1 // SPDX-License-Identifier: GPL-2.0
3 * RISC-V performance counter support.
5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
7 * This code is based on ARM perf event code which is in turn based on
8 * sparc64 and x86 code.
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/sched/clock.h>
22 #include <linux/soc/andes/irq.h>
23 #include <linux/workqueue.h>
25 #include <asm/errata_list.h>
27 #include <asm/cpufeature.h>
28 #include <asm/vendor_extensions.h>
29 #include <asm/vendor_extensions/andes.h>
31 #define ALT_SBI_PMU_OVERFLOW(__ovl) \
32 asm volatile(ALTERNATIVE_2( \
33 "csrr %0, " __stringify(CSR_SCOUNTOVF), \
34 "csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF), \
35 THEAD_VENDOR_ID, ERRATA_THEAD_PMU, \
36 CONFIG_ERRATA_THEAD_PMU, \
37 "csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF), \
39 RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
40 CONFIG_ANDES_CUSTOM_PMU) \
44 #define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask) \
45 asm volatile(ALTERNATIVE( \
46 "csrc " __stringify(CSR_IP) ", %0\n\t", \
47 "csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t", \
49 RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
50 CONFIG_ANDES_CUSTOM_PMU) \
54 #define SYSCTL_NO_USER_ACCESS 0
55 #define SYSCTL_USER_ACCESS 1
56 #define SYSCTL_LEGACY 2
58 #define PERF_EVENT_FLAG_NO_USER_ACCESS BIT(SYSCTL_NO_USER_ACCESS)
59 #define PERF_EVENT_FLAG_USER_ACCESS BIT(SYSCTL_USER_ACCESS)
60 #define PERF_EVENT_FLAG_LEGACY BIT(SYSCTL_LEGACY)
62 PMU_FORMAT_ATTR(event
, "config:0-47");
63 PMU_FORMAT_ATTR(firmware
, "config:62-63");
65 static bool sbi_v2_available
;
66 static DEFINE_STATIC_KEY_FALSE(sbi_pmu_snapshot_available
);
67 #define sbi_pmu_snapshot_available() \
68 static_branch_unlikely(&sbi_pmu_snapshot_available)
70 static struct attribute
*riscv_arch_formats_attr
[] = {
71 &format_attr_event
.attr
,
72 &format_attr_firmware
.attr
,
76 static struct attribute_group riscv_pmu_format_group
= {
78 .attrs
= riscv_arch_formats_attr
,
81 static const struct attribute_group
*riscv_pmu_attr_groups
[] = {
82 &riscv_pmu_format_group
,
86 /* Allow user mode access by default */
87 static int sysctl_perf_user_access __read_mostly
= SYSCTL_USER_ACCESS
;
90 * RISC-V doesn't have heterogeneous harts yet. This need to be part of
91 * per_cpu in case of harts with different pmu counters
93 static union sbi_pmu_ctr_info
*pmu_ctr_list
;
94 static bool riscv_pmu_use_irq
;
95 static unsigned int riscv_pmu_irq_num
;
96 static unsigned int riscv_pmu_irq_mask
;
97 static unsigned int riscv_pmu_irq
;
99 /* Cache the available counters in a bitmask */
100 static unsigned long cmask
;
102 struct sbi_pmu_event_data
{
105 struct hw_gen_event
{
106 uint32_t event_code
:16;
107 uint32_t event_type
:4;
108 uint32_t reserved
:12;
110 struct hw_cache_event
{
111 uint32_t result_id
:1;
113 uint32_t cache_id
:13;
114 uint32_t event_type
:4;
115 uint32_t reserved
:12;
122 static struct sbi_pmu_event_data pmu_hw_event_map
[] = {
123 [PERF_COUNT_HW_CPU_CYCLES
] = {.hw_gen_event
= {
124 SBI_PMU_HW_CPU_CYCLES
,
125 SBI_PMU_EVENT_TYPE_HW
, 0}},
126 [PERF_COUNT_HW_INSTRUCTIONS
] = {.hw_gen_event
= {
127 SBI_PMU_HW_INSTRUCTIONS
,
128 SBI_PMU_EVENT_TYPE_HW
, 0}},
129 [PERF_COUNT_HW_CACHE_REFERENCES
] = {.hw_gen_event
= {
130 SBI_PMU_HW_CACHE_REFERENCES
,
131 SBI_PMU_EVENT_TYPE_HW
, 0}},
132 [PERF_COUNT_HW_CACHE_MISSES
] = {.hw_gen_event
= {
133 SBI_PMU_HW_CACHE_MISSES
,
134 SBI_PMU_EVENT_TYPE_HW
, 0}},
135 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = {.hw_gen_event
= {
136 SBI_PMU_HW_BRANCH_INSTRUCTIONS
,
137 SBI_PMU_EVENT_TYPE_HW
, 0}},
138 [PERF_COUNT_HW_BRANCH_MISSES
] = {.hw_gen_event
= {
139 SBI_PMU_HW_BRANCH_MISSES
,
140 SBI_PMU_EVENT_TYPE_HW
, 0}},
141 [PERF_COUNT_HW_BUS_CYCLES
] = {.hw_gen_event
= {
142 SBI_PMU_HW_BUS_CYCLES
,
143 SBI_PMU_EVENT_TYPE_HW
, 0}},
144 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = {.hw_gen_event
= {
145 SBI_PMU_HW_STALLED_CYCLES_FRONTEND
,
146 SBI_PMU_EVENT_TYPE_HW
, 0}},
147 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = {.hw_gen_event
= {
148 SBI_PMU_HW_STALLED_CYCLES_BACKEND
,
149 SBI_PMU_EVENT_TYPE_HW
, 0}},
150 [PERF_COUNT_HW_REF_CPU_CYCLES
] = {.hw_gen_event
= {
151 SBI_PMU_HW_REF_CPU_CYCLES
,
152 SBI_PMU_EVENT_TYPE_HW
, 0}},
155 #define C(x) PERF_COUNT_HW_CACHE_##x
156 static struct sbi_pmu_event_data pmu_cache_event_map
[PERF_COUNT_HW_CACHE_MAX
]
157 [PERF_COUNT_HW_CACHE_OP_MAX
]
158 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
161 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
162 C(OP_READ
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
163 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
164 C(OP_READ
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
167 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
168 C(OP_WRITE
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
169 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
170 C(OP_WRITE
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
173 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
174 C(OP_PREFETCH
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
175 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
176 C(OP_PREFETCH
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
181 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
182 C(OP_READ
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
183 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
), C(OP_READ
),
184 C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
187 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
188 C(OP_WRITE
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
189 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
190 C(OP_WRITE
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
193 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
194 C(OP_PREFETCH
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
195 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
196 C(OP_PREFETCH
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
201 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
202 C(OP_READ
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
203 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
204 C(OP_READ
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
207 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
208 C(OP_WRITE
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
209 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
210 C(OP_WRITE
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
213 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
214 C(OP_PREFETCH
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
215 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
216 C(OP_PREFETCH
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
221 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
222 C(OP_READ
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
223 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
224 C(OP_READ
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
227 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
228 C(OP_WRITE
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
229 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
230 C(OP_WRITE
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
233 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
234 C(OP_PREFETCH
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
235 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
236 C(OP_PREFETCH
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
241 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
242 C(OP_READ
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
243 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
244 C(OP_READ
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
247 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
248 C(OP_WRITE
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
249 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
250 C(OP_WRITE
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
253 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
254 C(OP_PREFETCH
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
255 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
256 C(OP_PREFETCH
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
261 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
262 C(OP_READ
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
263 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
264 C(OP_READ
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
267 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
268 C(OP_WRITE
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
269 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
270 C(OP_WRITE
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
273 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
274 C(OP_PREFETCH
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
275 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
276 C(OP_PREFETCH
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
281 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
282 C(OP_READ
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
283 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
284 C(OP_READ
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
287 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
288 C(OP_WRITE
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
289 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
290 C(OP_WRITE
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
293 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
294 C(OP_PREFETCH
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
295 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
296 C(OP_PREFETCH
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
301 static void pmu_sbi_check_event(struct sbi_pmu_event_data
*edata
)
305 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_CFG_MATCH
,
306 0, cmask
, 0, edata
->event_idx
, 0, 0);
308 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_STOP
,
309 ret
.value
, 0x1, SBI_PMU_STOP_FLAG_RESET
, 0, 0, 0);
310 } else if (ret
.error
== SBI_ERR_NOT_SUPPORTED
) {
311 /* This event cannot be monitored by any counter */
312 edata
->event_idx
= -ENOENT
;
316 static void pmu_sbi_check_std_events(struct work_struct
*work
)
318 for (int i
= 0; i
< ARRAY_SIZE(pmu_hw_event_map
); i
++)
319 pmu_sbi_check_event(&pmu_hw_event_map
[i
]);
321 for (int i
= 0; i
< ARRAY_SIZE(pmu_cache_event_map
); i
++)
322 for (int j
= 0; j
< ARRAY_SIZE(pmu_cache_event_map
[i
]); j
++)
323 for (int k
= 0; k
< ARRAY_SIZE(pmu_cache_event_map
[i
][j
]); k
++)
324 pmu_sbi_check_event(&pmu_cache_event_map
[i
][j
][k
]);
327 static DECLARE_WORK(check_std_events_work
, pmu_sbi_check_std_events
);
329 static int pmu_sbi_ctr_get_width(int idx
)
331 return pmu_ctr_list
[idx
].width
;
334 static bool pmu_sbi_ctr_is_fw(int cidx
)
336 union sbi_pmu_ctr_info
*info
;
338 info
= &pmu_ctr_list
[cidx
];
342 return (info
->type
== SBI_PMU_CTR_TYPE_FW
) ? true : false;
346 * Returns the counter width of a programmable counter and number of hardware
347 * counters. As we don't support heterogeneous CPUs yet, it is okay to just
348 * return the counter width of the first programmable counter.
350 int riscv_pmu_get_hpm_info(u32
*hw_ctr_width
, u32
*num_hw_ctr
)
353 union sbi_pmu_ctr_info
*info
;
354 u32 hpm_width
= 0, hpm_count
= 0;
359 for_each_set_bit(i
, &cmask
, RISCV_MAX_COUNTERS
) {
360 info
= &pmu_ctr_list
[i
];
363 if (!hpm_width
&& info
->csr
!= CSR_CYCLE
&& info
->csr
!= CSR_INSTRET
)
364 hpm_width
= info
->width
;
365 if (info
->type
== SBI_PMU_CTR_TYPE_HW
)
369 *hw_ctr_width
= hpm_width
;
370 *num_hw_ctr
= hpm_count
;
374 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info
);
376 static uint8_t pmu_sbi_csr_index(struct perf_event
*event
)
378 return pmu_ctr_list
[event
->hw
.idx
].csr
- CSR_CYCLE
;
381 static unsigned long pmu_sbi_get_filter_flags(struct perf_event
*event
)
383 unsigned long cflags
= 0;
384 bool guest_events
= false;
386 if (event
->attr
.config1
& RISCV_PMU_CONFIG1_GUEST_EVENTS
)
388 if (event
->attr
.exclude_kernel
)
389 cflags
|= guest_events
? SBI_PMU_CFG_FLAG_SET_VSINH
: SBI_PMU_CFG_FLAG_SET_SINH
;
390 if (event
->attr
.exclude_user
)
391 cflags
|= guest_events
? SBI_PMU_CFG_FLAG_SET_VUINH
: SBI_PMU_CFG_FLAG_SET_UINH
;
392 if (guest_events
&& event
->attr
.exclude_hv
)
393 cflags
|= SBI_PMU_CFG_FLAG_SET_SINH
;
394 if (event
->attr
.exclude_host
)
395 cflags
|= SBI_PMU_CFG_FLAG_SET_UINH
| SBI_PMU_CFG_FLAG_SET_SINH
;
396 if (event
->attr
.exclude_guest
)
397 cflags
|= SBI_PMU_CFG_FLAG_SET_VSINH
| SBI_PMU_CFG_FLAG_SET_VUINH
;
402 static int pmu_sbi_ctr_get_idx(struct perf_event
*event
)
404 struct hw_perf_event
*hwc
= &event
->hw
;
405 struct riscv_pmu
*rvpmu
= to_riscv_pmu(event
->pmu
);
406 struct cpu_hw_events
*cpuc
= this_cpu_ptr(rvpmu
->hw_events
);
409 uint64_t cbase
= 0, cmask
= rvpmu
->cmask
;
410 unsigned long cflags
= 0;
412 cflags
= pmu_sbi_get_filter_flags(event
);
415 * In legacy mode, we have to force the fixed counters for those events
416 * but not in the user access mode as we want to use the other counters
417 * that support sampling/filtering.
419 if ((hwc
->flags
& PERF_EVENT_FLAG_LEGACY
) && (event
->attr
.type
== PERF_TYPE_HARDWARE
)) {
420 if (event
->attr
.config
== PERF_COUNT_HW_CPU_CYCLES
) {
421 cflags
|= SBI_PMU_CFG_FLAG_SKIP_MATCH
;
423 } else if (event
->attr
.config
== PERF_COUNT_HW_INSTRUCTIONS
) {
424 cflags
|= SBI_PMU_CFG_FLAG_SKIP_MATCH
;
425 cmask
= BIT(CSR_INSTRET
- CSR_CYCLE
);
429 /* retrieve the available counter index */
430 #if defined(CONFIG_32BIT)
431 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_CFG_MATCH
, cbase
,
432 cmask
, cflags
, hwc
->event_base
, hwc
->config
,
435 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_CFG_MATCH
, cbase
,
436 cmask
, cflags
, hwc
->event_base
, hwc
->config
, 0);
439 pr_debug("Not able to find a counter for event %lx config %llx\n",
440 hwc
->event_base
, hwc
->config
);
441 return sbi_err_map_linux_errno(ret
.error
);
445 if (!test_bit(idx
, &rvpmu
->cmask
) || !pmu_ctr_list
[idx
].value
)
448 /* Additional sanity check for the counter id */
449 if (pmu_sbi_ctr_is_fw(idx
)) {
450 if (!test_and_set_bit(idx
, cpuc
->used_fw_ctrs
))
453 if (!test_and_set_bit(idx
, cpuc
->used_hw_ctrs
))
460 static void pmu_sbi_ctr_clear_idx(struct perf_event
*event
)
463 struct hw_perf_event
*hwc
= &event
->hw
;
464 struct riscv_pmu
*rvpmu
= to_riscv_pmu(event
->pmu
);
465 struct cpu_hw_events
*cpuc
= this_cpu_ptr(rvpmu
->hw_events
);
468 if (pmu_sbi_ctr_is_fw(idx
))
469 clear_bit(idx
, cpuc
->used_fw_ctrs
);
471 clear_bit(idx
, cpuc
->used_hw_ctrs
);
474 static int pmu_event_find_cache(u64 config
)
476 unsigned int cache_type
, cache_op
, cache_result
, ret
;
478 cache_type
= (config
>> 0) & 0xff;
479 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
482 cache_op
= (config
>> 8) & 0xff;
483 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
486 cache_result
= (config
>> 16) & 0xff;
487 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
490 ret
= pmu_cache_event_map
[cache_type
][cache_op
][cache_result
].event_idx
;
495 static bool pmu_sbi_is_fw_event(struct perf_event
*event
)
497 u32 type
= event
->attr
.type
;
498 u64 config
= event
->attr
.config
;
500 if ((type
== PERF_TYPE_RAW
) && ((config
>> 63) == 1))
506 static int pmu_sbi_event_map(struct perf_event
*event
, u64
*econfig
)
508 u32 type
= event
->attr
.type
;
509 u64 config
= event
->attr
.config
;
514 * Ensure we are finished checking standard hardware events for
515 * validity before allowing userspace to configure any events.
517 flush_work(&check_std_events_work
);
520 case PERF_TYPE_HARDWARE
:
521 if (config
>= PERF_COUNT_HW_MAX
)
523 ret
= pmu_hw_event_map
[event
->attr
.config
].event_idx
;
525 case PERF_TYPE_HW_CACHE
:
526 ret
= pmu_event_find_cache(config
);
530 * As per SBI specification, the upper 16 bits must be unused
532 * Bits 63:62 are used to distinguish between raw events
533 * 00 - Hardware raw event
534 * 10 - SBI firmware events
535 * 11 - Risc-V platform specific firmware event
537 raw_config_val
= config
& RISCV_PMU_RAW_EVENT_MASK
;
538 switch (config
>> 62) {
540 ret
= RISCV_PMU_RAW_EVENT_IDX
;
541 *econfig
= raw_config_val
;
544 ret
= (raw_config_val
& 0xFFFF) |
545 (SBI_PMU_EVENT_TYPE_FW
<< 16);
549 * For Risc-V platform specific firmware events
550 * Event code - 0xFFFF
551 * Event data - raw event encoding
553 ret
= SBI_PMU_EVENT_TYPE_FW
<< 16 | RISCV_PLAT_FW_EVENT
;
554 *econfig
= raw_config_val
;
566 static void pmu_sbi_snapshot_free(struct riscv_pmu
*pmu
)
570 for_each_possible_cpu(cpu
) {
571 struct cpu_hw_events
*cpu_hw_evt
= per_cpu_ptr(pmu
->hw_events
, cpu
);
573 if (!cpu_hw_evt
->snapshot_addr
)
576 free_page((unsigned long)cpu_hw_evt
->snapshot_addr
);
577 cpu_hw_evt
->snapshot_addr
= NULL
;
578 cpu_hw_evt
->snapshot_addr_phys
= 0;
582 static int pmu_sbi_snapshot_alloc(struct riscv_pmu
*pmu
)
585 struct page
*snapshot_page
;
587 for_each_possible_cpu(cpu
) {
588 struct cpu_hw_events
*cpu_hw_evt
= per_cpu_ptr(pmu
->hw_events
, cpu
);
590 snapshot_page
= alloc_page(GFP_ATOMIC
| __GFP_ZERO
);
591 if (!snapshot_page
) {
592 pmu_sbi_snapshot_free(pmu
);
595 cpu_hw_evt
->snapshot_addr
= page_to_virt(snapshot_page
);
596 cpu_hw_evt
->snapshot_addr_phys
= page_to_phys(snapshot_page
);
602 static int pmu_sbi_snapshot_disable(void)
606 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM
, SBI_SHMEM_DISABLE
,
607 SBI_SHMEM_DISABLE
, 0, 0, 0, 0);
609 pr_warn("failed to disable snapshot shared memory\n");
610 return sbi_err_map_linux_errno(ret
.error
);
616 static int pmu_sbi_snapshot_setup(struct riscv_pmu
*pmu
, int cpu
)
618 struct cpu_hw_events
*cpu_hw_evt
;
619 struct sbiret ret
= {0};
621 cpu_hw_evt
= per_cpu_ptr(pmu
->hw_events
, cpu
);
622 if (!cpu_hw_evt
->snapshot_addr_phys
)
625 if (cpu_hw_evt
->snapshot_set_done
)
628 if (IS_ENABLED(CONFIG_32BIT
))
629 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM
,
630 cpu_hw_evt
->snapshot_addr_phys
,
631 (u64
)(cpu_hw_evt
->snapshot_addr_phys
) >> 32, 0, 0, 0, 0);
633 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM
,
634 cpu_hw_evt
->snapshot_addr_phys
, 0, 0, 0, 0, 0);
636 /* Free up the snapshot area memory and fall back to SBI PMU calls without snapshot */
638 if (ret
.error
!= SBI_ERR_NOT_SUPPORTED
)
639 pr_warn("pmu snapshot setup failed with error %ld\n", ret
.error
);
640 return sbi_err_map_linux_errno(ret
.error
);
643 memset(cpu_hw_evt
->snapshot_cval_shcopy
, 0, sizeof(u64
) * RISCV_MAX_COUNTERS
);
644 cpu_hw_evt
->snapshot_set_done
= true;
649 static u64
pmu_sbi_ctr_read(struct perf_event
*event
)
651 struct hw_perf_event
*hwc
= &event
->hw
;
655 struct riscv_pmu
*pmu
= to_riscv_pmu(event
->pmu
);
656 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
657 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
658 union sbi_pmu_ctr_info info
= pmu_ctr_list
[idx
];
660 /* Read the value from the shared memory directly only if counter is stopped */
661 if (sbi_pmu_snapshot_available() && (hwc
->state
& PERF_HES_STOPPED
)) {
662 val
= sdata
->ctr_values
[idx
];
666 if (pmu_sbi_is_fw_event(event
)) {
667 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_FW_READ
,
668 hwc
->idx
, 0, 0, 0, 0, 0);
673 if (IS_ENABLED(CONFIG_32BIT
) && sbi_v2_available
&& info
.width
>= 32) {
674 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_FW_READ_HI
,
675 hwc
->idx
, 0, 0, 0, 0, 0);
677 val
|= ((u64
)ret
.value
<< 32);
679 WARN_ONCE(1, "Unable to read upper 32 bits of firmware counter error: %ld\n",
683 val
= riscv_pmu_ctr_read_csr(info
.csr
);
684 if (IS_ENABLED(CONFIG_32BIT
))
685 val
|= ((u64
)riscv_pmu_ctr_read_csr(info
.csr
+ 0x80)) << 32;
691 static void pmu_sbi_set_scounteren(void *arg
)
693 struct perf_event
*event
= (struct perf_event
*)arg
;
695 if (event
->hw
.idx
!= -1)
696 csr_write(CSR_SCOUNTEREN
,
697 csr_read(CSR_SCOUNTEREN
) | BIT(pmu_sbi_csr_index(event
)));
700 static void pmu_sbi_reset_scounteren(void *arg
)
702 struct perf_event
*event
= (struct perf_event
*)arg
;
704 if (event
->hw
.idx
!= -1)
705 csr_write(CSR_SCOUNTEREN
,
706 csr_read(CSR_SCOUNTEREN
) & ~BIT(pmu_sbi_csr_index(event
)));
709 static void pmu_sbi_ctr_start(struct perf_event
*event
, u64 ival
)
712 struct hw_perf_event
*hwc
= &event
->hw
;
713 unsigned long flag
= SBI_PMU_START_FLAG_SET_INIT_VALUE
;
715 /* There is no benefit setting SNAPSHOT FLAG for a single counter */
716 #if defined(CONFIG_32BIT)
717 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, hwc
->idx
,
718 1, flag
, ival
, ival
>> 32, 0);
720 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, hwc
->idx
,
721 1, flag
, ival
, 0, 0);
723 if (ret
.error
&& (ret
.error
!= SBI_ERR_ALREADY_STARTED
))
724 pr_err("Starting counter idx %d failed with error %d\n",
725 hwc
->idx
, sbi_err_map_linux_errno(ret
.error
));
727 if ((hwc
->flags
& PERF_EVENT_FLAG_USER_ACCESS
) &&
728 (hwc
->flags
& PERF_EVENT_FLAG_USER_READ_CNT
))
729 pmu_sbi_set_scounteren((void *)event
);
732 static void pmu_sbi_ctr_stop(struct perf_event
*event
, unsigned long flag
)
735 struct hw_perf_event
*hwc
= &event
->hw
;
736 struct riscv_pmu
*pmu
= to_riscv_pmu(event
->pmu
);
737 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
738 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
740 if ((hwc
->flags
& PERF_EVENT_FLAG_USER_ACCESS
) &&
741 (hwc
->flags
& PERF_EVENT_FLAG_USER_READ_CNT
))
742 pmu_sbi_reset_scounteren((void *)event
);
744 if (sbi_pmu_snapshot_available())
745 flag
|= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT
;
747 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_STOP
, hwc
->idx
, 1, flag
, 0, 0, 0);
748 if (!ret
.error
&& sbi_pmu_snapshot_available()) {
750 * The counter snapshot is based on the index base specified by hwc->idx.
751 * The actual counter value is updated in shared memory at index 0 when counter
752 * mask is 0x01. To ensure accurate counter values, it's necessary to transfer
753 * the counter value to shared memory. However, if hwc->idx is zero, the counter
754 * value is already correctly updated in shared memory, requiring no further
758 sdata
->ctr_values
[hwc
->idx
] = sdata
->ctr_values
[0];
759 sdata
->ctr_values
[0] = 0;
761 } else if (ret
.error
&& (ret
.error
!= SBI_ERR_ALREADY_STOPPED
) &&
762 flag
!= SBI_PMU_STOP_FLAG_RESET
) {
763 pr_err("Stopping counter idx %d failed with error %d\n",
764 hwc
->idx
, sbi_err_map_linux_errno(ret
.error
));
768 static int pmu_sbi_find_num_ctrs(void)
772 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_NUM_COUNTERS
, 0, 0, 0, 0, 0, 0);
776 return sbi_err_map_linux_errno(ret
.error
);
779 static int pmu_sbi_get_ctrinfo(int nctr
, unsigned long *mask
)
782 int i
, num_hw_ctr
= 0, num_fw_ctr
= 0;
783 union sbi_pmu_ctr_info cinfo
;
785 pmu_ctr_list
= kcalloc(nctr
, sizeof(*pmu_ctr_list
), GFP_KERNEL
);
789 for (i
= 0; i
< nctr
; i
++) {
790 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_GET_INFO
, i
, 0, 0, 0, 0, 0);
792 /* The logical counter ids are not expected to be contiguous */
797 cinfo
.value
= ret
.value
;
798 if (cinfo
.type
== SBI_PMU_CTR_TYPE_FW
)
802 pmu_ctr_list
[i
].value
= cinfo
.value
;
805 pr_info("%d firmware and %d hardware counters\n", num_fw_ctr
, num_hw_ctr
);
810 static inline void pmu_sbi_stop_all(struct riscv_pmu
*pmu
)
813 * No need to check the error because we are disabling all the counters
814 * which may include counters that are not enabled yet.
816 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_STOP
,
817 0, pmu
->cmask
, SBI_PMU_STOP_FLAG_RESET
, 0, 0, 0);
820 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu
*pmu
)
822 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
823 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
824 unsigned long flag
= 0;
827 u64 temp_ctr_overflow_mask
= 0;
829 if (sbi_pmu_snapshot_available())
830 flag
= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT
;
832 /* Reset the shadow copy to avoid save/restore any value from previous overflow */
833 memset(cpu_hw_evt
->snapshot_cval_shcopy
, 0, sizeof(u64
) * RISCV_MAX_COUNTERS
);
835 for (i
= 0; i
< BITS_TO_LONGS(RISCV_MAX_COUNTERS
); i
++) {
836 /* No need to check the error here as we can't do anything about the error */
837 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_STOP
, i
* BITS_PER_LONG
,
838 cpu_hw_evt
->used_hw_ctrs
[i
], flag
, 0, 0, 0);
839 if (!ret
.error
&& sbi_pmu_snapshot_available()) {
840 /* Save the counter values to avoid clobbering */
841 for_each_set_bit(idx
, &cpu_hw_evt
->used_hw_ctrs
[i
], BITS_PER_LONG
)
842 cpu_hw_evt
->snapshot_cval_shcopy
[i
* BITS_PER_LONG
+ idx
] =
843 sdata
->ctr_values
[idx
];
844 /* Save the overflow mask to avoid clobbering */
845 temp_ctr_overflow_mask
|= sdata
->ctr_overflow_mask
<< (i
* BITS_PER_LONG
);
849 /* Restore the counter values to the shared memory for used hw counters */
850 if (sbi_pmu_snapshot_available()) {
851 for_each_set_bit(idx
, cpu_hw_evt
->used_hw_ctrs
, RISCV_MAX_COUNTERS
)
852 sdata
->ctr_values
[idx
] = cpu_hw_evt
->snapshot_cval_shcopy
[idx
];
853 if (temp_ctr_overflow_mask
)
854 sdata
->ctr_overflow_mask
= temp_ctr_overflow_mask
;
859 * This function starts all the used counters in two step approach.
860 * Any counter that did not overflow can be start in a single step
861 * while the overflowed counters need to be started with updated initialization
864 static inline void pmu_sbi_start_ovf_ctrs_sbi(struct cpu_hw_events
*cpu_hw_evt
,
868 struct perf_event
*event
;
869 unsigned long flag
= SBI_PMU_START_FLAG_SET_INIT_VALUE
;
870 unsigned long ctr_start_mask
= 0;
872 struct hw_perf_event
*hwc
;
875 for (i
= 0; i
< BITS_TO_LONGS(RISCV_MAX_COUNTERS
); i
++) {
876 ctr_start_mask
= cpu_hw_evt
->used_hw_ctrs
[i
] & ~ctr_ovf_mask
;
877 /* Start all the counters that did not overflow in a single shot */
878 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, i
* BITS_PER_LONG
, ctr_start_mask
,
882 /* Reinitialize and start all the counter that overflowed */
883 while (ctr_ovf_mask
) {
884 if (ctr_ovf_mask
& 0x01) {
885 event
= cpu_hw_evt
->events
[idx
];
887 max_period
= riscv_pmu_ctr_get_width_mask(event
);
888 init_val
= local64_read(&hwc
->prev_count
) & max_period
;
889 #if defined(CONFIG_32BIT)
890 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, idx
, 1,
891 flag
, init_val
, init_val
>> 32, 0);
893 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, idx
, 1,
894 flag
, init_val
, 0, 0);
896 perf_event_update_userpage(event
);
898 ctr_ovf_mask
= ctr_ovf_mask
>> 1;
903 static inline void pmu_sbi_start_ovf_ctrs_snapshot(struct cpu_hw_events
*cpu_hw_evt
,
907 struct perf_event
*event
;
908 unsigned long flag
= SBI_PMU_START_FLAG_INIT_SNAPSHOT
;
909 u64 max_period
, init_val
= 0;
910 struct hw_perf_event
*hwc
;
911 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
913 for_each_set_bit(idx
, cpu_hw_evt
->used_hw_ctrs
, RISCV_MAX_COUNTERS
) {
914 if (ctr_ovf_mask
& BIT(idx
)) {
915 event
= cpu_hw_evt
->events
[idx
];
917 max_period
= riscv_pmu_ctr_get_width_mask(event
);
918 init_val
= local64_read(&hwc
->prev_count
) & max_period
;
919 cpu_hw_evt
->snapshot_cval_shcopy
[idx
] = init_val
;
922 * We do not need to update the non-overflow counters the previous
923 * value should have been there already.
927 for (i
= 0; i
< BITS_TO_LONGS(RISCV_MAX_COUNTERS
); i
++) {
928 /* Restore the counter values to relative indices for used hw counters */
929 for_each_set_bit(idx
, &cpu_hw_evt
->used_hw_ctrs
[i
], BITS_PER_LONG
)
930 sdata
->ctr_values
[idx
] =
931 cpu_hw_evt
->snapshot_cval_shcopy
[idx
+ i
* BITS_PER_LONG
];
932 /* Start all the counters in a single shot */
933 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, idx
* BITS_PER_LONG
,
934 cpu_hw_evt
->used_hw_ctrs
[i
], flag
, 0, 0, 0);
938 static void pmu_sbi_start_overflow_mask(struct riscv_pmu
*pmu
,
941 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
943 if (sbi_pmu_snapshot_available())
944 pmu_sbi_start_ovf_ctrs_snapshot(cpu_hw_evt
, ctr_ovf_mask
);
946 pmu_sbi_start_ovf_ctrs_sbi(cpu_hw_evt
, ctr_ovf_mask
);
949 static irqreturn_t
pmu_sbi_ovf_handler(int irq
, void *dev
)
951 struct perf_sample_data data
;
952 struct pt_regs
*regs
;
953 struct hw_perf_event
*hw_evt
;
954 union sbi_pmu_ctr_info
*info
;
955 int lidx
, hidx
, fidx
;
956 struct riscv_pmu
*pmu
;
957 struct perf_event
*event
;
959 u64 overflowed_ctrs
= 0;
960 struct cpu_hw_events
*cpu_hw_evt
= dev
;
961 u64 start_clock
= sched_clock();
962 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
964 if (WARN_ON_ONCE(!cpu_hw_evt
))
967 /* Firmware counter don't support overflow yet */
968 fidx
= find_first_bit(cpu_hw_evt
->used_hw_ctrs
, RISCV_MAX_COUNTERS
);
969 if (fidx
== RISCV_MAX_COUNTERS
) {
970 csr_clear(CSR_SIP
, BIT(riscv_pmu_irq_num
));
974 event
= cpu_hw_evt
->events
[fidx
];
976 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask
);
980 pmu
= to_riscv_pmu(event
->pmu
);
981 pmu_sbi_stop_hw_ctrs(pmu
);
983 /* Overflow status register should only be read after counter are stopped */
984 if (sbi_pmu_snapshot_available())
985 overflow
= sdata
->ctr_overflow_mask
;
987 ALT_SBI_PMU_OVERFLOW(overflow
);
990 * Overflow interrupt pending bit should only be cleared after stopping
991 * all the counters to avoid any race condition.
993 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask
);
995 /* No overflow bit is set */
999 regs
= get_irq_regs();
1001 for_each_set_bit(lidx
, cpu_hw_evt
->used_hw_ctrs
, RISCV_MAX_COUNTERS
) {
1002 struct perf_event
*event
= cpu_hw_evt
->events
[lidx
];
1004 /* Skip if invalid event or user did not request a sampling */
1005 if (!event
|| !is_sampling_event(event
))
1008 info
= &pmu_ctr_list
[lidx
];
1009 /* Do a sanity check */
1010 if (!info
|| info
->type
!= SBI_PMU_CTR_TYPE_HW
)
1013 if (sbi_pmu_snapshot_available())
1014 /* SBI implementation already updated the logical indicies */
1017 /* compute hardware counter index */
1018 hidx
= info
->csr
- CSR_CYCLE
;
1020 /* check if the corresponding bit is set in sscountovf or overflow mask in shmem */
1021 if (!(overflow
& BIT(hidx
)))
1025 * Keep a track of overflowed counters so that they can be started
1026 * with updated initial value.
1028 overflowed_ctrs
|= BIT(lidx
);
1029 hw_evt
= &event
->hw
;
1030 /* Update the event states here so that we know the state while reading */
1031 hw_evt
->state
|= PERF_HES_STOPPED
;
1032 riscv_pmu_event_update(event
);
1033 hw_evt
->state
|= PERF_HES_UPTODATE
;
1034 perf_sample_data_init(&data
, 0, hw_evt
->last_period
);
1035 if (riscv_pmu_event_set_period(event
)) {
1037 * Unlike other ISAs, RISC-V don't have to disable interrupts
1038 * to avoid throttling here. As per the specification, the
1039 * interrupt remains disabled until the OF bit is set.
1040 * Interrupts are enabled again only during the start.
1041 * TODO: We will need to stop the guest counters once
1042 * virtualization support is added.
1044 perf_event_overflow(event
, &data
, regs
);
1046 /* Reset the state as we are going to start the counter after the loop */
1050 pmu_sbi_start_overflow_mask(pmu
, overflowed_ctrs
);
1051 perf_sample_event_took(sched_clock() - start_clock
);
1056 static int pmu_sbi_starting_cpu(unsigned int cpu
, struct hlist_node
*node
)
1058 struct riscv_pmu
*pmu
= hlist_entry_safe(node
, struct riscv_pmu
, node
);
1059 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
1062 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
1063 * legacy option but that will be removed in the future.
1065 if (sysctl_perf_user_access
== SYSCTL_LEGACY
)
1066 csr_write(CSR_SCOUNTEREN
, 0x7);
1068 csr_write(CSR_SCOUNTEREN
, 0x2);
1070 /* Stop all the counters so that they can be enabled from perf */
1071 pmu_sbi_stop_all(pmu
);
1073 if (riscv_pmu_use_irq
) {
1074 cpu_hw_evt
->irq
= riscv_pmu_irq
;
1075 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask
);
1076 enable_percpu_irq(riscv_pmu_irq
, IRQ_TYPE_NONE
);
1079 if (sbi_pmu_snapshot_available())
1080 return pmu_sbi_snapshot_setup(pmu
, cpu
);
1085 static int pmu_sbi_dying_cpu(unsigned int cpu
, struct hlist_node
*node
)
1087 if (riscv_pmu_use_irq
) {
1088 disable_percpu_irq(riscv_pmu_irq
);
1091 /* Disable all counters access for user mode now */
1092 csr_write(CSR_SCOUNTEREN
, 0x0);
1094 if (sbi_pmu_snapshot_available())
1095 return pmu_sbi_snapshot_disable();
1100 static int pmu_sbi_setup_irqs(struct riscv_pmu
*pmu
, struct platform_device
*pdev
)
1103 struct cpu_hw_events __percpu
*hw_events
= pmu
->hw_events
;
1104 struct irq_domain
*domain
= NULL
;
1106 if (riscv_isa_extension_available(NULL
, SSCOFPMF
)) {
1107 riscv_pmu_irq_num
= RV_IRQ_PMU
;
1108 riscv_pmu_use_irq
= true;
1109 } else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU
) &&
1110 riscv_cached_mvendorid(0) == THEAD_VENDOR_ID
&&
1111 riscv_cached_marchid(0) == 0 &&
1112 riscv_cached_mimpid(0) == 0) {
1113 riscv_pmu_irq_num
= THEAD_C9XX_RV_IRQ_PMU
;
1114 riscv_pmu_use_irq
= true;
1115 } else if (riscv_has_vendor_extension_unlikely(ANDES_VENDOR_ID
,
1116 RISCV_ISA_VENDOR_EXT_XANDESPMU
) &&
1117 IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU
)) {
1118 riscv_pmu_irq_num
= ANDES_SLI_CAUSE_BASE
+ ANDES_RV_IRQ_PMOVI
;
1119 riscv_pmu_use_irq
= true;
1122 riscv_pmu_irq_mask
= BIT(riscv_pmu_irq_num
% BITS_PER_LONG
);
1124 if (!riscv_pmu_use_irq
)
1127 domain
= irq_find_matching_fwnode(riscv_get_intc_hwnode(),
1130 pr_err("Failed to find INTC IRQ root domain\n");
1134 riscv_pmu_irq
= irq_create_mapping(domain
, riscv_pmu_irq_num
);
1135 if (!riscv_pmu_irq
) {
1136 pr_err("Failed to map PMU interrupt for node\n");
1140 ret
= request_percpu_irq(riscv_pmu_irq
, pmu_sbi_ovf_handler
, "riscv-pmu", hw_events
);
1142 pr_err("registering percpu irq failed [%d]\n", ret
);
1149 #ifdef CONFIG_CPU_PM
1150 static int riscv_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
1153 struct riscv_pmu
*rvpmu
= container_of(b
, struct riscv_pmu
, riscv_pm_nb
);
1154 struct cpu_hw_events
*cpuc
= this_cpu_ptr(rvpmu
->hw_events
);
1155 int enabled
= bitmap_weight(cpuc
->used_hw_ctrs
, RISCV_MAX_COUNTERS
);
1156 struct perf_event
*event
;
1162 for (idx
= 0; idx
< RISCV_MAX_COUNTERS
; idx
++) {
1163 event
= cpuc
->events
[idx
];
1170 * Stop and update the counter
1172 riscv_pmu_stop(event
, PERF_EF_UPDATE
);
1175 case CPU_PM_ENTER_FAILED
:
1177 * Restore and enable the counter.
1179 riscv_pmu_start(event
, PERF_EF_RELOAD
);
1189 static int riscv_pm_pmu_register(struct riscv_pmu
*pmu
)
1191 pmu
->riscv_pm_nb
.notifier_call
= riscv_pm_pmu_notify
;
1192 return cpu_pm_register_notifier(&pmu
->riscv_pm_nb
);
1195 static void riscv_pm_pmu_unregister(struct riscv_pmu
*pmu
)
1197 cpu_pm_unregister_notifier(&pmu
->riscv_pm_nb
);
1200 static inline int riscv_pm_pmu_register(struct riscv_pmu
*pmu
) { return 0; }
1201 static inline void riscv_pm_pmu_unregister(struct riscv_pmu
*pmu
) { }
1204 static void riscv_pmu_destroy(struct riscv_pmu
*pmu
)
1206 if (sbi_v2_available
) {
1207 if (sbi_pmu_snapshot_available()) {
1208 pmu_sbi_snapshot_disable();
1209 pmu_sbi_snapshot_free(pmu
);
1212 riscv_pm_pmu_unregister(pmu
);
1213 cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING
, &pmu
->node
);
1216 static void pmu_sbi_event_init(struct perf_event
*event
)
1219 * The permissions are set at event_init so that we do not depend
1220 * on the sysctl value that can change.
1222 if (sysctl_perf_user_access
== SYSCTL_NO_USER_ACCESS
)
1223 event
->hw
.flags
|= PERF_EVENT_FLAG_NO_USER_ACCESS
;
1224 else if (sysctl_perf_user_access
== SYSCTL_USER_ACCESS
)
1225 event
->hw
.flags
|= PERF_EVENT_FLAG_USER_ACCESS
;
1227 event
->hw
.flags
|= PERF_EVENT_FLAG_LEGACY
;
1230 static void pmu_sbi_event_mapped(struct perf_event
*event
, struct mm_struct
*mm
)
1232 if (event
->hw
.flags
& PERF_EVENT_FLAG_NO_USER_ACCESS
)
1235 if (event
->hw
.flags
& PERF_EVENT_FLAG_LEGACY
) {
1236 if (event
->attr
.config
!= PERF_COUNT_HW_CPU_CYCLES
&&
1237 event
->attr
.config
!= PERF_COUNT_HW_INSTRUCTIONS
) {
1243 * The user mmapped the event to directly access it: this is where
1244 * we determine based on sysctl_perf_user_access if we grant userspace
1245 * the direct access to this event. That means that within the same
1246 * task, some events may be directly accessible and some other may not,
1247 * if the user changes the value of sysctl_perf_user_accesss in the
1251 event
->hw
.flags
|= PERF_EVENT_FLAG_USER_READ_CNT
;
1254 * We must enable userspace access *before* advertising in the user page
1255 * that it is possible to do so to avoid any race.
1256 * And we must notify all cpus here because threads that currently run
1257 * on other cpus will try to directly access the counter too without
1258 * calling pmu_sbi_ctr_start.
1260 if (event
->hw
.flags
& PERF_EVENT_FLAG_USER_ACCESS
)
1261 on_each_cpu_mask(mm_cpumask(mm
),
1262 pmu_sbi_set_scounteren
, (void *)event
, 1);
1265 static void pmu_sbi_event_unmapped(struct perf_event
*event
, struct mm_struct
*mm
)
1267 if (event
->hw
.flags
& PERF_EVENT_FLAG_NO_USER_ACCESS
)
1270 if (event
->hw
.flags
& PERF_EVENT_FLAG_LEGACY
) {
1271 if (event
->attr
.config
!= PERF_COUNT_HW_CPU_CYCLES
&&
1272 event
->attr
.config
!= PERF_COUNT_HW_INSTRUCTIONS
) {
1278 * Here we can directly remove user access since the user does not have
1279 * access to the user page anymore so we avoid the racy window where the
1280 * user could have read cap_user_rdpmc to true right before we disable
1283 event
->hw
.flags
&= ~PERF_EVENT_FLAG_USER_READ_CNT
;
1285 if (event
->hw
.flags
& PERF_EVENT_FLAG_USER_ACCESS
)
1286 on_each_cpu_mask(mm_cpumask(mm
),
1287 pmu_sbi_reset_scounteren
, (void *)event
, 1);
1290 static void riscv_pmu_update_counter_access(void *info
)
1292 if (sysctl_perf_user_access
== SYSCTL_LEGACY
)
1293 csr_write(CSR_SCOUNTEREN
, 0x7);
1295 csr_write(CSR_SCOUNTEREN
, 0x2);
1298 static int riscv_pmu_proc_user_access_handler(const struct ctl_table
*table
,
1299 int write
, void *buffer
,
1300 size_t *lenp
, loff_t
*ppos
)
1302 int prev
= sysctl_perf_user_access
;
1303 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
1306 * Test against the previous value since we clear SCOUNTEREN when
1307 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1308 * not do that if that was already the case.
1310 if (ret
|| !write
|| prev
== sysctl_perf_user_access
)
1313 on_each_cpu(riscv_pmu_update_counter_access
, NULL
, 1);
1318 static struct ctl_table sbi_pmu_sysctl_table
[] = {
1320 .procname
= "perf_user_access",
1321 .data
= &sysctl_perf_user_access
,
1322 .maxlen
= sizeof(unsigned int),
1324 .proc_handler
= riscv_pmu_proc_user_access_handler
,
1325 .extra1
= SYSCTL_ZERO
,
1326 .extra2
= SYSCTL_TWO
,
1330 static int pmu_sbi_device_probe(struct platform_device
*pdev
)
1332 struct riscv_pmu
*pmu
= NULL
;
1336 pr_info("SBI PMU extension is available\n");
1337 pmu
= riscv_pmu_alloc();
1341 num_counters
= pmu_sbi_find_num_ctrs();
1342 if (num_counters
< 0) {
1343 pr_err("SBI PMU extension doesn't provide any counters\n");
1347 /* It is possible to get from SBI more than max number of counters */
1348 if (num_counters
> RISCV_MAX_COUNTERS
) {
1349 num_counters
= RISCV_MAX_COUNTERS
;
1350 pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters
);
1353 /* cache all the information about counters now */
1354 if (pmu_sbi_get_ctrinfo(num_counters
, &cmask
))
1357 ret
= pmu_sbi_setup_irqs(pmu
, pdev
);
1359 pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1360 pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
1361 pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_EXCLUDE
;
1364 pmu
->pmu
.attr_groups
= riscv_pmu_attr_groups
;
1365 pmu
->pmu
.parent
= &pdev
->dev
;
1367 pmu
->ctr_start
= pmu_sbi_ctr_start
;
1368 pmu
->ctr_stop
= pmu_sbi_ctr_stop
;
1369 pmu
->event_map
= pmu_sbi_event_map
;
1370 pmu
->ctr_get_idx
= pmu_sbi_ctr_get_idx
;
1371 pmu
->ctr_get_width
= pmu_sbi_ctr_get_width
;
1372 pmu
->ctr_clear_idx
= pmu_sbi_ctr_clear_idx
;
1373 pmu
->ctr_read
= pmu_sbi_ctr_read
;
1374 pmu
->event_init
= pmu_sbi_event_init
;
1375 pmu
->event_mapped
= pmu_sbi_event_mapped
;
1376 pmu
->event_unmapped
= pmu_sbi_event_unmapped
;
1377 pmu
->csr_index
= pmu_sbi_csr_index
;
1379 ret
= riscv_pm_pmu_register(pmu
);
1381 goto out_unregister
;
1383 ret
= perf_pmu_register(&pmu
->pmu
, "cpu", PERF_TYPE_RAW
);
1385 goto out_unregister
;
1387 /* SBI PMU Snapsphot is only available in SBI v2.0 */
1388 if (sbi_v2_available
) {
1391 ret
= pmu_sbi_snapshot_alloc(pmu
);
1393 goto out_unregister
;
1396 ret
= pmu_sbi_snapshot_setup(pmu
, cpu
);
1400 /* Snapshot is an optional feature. Continue if not available */
1401 pmu_sbi_snapshot_free(pmu
);
1403 pr_info("SBI PMU snapshot detected\n");
1405 * We enable it once here for the boot cpu. If snapshot shmem setup
1406 * fails during cpu hotplug process, it will fail to start the cpu
1407 * as we can not handle hetergenous PMUs with different snapshot
1410 static_branch_enable(&sbi_pmu_snapshot_available
);
1414 register_sysctl("kernel", sbi_pmu_sysctl_table
);
1416 ret
= cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING
, &pmu
->node
);
1418 goto out_unregister
;
1420 /* Asynchronously check which standard events are available */
1421 schedule_work(&check_std_events_work
);
1426 riscv_pmu_destroy(pmu
);
1433 static struct platform_driver pmu_sbi_driver
= {
1434 .probe
= pmu_sbi_device_probe
,
1436 .name
= RISCV_PMU_SBI_PDEV_NAME
,
1440 static int __init
pmu_sbi_devinit(void)
1443 struct platform_device
*pdev
;
1445 if (sbi_spec_version
< sbi_mk_version(0, 3) ||
1446 !sbi_probe_extension(SBI_EXT_PMU
)) {
1450 if (sbi_spec_version
>= sbi_mk_version(2, 0))
1451 sbi_v2_available
= true;
1453 ret
= cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING
,
1454 "perf/riscv/pmu:starting",
1455 pmu_sbi_starting_cpu
, pmu_sbi_dying_cpu
);
1457 pr_err("CPU hotplug notifier could not be registered: %d\n",
1462 ret
= platform_driver_register(&pmu_sbi_driver
);
1466 pdev
= platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME
, -1, NULL
, 0);
1468 platform_driver_unregister(&pmu_sbi_driver
);
1469 return PTR_ERR(pdev
);
1472 /* Notify legacy implementation that SBI pmu is available*/
1473 riscv_pmu_legacy_skip_init();
1477 device_initcall(pmu_sbi_devinit
)