
->win
[0].host_addr
;
233 p_dev
->resource
[2]->end
= mem
->win
[0].len
;
234 if (p_dev
->resource
[2]->end
< 0x1000)
235 p_dev
->resource
[2]->end
= 0x1000;
236 p_dev
->card_addr
= mem
->win
[0].card_addr
;
240 "checking configuration %x: %pr %pr %pr (%d lines)\n",
241 p_dev
->config_index
, p_dev
->resource
[0], p_dev
->resource
[1],
242 p_dev
->resource
[2], p_dev
->io_lines
);
244 return cfg_mem
->conf_check(p_dev
, cfg_mem
->priv_data
);
248 * pcmcia_loop_config() - loop over configuration options
249 * @p_dev: the struct pcmcia_device which we need to loop for.
250 * @conf_check: function to call for each configuration option.
251 * It gets passed the struct pcmcia_device and private data
252 * being passed to pcmcia_loop_config()
253 * @priv_data: private data to be passed to the conf_check function.
255 * pcmcia_loop_config() loops over all configuration options, and calls
256 * the driver-specific conf_check() for each one, checking whether
257 * it is a valid one. Returns 0 on success or errorcode otherwise.
259 int pcmcia_loop_config(struct pcmcia_device
*p_dev
,
260 int (*conf_check
) (struct pcmcia_device
*p_dev
,
264 struct pcmcia_cfg_mem
*cfg_mem
;
267 cfg_mem
= kzalloc(sizeof(struct pcmcia_cfg_mem
), GFP_KERNEL
);
271 cfg_mem
->p_dev
= p_dev
;
272 cfg_mem
->conf_check
= conf_check
;
273 cfg_mem
->priv_data
= priv_data
;
275 ret
= pccard_loop_tuple(p_dev
->socket
, p_dev
->func
,
276 CISTPL_CFTABLE_ENTRY
, &cfg_mem
->parse
,
277 cfg_mem
, pcmcia_do_loop_config
);
282 EXPORT_SYMBOL(pcmcia_loop_config
);
285 struct pcmcia_loop_mem
{
286 struct pcmcia_device
*p_dev
;
288 int (*loop_tuple
) (struct pcmcia_device
*p_dev
,
294 * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
296 * pcmcia_do_loop_tuple() is the internal callback for the call from
297 * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
298 * by a struct pcmcia_cfg_mem.
300 static int pcmcia_do_loop_tuple(tuple_t
*tuple
, cisparse_t
*parse
, void *priv
)
302 struct pcmcia_loop_mem
*loop
= priv
;
304 return loop
->loop_tuple(loop
->p_dev
, tuple
, loop
->priv_data
);
308 * pcmcia_loop_tuple() - loop over tuples in the CIS
309 * @p_dev: the struct pcmcia_device which we need to loop for.
310 * @code: which CIS code shall we look for?
311 * @priv_data: private data to be passed to the loop_tuple function.
312 * @loop_tuple: function to call for each CIS entry of type @function. IT
313 * gets passed the raw tuple and @priv_data.
315 * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
316 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
317 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
319 int pcmcia_loop_tuple(struct pcmcia_device
*p_dev
, cisdata_t code
,
320 int (*loop_tuple
) (struct pcmcia_device
*p_dev
,
325 struct pcmcia_loop_mem loop
= {
327 .loop_tuple
= loop_tuple
,
328 .priv_data
= priv_data
};
330 return pccard_loop_tuple(p_dev
->socket
, p_dev
->func
, code
, NULL
,
331 &loop
, pcmcia_do_loop_tuple
);
333 EXPORT_SYMBOL(pcmcia_loop_tuple
);
336 struct pcmcia_loop_get
{
342 * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
344 * pcmcia_do_get_tuple() is the internal callback for the call from
345 * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
346 * the first tuple, return 0 unconditionally. Create a memory buffer large
347 * enough to hold the content of the tuple, and fill it with the tuple data.
348 * The caller is responsible to free the buffer.
350 static int pcmcia_do_get_tuple(struct pcmcia_device
*p_dev
, tuple_t
*tuple
,
353 struct pcmcia_loop_get
*get
= priv
;
355 *get
->buf
= kzalloc(tuple
->TupleDataLen
, GFP_KERNEL
);
357 get
->len
= tuple
->TupleDataLen
;
358 memcpy(*get
->buf
, tuple
->TupleData
, tuple
->TupleDataLen
);
360 dev_dbg(&p_dev
->dev
, "do_get_tuple: out of memory\n");
365 * pcmcia_get_tuple() - get first tuple from CIS
366 * @p_dev: the struct pcmcia_device which we need to loop for.
367 * @code: which CIS code shall we look for?
368 * @buf: pointer to store the buffer to.
370 * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
371 * It returns the buffer length (or zero). The caller is responsible to free
372 * the buffer passed in @buf.
374 size_t pcmcia_get_tuple(struct pcmcia_device
*p_dev
, cisdata_t code
,
377 struct pcmcia_loop_get get
= {
383 pcmcia_loop_tuple(p_dev
, code
, pcmcia_do_get_tuple
, &get
);
387 EXPORT_SYMBOL(pcmcia_get_tuple
);
391 * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
393 * pcmcia_do_get_mac() is the internal callback for the call from
394 * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
395 * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
396 * to struct net_device->dev_addr[i].
398 static int pcmcia_do_get_mac(struct pcmcia_device
*p_dev
, tuple_t
*tuple
,
401 struct net_device
*dev
= priv
;
403 if (tuple
->TupleData
[0] != CISTPL_FUNCE_LAN_NODE_ID
)
405 if (tuple
->TupleDataLen
< ETH_ALEN
+ 2) {
406 dev_warn(&p_dev
->dev
, "Invalid CIS tuple length for "
411 if (tuple
->TupleData
[1] != ETH_ALEN
) {
412 dev_warn(&p_dev
->dev
, "Invalid header for LAN_NODE_ID\n");
415 eth_hw_addr_set(dev
, &tuple
->TupleData
[2]);
420 * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
421 * @p_dev: the struct pcmcia_device for which we want the address.
422 * @dev: a properly prepared struct net_device to store the info to.
424 * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
425 * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
426 * must be set up properly by the driver (see examples!).
428 int pcmcia_get_mac_from_cis(struct pcmcia_device
*p_dev
, struct net_device
*dev
)
430 return pcmcia_loop_tuple(p_dev
, CISTPL_FUNCE
, pcmcia_do_get_mac
, dev
);
432 EXPORT_SYMBOL(pcmcia_get_mac_from_cis
);
434 #endif /* CONFIG_NET */