Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / perf / arm_v6_pmu.c
blobb09615bb2bb2516d8822d649b39637e995c72b23
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ARMv6 Performance counter handling code.
5 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * ARMv6 has 2 configurable performance counters and a single cycle counter.
8 * They all share a single reset bit but can be written to zero so we can use
9 * that for a reset.
11 * The counters can't be individually enabled or disabled so when we remove
12 * one event and replace it with another we could get spurious counts from the
13 * wrong event. However, we can take advantage of the fact that the
14 * performance counters can export events to the event bus, and the event bus
15 * itself can be monitored. This requires that we *don't* export the events to
16 * the event bus. The procedure for disabling a configurable counter is:
17 * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
18 * effectively stops the counter from counting.
19 * - disable the counter's interrupt generation (each counter has it's
20 * own interrupt enable bit).
21 * Once stopped, the counter value can be written as 0 to reset.
23 * To enable a counter:
24 * - enable the counter's interrupt generation.
25 * - set the new event type.
27 * Note: the dedicated cycle counter only counts cycles and can't be
28 * enabled/disabled independently of the others. When we want to disable the
29 * cycle counter, we have to just disable the interrupt reporting and start
30 * ignoring that counter. When re-enabling, we have to reset the value and
31 * enable the interrupt.
34 #include <asm/cputype.h>
35 #include <asm/irq_regs.h>
37 #include <linux/of.h>
38 #include <linux/perf/arm_pmu.h>
39 #include <linux/platform_device.h>
41 enum armv6_perf_types {
42 ARMV6_PERFCTR_ICACHE_MISS = 0x0,
43 ARMV6_PERFCTR_IBUF_STALL = 0x1,
44 ARMV6_PERFCTR_DDEP_STALL = 0x2,
45 ARMV6_PERFCTR_ITLB_MISS = 0x3,
46 ARMV6_PERFCTR_DTLB_MISS = 0x4,
47 ARMV6_PERFCTR_BR_EXEC = 0x5,
48 ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
49 ARMV6_PERFCTR_INSTR_EXEC = 0x7,
50 ARMV6_PERFCTR_DCACHE_HIT = 0x9,
51 ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
52 ARMV6_PERFCTR_DCACHE_MISS = 0xB,
53 ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
54 ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
55 ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
56 ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
57 ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
58 ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
59 ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
60 ARMV6_PERFCTR_NOP = 0x20,
63 enum armv6_counters {
64 ARMV6_CYCLE_COUNTER = 0,
65 ARMV6_COUNTER0,
66 ARMV6_COUNTER1,
67 ARMV6_NUM_COUNTERS
71 * The hardware events that we support. We do support cache operations but
72 * we have harvard caches and no way to combine instruction and data
73 * accesses/misses in hardware.
75 static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
76 PERF_MAP_ALL_UNSUPPORTED,
77 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
78 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
79 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
80 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
81 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6_PERFCTR_IBUF_STALL,
82 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV6_PERFCTR_LSU_FULL_STALL,
85 static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
86 [PERF_COUNT_HW_CACHE_OP_MAX]
87 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
88 PERF_CACHE_MAP_ALL_UNSUPPORTED,
91 * The performance counters don't differentiate between read and write
92 * accesses/misses so this isn't strictly correct, but it's the best we
93 * can do. Writes and reads get combined.
95 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
96 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
97 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
98 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
100 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
103 * The ARM performance counters can count micro DTLB misses, micro ITLB
104 * misses and main TLB misses. There isn't an event for TLB misses, so
105 * use the micro misses here and if users want the main TLB misses they
106 * can use a raw counter.
108 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
109 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
111 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
112 [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
115 static inline unsigned long
116 armv6_pmcr_read(void)
118 u32 val;
119 asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
120 return val;
123 static inline void
124 armv6_pmcr_write(unsigned long val)
126 asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
129 #define ARMV6_PMCR_ENABLE (1 << 0)
130 #define ARMV6_PMCR_CTR01_RESET (1 << 1)
131 #define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
132 #define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
133 #define ARMV6_PMCR_COUNT0_IEN (1 << 4)
134 #define ARMV6_PMCR_COUNT1_IEN (1 << 5)
135 #define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
136 #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
137 #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
138 #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
139 #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
140 #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
141 #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
142 #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
144 #define ARMV6_PMCR_OVERFLOWED_MASK \
145 (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
146 ARMV6_PMCR_CCOUNT_OVERFLOW)
148 static inline int
149 armv6_pmcr_has_overflowed(unsigned long pmcr)
151 return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
154 static inline int
155 armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
156 enum armv6_counters counter)
158 int ret = 0;
160 if (ARMV6_CYCLE_COUNTER == counter)
161 ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
162 else if (ARMV6_COUNTER0 == counter)
163 ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
164 else if (ARMV6_COUNTER1 == counter)
165 ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
166 else
167 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
169 return ret;
172 static inline u64 armv6pmu_read_counter(struct perf_event *event)
174 struct hw_perf_event *hwc = &event->hw;
175 int counter = hwc->idx;
176 unsigned long value = 0;
178 if (ARMV6_CYCLE_COUNTER == counter)
179 asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
180 else if (ARMV6_COUNTER0 == counter)
181 asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
182 else if (ARMV6_COUNTER1 == counter)
183 asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
184 else
185 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
187 return value;
190 static inline void armv6pmu_write_counter(struct perf_event *event, u64 value)
192 struct hw_perf_event *hwc = &event->hw;
193 int counter = hwc->idx;
195 if (ARMV6_CYCLE_COUNTER == counter)
196 asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
197 else if (ARMV6_COUNTER0 == counter)
198 asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
199 else if (ARMV6_COUNTER1 == counter)
200 asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
201 else
202 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
205 static void armv6pmu_enable_event(struct perf_event *event)
207 unsigned long val, mask, evt;
208 struct hw_perf_event *hwc = &event->hw;
209 int idx = hwc->idx;
211 if (ARMV6_CYCLE_COUNTER == idx) {
212 mask = 0;
213 evt = ARMV6_PMCR_CCOUNT_IEN;
214 } else if (ARMV6_COUNTER0 == idx) {
215 mask = ARMV6_PMCR_EVT_COUNT0_MASK;
216 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
217 ARMV6_PMCR_COUNT0_IEN;
218 } else if (ARMV6_COUNTER1 == idx) {
219 mask = ARMV6_PMCR_EVT_COUNT1_MASK;
220 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
221 ARMV6_PMCR_COUNT1_IEN;
222 } else {
223 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
224 return;
228 * Mask out the current event and set the counter to count the event
229 * that we're interested in.
231 val = armv6_pmcr_read();
232 val &= ~mask;
233 val |= evt;
234 armv6_pmcr_write(val);
237 static irqreturn_t
238 armv6pmu_handle_irq(struct arm_pmu *cpu_pmu)
240 unsigned long pmcr = armv6_pmcr_read();
241 struct perf_sample_data data;
242 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
243 struct pt_regs *regs;
244 int idx;
246 if (!armv6_pmcr_has_overflowed(pmcr))
247 return IRQ_NONE;
249 regs = get_irq_regs();
252 * The interrupts are cleared by writing the overflow flags back to
253 * the control register. All of the other bits don't have any effect
254 * if they are rewritten, so write the whole value back.
256 armv6_pmcr_write(pmcr);
258 for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV6_NUM_COUNTERS) {
259 struct perf_event *event = cpuc->events[idx];
260 struct hw_perf_event *hwc;
262 /* Ignore if we don't have an event. */
263 if (!event)
264 continue;
267 * We have a single interrupt for all counters. Check that
268 * each counter has overflowed before we process it.
270 if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
271 continue;
273 hwc = &event->hw;
274 armpmu_event_update(event);
275 perf_sample_data_init(&data, 0, hwc->last_period);
276 if (!armpmu_event_set_period(event))
277 continue;
279 if (perf_event_overflow(event, &data, regs))
280 cpu_pmu->disable(event);
284 * Handle the pending perf events.
286 * Note: this call *must* be run with interrupts disabled. For
287 * platforms that can have the PMU interrupts raised as an NMI, this
288 * will not work.
290 irq_work_run();
292 return IRQ_HANDLED;
295 static void armv6pmu_start(struct arm_pmu *cpu_pmu)
297 unsigned long val;
299 val = armv6_pmcr_read();
300 val |= ARMV6_PMCR_ENABLE;
301 armv6_pmcr_write(val);
304 static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
306 unsigned long val;
308 val = armv6_pmcr_read();
309 val &= ~ARMV6_PMCR_ENABLE;
310 armv6_pmcr_write(val);
313 static int
314 armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
315 struct perf_event *event)
317 struct hw_perf_event *hwc = &event->hw;
318 /* Always place a cycle counter into the cycle counter. */
319 if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
320 if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
321 return -EAGAIN;
323 return ARMV6_CYCLE_COUNTER;
324 } else {
326 * For anything other than a cycle counter, try and use
327 * counter0 and counter1.
329 if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
330 return ARMV6_COUNTER1;
332 if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
333 return ARMV6_COUNTER0;
335 /* The counters are all in use. */
336 return -EAGAIN;
340 static void armv6pmu_clear_event_idx(struct pmu_hw_events *cpuc,
341 struct perf_event *event)
343 clear_bit(event->hw.idx, cpuc->used_mask);
346 static void armv6pmu_disable_event(struct perf_event *event)
348 unsigned long val, mask, evt;
349 struct hw_perf_event *hwc = &event->hw;
350 int idx = hwc->idx;
352 if (ARMV6_CYCLE_COUNTER == idx) {
353 mask = ARMV6_PMCR_CCOUNT_IEN;
354 evt = 0;
355 } else if (ARMV6_COUNTER0 == idx) {
356 mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
357 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
358 } else if (ARMV6_COUNTER1 == idx) {
359 mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
360 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
361 } else {
362 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
363 return;
367 * Mask out the current event and set the counter to count the number
368 * of ETM bus signal assertion cycles. The external reporting should
369 * be disabled and so this should never increment.
371 val = armv6_pmcr_read();
372 val &= ~mask;
373 val |= evt;
374 armv6_pmcr_write(val);
377 static int armv6_map_event(struct perf_event *event)
379 return armpmu_map_event(event, &armv6_perf_map,
380 &armv6_perf_cache_map, 0xFF);
383 static void armv6pmu_init(struct arm_pmu *cpu_pmu)
385 cpu_pmu->handle_irq = armv6pmu_handle_irq;
386 cpu_pmu->enable = armv6pmu_enable_event;
387 cpu_pmu->disable = armv6pmu_disable_event;
388 cpu_pmu->read_counter = armv6pmu_read_counter;
389 cpu_pmu->write_counter = armv6pmu_write_counter;
390 cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
391 cpu_pmu->clear_event_idx = armv6pmu_clear_event_idx;
392 cpu_pmu->start = armv6pmu_start;
393 cpu_pmu->stop = armv6pmu_stop;
394 cpu_pmu->map_event = armv6_map_event;
396 bitmap_set(cpu_pmu->cntr_mask, 0, ARMV6_NUM_COUNTERS);
399 static int armv6_1136_pmu_init(struct arm_pmu *cpu_pmu)
401 armv6pmu_init(cpu_pmu);
402 cpu_pmu->name = "armv6_1136";
403 return 0;
406 static int armv6_1176_pmu_init(struct arm_pmu *cpu_pmu)
408 armv6pmu_init(cpu_pmu);
409 cpu_pmu->name = "armv6_1176";
410 return 0;
413 static const struct of_device_id armv6_pmu_of_device_ids[] = {
414 {.compatible = "arm,arm1176-pmu", .data = armv6_1176_pmu_init},
415 {.compatible = "arm,arm1136-pmu", .data = armv6_1136_pmu_init},
416 { /* sentinel value */ }
419 static int armv6_pmu_device_probe(struct platform_device *pdev)
421 return arm_pmu_device_probe(pdev, armv6_pmu_of_device_ids, NULL);
424 static struct platform_driver armv6_pmu_driver = {
425 .driver = {
426 .name = "armv6-pmu",
427 .of_match_table = armv6_pmu_of_device_ids,
429 .probe = armv6_pmu_device_probe,
432 builtin_platform_driver(armv6_pmu_driver);