Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / pwm / core.c
blob9c733877e98e47ac6548932cb040e91dd1008f81
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
9 #define DEFAULT_SYMBOL_NAMESPACE PWM
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
24 #include <dt-bindings/pwm/pwm.h>
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
32 static DEFINE_IDR(pwm_chips);
34 static void pwmchip_lock(struct pwm_chip *chip)
36 if (chip->atomic)
37 spin_lock(&chip->atomic_lock);
38 else
39 mutex_lock(&chip->nonatomic_lock);
42 static void pwmchip_unlock(struct pwm_chip *chip)
44 if (chip->atomic)
45 spin_unlock(&chip->atomic_lock);
46 else
47 mutex_unlock(&chip->nonatomic_lock);
50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
52 static bool pwm_wf_valid(const struct pwm_waveform *wf)
55 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
56 * some space for future extensions. One possibility is to simplify
57 * representing waveforms with inverted polarity using negative values
58 * somehow.
60 if (wf->period_length_ns > S64_MAX)
61 return false;
63 if (wf->duty_length_ns > wf->period_length_ns)
64 return false;
67 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
68 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
70 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
71 return false;
73 return true;
76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
78 if (wf->period_length_ns) {
79 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
80 *state = (struct pwm_state){
81 .enabled = true,
82 .polarity = PWM_POLARITY_NORMAL,
83 .period = wf->period_length_ns,
84 .duty_cycle = wf->duty_length_ns,
86 else
87 *state = (struct pwm_state){
88 .enabled = true,
89 .polarity = PWM_POLARITY_INVERSED,
90 .period = wf->period_length_ns,
91 .duty_cycle = wf->period_length_ns - wf->duty_length_ns,
93 } else {
94 *state = (struct pwm_state){
95 .enabled = false,
100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
102 if (state->enabled) {
103 if (state->polarity == PWM_POLARITY_NORMAL)
104 *wf = (struct pwm_waveform){
105 .period_length_ns = state->period,
106 .duty_length_ns = state->duty_cycle,
107 .duty_offset_ns = 0,
109 else
110 *wf = (struct pwm_waveform){
111 .period_length_ns = state->period,
112 .duty_length_ns = state->period - state->duty_cycle,
113 .duty_offset_ns = state->duty_cycle,
115 } else {
116 *wf = (struct pwm_waveform){
117 .period_length_ns = 0,
122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
124 if (a->period_length_ns > b->period_length_ns)
125 return 1;
127 if (a->period_length_ns < b->period_length_ns)
128 return -1;
130 if (a->duty_length_ns > b->duty_length_ns)
131 return 1;
133 if (a->duty_length_ns < b->duty_length_ns)
134 return -1;
136 if (a->duty_offset_ns > b->duty_offset_ns)
137 return 1;
139 if (a->duty_offset_ns < b->duty_offset_ns)
140 return -1;
142 return 0;
145 static bool pwm_check_rounding(const struct pwm_waveform *wf,
146 const struct pwm_waveform *wf_rounded)
148 if (!wf->period_length_ns)
149 return true;
151 if (wf->period_length_ns < wf_rounded->period_length_ns)
152 return false;
154 if (wf->duty_length_ns < wf_rounded->duty_length_ns)
155 return false;
157 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
158 return false;
160 return true;
163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
164 const struct pwm_waveform *wf, void *wfhw)
166 const struct pwm_ops *ops = chip->ops;
167 int ret;
169 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
170 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
172 return ret;
175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
176 const void *wfhw, struct pwm_waveform *wf)
178 const struct pwm_ops *ops = chip->ops;
179 int ret;
181 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
182 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
184 return ret;
187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
189 const struct pwm_ops *ops = chip->ops;
190 int ret;
192 ret = ops->read_waveform(chip, pwm, wfhw);
193 trace_pwm_read_waveform(pwm, wfhw, ret);
195 return ret;
198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
200 const struct pwm_ops *ops = chip->ops;
201 int ret;
203 ret = ops->write_waveform(chip, pwm, wfhw);
204 trace_pwm_write_waveform(pwm, wfhw, ret);
206 return ret;
209 #define WFHWSIZE 20
212 * pwm_round_waveform_might_sleep - Query hardware capabilities
213 * Cannot be used in atomic context.
214 * @pwm: PWM device
215 * @wf: waveform to round and output parameter
217 * Typically a given waveform cannot be implemented exactly by hardware, e.g.
218 * because hardware only supports coarse period resolution or no duty_offset.
219 * This function returns the actually implemented waveform if you pass wf to
220 * pwm_set_waveform_might_sleep now.
222 * Note however that the world doesn't stop turning when you call it, so when
223 * doing
225 * pwm_round_waveform_might_sleep(mypwm, &wf);
226 * pwm_set_waveform_might_sleep(mypwm, &wf, true);
228 * the latter might fail, e.g. because an input clock changed its rate between
229 * these two calls and the waveform determined by
230 * pwm_round_waveform_might_sleep() cannot be implemented any more.
232 * Returns 0 on success, 1 if there is no valid hardware configuration matching
233 * the input waveform under the PWM rounding rules or a negative errno.
235 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
237 struct pwm_chip *chip = pwm->chip;
238 const struct pwm_ops *ops = chip->ops;
239 struct pwm_waveform wf_req = *wf;
240 char wfhw[WFHWSIZE];
241 int ret_tohw, ret_fromhw;
243 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
245 if (!pwm_wf_valid(wf))
246 return -EINVAL;
248 guard(pwmchip)(chip);
250 if (!chip->operational)
251 return -ENODEV;
253 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
254 if (ret_tohw < 0)
255 return ret_tohw;
257 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
258 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
259 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
261 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
262 if (ret_fromhw < 0)
263 return ret_fromhw;
265 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
266 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
267 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
269 if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
270 ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf))
271 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
272 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
273 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
275 return ret_tohw;
277 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
280 * pwm_get_waveform_might_sleep - Query hardware about current configuration
281 * Cannot be used in atomic context.
282 * @pwm: PWM device
283 * @wf: output parameter
285 * Stores the current configuration of the PWM in @wf. Note this is the
286 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
288 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
290 struct pwm_chip *chip = pwm->chip;
291 const struct pwm_ops *ops = chip->ops;
292 char wfhw[WFHWSIZE];
293 int err;
295 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
297 guard(pwmchip)(chip);
299 if (!chip->operational)
300 return -ENODEV;
302 err = __pwm_read_waveform(chip, pwm, &wfhw);
303 if (err)
304 return err;
306 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
308 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
310 /* Called with the pwmchip lock held */
311 static int __pwm_set_waveform(struct pwm_device *pwm,
312 const struct pwm_waveform *wf,
313 bool exact)
315 struct pwm_chip *chip = pwm->chip;
316 const struct pwm_ops *ops = chip->ops;
317 char wfhw[WFHWSIZE];
318 struct pwm_waveform wf_rounded;
319 int err;
321 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
323 if (!pwm_wf_valid(wf))
324 return -EINVAL;
326 err = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
327 if (err)
328 return err;
330 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
331 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
332 if (err)
333 return err;
335 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !pwm_check_rounding(wf, &wf_rounded))
336 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
337 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
338 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
340 if (exact && pwmwfcmp(wf, &wf_rounded)) {
341 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
342 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
343 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
345 return 1;
349 err = __pwm_write_waveform(chip, pwm, &wfhw);
350 if (err)
351 return err;
353 /* update .state */
354 pwm_wf2state(wf, &pwm->state);
356 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
357 struct pwm_waveform wf_set;
359 err = __pwm_read_waveform(chip, pwm, &wfhw);
360 if (err)
361 /* maybe ignore? */
362 return err;
364 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
365 if (err)
366 /* maybe ignore? */
367 return err;
369 if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
370 dev_err(&chip->dev,
371 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
372 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
373 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
374 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
376 return 0;
380 * pwm_set_waveform_might_sleep - Apply a new waveform
381 * Cannot be used in atomic context.
382 * @pwm: PWM device
383 * @wf: The waveform to apply
384 * @exact: If true no rounding is allowed
386 * Typically a requested waveform cannot be implemented exactly, e.g. because
387 * you requested .period_length_ns = 100 ns, but the hardware can only set
388 * periods that are a multiple of 8.5 ns. With that hardware passing exact =
389 * true results in pwm_set_waveform_might_sleep() failing and returning 1. If
390 * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger
391 * than the requested value).
392 * Note that even with exact = true, some rounding by less than 1 is
393 * possible/needed. In the above example requesting .period_length_ns = 94 and
394 * exact = true, you get the hardware configured with period = 93.5 ns.
396 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
397 const struct pwm_waveform *wf, bool exact)
399 struct pwm_chip *chip = pwm->chip;
400 int err;
402 might_sleep();
404 guard(pwmchip)(chip);
406 if (!chip->operational)
407 return -ENODEV;
409 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
411 * Catch any drivers that have been marked as atomic but
412 * that will sleep anyway.
414 non_block_start();
415 err = __pwm_set_waveform(pwm, wf, exact);
416 non_block_end();
417 } else {
418 err = __pwm_set_waveform(pwm, wf, exact);
421 return err;
423 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
425 static void pwm_apply_debug(struct pwm_device *pwm,
426 const struct pwm_state *state)
428 struct pwm_state *last = &pwm->last;
429 struct pwm_chip *chip = pwm->chip;
430 struct pwm_state s1 = { 0 }, s2 = { 0 };
431 int err;
433 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
434 return;
436 /* No reasonable diagnosis possible without .get_state() */
437 if (!chip->ops->get_state)
438 return;
441 * *state was just applied. Read out the hardware state and do some
442 * checks.
445 err = chip->ops->get_state(chip, pwm, &s1);
446 trace_pwm_get(pwm, &s1, err);
447 if (err)
448 /* If that failed there isn't much to debug */
449 return;
452 * The lowlevel driver either ignored .polarity (which is a bug) or as
453 * best effort inverted .polarity and fixed .duty_cycle respectively.
454 * Undo this inversion and fixup for further tests.
456 if (s1.enabled && s1.polarity != state->polarity) {
457 s2.polarity = state->polarity;
458 s2.duty_cycle = s1.period - s1.duty_cycle;
459 s2.period = s1.period;
460 s2.enabled = s1.enabled;
461 } else {
462 s2 = s1;
465 if (s2.polarity != state->polarity &&
466 state->duty_cycle < state->period)
467 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
469 if (state->enabled && s2.enabled &&
470 last->polarity == state->polarity &&
471 last->period > s2.period &&
472 last->period <= state->period)
473 dev_warn(pwmchip_parent(chip),
474 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
475 state->period, s2.period, last->period);
478 * Rounding period up is fine only if duty_cycle is 0 then, because a
479 * flat line doesn't have a characteristic period.
481 if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
482 dev_warn(pwmchip_parent(chip),
483 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
484 state->period, s2.period);
486 if (state->enabled &&
487 last->polarity == state->polarity &&
488 last->period == s2.period &&
489 last->duty_cycle > s2.duty_cycle &&
490 last->duty_cycle <= state->duty_cycle)
491 dev_warn(pwmchip_parent(chip),
492 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
493 state->duty_cycle, state->period,
494 s2.duty_cycle, s2.period,
495 last->duty_cycle, last->period);
497 if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
498 dev_warn(pwmchip_parent(chip),
499 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
500 state->duty_cycle, state->period,
501 s2.duty_cycle, s2.period);
503 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
504 dev_warn(pwmchip_parent(chip),
505 "requested disabled, but yielded enabled with duty > 0\n");
507 /* reapply the state that the driver reported being configured. */
508 err = chip->ops->apply(chip, pwm, &s1);
509 trace_pwm_apply(pwm, &s1, err);
510 if (err) {
511 *last = s1;
512 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
513 return;
516 *last = (struct pwm_state){ 0 };
517 err = chip->ops->get_state(chip, pwm, last);
518 trace_pwm_get(pwm, last, err);
519 if (err)
520 return;
522 /* reapplication of the current state should give an exact match */
523 if (s1.enabled != last->enabled ||
524 s1.polarity != last->polarity ||
525 (s1.enabled && s1.period != last->period) ||
526 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
527 dev_err(pwmchip_parent(chip),
528 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
529 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
530 last->enabled, last->polarity, last->duty_cycle,
531 last->period);
535 static bool pwm_state_valid(const struct pwm_state *state)
538 * For a disabled state all other state description is irrelevant and
539 * and supposed to be ignored. So also ignore any strange values and
540 * consider the state ok.
542 if (state->enabled)
543 return true;
545 if (!state->period)
546 return false;
548 if (state->duty_cycle > state->period)
549 return false;
551 return true;
555 * __pwm_apply() - atomically apply a new state to a PWM device
556 * @pwm: PWM device
557 * @state: new state to apply
559 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
561 struct pwm_chip *chip;
562 const struct pwm_ops *ops;
563 int err;
565 if (!pwm || !state)
566 return -EINVAL;
568 if (!pwm_state_valid(state)) {
570 * Allow to transition from one invalid state to another.
571 * This ensures that you can e.g. change the polarity while
572 * the period is zero. (This happens on stm32 when the hardware
573 * is in its poweron default state.) This greatly simplifies
574 * working with the sysfs API where you can only change one
575 * parameter at a time.
577 if (!pwm_state_valid(&pwm->state)) {
578 pwm->state = *state;
579 return 0;
582 return -EINVAL;
585 chip = pwm->chip;
586 ops = chip->ops;
588 if (state->period == pwm->state.period &&
589 state->duty_cycle == pwm->state.duty_cycle &&
590 state->polarity == pwm->state.polarity &&
591 state->enabled == pwm->state.enabled &&
592 state->usage_power == pwm->state.usage_power)
593 return 0;
595 if (ops->write_waveform) {
596 struct pwm_waveform wf;
597 char wfhw[WFHWSIZE];
599 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
601 pwm_state2wf(state, &wf);
604 * The rounding is wrong here for states with inverted polarity.
605 * While .apply() rounds down duty_cycle (which represents the
606 * time from the start of the period to the inner edge),
607 * .round_waveform_tohw() rounds down the time the PWM is high.
608 * Can be fixed if the need arises, until reported otherwise
609 * let's assume that consumers don't care.
612 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
613 if (err) {
614 if (err > 0)
616 * This signals an invalid request, typically
617 * the requested period (or duty_offset) is
618 * smaller than possible with the hardware.
620 return -EINVAL;
622 return err;
625 if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
626 struct pwm_waveform wf_rounded;
628 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
629 if (err)
630 return err;
632 if (!pwm_check_rounding(&wf, &wf_rounded))
633 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
634 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
635 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
638 err = __pwm_write_waveform(chip, pwm, &wfhw);
639 if (err)
640 return err;
642 pwm->state = *state;
644 } else {
645 err = ops->apply(chip, pwm, state);
646 trace_pwm_apply(pwm, state, err);
647 if (err)
648 return err;
650 pwm->state = *state;
653 * only do this after pwm->state was applied as some
654 * implementations of .get_state() depend on this
656 pwm_apply_debug(pwm, state);
659 return 0;
663 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
664 * Cannot be used in atomic context.
665 * @pwm: PWM device
666 * @state: new state to apply
668 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
670 int err;
671 struct pwm_chip *chip = pwm->chip;
674 * Some lowlevel driver's implementations of .apply() make use of
675 * mutexes, also with some drivers only returning when the new
676 * configuration is active calling pwm_apply_might_sleep() from atomic context
677 * is a bad idea. So make it explicit that calling this function might
678 * sleep.
680 might_sleep();
682 guard(pwmchip)(chip);
684 if (!chip->operational)
685 return -ENODEV;
687 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
689 * Catch any drivers that have been marked as atomic but
690 * that will sleep anyway.
692 non_block_start();
693 err = __pwm_apply(pwm, state);
694 non_block_end();
695 } else {
696 err = __pwm_apply(pwm, state);
699 return err;
701 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
704 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
705 * Not all PWM devices support this function, check with pwm_might_sleep().
706 * @pwm: PWM device
707 * @state: new state to apply
709 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
711 struct pwm_chip *chip = pwm->chip;
713 WARN_ONCE(!chip->atomic,
714 "sleeping PWM driver used in atomic context\n");
716 guard(pwmchip)(chip);
718 if (!chip->operational)
719 return -ENODEV;
721 return __pwm_apply(pwm, state);
723 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
726 * pwm_get_state_hw() - get the current PWM state from hardware
727 * @pwm: PWM device
728 * @state: state to fill with the current PWM state
730 * Similar to pwm_get_state() but reads the current PWM state from hardware
731 * instead of the requested state.
733 * Returns: 0 on success or a negative error code on failure.
734 * Context: May sleep.
736 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
738 struct pwm_chip *chip = pwm->chip;
739 const struct pwm_ops *ops = chip->ops;
740 int ret = -EOPNOTSUPP;
742 might_sleep();
744 guard(pwmchip)(chip);
746 if (!chip->operational)
747 return -ENODEV;
749 if (ops->read_waveform) {
750 char wfhw[WFHWSIZE];
751 struct pwm_waveform wf;
753 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
755 ret = __pwm_read_waveform(chip, pwm, &wfhw);
756 if (ret)
757 return ret;
759 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
760 if (ret)
761 return ret;
763 pwm_wf2state(&wf, state);
765 } else if (ops->get_state) {
766 ret = ops->get_state(chip, pwm, state);
767 trace_pwm_get(pwm, state, ret);
770 return ret;
772 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
775 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
776 * @pwm: PWM device
778 * This function will adjust the PWM config to the PWM arguments provided
779 * by the DT or PWM lookup table. This is particularly useful to adapt
780 * the bootloader config to the Linux one.
782 int pwm_adjust_config(struct pwm_device *pwm)
784 struct pwm_state state;
785 struct pwm_args pargs;
787 pwm_get_args(pwm, &pargs);
788 pwm_get_state(pwm, &state);
791 * If the current period is zero it means that either the PWM driver
792 * does not support initial state retrieval or the PWM has not yet
793 * been configured.
795 * In either case, we setup the new period and polarity, and assign a
796 * duty cycle of 0.
798 if (!state.period) {
799 state.duty_cycle = 0;
800 state.period = pargs.period;
801 state.polarity = pargs.polarity;
803 return pwm_apply_might_sleep(pwm, &state);
807 * Adjust the PWM duty cycle/period based on the period value provided
808 * in PWM args.
810 if (pargs.period != state.period) {
811 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
813 do_div(dutycycle, state.period);
814 state.duty_cycle = dutycycle;
815 state.period = pargs.period;
819 * If the polarity changed, we should also change the duty cycle.
821 if (pargs.polarity != state.polarity) {
822 state.polarity = pargs.polarity;
823 state.duty_cycle = state.period - state.duty_cycle;
826 return pwm_apply_might_sleep(pwm, &state);
828 EXPORT_SYMBOL_GPL(pwm_adjust_config);
831 * pwm_capture() - capture and report a PWM signal
832 * @pwm: PWM device
833 * @result: structure to fill with capture result
834 * @timeout: time to wait, in milliseconds, before giving up on capture
836 * Returns: 0 on success or a negative error code on failure.
838 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
839 unsigned long timeout)
841 struct pwm_chip *chip = pwm->chip;
842 const struct pwm_ops *ops = chip->ops;
844 if (!ops->capture)
845 return -ENOSYS;
848 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
849 * and you're interested to speed it up, please convince yourself it's
850 * really not needed, test and then suggest a patch on the mailing list.
852 guard(mutex)(&pwm_lock);
854 guard(pwmchip)(chip);
856 if (!chip->operational)
857 return -ENODEV;
859 return ops->capture(chip, pwm, result, timeout);
862 static struct pwm_chip *pwmchip_find_by_name(const char *name)
864 struct pwm_chip *chip;
865 unsigned long id, tmp;
867 if (!name)
868 return NULL;
870 guard(mutex)(&pwm_lock);
872 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
873 if (device_match_name(pwmchip_parent(chip), name))
874 return chip;
877 return NULL;
880 static int pwm_device_request(struct pwm_device *pwm, const char *label)
882 int err;
883 struct pwm_chip *chip = pwm->chip;
884 const struct pwm_ops *ops = chip->ops;
886 if (test_bit(PWMF_REQUESTED, &pwm->flags))
887 return -EBUSY;
890 * This function is called while holding pwm_lock. As .operational only
891 * changes while holding this lock, checking it here without holding the
892 * chip lock is fine.
894 if (!chip->operational)
895 return -ENODEV;
897 if (!try_module_get(chip->owner))
898 return -ENODEV;
900 if (!get_device(&chip->dev)) {
901 err = -ENODEV;
902 goto err_get_device;
905 if (ops->request) {
906 err = ops->request(chip, pwm);
907 if (err) {
908 put_device(&chip->dev);
909 err_get_device:
910 module_put(chip->owner);
911 return err;
915 if (ops->read_waveform || ops->get_state) {
917 * Zero-initialize state because most drivers are unaware of
918 * .usage_power. The other members of state are supposed to be
919 * set by lowlevel drivers. We still initialize the whole
920 * structure for simplicity even though this might paper over
921 * faulty implementations of .get_state().
923 struct pwm_state state = { 0, };
925 err = pwm_get_state_hw(pwm, &state);
926 if (!err)
927 pwm->state = state;
929 if (IS_ENABLED(CONFIG_PWM_DEBUG))
930 pwm->last = pwm->state;
933 set_bit(PWMF_REQUESTED, &pwm->flags);
934 pwm->label = label;
936 return 0;
940 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
941 * @chip: PWM chip
942 * @index: per-chip index of the PWM to request
943 * @label: a literal description string of this PWM
945 * Returns: A pointer to the PWM device at the given index of the given PWM
946 * chip. A negative error code is returned if the index is not valid for the
947 * specified PWM chip or if the PWM device cannot be requested.
949 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
950 unsigned int index,
951 const char *label)
953 struct pwm_device *pwm;
954 int err;
956 if (!chip || index >= chip->npwm)
957 return ERR_PTR(-EINVAL);
959 guard(mutex)(&pwm_lock);
961 pwm = &chip->pwms[index];
963 err = pwm_device_request(pwm, label);
964 if (err < 0)
965 return ERR_PTR(err);
967 return pwm;
970 struct pwm_device *
971 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
973 struct pwm_device *pwm;
975 /* period in the second cell and flags in the third cell are optional */
976 if (args->args_count < 1)
977 return ERR_PTR(-EINVAL);
979 pwm = pwm_request_from_chip(chip, args->args[0], NULL);
980 if (IS_ERR(pwm))
981 return pwm;
983 if (args->args_count > 1)
984 pwm->args.period = args->args[1];
986 pwm->args.polarity = PWM_POLARITY_NORMAL;
987 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
988 pwm->args.polarity = PWM_POLARITY_INVERSED;
990 return pwm;
992 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
994 struct pwm_device *
995 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
997 struct pwm_device *pwm;
999 pwm = pwm_request_from_chip(chip, 0, NULL);
1000 if (IS_ERR(pwm))
1001 return pwm;
1003 if (args->args_count > 0)
1004 pwm->args.period = args->args[0];
1006 pwm->args.polarity = PWM_POLARITY_NORMAL;
1007 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1008 pwm->args.polarity = PWM_POLARITY_INVERSED;
1010 return pwm;
1012 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1014 struct pwm_export {
1015 struct device pwm_dev;
1016 struct pwm_device *pwm;
1017 struct mutex lock;
1018 struct pwm_state suspend;
1021 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1023 return container_of(pwmchip_dev, struct pwm_chip, dev);
1026 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1028 return container_of(pwm_dev, struct pwm_export, pwm_dev);
1031 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1033 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1035 return export->pwm;
1038 static ssize_t period_show(struct device *pwm_dev,
1039 struct device_attribute *attr,
1040 char *buf)
1042 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1043 struct pwm_state state;
1045 pwm_get_state(pwm, &state);
1047 return sysfs_emit(buf, "%llu\n", state.period);
1050 static ssize_t period_store(struct device *pwm_dev,
1051 struct device_attribute *attr,
1052 const char *buf, size_t size)
1054 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1055 struct pwm_device *pwm = export->pwm;
1056 struct pwm_state state;
1057 u64 val;
1058 int ret;
1060 ret = kstrtou64(buf, 0, &val);
1061 if (ret)
1062 return ret;
1064 guard(mutex)(&export->lock);
1066 pwm_get_state(pwm, &state);
1067 state.period = val;
1068 ret = pwm_apply_might_sleep(pwm, &state);
1070 return ret ? : size;
1073 static ssize_t duty_cycle_show(struct device *pwm_dev,
1074 struct device_attribute *attr,
1075 char *buf)
1077 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1078 struct pwm_state state;
1080 pwm_get_state(pwm, &state);
1082 return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1085 static ssize_t duty_cycle_store(struct device *pwm_dev,
1086 struct device_attribute *attr,
1087 const char *buf, size_t size)
1089 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1090 struct pwm_device *pwm = export->pwm;
1091 struct pwm_state state;
1092 u64 val;
1093 int ret;
1095 ret = kstrtou64(buf, 0, &val);
1096 if (ret)
1097 return ret;
1099 guard(mutex)(&export->lock);
1101 pwm_get_state(pwm, &state);
1102 state.duty_cycle = val;
1103 ret = pwm_apply_might_sleep(pwm, &state);
1105 return ret ? : size;
1108 static ssize_t enable_show(struct device *pwm_dev,
1109 struct device_attribute *attr,
1110 char *buf)
1112 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1113 struct pwm_state state;
1115 pwm_get_state(pwm, &state);
1117 return sysfs_emit(buf, "%d\n", state.enabled);
1120 static ssize_t enable_store(struct device *pwm_dev,
1121 struct device_attribute *attr,
1122 const char *buf, size_t size)
1124 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1125 struct pwm_device *pwm = export->pwm;
1126 struct pwm_state state;
1127 int val, ret;
1129 ret = kstrtoint(buf, 0, &val);
1130 if (ret)
1131 return ret;
1133 guard(mutex)(&export->lock);
1135 pwm_get_state(pwm, &state);
1137 switch (val) {
1138 case 0:
1139 state.enabled = false;
1140 break;
1141 case 1:
1142 state.enabled = true;
1143 break;
1144 default:
1145 return -EINVAL;
1148 ret = pwm_apply_might_sleep(pwm, &state);
1150 return ret ? : size;
1153 static ssize_t polarity_show(struct device *pwm_dev,
1154 struct device_attribute *attr,
1155 char *buf)
1157 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1158 const char *polarity = "unknown";
1159 struct pwm_state state;
1161 pwm_get_state(pwm, &state);
1163 switch (state.polarity) {
1164 case PWM_POLARITY_NORMAL:
1165 polarity = "normal";
1166 break;
1168 case PWM_POLARITY_INVERSED:
1169 polarity = "inversed";
1170 break;
1173 return sysfs_emit(buf, "%s\n", polarity);
1176 static ssize_t polarity_store(struct device *pwm_dev,
1177 struct device_attribute *attr,
1178 const char *buf, size_t size)
1180 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1181 struct pwm_device *pwm = export->pwm;
1182 enum pwm_polarity polarity;
1183 struct pwm_state state;
1184 int ret;
1186 if (sysfs_streq(buf, "normal"))
1187 polarity = PWM_POLARITY_NORMAL;
1188 else if (sysfs_streq(buf, "inversed"))
1189 polarity = PWM_POLARITY_INVERSED;
1190 else
1191 return -EINVAL;
1193 guard(mutex)(&export->lock);
1195 pwm_get_state(pwm, &state);
1196 state.polarity = polarity;
1197 ret = pwm_apply_might_sleep(pwm, &state);
1199 return ret ? : size;
1202 static ssize_t capture_show(struct device *pwm_dev,
1203 struct device_attribute *attr,
1204 char *buf)
1206 struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1207 struct pwm_capture result;
1208 int ret;
1210 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1211 if (ret)
1212 return ret;
1214 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1217 static DEVICE_ATTR_RW(period);
1218 static DEVICE_ATTR_RW(duty_cycle);
1219 static DEVICE_ATTR_RW(enable);
1220 static DEVICE_ATTR_RW(polarity);
1221 static DEVICE_ATTR_RO(capture);
1223 static struct attribute *pwm_attrs[] = {
1224 &dev_attr_period.attr,
1225 &dev_attr_duty_cycle.attr,
1226 &dev_attr_enable.attr,
1227 &dev_attr_polarity.attr,
1228 &dev_attr_capture.attr,
1229 NULL
1231 ATTRIBUTE_GROUPS(pwm);
1233 static void pwm_export_release(struct device *pwm_dev)
1235 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1237 kfree(export);
1240 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1242 struct pwm_export *export;
1243 char *pwm_prop[2];
1244 int ret;
1246 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1247 return -EBUSY;
1249 export = kzalloc(sizeof(*export), GFP_KERNEL);
1250 if (!export) {
1251 clear_bit(PWMF_EXPORTED, &pwm->flags);
1252 return -ENOMEM;
1255 export->pwm = pwm;
1256 mutex_init(&export->lock);
1258 export->pwm_dev.release = pwm_export_release;
1259 export->pwm_dev.parent = pwmchip_dev;
1260 export->pwm_dev.devt = MKDEV(0, 0);
1261 export->pwm_dev.groups = pwm_groups;
1262 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1264 ret = device_register(&export->pwm_dev);
1265 if (ret) {
1266 clear_bit(PWMF_EXPORTED, &pwm->flags);
1267 put_device(&export->pwm_dev);
1268 export = NULL;
1269 return ret;
1271 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1272 pwm_prop[1] = NULL;
1273 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1274 kfree(pwm_prop[0]);
1276 return 0;
1279 static int pwm_unexport_match(struct device *pwm_dev, void *data)
1281 return pwm_from_dev(pwm_dev) == data;
1284 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1286 struct device *pwm_dev;
1287 char *pwm_prop[2];
1289 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1290 return -ENODEV;
1292 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1293 if (!pwm_dev)
1294 return -ENODEV;
1296 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1297 pwm_prop[1] = NULL;
1298 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1299 kfree(pwm_prop[0]);
1301 /* for device_find_child() */
1302 put_device(pwm_dev);
1303 device_unregister(pwm_dev);
1304 pwm_put(pwm);
1306 return 0;
1309 static ssize_t export_store(struct device *pwmchip_dev,
1310 struct device_attribute *attr,
1311 const char *buf, size_t len)
1313 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1314 struct pwm_device *pwm;
1315 unsigned int hwpwm;
1316 int ret;
1318 ret = kstrtouint(buf, 0, &hwpwm);
1319 if (ret < 0)
1320 return ret;
1322 if (hwpwm >= chip->npwm)
1323 return -ENODEV;
1325 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1326 if (IS_ERR(pwm))
1327 return PTR_ERR(pwm);
1329 ret = pwm_export_child(pwmchip_dev, pwm);
1330 if (ret < 0)
1331 pwm_put(pwm);
1333 return ret ? : len;
1335 static DEVICE_ATTR_WO(export);
1337 static ssize_t unexport_store(struct device *pwmchip_dev,
1338 struct device_attribute *attr,
1339 const char *buf, size_t len)
1341 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1342 unsigned int hwpwm;
1343 int ret;
1345 ret = kstrtouint(buf, 0, &hwpwm);
1346 if (ret < 0)
1347 return ret;
1349 if (hwpwm >= chip->npwm)
1350 return -ENODEV;
1352 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1354 return ret ? : len;
1356 static DEVICE_ATTR_WO(unexport);
1358 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1359 char *buf)
1361 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1363 return sysfs_emit(buf, "%u\n", chip->npwm);
1365 static DEVICE_ATTR_RO(npwm);
1367 static struct attribute *pwm_chip_attrs[] = {
1368 &dev_attr_export.attr,
1369 &dev_attr_unexport.attr,
1370 &dev_attr_npwm.attr,
1371 NULL,
1373 ATTRIBUTE_GROUPS(pwm_chip);
1375 /* takes export->lock on success */
1376 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1377 struct pwm_device *pwm,
1378 struct pwm_state *state)
1380 struct device *pwm_dev;
1381 struct pwm_export *export;
1383 if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1384 return NULL;
1386 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1387 if (!pwm_dev)
1388 return NULL;
1390 export = pwmexport_from_dev(pwm_dev);
1391 put_device(pwm_dev); /* for device_find_child() */
1393 mutex_lock(&export->lock);
1394 pwm_get_state(pwm, state);
1396 return export;
1399 static int pwm_class_apply_state(struct pwm_export *export,
1400 struct pwm_device *pwm,
1401 struct pwm_state *state)
1403 int ret = pwm_apply_might_sleep(pwm, state);
1405 /* release lock taken in pwm_class_get_state */
1406 mutex_unlock(&export->lock);
1408 return ret;
1411 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1413 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1414 unsigned int i;
1415 int ret = 0;
1417 for (i = 0; i < npwm; i++) {
1418 struct pwm_device *pwm = &chip->pwms[i];
1419 struct pwm_state state;
1420 struct pwm_export *export;
1422 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1423 if (!export)
1424 continue;
1426 /* If pwmchip was not enabled before suspend, do nothing. */
1427 if (!export->suspend.enabled) {
1428 /* release lock taken in pwm_class_get_state */
1429 mutex_unlock(&export->lock);
1430 continue;
1433 state.enabled = export->suspend.enabled;
1434 ret = pwm_class_apply_state(export, pwm, &state);
1435 if (ret < 0)
1436 break;
1439 return ret;
1442 static int pwm_class_suspend(struct device *pwmchip_dev)
1444 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1445 unsigned int i;
1446 int ret = 0;
1448 for (i = 0; i < chip->npwm; i++) {
1449 struct pwm_device *pwm = &chip->pwms[i];
1450 struct pwm_state state;
1451 struct pwm_export *export;
1453 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1454 if (!export)
1455 continue;
1458 * If pwmchip was not enabled before suspend, save
1459 * state for resume time and do nothing else.
1461 export->suspend = state;
1462 if (!state.enabled) {
1463 /* release lock taken in pwm_class_get_state */
1464 mutex_unlock(&export->lock);
1465 continue;
1468 state.enabled = false;
1469 ret = pwm_class_apply_state(export, pwm, &state);
1470 if (ret < 0) {
1472 * roll back the PWM devices that were disabled by
1473 * this suspend function.
1475 pwm_class_resume_npwm(pwmchip_dev, i);
1476 break;
1480 return ret;
1483 static int pwm_class_resume(struct device *pwmchip_dev)
1485 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1487 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1490 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1492 static struct class pwm_class = {
1493 .name = "pwm",
1494 .dev_groups = pwm_chip_groups,
1495 .pm = pm_sleep_ptr(&pwm_class_pm_ops),
1498 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1500 unsigned int i;
1502 for (i = 0; i < chip->npwm; i++) {
1503 struct pwm_device *pwm = &chip->pwms[i];
1505 if (test_bit(PWMF_EXPORTED, &pwm->flags))
1506 pwm_unexport_child(&chip->dev, pwm);
1510 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1512 static void *pwmchip_priv(struct pwm_chip *chip)
1514 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1517 /* This is the counterpart to pwmchip_alloc() */
1518 void pwmchip_put(struct pwm_chip *chip)
1520 put_device(&chip->dev);
1522 EXPORT_SYMBOL_GPL(pwmchip_put);
1524 static void pwmchip_release(struct device *pwmchip_dev)
1526 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1528 kfree(chip);
1531 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1533 struct pwm_chip *chip;
1534 struct device *pwmchip_dev;
1535 size_t alloc_size;
1536 unsigned int i;
1538 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1539 sizeof_priv);
1541 chip = kzalloc(alloc_size, GFP_KERNEL);
1542 if (!chip)
1543 return ERR_PTR(-ENOMEM);
1545 chip->npwm = npwm;
1546 chip->uses_pwmchip_alloc = true;
1547 chip->operational = false;
1549 pwmchip_dev = &chip->dev;
1550 device_initialize(pwmchip_dev);
1551 pwmchip_dev->class = &pwm_class;
1552 pwmchip_dev->parent = parent;
1553 pwmchip_dev->release = pwmchip_release;
1555 pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1557 for (i = 0; i < chip->npwm; i++) {
1558 struct pwm_device *pwm = &chip->pwms[i];
1559 pwm->chip = chip;
1560 pwm->hwpwm = i;
1563 return chip;
1565 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1567 static void devm_pwmchip_put(void *data)
1569 struct pwm_chip *chip = data;
1571 pwmchip_put(chip);
1574 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1576 struct pwm_chip *chip;
1577 int ret;
1579 chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1580 if (IS_ERR(chip))
1581 return chip;
1583 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1584 if (ret)
1585 return ERR_PTR(ret);
1587 return chip;
1589 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1591 static void of_pwmchip_add(struct pwm_chip *chip)
1593 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1594 return;
1596 if (!chip->of_xlate)
1597 chip->of_xlate = of_pwm_xlate_with_flags;
1599 of_node_get(pwmchip_parent(chip)->of_node);
1602 static void of_pwmchip_remove(struct pwm_chip *chip)
1604 if (pwmchip_parent(chip))
1605 of_node_put(pwmchip_parent(chip)->of_node);
1608 static bool pwm_ops_check(const struct pwm_chip *chip)
1610 const struct pwm_ops *ops = chip->ops;
1612 if (ops->write_waveform) {
1613 if (!ops->round_waveform_tohw ||
1614 !ops->round_waveform_fromhw ||
1615 !ops->write_waveform)
1616 return false;
1618 if (WFHWSIZE < ops->sizeof_wfhw) {
1619 dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1620 return false;
1622 } else {
1623 if (!ops->apply)
1624 return false;
1626 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1627 dev_warn(pwmchip_parent(chip),
1628 "Please implement the .get_state() callback\n");
1631 return true;
1634 static struct device_link *pwm_device_link_add(struct device *dev,
1635 struct pwm_device *pwm)
1637 struct device_link *dl;
1639 if (!dev) {
1641 * No device for the PWM consumer has been provided. It may
1642 * impact the PM sequence ordering: the PWM supplier may get
1643 * suspended before the consumer.
1645 dev_warn(pwmchip_parent(pwm->chip),
1646 "No consumer device specified to create a link to\n");
1647 return NULL;
1650 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1651 if (!dl) {
1652 dev_err(dev, "failed to create device link to %s\n",
1653 dev_name(pwmchip_parent(pwm->chip)));
1654 return ERR_PTR(-EINVAL);
1657 return dl;
1660 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1662 struct pwm_chip *chip;
1663 unsigned long id, tmp;
1665 guard(mutex)(&pwm_lock);
1667 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1668 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1669 return chip;
1671 return ERR_PTR(-EPROBE_DEFER);
1675 * of_pwm_get() - request a PWM via the PWM framework
1676 * @dev: device for PWM consumer
1677 * @np: device node to get the PWM from
1678 * @con_id: consumer name
1680 * Returns the PWM device parsed from the phandle and index specified in the
1681 * "pwms" property of a device tree node or a negative error-code on failure.
1682 * Values parsed from the device tree are stored in the returned PWM device
1683 * object.
1685 * If con_id is NULL, the first PWM device listed in the "pwms" property will
1686 * be requested. Otherwise the "pwm-names" property is used to do a reverse
1687 * lookup of the PWM index. This also means that the "pwm-names" property
1688 * becomes mandatory for devices that look up the PWM device via the con_id
1689 * parameter.
1691 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1692 * error code on failure.
1694 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1695 const char *con_id)
1697 struct pwm_device *pwm = NULL;
1698 struct of_phandle_args args;
1699 struct device_link *dl;
1700 struct pwm_chip *chip;
1701 int index = 0;
1702 int err;
1704 if (con_id) {
1705 index = of_property_match_string(np, "pwm-names", con_id);
1706 if (index < 0)
1707 return ERR_PTR(index);
1710 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
1711 &args);
1712 if (err) {
1713 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1714 return ERR_PTR(err);
1717 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1718 if (IS_ERR(chip)) {
1719 if (PTR_ERR(chip) != -EPROBE_DEFER)
1720 pr_err("%s(): PWM chip not found\n", __func__);
1722 pwm = ERR_CAST(chip);
1723 goto put;
1726 pwm = chip->of_xlate(chip, &args);
1727 if (IS_ERR(pwm))
1728 goto put;
1730 dl = pwm_device_link_add(dev, pwm);
1731 if (IS_ERR(dl)) {
1732 /* of_xlate ended up calling pwm_request_from_chip() */
1733 pwm_put(pwm);
1734 pwm = ERR_CAST(dl);
1735 goto put;
1739 * If a consumer name was not given, try to look it up from the
1740 * "pwm-names" property if it exists. Otherwise use the name of
1741 * the user device node.
1743 if (!con_id) {
1744 err = of_property_read_string_index(np, "pwm-names", index,
1745 &con_id);
1746 if (err < 0)
1747 con_id = np->name;
1750 pwm->label = con_id;
1752 put:
1753 of_node_put(args.np);
1755 return pwm;
1759 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1760 * @fwnode: firmware node to get the "pwms" property from
1762 * Returns the PWM device parsed from the fwnode and index specified in the
1763 * "pwms" property or a negative error-code on failure.
1764 * Values parsed from the device tree are stored in the returned PWM device
1765 * object.
1767 * This is analogous to of_pwm_get() except con_id is not yet supported.
1768 * ACPI entries must look like
1769 * Package () {"pwms", Package ()
1770 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1772 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1773 * error code on failure.
1775 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1777 struct pwm_device *pwm;
1778 struct fwnode_reference_args args;
1779 struct pwm_chip *chip;
1780 int ret;
1782 memset(&args, 0, sizeof(args));
1784 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1785 if (ret < 0)
1786 return ERR_PTR(ret);
1788 if (args.nargs < 2)
1789 return ERR_PTR(-EPROTO);
1791 chip = fwnode_to_pwmchip(args.fwnode);
1792 if (IS_ERR(chip))
1793 return ERR_CAST(chip);
1795 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1796 if (IS_ERR(pwm))
1797 return pwm;
1799 pwm->args.period = args.args[1];
1800 pwm->args.polarity = PWM_POLARITY_NORMAL;
1802 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1803 pwm->args.polarity = PWM_POLARITY_INVERSED;
1805 return pwm;
1808 static DEFINE_MUTEX(pwm_lookup_lock);
1809 static LIST_HEAD(pwm_lookup_list);
1812 * pwm_get() - look up and request a PWM device
1813 * @dev: device for PWM consumer
1814 * @con_id: consumer name
1816 * Lookup is first attempted using DT. If the device was not instantiated from
1817 * a device tree, a PWM chip and a relative index is looked up via a table
1818 * supplied by board setup code (see pwm_add_table()).
1820 * Once a PWM chip has been found the specified PWM device will be requested
1821 * and is ready to be used.
1823 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1824 * error code on failure.
1826 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1828 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1829 const char *dev_id = dev ? dev_name(dev) : NULL;
1830 struct pwm_device *pwm;
1831 struct pwm_chip *chip;
1832 struct device_link *dl;
1833 unsigned int best = 0;
1834 struct pwm_lookup *p, *chosen = NULL;
1835 unsigned int match;
1836 int err;
1838 /* look up via DT first */
1839 if (is_of_node(fwnode))
1840 return of_pwm_get(dev, to_of_node(fwnode), con_id);
1842 /* then lookup via ACPI */
1843 if (is_acpi_node(fwnode)) {
1844 pwm = acpi_pwm_get(fwnode);
1845 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1846 return pwm;
1850 * We look up the provider in the static table typically provided by
1851 * board setup code. We first try to lookup the consumer device by
1852 * name. If the consumer device was passed in as NULL or if no match
1853 * was found, we try to find the consumer by directly looking it up
1854 * by name.
1856 * If a match is found, the provider PWM chip is looked up by name
1857 * and a PWM device is requested using the PWM device per-chip index.
1859 * The lookup algorithm was shamelessly taken from the clock
1860 * framework:
1862 * We do slightly fuzzy matching here:
1863 * An entry with a NULL ID is assumed to be a wildcard.
1864 * If an entry has a device ID, it must match
1865 * If an entry has a connection ID, it must match
1866 * Then we take the most specific entry - with the following order
1867 * of precedence: dev+con > dev only > con only.
1869 scoped_guard(mutex, &pwm_lookup_lock)
1870 list_for_each_entry(p, &pwm_lookup_list, list) {
1871 match = 0;
1873 if (p->dev_id) {
1874 if (!dev_id || strcmp(p->dev_id, dev_id))
1875 continue;
1877 match += 2;
1880 if (p->con_id) {
1881 if (!con_id || strcmp(p->con_id, con_id))
1882 continue;
1884 match += 1;
1887 if (match > best) {
1888 chosen = p;
1890 if (match != 3)
1891 best = match;
1892 else
1893 break;
1897 if (!chosen)
1898 return ERR_PTR(-ENODEV);
1900 chip = pwmchip_find_by_name(chosen->provider);
1903 * If the lookup entry specifies a module, load the module and retry
1904 * the PWM chip lookup. This can be used to work around driver load
1905 * ordering issues if driver's can't be made to properly support the
1906 * deferred probe mechanism.
1908 if (!chip && chosen->module) {
1909 err = request_module(chosen->module);
1910 if (err == 0)
1911 chip = pwmchip_find_by_name(chosen->provider);
1914 if (!chip)
1915 return ERR_PTR(-EPROBE_DEFER);
1917 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1918 if (IS_ERR(pwm))
1919 return pwm;
1921 dl = pwm_device_link_add(dev, pwm);
1922 if (IS_ERR(dl)) {
1923 pwm_put(pwm);
1924 return ERR_CAST(dl);
1927 pwm->args.period = chosen->period;
1928 pwm->args.polarity = chosen->polarity;
1930 return pwm;
1932 EXPORT_SYMBOL_GPL(pwm_get);
1935 * pwm_put() - release a PWM device
1936 * @pwm: PWM device
1938 void pwm_put(struct pwm_device *pwm)
1940 struct pwm_chip *chip;
1942 if (!pwm)
1943 return;
1945 chip = pwm->chip;
1947 guard(mutex)(&pwm_lock);
1950 * Trigger a warning if a consumer called pwm_put() twice.
1951 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
1952 * pwmchip_remove(). So don't warn in this case.
1954 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1955 pr_warn("PWM device already freed\n");
1956 return;
1959 if (chip->operational && chip->ops->free)
1960 pwm->chip->ops->free(pwm->chip, pwm);
1962 pwm->label = NULL;
1964 put_device(&chip->dev);
1966 module_put(chip->owner);
1968 EXPORT_SYMBOL_GPL(pwm_put);
1970 static void devm_pwm_release(void *pwm)
1972 pwm_put(pwm);
1976 * devm_pwm_get() - resource managed pwm_get()
1977 * @dev: device for PWM consumer
1978 * @con_id: consumer name
1980 * This function performs like pwm_get() but the acquired PWM device will
1981 * automatically be released on driver detach.
1983 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1984 * error code on failure.
1986 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1988 struct pwm_device *pwm;
1989 int ret;
1991 pwm = pwm_get(dev, con_id);
1992 if (IS_ERR(pwm))
1993 return pwm;
1995 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1996 if (ret)
1997 return ERR_PTR(ret);
1999 return pwm;
2001 EXPORT_SYMBOL_GPL(devm_pwm_get);
2004 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2005 * @dev: device for PWM consumer
2006 * @fwnode: firmware node to get the PWM from
2007 * @con_id: consumer name
2009 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2010 * acpi_pwm_get() for a detailed description.
2012 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2013 * error code on failure.
2015 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2016 struct fwnode_handle *fwnode,
2017 const char *con_id)
2019 struct pwm_device *pwm = ERR_PTR(-ENODEV);
2020 int ret;
2022 if (is_of_node(fwnode))
2023 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2024 else if (is_acpi_node(fwnode))
2025 pwm = acpi_pwm_get(fwnode);
2026 if (IS_ERR(pwm))
2027 return pwm;
2029 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2030 if (ret)
2031 return ERR_PTR(ret);
2033 return pwm;
2035 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2038 * __pwmchip_add() - register a new PWM chip
2039 * @chip: the PWM chip to add
2040 * @owner: reference to the module providing the chip.
2042 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2043 * pwmchip_add wrapper to do this right.
2045 * Returns: 0 on success or a negative error code on failure.
2047 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2049 int ret;
2051 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2052 return -EINVAL;
2055 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2056 * otherwise the embedded struct device might disappear too early
2057 * resulting in memory corruption.
2058 * Catch drivers that were not converted appropriately.
2060 if (!chip->uses_pwmchip_alloc)
2061 return -EINVAL;
2063 if (!pwm_ops_check(chip))
2064 return -EINVAL;
2066 chip->owner = owner;
2068 if (chip->atomic)
2069 spin_lock_init(&chip->atomic_lock);
2070 else
2071 mutex_init(&chip->nonatomic_lock);
2073 guard(mutex)(&pwm_lock);
2075 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2076 if (ret < 0)
2077 return ret;
2079 chip->id = ret;
2081 dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2083 if (IS_ENABLED(CONFIG_OF))
2084 of_pwmchip_add(chip);
2086 scoped_guard(pwmchip, chip)
2087 chip->operational = true;
2089 ret = device_add(&chip->dev);
2090 if (ret)
2091 goto err_device_add;
2093 return 0;
2095 err_device_add:
2096 scoped_guard(pwmchip, chip)
2097 chip->operational = false;
2099 if (IS_ENABLED(CONFIG_OF))
2100 of_pwmchip_remove(chip);
2102 idr_remove(&pwm_chips, chip->id);
2104 return ret;
2106 EXPORT_SYMBOL_GPL(__pwmchip_add);
2109 * pwmchip_remove() - remove a PWM chip
2110 * @chip: the PWM chip to remove
2112 * Removes a PWM chip.
2114 void pwmchip_remove(struct pwm_chip *chip)
2116 pwmchip_sysfs_unexport(chip);
2118 scoped_guard(mutex, &pwm_lock) {
2119 unsigned int i;
2121 scoped_guard(pwmchip, chip)
2122 chip->operational = false;
2124 for (i = 0; i < chip->npwm; ++i) {
2125 struct pwm_device *pwm = &chip->pwms[i];
2127 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2128 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2129 if (pwm->chip->ops->free)
2130 pwm->chip->ops->free(pwm->chip, pwm);
2134 if (IS_ENABLED(CONFIG_OF))
2135 of_pwmchip_remove(chip);
2137 idr_remove(&pwm_chips, chip->id);
2140 device_del(&chip->dev);
2142 EXPORT_SYMBOL_GPL(pwmchip_remove);
2144 static void devm_pwmchip_remove(void *data)
2146 struct pwm_chip *chip = data;
2148 pwmchip_remove(chip);
2151 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2153 int ret;
2155 ret = __pwmchip_add(chip, owner);
2156 if (ret)
2157 return ret;
2159 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2161 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2164 * pwm_add_table() - register PWM device consumers
2165 * @table: array of consumers to register
2166 * @num: number of consumers in table
2168 void pwm_add_table(struct pwm_lookup *table, size_t num)
2170 guard(mutex)(&pwm_lookup_lock);
2172 while (num--) {
2173 list_add_tail(&table->list, &pwm_lookup_list);
2174 table++;
2179 * pwm_remove_table() - unregister PWM device consumers
2180 * @table: array of consumers to unregister
2181 * @num: number of consumers in table
2183 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2185 guard(mutex)(&pwm_lookup_lock);
2187 while (num--) {
2188 list_del(&table->list);
2189 table++;
2193 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2195 unsigned int i;
2197 for (i = 0; i < chip->npwm; i++) {
2198 struct pwm_device *pwm = &chip->pwms[i];
2199 struct pwm_state state;
2201 pwm_get_state(pwm, &state);
2203 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2205 if (test_bit(PWMF_REQUESTED, &pwm->flags))
2206 seq_puts(s, " requested");
2208 if (state.enabled)
2209 seq_puts(s, " enabled");
2211 seq_printf(s, " period: %llu ns", state.period);
2212 seq_printf(s, " duty: %llu ns", state.duty_cycle);
2213 seq_printf(s, " polarity: %s",
2214 state.polarity ? "inverse" : "normal");
2216 if (state.usage_power)
2217 seq_puts(s, " usage_power");
2219 seq_puts(s, "\n");
2223 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2225 unsigned long id = *pos;
2226 void *ret;
2228 mutex_lock(&pwm_lock);
2229 s->private = "";
2231 ret = idr_get_next_ul(&pwm_chips, &id);
2232 *pos = id;
2233 return ret;
2236 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2238 unsigned long id = *pos + 1;
2239 void *ret;
2241 s->private = "\n";
2243 ret = idr_get_next_ul(&pwm_chips, &id);
2244 *pos = id;
2245 return ret;
2248 static void pwm_seq_stop(struct seq_file *s, void *v)
2250 mutex_unlock(&pwm_lock);
2253 static int pwm_seq_show(struct seq_file *s, void *v)
2255 struct pwm_chip *chip = v;
2257 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2258 (char *)s->private, chip->id,
2259 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2260 dev_name(pwmchip_parent(chip)), chip->npwm,
2261 (chip->npwm != 1) ? "s" : "");
2263 pwm_dbg_show(chip, s);
2265 return 0;
2268 static const struct seq_operations pwm_debugfs_sops = {
2269 .start = pwm_seq_start,
2270 .next = pwm_seq_next,
2271 .stop = pwm_seq_stop,
2272 .show = pwm_seq_show,
2275 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2277 static int __init pwm_init(void)
2279 int ret;
2281 ret = class_register(&pwm_class);
2282 if (ret) {
2283 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2284 return ret;
2287 if (IS_ENABLED(CONFIG_DEBUG_FS))
2288 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2290 return 0;
2292 subsys_initcall(pwm_init);