1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 2020 Michael Walle <michael@walle.cc>
7 * There is no public datasheet available for this PWM core. But it is easy
8 * enough to be briefly explained. It consists of one 8-bit counter. The PWM
9 * supports four distinct frequencies by selecting when to reset the counter.
10 * With the prescaler setting you can select which bit of the counter is used
11 * to reset it. This implies that the higher the frequency the less remaining
12 * bits are available for the actual counter.
14 * Let cnt[7:0] be the counter, clocked at 32kHz:
15 * +-----------+--------+--------------+-----------+---------------+
16 * | prescaler | reset | counter bits | frequency | period length |
17 * +-----------+--------+--------------+-----------+---------------+
18 * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns |
19 * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns |
20 * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns |
21 * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns |
22 * +-----------+--------+--------------+-----------+---------------+
25 * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
26 * - The hardware cannot atomically set the prescaler and the counter value,
27 * which might lead to glitches and inconsistent states if a write fails.
28 * - The counter is not reset if you switch the prescaler which leads
30 * - The duty cycle will switch immediately and not after a complete cycle.
31 * - Depending on the actual implementation, disabling the PWM might have
32 * side effects. For example, if the output pin is shared with a GPIO pin
33 * it will automatically switch back to GPIO mode.
36 #include <linux/bitfield.h>
37 #include <linux/kernel.h>
38 #include <linux/mod_devicetable.h>
39 #include <linux/module.h>
40 #include <linux/platform_device.h>
41 #include <linux/property.h>
42 #include <linux/pwm.h>
43 #include <linux/regmap.h>
46 * PWM timer block registers.
48 #define SL28CPLD_PWM_CTRL 0x00
49 #define SL28CPLD_PWM_CTRL_ENABLE BIT(7)
50 #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0)
51 #define SL28CPLD_PWM_CYCLE 0x01
52 #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0)
54 #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */
55 #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler)))
56 #define SL28CPLD_PWM_PERIOD(prescaler) \
57 (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
60 * We calculate the duty cycle like this:
61 * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
64 * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
65 * max_duty_cycle = 1 << (7 - prescaler)
66 * this then simplifies to:
67 * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
68 * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
70 * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
71 * precision by doing the divison first.
73 #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
74 (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
75 #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
76 (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
78 #define sl28cpld_pwm_read(priv, reg, val) \
79 regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
80 #define sl28cpld_pwm_write(priv, reg, val) \
81 regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
84 struct regmap
*regmap
;
88 static inline struct sl28cpld_pwm
*sl28cpld_pwm_from_chip(struct pwm_chip
*chip
)
90 return pwmchip_get_drvdata(chip
);
93 static int sl28cpld_pwm_get_state(struct pwm_chip
*chip
,
94 struct pwm_device
*pwm
,
95 struct pwm_state
*state
)
97 struct sl28cpld_pwm
*priv
= sl28cpld_pwm_from_chip(chip
);
101 sl28cpld_pwm_read(priv
, SL28CPLD_PWM_CTRL
, ®
);
103 state
->enabled
= reg
& SL28CPLD_PWM_CTRL_ENABLE
;
105 prescaler
= FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK
, reg
);
106 state
->period
= SL28CPLD_PWM_PERIOD(prescaler
);
108 sl28cpld_pwm_read(priv
, SL28CPLD_PWM_CYCLE
, ®
);
109 state
->duty_cycle
= SL28CPLD_PWM_TO_DUTY_CYCLE(reg
);
110 state
->polarity
= PWM_POLARITY_NORMAL
;
113 * Sanitize values for the PWM core. Depending on the prescaler it
114 * might happen that we calculate a duty_cycle greater than the actual
115 * period. This might happen if someone (e.g. the bootloader) sets an
116 * invalid combination of values. The behavior of the hardware is
117 * undefined in this case. But we need to report sane values back to
120 state
->duty_cycle
= min(state
->duty_cycle
, state
->period
);
125 static int sl28cpld_pwm_apply(struct pwm_chip
*chip
, struct pwm_device
*pwm
,
126 const struct pwm_state
*state
)
128 struct sl28cpld_pwm
*priv
= sl28cpld_pwm_from_chip(chip
);
129 unsigned int cycle
, prescaler
;
130 bool write_duty_cycle_first
;
134 /* Polarity inversion is not supported */
135 if (state
->polarity
!= PWM_POLARITY_NORMAL
)
139 * Calculate the prescaler. Pick the biggest period that isn't
140 * bigger than the requested period.
142 prescaler
= DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state
->period
);
143 prescaler
= order_base_2(prescaler
);
145 if (prescaler
> field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK
))
148 ctrl
= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK
, prescaler
);
150 ctrl
|= SL28CPLD_PWM_CTRL_ENABLE
;
152 cycle
= SL28CPLD_PWM_FROM_DUTY_CYCLE(state
->duty_cycle
);
153 cycle
= min_t(unsigned int, cycle
, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler
));
156 * Work around the hardware limitation. See also above. Trap 100% duty
157 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
158 * care about the frequency because its "all-one" in either case.
160 * We don't need to check the actual prescaler setting, because only
161 * if the prescaler is 0 we can have this particular value.
163 if (cycle
== SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
164 ctrl
&= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK
;
165 ctrl
|= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK
, 1);
166 cycle
= SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
170 * To avoid glitches when we switch the prescaler, we have to make sure
171 * we have a valid duty cycle for the new mode.
173 * Take the current prescaler (or the current period length) into
174 * account to decide whether we have to write the duty cycle or the new
175 * prescaler first. If the period length is decreasing we have to
176 * write the duty cycle first.
178 write_duty_cycle_first
= pwm
->state
.period
> state
->period
;
180 if (write_duty_cycle_first
) {
181 ret
= sl28cpld_pwm_write(priv
, SL28CPLD_PWM_CYCLE
, cycle
);
186 ret
= sl28cpld_pwm_write(priv
, SL28CPLD_PWM_CTRL
, ctrl
);
190 if (!write_duty_cycle_first
) {
191 ret
= sl28cpld_pwm_write(priv
, SL28CPLD_PWM_CYCLE
, cycle
);
199 static const struct pwm_ops sl28cpld_pwm_ops
= {
200 .apply
= sl28cpld_pwm_apply
,
201 .get_state
= sl28cpld_pwm_get_state
,
204 static int sl28cpld_pwm_probe(struct platform_device
*pdev
)
206 struct sl28cpld_pwm
*priv
;
207 struct pwm_chip
*chip
;
210 if (!pdev
->dev
.parent
) {
211 dev_err(&pdev
->dev
, "no parent device\n");
215 chip
= devm_pwmchip_alloc(&pdev
->dev
, 1, sizeof(*priv
));
217 return PTR_ERR(chip
);
218 priv
= sl28cpld_pwm_from_chip(chip
);
220 priv
->regmap
= dev_get_regmap(pdev
->dev
.parent
, NULL
);
222 dev_err(&pdev
->dev
, "could not get parent regmap\n");
226 ret
= device_property_read_u32(&pdev
->dev
, "reg", &priv
->offset
);
228 dev_err(&pdev
->dev
, "no 'reg' property found (%pe)\n",
233 /* Initialize the pwm_chip structure */
234 chip
->ops
= &sl28cpld_pwm_ops
;
236 ret
= devm_pwmchip_add(&pdev
->dev
, chip
);
238 dev_err(&pdev
->dev
, "failed to add PWM chip (%pe)",
246 static const struct of_device_id sl28cpld_pwm_of_match
[] = {
247 { .compatible
= "kontron,sl28cpld-pwm" },
250 MODULE_DEVICE_TABLE(of
, sl28cpld_pwm_of_match
);
252 static struct platform_driver sl28cpld_pwm_driver
= {
253 .probe
= sl28cpld_pwm_probe
,
255 .name
= "sl28cpld-pwm",
256 .of_match_table
= sl28cpld_pwm_of_match
,
259 module_platform_driver(sl28cpld_pwm_driver
);
261 MODULE_DESCRIPTION("sl28cpld PWM Driver");
262 MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
263 MODULE_LICENSE("GPL");