1 // SPDX-License-Identifier: GPL-2.0-only
3 * Remote Processor Framework
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
17 #define pr_fmt(fmt) "%s: " fmt, __func__
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_platform.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
43 #include "remoteproc_internal.h"
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47 static DEFINE_MUTEX(rproc_list_mutex
);
48 static LIST_HEAD(rproc_list
);
49 static struct notifier_block rproc_panic_nb
;
51 typedef int (*rproc_handle_resource_t
)(struct rproc
*rproc
,
52 void *, int offset
, int avail
);
54 static int rproc_alloc_carveout(struct rproc
*rproc
,
55 struct rproc_mem_entry
*mem
);
56 static int rproc_release_carveout(struct rproc
*rproc
,
57 struct rproc_mem_entry
*mem
);
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index
);
61 static struct workqueue_struct
*rproc_recovery_wq
;
63 static const char * const rproc_crash_names
[] = {
64 [RPROC_MMUFAULT
] = "mmufault",
65 [RPROC_WATCHDOG
] = "watchdog",
66 [RPROC_FATAL_ERROR
] = "fatal error",
69 /* translate rproc_crash_type to string */
70 static const char *rproc_crash_to_string(enum rproc_crash_type type
)
72 if (type
< ARRAY_SIZE(rproc_crash_names
))
73 return rproc_crash_names
[type
];
78 * This is the IOMMU fault handler we register with the IOMMU API
79 * (when relevant; not all remote processors access memory through
82 * IOMMU core will invoke this handler whenever the remote processor
83 * will try to access an unmapped device address.
85 static int rproc_iommu_fault(struct iommu_domain
*domain
, struct device
*dev
,
86 unsigned long iova
, int flags
, void *token
)
88 struct rproc
*rproc
= token
;
90 dev_err(dev
, "iommu fault: da 0x%lx flags 0x%x\n", iova
, flags
);
92 rproc_report_crash(rproc
, RPROC_MMUFAULT
);
95 * Let the iommu core know we're not really handling this fault;
96 * we just used it as a recovery trigger.
101 static int rproc_enable_iommu(struct rproc
*rproc
)
103 struct iommu_domain
*domain
;
104 struct device
*dev
= rproc
->dev
.parent
;
107 if (!rproc
->has_iommu
) {
108 dev_dbg(dev
, "iommu not present\n");
112 domain
= iommu_paging_domain_alloc(dev
);
113 if (IS_ERR(domain
)) {
114 dev_err(dev
, "can't alloc iommu domain\n");
115 return PTR_ERR(domain
);
118 iommu_set_fault_handler(domain
, rproc_iommu_fault
, rproc
);
120 ret
= iommu_attach_device(domain
, dev
);
122 dev_err(dev
, "can't attach iommu device: %d\n", ret
);
126 rproc
->domain
= domain
;
131 iommu_domain_free(domain
);
135 static void rproc_disable_iommu(struct rproc
*rproc
)
137 struct iommu_domain
*domain
= rproc
->domain
;
138 struct device
*dev
= rproc
->dev
.parent
;
143 iommu_detach_device(domain
, dev
);
144 iommu_domain_free(domain
);
147 phys_addr_t
rproc_va_to_pa(void *cpu_addr
)
150 * Return physical address according to virtual address location
151 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 * - in kernel: if region allocated in generic dma memory pool
154 if (is_vmalloc_addr(cpu_addr
)) {
155 return page_to_phys(vmalloc_to_page(cpu_addr
)) +
156 offset_in_page(cpu_addr
);
159 WARN_ON(!virt_addr_valid(cpu_addr
));
160 return virt_to_phys(cpu_addr
);
162 EXPORT_SYMBOL(rproc_va_to_pa
);
165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166 * @rproc: handle of a remote processor
167 * @da: remoteproc device address to translate
168 * @len: length of the memory region @da is pointing to
169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
171 * Some remote processors will ask us to allocate them physically contiguous
172 * memory regions (which we call "carveouts"), and map them to specific
173 * device addresses (which are hardcoded in the firmware). They may also have
174 * dedicated memory regions internal to the processors, and use them either
175 * exclusively or alongside carveouts.
177 * They may then ask us to copy objects into specific device addresses (e.g.
178 * code/data sections) or expose us certain symbols in other device address
179 * (e.g. their trace buffer).
181 * This function is a helper function with which we can go over the allocated
182 * carveouts and translate specific device addresses to kernel virtual addresses
183 * so we can access the referenced memory. This function also allows to perform
184 * translations on the internal remoteproc memory regions through a platform
185 * implementation specific da_to_va ops, if present.
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
192 * Return: a valid kernel address on success or NULL on failure
194 void *rproc_da_to_va(struct rproc
*rproc
, u64 da
, size_t len
, bool *is_iomem
)
196 struct rproc_mem_entry
*carveout
;
199 if (rproc
->ops
->da_to_va
) {
200 ptr
= rproc
->ops
->da_to_va(rproc
, da
, len
, is_iomem
);
205 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
206 int offset
= da
- carveout
->da
;
208 /* Verify that carveout is allocated */
212 /* try next carveout if da is too small */
216 /* try next carveout if da is too large */
217 if (offset
+ len
> carveout
->len
)
220 ptr
= carveout
->va
+ offset
;
223 *is_iomem
= carveout
->is_iomem
;
231 EXPORT_SYMBOL(rproc_da_to_va
);
234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
235 * @rproc: handle of a remote processor
236 * @name: carveout name to find (format string)
237 * @...: optional parameters matching @name string
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
252 struct rproc_mem_entry
*
253 rproc_find_carveout_by_name(struct rproc
*rproc
, const char *name
, ...)
257 struct rproc_mem_entry
*carveout
, *mem
= NULL
;
262 va_start(args
, name
);
263 vsnprintf(_name
, sizeof(_name
), name
, args
);
266 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
267 /* Compare carveout and requested names */
268 if (!strcmp(carveout
->name
, _name
)) {
278 * rproc_check_carveout_da() - Check specified carveout da configuration
279 * @rproc: handle of a remote processor
280 * @mem: pointer on carveout to check
281 * @da: area device address
282 * @len: associated area size
284 * This function is a helper function to verify requested device area (couple
285 * da, len) is part of specified carveout.
286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
289 * Return: 0 if carveout matches request else error
291 static int rproc_check_carveout_da(struct rproc
*rproc
,
292 struct rproc_mem_entry
*mem
, u32 da
, u32 len
)
294 struct device
*dev
= &rproc
->dev
;
297 /* Check requested resource length */
298 if (len
> mem
->len
) {
299 dev_err(dev
, "Registered carveout doesn't fit len request\n");
303 if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
== FW_RSC_ADDR_ANY
) {
304 /* Address doesn't match registered carveout configuration */
306 } else if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
!= FW_RSC_ADDR_ANY
) {
307 delta
= da
- mem
->da
;
309 /* Check requested resource belongs to registered carveout */
312 "Registered carveout doesn't fit da request\n");
316 if (delta
+ len
> mem
->len
) {
318 "Registered carveout doesn't fit len request\n");
326 int rproc_alloc_vring(struct rproc_vdev
*rvdev
, int i
)
328 struct rproc
*rproc
= rvdev
->rproc
;
329 struct device
*dev
= &rproc
->dev
;
330 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
331 struct fw_rsc_vdev
*rsc
;
333 struct rproc_mem_entry
*mem
;
336 /* actual size of vring (in bytes) */
337 size
= PAGE_ALIGN(vring_size(rvring
->num
, rvring
->align
));
339 rsc
= (void *)rproc
->table_ptr
+ rvdev
->rsc_offset
;
341 /* Search for pre-registered carveout */
342 mem
= rproc_find_carveout_by_name(rproc
, "vdev%dvring%d", rvdev
->index
,
345 if (rproc_check_carveout_da(rproc
, mem
, rsc
->vring
[i
].da
, size
))
348 /* Register carveout in list */
349 mem
= rproc_mem_entry_init(dev
, NULL
, 0,
350 size
, rsc
->vring
[i
].da
,
351 rproc_alloc_carveout
,
352 rproc_release_carveout
,
356 dev_err(dev
, "Can't allocate memory entry structure\n");
360 rproc_add_carveout(rproc
, mem
);
364 * Assign an rproc-wide unique index for this vring
365 * TODO: assign a notifyid for rvdev updates as well
366 * TODO: support predefined notifyids (via resource table)
368 ret
= idr_alloc(&rproc
->notifyids
, rvring
, 0, 0, GFP_KERNEL
);
370 dev_err(dev
, "idr_alloc failed: %d\n", ret
);
375 /* Potentially bump max_notifyid */
376 if (notifyid
> rproc
->max_notifyid
)
377 rproc
->max_notifyid
= notifyid
;
379 rvring
->notifyid
= notifyid
;
381 /* Let the rproc know the notifyid of this vring.*/
382 rsc
->vring
[i
].notifyid
= notifyid
;
387 rproc_parse_vring(struct rproc_vdev
*rvdev
, struct fw_rsc_vdev
*rsc
, int i
)
389 struct rproc
*rproc
= rvdev
->rproc
;
390 struct device
*dev
= &rproc
->dev
;
391 struct fw_rsc_vdev_vring
*vring
= &rsc
->vring
[i
];
392 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
394 dev_dbg(dev
, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395 i
, vring
->da
, vring
->num
, vring
->align
);
397 /* verify queue size and vring alignment are sane */
398 if (!vring
->num
|| !vring
->align
) {
399 dev_err(dev
, "invalid qsz (%d) or alignment (%d)\n",
400 vring
->num
, vring
->align
);
404 rvring
->num
= vring
->num
;
405 rvring
->align
= vring
->align
;
406 rvring
->rvdev
= rvdev
;
411 void rproc_free_vring(struct rproc_vring
*rvring
)
413 struct rproc
*rproc
= rvring
->rvdev
->rproc
;
414 int idx
= rvring
- rvring
->rvdev
->vring
;
415 struct fw_rsc_vdev
*rsc
;
417 idr_remove(&rproc
->notifyids
, rvring
->notifyid
);
420 * At this point rproc_stop() has been called and the installed resource
421 * table in the remote processor memory may no longer be accessible. As
422 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423 * resource table (rproc->cached_table). The cached resource table is
424 * only available when a remote processor has been booted by the
425 * remoteproc core, otherwise it is NULL.
427 * Based on the above, reset the virtio device section in the cached
428 * resource table only if there is one to work with.
430 if (rproc
->table_ptr
) {
431 rsc
= (void *)rproc
->table_ptr
+ rvring
->rvdev
->rsc_offset
;
432 rsc
->vring
[idx
].da
= 0;
433 rsc
->vring
[idx
].notifyid
= -1;
437 void rproc_add_rvdev(struct rproc
*rproc
, struct rproc_vdev
*rvdev
)
440 list_add_tail(&rvdev
->node
, &rproc
->rvdevs
);
443 void rproc_remove_rvdev(struct rproc_vdev
*rvdev
)
446 list_del(&rvdev
->node
);
449 * rproc_handle_vdev() - handle a vdev fw resource
450 * @rproc: the remote processor
451 * @ptr: the vring resource descriptor
452 * @offset: offset of the resource entry
453 * @avail: size of available data (for sanity checking the image)
455 * This resource entry requests the host to statically register a virtio
456 * device (vdev), and setup everything needed to support it. It contains
457 * everything needed to make it possible: the virtio device id, virtio
458 * device features, vrings information, virtio config space, etc...
460 * Before registering the vdev, the vrings are allocated from non-cacheable
461 * physically contiguous memory. Currently we only support two vrings per
462 * remote processor (temporary limitation). We might also want to consider
463 * doing the vring allocation only later when ->find_vqs() is invoked, and
464 * then release them upon ->del_vqs().
466 * Note: @da is currently not really handled correctly: we dynamically
467 * allocate it using the DMA API, ignoring requested hard coded addresses,
468 * and we don't take care of any required IOMMU programming. This is all
469 * going to be taken care of when the generic iommu-based DMA API will be
470 * merged. Meanwhile, statically-addressed iommu-based firmware images should
471 * use RSC_DEVMEM resource entries to map their required @da to the physical
472 * address of their base CMA region (ouch, hacky!).
474 * Return: 0 on success, or an appropriate error code otherwise
476 static int rproc_handle_vdev(struct rproc
*rproc
, void *ptr
,
477 int offset
, int avail
)
479 struct fw_rsc_vdev
*rsc
= ptr
;
480 struct device
*dev
= &rproc
->dev
;
481 struct rproc_vdev
*rvdev
;
483 struct rproc_vdev_data rvdev_data
;
484 struct platform_device
*pdev
;
486 /* make sure resource isn't truncated */
487 rsc_size
= struct_size(rsc
, vring
, rsc
->num_of_vrings
);
488 if (size_add(rsc_size
, rsc
->config_len
) > avail
) {
489 dev_err(dev
, "vdev rsc is truncated\n");
493 /* make sure reserved bytes are zeroes */
494 if (rsc
->reserved
[0] || rsc
->reserved
[1]) {
495 dev_err(dev
, "vdev rsc has non zero reserved bytes\n");
499 dev_dbg(dev
, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
500 rsc
->id
, rsc
->dfeatures
, rsc
->config_len
, rsc
->num_of_vrings
);
502 /* we currently support only two vrings per rvdev */
503 if (rsc
->num_of_vrings
> ARRAY_SIZE(rvdev
->vring
)) {
504 dev_err(dev
, "too many vrings: %d\n", rsc
->num_of_vrings
);
508 rvdev_data
.id
= rsc
->id
;
509 rvdev_data
.index
= rproc
->nb_vdev
++;
510 rvdev_data
.rsc_offset
= offset
;
511 rvdev_data
.rsc
= rsc
;
514 * When there is more than one remote processor, rproc->nb_vdev number is
515 * same for each separate instances of "rproc". If rvdev_data.index is used
516 * as device id, then we get duplication in sysfs, so need to use
517 * PLATFORM_DEVID_AUTO to auto select device id.
519 pdev
= platform_device_register_data(dev
, "rproc-virtio", PLATFORM_DEVID_AUTO
, &rvdev_data
,
522 dev_err(dev
, "failed to create rproc-virtio device\n");
523 return PTR_ERR(pdev
);
530 * rproc_handle_trace() - handle a shared trace buffer resource
531 * @rproc: the remote processor
532 * @ptr: the trace resource descriptor
533 * @offset: offset of the resource entry
534 * @avail: size of available data (for sanity checking the image)
536 * In case the remote processor dumps trace logs into memory,
537 * export it via debugfs.
539 * Currently, the 'da' member of @rsc should contain the device address
540 * where the remote processor is dumping the traces. Later we could also
541 * support dynamically allocating this address using the generic
542 * DMA API (but currently there isn't a use case for that).
544 * Return: 0 on success, or an appropriate error code otherwise
546 static int rproc_handle_trace(struct rproc
*rproc
, void *ptr
,
547 int offset
, int avail
)
549 struct fw_rsc_trace
*rsc
= ptr
;
550 struct rproc_debug_trace
*trace
;
551 struct device
*dev
= &rproc
->dev
;
554 if (sizeof(*rsc
) > avail
) {
555 dev_err(dev
, "trace rsc is truncated\n");
559 /* make sure reserved bytes are zeroes */
561 dev_err(dev
, "trace rsc has non zero reserved bytes\n");
565 trace
= kzalloc(sizeof(*trace
), GFP_KERNEL
);
569 /* set the trace buffer dma properties */
570 trace
->trace_mem
.len
= rsc
->len
;
571 trace
->trace_mem
.da
= rsc
->da
;
573 /* set pointer on rproc device */
574 trace
->rproc
= rproc
;
576 /* make sure snprintf always null terminates, even if truncating */
577 snprintf(name
, sizeof(name
), "trace%d", rproc
->num_traces
);
579 /* create the debugfs entry */
580 trace
->tfile
= rproc_create_trace_file(name
, rproc
, trace
);
582 list_add_tail(&trace
->node
, &rproc
->traces
);
586 dev_dbg(dev
, "%s added: da 0x%x, len 0x%x\n",
587 name
, rsc
->da
, rsc
->len
);
593 * rproc_handle_devmem() - handle devmem resource entry
594 * @rproc: remote processor handle
595 * @ptr: the devmem resource entry
596 * @offset: offset of the resource entry
597 * @avail: size of available data (for sanity checking the image)
599 * Remote processors commonly need to access certain on-chip peripherals.
601 * Some of these remote processors access memory via an iommu device,
602 * and might require us to configure their iommu before they can access
603 * the on-chip peripherals they need.
605 * This resource entry is a request to map such a peripheral device.
607 * These devmem entries will contain the physical address of the device in
608 * the 'pa' member. If a specific device address is expected, then 'da' will
609 * contain it (currently this is the only use case supported). 'len' will
610 * contain the size of the physical region we need to map.
612 * Currently we just "trust" those devmem entries to contain valid physical
613 * addresses, but this is going to change: we want the implementations to
614 * tell us ranges of physical addresses the firmware is allowed to request,
615 * and not allow firmwares to request access to physical addresses that
616 * are outside those ranges.
618 * Return: 0 on success, or an appropriate error code otherwise
620 static int rproc_handle_devmem(struct rproc
*rproc
, void *ptr
,
621 int offset
, int avail
)
623 struct fw_rsc_devmem
*rsc
= ptr
;
624 struct rproc_mem_entry
*mapping
;
625 struct device
*dev
= &rproc
->dev
;
628 /* no point in handling this resource without a valid iommu domain */
632 if (sizeof(*rsc
) > avail
) {
633 dev_err(dev
, "devmem rsc is truncated\n");
637 /* make sure reserved bytes are zeroes */
639 dev_err(dev
, "devmem rsc has non zero reserved bytes\n");
643 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
647 ret
= iommu_map(rproc
->domain
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
,
650 dev_err(dev
, "failed to map devmem: %d\n", ret
);
655 * We'll need this info later when we'll want to unmap everything
656 * (e.g. on shutdown).
658 * We can't trust the remote processor not to change the resource
659 * table, so we must maintain this info independently.
661 mapping
->da
= rsc
->da
;
662 mapping
->len
= rsc
->len
;
663 list_add_tail(&mapping
->node
, &rproc
->mappings
);
665 dev_dbg(dev
, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
666 rsc
->pa
, rsc
->da
, rsc
->len
);
676 * rproc_alloc_carveout() - allocated specified carveout
677 * @rproc: rproc handle
678 * @mem: the memory entry to allocate
680 * This function allocate specified memory entry @mem using
681 * dma_alloc_coherent() as default allocator
683 * Return: 0 on success, or an appropriate error code otherwise
685 static int rproc_alloc_carveout(struct rproc
*rproc
,
686 struct rproc_mem_entry
*mem
)
688 struct rproc_mem_entry
*mapping
= NULL
;
689 struct device
*dev
= &rproc
->dev
;
694 va
= dma_alloc_coherent(dev
->parent
, mem
->len
, &dma
, GFP_KERNEL
);
697 "failed to allocate dma memory: len 0x%zx\n",
702 dev_dbg(dev
, "carveout va %pK, dma %pad, len 0x%zx\n",
705 if (mem
->da
!= FW_RSC_ADDR_ANY
&& !rproc
->domain
) {
707 * Check requested da is equal to dma address
708 * and print a warn message in case of missalignment.
709 * Don't stop rproc_start sequence as coprocessor may
710 * build pa to da translation on its side.
712 if (mem
->da
!= (u32
)dma
)
713 dev_warn(dev
->parent
,
714 "Allocated carveout doesn't fit device address request\n");
718 * Ok, this is non-standard.
720 * Sometimes we can't rely on the generic iommu-based DMA API
721 * to dynamically allocate the device address and then set the IOMMU
722 * tables accordingly, because some remote processors might
723 * _require_ us to use hard coded device addresses that their
724 * firmware was compiled with.
726 * In this case, we must use the IOMMU API directly and map
727 * the memory to the device address as expected by the remote
730 * Obviously such remote processor devices should not be configured
731 * to use the iommu-based DMA API: we expect 'dma' to contain the
732 * physical address in this case.
734 if (mem
->da
!= FW_RSC_ADDR_ANY
&& rproc
->domain
) {
735 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
741 ret
= iommu_map(rproc
->domain
, mem
->da
, dma
, mem
->len
,
742 mem
->flags
, GFP_KERNEL
);
744 dev_err(dev
, "iommu_map failed: %d\n", ret
);
749 * We'll need this info later when we'll want to unmap
750 * everything (e.g. on shutdown).
752 * We can't trust the remote processor not to change the
753 * resource table, so we must maintain this info independently.
755 mapping
->da
= mem
->da
;
756 mapping
->len
= mem
->len
;
757 list_add_tail(&mapping
->node
, &rproc
->mappings
);
759 dev_dbg(dev
, "carveout mapped 0x%x to %pad\n",
763 if (mem
->da
== FW_RSC_ADDR_ANY
) {
764 /* Update device address as undefined by requester */
765 if ((u64
)dma
& HIGH_BITS_MASK
)
766 dev_warn(dev
, "DMA address cast in 32bit to fit resource table format\n");
779 dma_free_coherent(dev
->parent
, mem
->len
, va
, dma
);
784 * rproc_release_carveout() - release acquired carveout
785 * @rproc: rproc handle
786 * @mem: the memory entry to release
788 * This function releases specified memory entry @mem allocated via
789 * rproc_alloc_carveout() function by @rproc.
791 * Return: 0 on success, or an appropriate error code otherwise
793 static int rproc_release_carveout(struct rproc
*rproc
,
794 struct rproc_mem_entry
*mem
)
796 struct device
*dev
= &rproc
->dev
;
798 /* clean up carveout allocations */
799 dma_free_coherent(dev
->parent
, mem
->len
, mem
->va
, mem
->dma
);
804 * rproc_handle_carveout() - handle phys contig memory allocation requests
805 * @rproc: rproc handle
806 * @ptr: the resource entry
807 * @offset: offset of the resource entry
808 * @avail: size of available data (for image validation)
810 * This function will handle firmware requests for allocation of physically
811 * contiguous memory regions.
813 * These request entries should come first in the firmware's resource table,
814 * as other firmware entries might request placing other data objects inside
815 * these memory regions (e.g. data/code segments, trace resource entries, ...).
817 * Allocating memory this way helps utilizing the reserved physical memory
818 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
819 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
820 * pressure is important; it may have a substantial impact on performance.
822 * Return: 0 on success, or an appropriate error code otherwise
824 static int rproc_handle_carveout(struct rproc
*rproc
,
825 void *ptr
, int offset
, int avail
)
827 struct fw_rsc_carveout
*rsc
= ptr
;
828 struct rproc_mem_entry
*carveout
;
829 struct device
*dev
= &rproc
->dev
;
831 if (sizeof(*rsc
) > avail
) {
832 dev_err(dev
, "carveout rsc is truncated\n");
836 /* make sure reserved bytes are zeroes */
838 dev_err(dev
, "carveout rsc has non zero reserved bytes\n");
842 dev_dbg(dev
, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
843 rsc
->name
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
846 * Check carveout rsc already part of a registered carveout,
847 * Search by name, then check the da and length
849 carveout
= rproc_find_carveout_by_name(rproc
, rsc
->name
);
852 if (carveout
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
854 "Carveout already associated to resource table\n");
858 if (rproc_check_carveout_da(rproc
, carveout
, rsc
->da
, rsc
->len
))
861 /* Update memory carveout with resource table info */
862 carveout
->rsc_offset
= offset
;
863 carveout
->flags
= rsc
->flags
;
868 /* Register carveout in list */
869 carveout
= rproc_mem_entry_init(dev
, NULL
, 0, rsc
->len
, rsc
->da
,
870 rproc_alloc_carveout
,
871 rproc_release_carveout
, rsc
->name
);
873 dev_err(dev
, "Can't allocate memory entry structure\n");
877 carveout
->flags
= rsc
->flags
;
878 carveout
->rsc_offset
= offset
;
879 rproc_add_carveout(rproc
, carveout
);
885 * rproc_add_carveout() - register an allocated carveout region
886 * @rproc: rproc handle
887 * @mem: memory entry to register
889 * This function registers specified memory entry in @rproc carveouts list.
890 * Specified carveout should have been allocated before registering.
892 void rproc_add_carveout(struct rproc
*rproc
, struct rproc_mem_entry
*mem
)
894 list_add_tail(&mem
->node
, &rproc
->carveouts
);
896 EXPORT_SYMBOL(rproc_add_carveout
);
899 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
900 * @dev: pointer on device struct
901 * @va: virtual address
903 * @len: memory carveout length
904 * @da: device address
905 * @alloc: memory carveout allocation function
906 * @release: memory carveout release function
907 * @name: carveout name
909 * This function allocates a rproc_mem_entry struct and fill it with parameters
910 * provided by client.
912 * Return: a valid pointer on success, or NULL on failure
915 struct rproc_mem_entry
*
916 rproc_mem_entry_init(struct device
*dev
,
917 void *va
, dma_addr_t dma
, size_t len
, u32 da
,
918 int (*alloc
)(struct rproc
*, struct rproc_mem_entry
*),
919 int (*release
)(struct rproc
*, struct rproc_mem_entry
*),
920 const char *name
, ...)
922 struct rproc_mem_entry
*mem
;
925 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
934 mem
->release
= release
;
935 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
936 mem
->of_resm_idx
= -1;
938 va_start(args
, name
);
939 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
944 EXPORT_SYMBOL(rproc_mem_entry_init
);
947 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
948 * from a reserved memory phandle
949 * @dev: pointer on device struct
950 * @of_resm_idx: reserved memory phandle index in "memory-region"
951 * @len: memory carveout length
952 * @da: device address
953 * @name: carveout name
955 * This function allocates a rproc_mem_entry struct and fill it with parameters
956 * provided by client.
958 * Return: a valid pointer on success, or NULL on failure
961 struct rproc_mem_entry
*
962 rproc_of_resm_mem_entry_init(struct device
*dev
, u32 of_resm_idx
, size_t len
,
963 u32 da
, const char *name
, ...)
965 struct rproc_mem_entry
*mem
;
968 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
974 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
975 mem
->of_resm_idx
= of_resm_idx
;
977 va_start(args
, name
);
978 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
983 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init
);
986 * rproc_of_parse_firmware() - parse and return the firmware-name
987 * @dev: pointer on device struct representing a rproc
988 * @index: index to use for the firmware-name retrieval
989 * @fw_name: pointer to a character string, in which the firmware
990 * name is returned on success and unmodified otherwise.
992 * This is an OF helper function that parses a device's DT node for
993 * the "firmware-name" property and returns the firmware name pointer
994 * in @fw_name on success.
996 * Return: 0 on success, or an appropriate failure.
998 int rproc_of_parse_firmware(struct device
*dev
, int index
, const char **fw_name
)
1002 ret
= of_property_read_string_index(dev
->of_node
, "firmware-name",
1004 return ret
? ret
: 0;
1006 EXPORT_SYMBOL(rproc_of_parse_firmware
);
1009 * A lookup table for resource handlers. The indices are defined in
1010 * enum fw_resource_type.
1012 static rproc_handle_resource_t rproc_loading_handlers
[RSC_LAST
] = {
1013 [RSC_CARVEOUT
] = rproc_handle_carveout
,
1014 [RSC_DEVMEM
] = rproc_handle_devmem
,
1015 [RSC_TRACE
] = rproc_handle_trace
,
1016 [RSC_VDEV
] = rproc_handle_vdev
,
1019 /* handle firmware resource entries before booting the remote processor */
1020 static int rproc_handle_resources(struct rproc
*rproc
,
1021 rproc_handle_resource_t handlers
[RSC_LAST
])
1023 struct device
*dev
= &rproc
->dev
;
1024 rproc_handle_resource_t handler
;
1027 if (!rproc
->table_ptr
)
1030 for (i
= 0; i
< rproc
->table_ptr
->num
; i
++) {
1031 int offset
= rproc
->table_ptr
->offset
[i
];
1032 struct fw_rsc_hdr
*hdr
= (void *)rproc
->table_ptr
+ offset
;
1033 int avail
= rproc
->table_sz
- offset
- sizeof(*hdr
);
1034 void *rsc
= (void *)hdr
+ sizeof(*hdr
);
1036 /* make sure table isn't truncated */
1038 dev_err(dev
, "rsc table is truncated\n");
1042 dev_dbg(dev
, "rsc: type %d\n", hdr
->type
);
1044 if (hdr
->type
>= RSC_VENDOR_START
&&
1045 hdr
->type
<= RSC_VENDOR_END
) {
1046 ret
= rproc_handle_rsc(rproc
, hdr
->type
, rsc
,
1047 offset
+ sizeof(*hdr
), avail
);
1048 if (ret
== RSC_HANDLED
)
1053 dev_warn(dev
, "unsupported vendor resource %d\n",
1058 if (hdr
->type
>= RSC_LAST
) {
1059 dev_warn(dev
, "unsupported resource %d\n", hdr
->type
);
1063 handler
= handlers
[hdr
->type
];
1067 ret
= handler(rproc
, rsc
, offset
+ sizeof(*hdr
), avail
);
1075 static int rproc_prepare_subdevices(struct rproc
*rproc
)
1077 struct rproc_subdev
*subdev
;
1080 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1081 if (subdev
->prepare
) {
1082 ret
= subdev
->prepare(subdev
);
1084 goto unroll_preparation
;
1091 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1092 if (subdev
->unprepare
)
1093 subdev
->unprepare(subdev
);
1099 static int rproc_start_subdevices(struct rproc
*rproc
)
1101 struct rproc_subdev
*subdev
;
1104 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1105 if (subdev
->start
) {
1106 ret
= subdev
->start(subdev
);
1108 goto unroll_registration
;
1114 unroll_registration
:
1115 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1117 subdev
->stop(subdev
, true);
1123 static void rproc_stop_subdevices(struct rproc
*rproc
, bool crashed
)
1125 struct rproc_subdev
*subdev
;
1127 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1129 subdev
->stop(subdev
, crashed
);
1133 static void rproc_unprepare_subdevices(struct rproc
*rproc
)
1135 struct rproc_subdev
*subdev
;
1137 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1138 if (subdev
->unprepare
)
1139 subdev
->unprepare(subdev
);
1144 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1146 * @rproc: the remote processor handle
1148 * This function parses registered carveout list, performs allocation
1149 * if alloc() ops registered and updates resource table information
1150 * if rsc_offset set.
1152 * Return: 0 on success
1154 static int rproc_alloc_registered_carveouts(struct rproc
*rproc
)
1156 struct rproc_mem_entry
*entry
, *tmp
;
1157 struct fw_rsc_carveout
*rsc
;
1158 struct device
*dev
= &rproc
->dev
;
1162 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1164 ret
= entry
->alloc(rproc
, entry
);
1166 dev_err(dev
, "Unable to allocate carveout %s: %d\n",
1172 if (entry
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
1173 /* update resource table */
1174 rsc
= (void *)rproc
->table_ptr
+ entry
->rsc_offset
;
1177 * Some remote processors might need to know the pa
1178 * even though they are behind an IOMMU. E.g., OMAP4's
1179 * remote M3 processor needs this so it can control
1180 * on-chip hardware accelerators that are not behind
1181 * the IOMMU, and therefor must know the pa.
1183 * Generally we don't want to expose physical addresses
1184 * if we don't have to (remote processors are generally
1185 * _not_ trusted), so we might want to do this only for
1186 * remote processor that _must_ have this (e.g. OMAP4's
1187 * dual M3 subsystem).
1189 * Non-IOMMU processors might also want to have this info.
1190 * In this case, the device address and the physical address
1194 /* Use va if defined else dma to generate pa */
1196 pa
= (u64
)rproc_va_to_pa(entry
->va
);
1198 pa
= (u64
)entry
->dma
;
1200 if (((u64
)pa
) & HIGH_BITS_MASK
)
1202 "Physical address cast in 32bit to fit resource table format\n");
1205 rsc
->da
= entry
->da
;
1206 rsc
->len
= entry
->len
;
1215 * rproc_resource_cleanup() - clean up and free all acquired resources
1216 * @rproc: rproc handle
1218 * This function will free all resources acquired for @rproc, and it
1219 * is called whenever @rproc either shuts down or fails to boot.
1221 void rproc_resource_cleanup(struct rproc
*rproc
)
1223 struct rproc_mem_entry
*entry
, *tmp
;
1224 struct rproc_debug_trace
*trace
, *ttmp
;
1225 struct rproc_vdev
*rvdev
, *rvtmp
;
1226 struct device
*dev
= &rproc
->dev
;
1228 /* clean up debugfs trace entries */
1229 list_for_each_entry_safe(trace
, ttmp
, &rproc
->traces
, node
) {
1230 rproc_remove_trace_file(trace
->tfile
);
1231 rproc
->num_traces
--;
1232 list_del(&trace
->node
);
1236 /* clean up iommu mapping entries */
1237 list_for_each_entry_safe(entry
, tmp
, &rproc
->mappings
, node
) {
1240 unmapped
= iommu_unmap(rproc
->domain
, entry
->da
, entry
->len
);
1241 if (unmapped
!= entry
->len
) {
1242 /* nothing much to do besides complaining */
1243 dev_err(dev
, "failed to unmap %zx/%zu\n", entry
->len
,
1247 list_del(&entry
->node
);
1251 /* clean up carveout allocations */
1252 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1254 entry
->release(rproc
, entry
);
1255 list_del(&entry
->node
);
1259 /* clean up remote vdev entries */
1260 list_for_each_entry_safe(rvdev
, rvtmp
, &rproc
->rvdevs
, node
)
1261 platform_device_unregister(rvdev
->pdev
);
1263 rproc_coredump_cleanup(rproc
);
1265 EXPORT_SYMBOL(rproc_resource_cleanup
);
1267 static int rproc_start(struct rproc
*rproc
, const struct firmware
*fw
)
1269 struct resource_table
*loaded_table
;
1270 struct device
*dev
= &rproc
->dev
;
1273 /* load the ELF segments to memory */
1274 ret
= rproc_load_segments(rproc
, fw
);
1276 dev_err(dev
, "Failed to load program segments: %d\n", ret
);
1281 * The starting device has been given the rproc->cached_table as the
1282 * resource table. The address of the vring along with the other
1283 * allocated resources (carveouts etc) is stored in cached_table.
1284 * In order to pass this information to the remote device we must copy
1285 * this information to device memory. We also update the table_ptr so
1286 * that any subsequent changes will be applied to the loaded version.
1288 loaded_table
= rproc_find_loaded_rsc_table(rproc
, fw
);
1290 memcpy(loaded_table
, rproc
->cached_table
, rproc
->table_sz
);
1291 rproc
->table_ptr
= loaded_table
;
1294 ret
= rproc_prepare_subdevices(rproc
);
1296 dev_err(dev
, "failed to prepare subdevices for %s: %d\n",
1298 goto reset_table_ptr
;
1301 /* power up the remote processor */
1302 ret
= rproc
->ops
->start(rproc
);
1304 dev_err(dev
, "can't start rproc %s: %d\n", rproc
->name
, ret
);
1305 goto unprepare_subdevices
;
1308 /* Start any subdevices for the remote processor */
1309 ret
= rproc_start_subdevices(rproc
);
1311 dev_err(dev
, "failed to probe subdevices for %s: %d\n",
1316 rproc
->state
= RPROC_RUNNING
;
1318 dev_info(dev
, "remote processor %s is now up\n", rproc
->name
);
1323 rproc
->ops
->stop(rproc
);
1324 unprepare_subdevices
:
1325 rproc_unprepare_subdevices(rproc
);
1327 rproc
->table_ptr
= rproc
->cached_table
;
1332 static int __rproc_attach(struct rproc
*rproc
)
1334 struct device
*dev
= &rproc
->dev
;
1337 ret
= rproc_prepare_subdevices(rproc
);
1339 dev_err(dev
, "failed to prepare subdevices for %s: %d\n",
1344 /* Attach to the remote processor */
1345 ret
= rproc_attach_device(rproc
);
1347 dev_err(dev
, "can't attach to rproc %s: %d\n",
1349 goto unprepare_subdevices
;
1352 /* Start any subdevices for the remote processor */
1353 ret
= rproc_start_subdevices(rproc
);
1355 dev_err(dev
, "failed to probe subdevices for %s: %d\n",
1360 rproc
->state
= RPROC_ATTACHED
;
1362 dev_info(dev
, "remote processor %s is now attached\n", rproc
->name
);
1367 rproc
->ops
->stop(rproc
);
1368 unprepare_subdevices
:
1369 rproc_unprepare_subdevices(rproc
);
1375 * take a firmware and boot a remote processor with it.
1377 static int rproc_fw_boot(struct rproc
*rproc
, const struct firmware
*fw
)
1379 struct device
*dev
= &rproc
->dev
;
1380 const char *name
= rproc
->firmware
;
1383 ret
= rproc_fw_sanity_check(rproc
, fw
);
1387 dev_info(dev
, "Booting fw image %s, size %zd\n", name
, fw
->size
);
1390 * if enabling an IOMMU isn't relevant for this rproc, this is
1393 ret
= rproc_enable_iommu(rproc
);
1395 dev_err(dev
, "can't enable iommu: %d\n", ret
);
1399 /* Prepare rproc for firmware loading if needed */
1400 ret
= rproc_prepare_device(rproc
);
1402 dev_err(dev
, "can't prepare rproc %s: %d\n", rproc
->name
, ret
);
1406 rproc
->bootaddr
= rproc_get_boot_addr(rproc
, fw
);
1408 /* Load resource table, core dump segment list etc from the firmware */
1409 ret
= rproc_parse_fw(rproc
, fw
);
1411 goto unprepare_rproc
;
1413 /* reset max_notifyid */
1414 rproc
->max_notifyid
= -1;
1416 /* reset handled vdev */
1419 /* handle fw resources which are required to boot rproc */
1420 ret
= rproc_handle_resources(rproc
, rproc_loading_handlers
);
1422 dev_err(dev
, "Failed to process resources: %d\n", ret
);
1423 goto clean_up_resources
;
1426 /* Allocate carveout resources associated to rproc */
1427 ret
= rproc_alloc_registered_carveouts(rproc
);
1429 dev_err(dev
, "Failed to allocate associated carveouts: %d\n",
1431 goto clean_up_resources
;
1434 ret
= rproc_start(rproc
, fw
);
1436 goto clean_up_resources
;
1441 rproc_resource_cleanup(rproc
);
1442 kfree(rproc
->cached_table
);
1443 rproc
->cached_table
= NULL
;
1444 rproc
->table_ptr
= NULL
;
1446 /* release HW resources if needed */
1447 rproc_unprepare_device(rproc
);
1449 rproc_disable_iommu(rproc
);
1453 static int rproc_set_rsc_table(struct rproc
*rproc
)
1455 struct resource_table
*table_ptr
;
1456 struct device
*dev
= &rproc
->dev
;
1460 table_ptr
= rproc_get_loaded_rsc_table(rproc
, &table_sz
);
1462 /* Not having a resource table is acceptable */
1466 if (IS_ERR(table_ptr
)) {
1467 ret
= PTR_ERR(table_ptr
);
1468 dev_err(dev
, "can't load resource table: %d\n", ret
);
1473 * If it is possible to detach the remote processor, keep an untouched
1474 * copy of the resource table. That way we can start fresh again when
1475 * the remote processor is re-attached, that is:
1477 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1479 * Free'd in rproc_reset_rsc_table_on_detach() and
1480 * rproc_reset_rsc_table_on_stop().
1482 if (rproc
->ops
->detach
) {
1483 rproc
->clean_table
= kmemdup(table_ptr
, table_sz
, GFP_KERNEL
);
1484 if (!rproc
->clean_table
)
1487 rproc
->clean_table
= NULL
;
1490 rproc
->cached_table
= NULL
;
1491 rproc
->table_ptr
= table_ptr
;
1492 rproc
->table_sz
= table_sz
;
1497 static int rproc_reset_rsc_table_on_detach(struct rproc
*rproc
)
1499 struct resource_table
*table_ptr
;
1501 /* A resource table was never retrieved, nothing to do here */
1502 if (!rproc
->table_ptr
)
1506 * If we made it to this point a clean_table _must_ have been
1507 * allocated in rproc_set_rsc_table(). If one isn't present
1508 * something went really wrong and we must complain.
1510 if (WARN_ON(!rproc
->clean_table
))
1513 /* Remember where the external entity installed the resource table */
1514 table_ptr
= rproc
->table_ptr
;
1517 * If we made it here the remote processor was started by another
1518 * entity and a cache table doesn't exist. As such make a copy of
1519 * the resource table currently used by the remote processor and
1520 * use that for the rest of the shutdown process. The memory
1521 * allocated here is free'd in rproc_detach().
1523 rproc
->cached_table
= kmemdup(rproc
->table_ptr
,
1524 rproc
->table_sz
, GFP_KERNEL
);
1525 if (!rproc
->cached_table
)
1529 * Use a copy of the resource table for the remainder of the
1532 rproc
->table_ptr
= rproc
->cached_table
;
1535 * Reset the memory area where the firmware loaded the resource table
1536 * to its original value. That way when we re-attach the remote
1537 * processor the resource table is clean and ready to be used again.
1539 memcpy(table_ptr
, rproc
->clean_table
, rproc
->table_sz
);
1542 * The clean resource table is no longer needed. Allocated in
1543 * rproc_set_rsc_table().
1545 kfree(rproc
->clean_table
);
1550 static int rproc_reset_rsc_table_on_stop(struct rproc
*rproc
)
1552 /* A resource table was never retrieved, nothing to do here */
1553 if (!rproc
->table_ptr
)
1557 * If a cache table exists the remote processor was started by
1558 * the remoteproc core. That cache table should be used for
1559 * the rest of the shutdown process.
1561 if (rproc
->cached_table
)
1565 * If we made it here the remote processor was started by another
1566 * entity and a cache table doesn't exist. As such make a copy of
1567 * the resource table currently used by the remote processor and
1568 * use that for the rest of the shutdown process. The memory
1569 * allocated here is free'd in rproc_shutdown().
1571 rproc
->cached_table
= kmemdup(rproc
->table_ptr
,
1572 rproc
->table_sz
, GFP_KERNEL
);
1573 if (!rproc
->cached_table
)
1577 * Since the remote processor is being switched off the clean table
1578 * won't be needed. Allocated in rproc_set_rsc_table().
1580 kfree(rproc
->clean_table
);
1584 * Use a copy of the resource table for the remainder of the
1587 rproc
->table_ptr
= rproc
->cached_table
;
1592 * Attach to remote processor - similar to rproc_fw_boot() but without
1593 * the steps that deal with the firmware image.
1595 static int rproc_attach(struct rproc
*rproc
)
1597 struct device
*dev
= &rproc
->dev
;
1601 * if enabling an IOMMU isn't relevant for this rproc, this is
1604 ret
= rproc_enable_iommu(rproc
);
1606 dev_err(dev
, "can't enable iommu: %d\n", ret
);
1610 /* Do anything that is needed to boot the remote processor */
1611 ret
= rproc_prepare_device(rproc
);
1613 dev_err(dev
, "can't prepare rproc %s: %d\n", rproc
->name
, ret
);
1617 ret
= rproc_set_rsc_table(rproc
);
1619 dev_err(dev
, "can't load resource table: %d\n", ret
);
1620 goto unprepare_device
;
1623 /* reset max_notifyid */
1624 rproc
->max_notifyid
= -1;
1626 /* reset handled vdev */
1630 * Handle firmware resources required to attach to a remote processor.
1631 * Because we are attaching rather than booting the remote processor,
1632 * we expect the platform driver to properly set rproc->table_ptr.
1634 ret
= rproc_handle_resources(rproc
, rproc_loading_handlers
);
1636 dev_err(dev
, "Failed to process resources: %d\n", ret
);
1637 goto unprepare_device
;
1640 /* Allocate carveout resources associated to rproc */
1641 ret
= rproc_alloc_registered_carveouts(rproc
);
1643 dev_err(dev
, "Failed to allocate associated carveouts: %d\n",
1645 goto clean_up_resources
;
1648 ret
= __rproc_attach(rproc
);
1650 goto clean_up_resources
;
1655 rproc_resource_cleanup(rproc
);
1657 /* release HW resources if needed */
1658 rproc_unprepare_device(rproc
);
1660 rproc_disable_iommu(rproc
);
1665 * take a firmware and boot it up.
1667 * Note: this function is called asynchronously upon registration of the
1668 * remote processor (so we must wait until it completes before we try
1669 * to unregister the device. one other option is just to use kref here,
1670 * that might be cleaner).
1672 static void rproc_auto_boot_callback(const struct firmware
*fw
, void *context
)
1674 struct rproc
*rproc
= context
;
1678 release_firmware(fw
);
1681 static int rproc_trigger_auto_boot(struct rproc
*rproc
)
1686 * Since the remote processor is in a detached state, it has already
1687 * been booted by another entity. As such there is no point in waiting
1688 * for a firmware image to be loaded, we can simply initiate the process
1689 * of attaching to it immediately.
1691 if (rproc
->state
== RPROC_DETACHED
)
1692 return rproc_boot(rproc
);
1695 * We're initiating an asynchronous firmware loading, so we can
1696 * be built-in kernel code, without hanging the boot process.
1698 ret
= request_firmware_nowait(THIS_MODULE
, FW_ACTION_UEVENT
,
1699 rproc
->firmware
, &rproc
->dev
, GFP_KERNEL
,
1700 rproc
, rproc_auto_boot_callback
);
1702 dev_err(&rproc
->dev
, "request_firmware_nowait err: %d\n", ret
);
1707 static int rproc_stop(struct rproc
*rproc
, bool crashed
)
1709 struct device
*dev
= &rproc
->dev
;
1712 /* No need to continue if a stop() operation has not been provided */
1713 if (!rproc
->ops
->stop
)
1716 /* Stop any subdevices for the remote processor */
1717 rproc_stop_subdevices(rproc
, crashed
);
1719 /* the installed resource table is no longer accessible */
1720 ret
= rproc_reset_rsc_table_on_stop(rproc
);
1722 dev_err(dev
, "can't reset resource table: %d\n", ret
);
1727 /* power off the remote processor */
1728 ret
= rproc
->ops
->stop(rproc
);
1730 dev_err(dev
, "can't stop rproc: %d\n", ret
);
1734 rproc_unprepare_subdevices(rproc
);
1736 rproc
->state
= RPROC_OFFLINE
;
1738 dev_info(dev
, "stopped remote processor %s\n", rproc
->name
);
1744 * __rproc_detach(): Does the opposite of __rproc_attach()
1746 static int __rproc_detach(struct rproc
*rproc
)
1748 struct device
*dev
= &rproc
->dev
;
1751 /* No need to continue if a detach() operation has not been provided */
1752 if (!rproc
->ops
->detach
)
1755 /* Stop any subdevices for the remote processor */
1756 rproc_stop_subdevices(rproc
, false);
1758 /* the installed resource table is no longer accessible */
1759 ret
= rproc_reset_rsc_table_on_detach(rproc
);
1761 dev_err(dev
, "can't reset resource table: %d\n", ret
);
1765 /* Tell the remote processor the core isn't available anymore */
1766 ret
= rproc
->ops
->detach(rproc
);
1768 dev_err(dev
, "can't detach from rproc: %d\n", ret
);
1772 rproc_unprepare_subdevices(rproc
);
1774 rproc
->state
= RPROC_DETACHED
;
1776 dev_info(dev
, "detached remote processor %s\n", rproc
->name
);
1781 static int rproc_attach_recovery(struct rproc
*rproc
)
1785 ret
= __rproc_detach(rproc
);
1789 return __rproc_attach(rproc
);
1792 static int rproc_boot_recovery(struct rproc
*rproc
)
1794 const struct firmware
*firmware_p
;
1795 struct device
*dev
= &rproc
->dev
;
1798 ret
= rproc_stop(rproc
, true);
1802 /* generate coredump */
1803 rproc
->ops
->coredump(rproc
);
1806 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1808 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1812 /* boot the remote processor up again */
1813 ret
= rproc_start(rproc
, firmware_p
);
1815 release_firmware(firmware_p
);
1821 * rproc_trigger_recovery() - recover a remoteproc
1822 * @rproc: the remote processor
1824 * The recovery is done by resetting all the virtio devices, that way all the
1825 * rpmsg drivers will be reseted along with the remote processor making the
1826 * remoteproc functional again.
1828 * This function can sleep, so it cannot be called from atomic context.
1830 * Return: 0 on success or a negative value upon failure
1832 int rproc_trigger_recovery(struct rproc
*rproc
)
1834 struct device
*dev
= &rproc
->dev
;
1837 ret
= mutex_lock_interruptible(&rproc
->lock
);
1841 /* State could have changed before we got the mutex */
1842 if (rproc
->state
!= RPROC_CRASHED
)
1845 dev_err(dev
, "recovering %s\n", rproc
->name
);
1847 if (rproc_has_feature(rproc
, RPROC_FEAT_ATTACH_ON_RECOVERY
))
1848 ret
= rproc_attach_recovery(rproc
);
1850 ret
= rproc_boot_recovery(rproc
);
1853 mutex_unlock(&rproc
->lock
);
1858 * rproc_crash_handler_work() - handle a crash
1859 * @work: work treating the crash
1861 * This function needs to handle everything related to a crash, like cpu
1862 * registers and stack dump, information to help to debug the fatal error, etc.
1864 static void rproc_crash_handler_work(struct work_struct
*work
)
1866 struct rproc
*rproc
= container_of(work
, struct rproc
, crash_handler
);
1867 struct device
*dev
= &rproc
->dev
;
1869 dev_dbg(dev
, "enter %s\n", __func__
);
1871 mutex_lock(&rproc
->lock
);
1873 if (rproc
->state
== RPROC_CRASHED
) {
1874 /* handle only the first crash detected */
1875 mutex_unlock(&rproc
->lock
);
1879 if (rproc
->state
== RPROC_OFFLINE
) {
1880 /* Don't recover if the remote processor was stopped */
1881 mutex_unlock(&rproc
->lock
);
1885 rproc
->state
= RPROC_CRASHED
;
1886 dev_err(dev
, "handling crash #%u in %s\n", ++rproc
->crash_cnt
,
1889 mutex_unlock(&rproc
->lock
);
1891 if (!rproc
->recovery_disabled
)
1892 rproc_trigger_recovery(rproc
);
1895 pm_relax(rproc
->dev
.parent
);
1899 * rproc_boot() - boot a remote processor
1900 * @rproc: handle of a remote processor
1902 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1904 * If the remote processor is already powered on, this function immediately
1905 * returns (successfully).
1907 * Return: 0 on success, and an appropriate error value otherwise
1909 int rproc_boot(struct rproc
*rproc
)
1911 const struct firmware
*firmware_p
;
1916 pr_err("invalid rproc handle\n");
1922 ret
= mutex_lock_interruptible(&rproc
->lock
);
1924 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1928 if (rproc
->state
== RPROC_DELETED
) {
1930 dev_err(dev
, "can't boot deleted rproc %s\n", rproc
->name
);
1934 /* skip the boot or attach process if rproc is already powered up */
1935 if (atomic_inc_return(&rproc
->power
) > 1) {
1940 if (rproc
->state
== RPROC_DETACHED
) {
1941 dev_info(dev
, "attaching to %s\n", rproc
->name
);
1943 ret
= rproc_attach(rproc
);
1945 dev_info(dev
, "powering up %s\n", rproc
->name
);
1948 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1950 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1954 ret
= rproc_fw_boot(rproc
, firmware_p
);
1956 release_firmware(firmware_p
);
1961 atomic_dec(&rproc
->power
);
1963 mutex_unlock(&rproc
->lock
);
1966 EXPORT_SYMBOL(rproc_boot
);
1969 * rproc_shutdown() - power off the remote processor
1970 * @rproc: the remote processor
1972 * Power off a remote processor (previously booted with rproc_boot()).
1974 * In case @rproc is still being used by an additional user(s), then
1975 * this function will just decrement the power refcount and exit,
1976 * without really powering off the device.
1978 * Every call to rproc_boot() must (eventually) be accompanied by a call
1979 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1982 * - we're not decrementing the rproc's refcount, only the power refcount.
1983 * which means that the @rproc handle stays valid even after rproc_shutdown()
1984 * returns, and users can still use it with a subsequent rproc_boot(), if
1987 * Return: 0 on success, and an appropriate error value otherwise
1989 int rproc_shutdown(struct rproc
*rproc
)
1991 struct device
*dev
= &rproc
->dev
;
1994 ret
= mutex_lock_interruptible(&rproc
->lock
);
1996 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
2000 if (rproc
->state
!= RPROC_RUNNING
&&
2001 rproc
->state
!= RPROC_ATTACHED
) {
2006 /* if the remote proc is still needed, bail out */
2007 if (!atomic_dec_and_test(&rproc
->power
))
2010 ret
= rproc_stop(rproc
, false);
2012 atomic_inc(&rproc
->power
);
2016 /* clean up all acquired resources */
2017 rproc_resource_cleanup(rproc
);
2019 /* release HW resources if needed */
2020 rproc_unprepare_device(rproc
);
2022 rproc_disable_iommu(rproc
);
2024 /* Free the copy of the resource table */
2025 kfree(rproc
->cached_table
);
2026 rproc
->cached_table
= NULL
;
2027 rproc
->table_ptr
= NULL
;
2029 mutex_unlock(&rproc
->lock
);
2032 EXPORT_SYMBOL(rproc_shutdown
);
2035 * rproc_detach() - Detach the remote processor from the
2038 * @rproc: the remote processor
2040 * Detach a remote processor (previously attached to with rproc_attach()).
2042 * In case @rproc is still being used by an additional user(s), then
2043 * this function will just decrement the power refcount and exit,
2044 * without disconnecting the device.
2046 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2047 * processor know that services provided by the application processor are
2048 * no longer available. From there it should be possible to remove the
2049 * platform driver and even power cycle the application processor (if the HW
2050 * supports it) without needing to switch off the remote processor.
2052 * Return: 0 on success, and an appropriate error value otherwise
2054 int rproc_detach(struct rproc
*rproc
)
2056 struct device
*dev
= &rproc
->dev
;
2059 ret
= mutex_lock_interruptible(&rproc
->lock
);
2061 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
2065 if (rproc
->state
!= RPROC_ATTACHED
) {
2070 /* if the remote proc is still needed, bail out */
2071 if (!atomic_dec_and_test(&rproc
->power
)) {
2076 ret
= __rproc_detach(rproc
);
2078 atomic_inc(&rproc
->power
);
2082 /* clean up all acquired resources */
2083 rproc_resource_cleanup(rproc
);
2085 /* release HW resources if needed */
2086 rproc_unprepare_device(rproc
);
2088 rproc_disable_iommu(rproc
);
2090 /* Free the copy of the resource table */
2091 kfree(rproc
->cached_table
);
2092 rproc
->cached_table
= NULL
;
2093 rproc
->table_ptr
= NULL
;
2095 mutex_unlock(&rproc
->lock
);
2098 EXPORT_SYMBOL(rproc_detach
);
2101 * rproc_get_by_phandle() - find a remote processor by phandle
2102 * @phandle: phandle to the rproc
2104 * Finds an rproc handle using the remote processor's phandle, and then
2105 * return a handle to the rproc.
2107 * This function increments the remote processor's refcount, so always
2108 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2110 * Return: rproc handle on success, and NULL on failure
2113 struct rproc
*rproc_get_by_phandle(phandle phandle
)
2115 struct rproc
*rproc
= NULL
, *r
;
2116 struct device_driver
*driver
;
2117 struct device_node
*np
;
2119 np
= of_find_node_by_phandle(phandle
);
2124 list_for_each_entry_rcu(r
, &rproc_list
, node
) {
2125 if (r
->dev
.parent
&& device_match_of_node(r
->dev
.parent
, np
)) {
2126 /* prevent underlying implementation from being removed */
2129 * If the remoteproc's parent has a driver, the
2130 * remoteproc is not part of a cluster and we can use
2133 driver
= r
->dev
.parent
->driver
;
2136 * If the remoteproc's parent does not have a driver,
2137 * look for the driver associated with the cluster.
2140 if (r
->dev
.parent
->parent
)
2141 driver
= r
->dev
.parent
->parent
->driver
;
2146 if (!try_module_get(driver
->owner
)) {
2147 dev_err(&r
->dev
, "can't get owner\n");
2152 get_device(&rproc
->dev
);
2163 struct rproc
*rproc_get_by_phandle(phandle phandle
)
2168 EXPORT_SYMBOL(rproc_get_by_phandle
);
2171 * rproc_set_firmware() - assign a new firmware
2172 * @rproc: rproc handle to which the new firmware is being assigned
2173 * @fw_name: new firmware name to be assigned
2175 * This function allows remoteproc drivers or clients to configure a custom
2176 * firmware name that is different from the default name used during remoteproc
2177 * registration. The function does not trigger a remote processor boot,
2178 * only sets the firmware name used for a subsequent boot. This function
2179 * should also be called only when the remote processor is offline.
2181 * This allows either the userspace to configure a different name through
2182 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2183 * a specific firmware when it is controlling the boot and shutdown of the
2186 * Return: 0 on success or a negative value upon failure
2188 int rproc_set_firmware(struct rproc
*rproc
, const char *fw_name
)
2194 if (!rproc
|| !fw_name
)
2197 dev
= rproc
->dev
.parent
;
2199 ret
= mutex_lock_interruptible(&rproc
->lock
);
2201 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
2205 if (rproc
->state
!= RPROC_OFFLINE
) {
2206 dev_err(dev
, "can't change firmware while running\n");
2211 len
= strcspn(fw_name
, "\n");
2213 dev_err(dev
, "can't provide empty string for firmware name\n");
2218 p
= kstrndup(fw_name
, len
, GFP_KERNEL
);
2224 kfree_const(rproc
->firmware
);
2225 rproc
->firmware
= p
;
2228 mutex_unlock(&rproc
->lock
);
2231 EXPORT_SYMBOL(rproc_set_firmware
);
2233 static int rproc_validate(struct rproc
*rproc
)
2235 switch (rproc
->state
) {
2238 * An offline processor without a start()
2239 * function makes no sense.
2241 if (!rproc
->ops
->start
)
2244 case RPROC_DETACHED
:
2246 * A remote processor in a detached state without an
2247 * attach() function makes not sense.
2249 if (!rproc
->ops
->attach
)
2252 * When attaching to a remote processor the device memory
2253 * is already available and as such there is no need to have a
2256 if (rproc
->cached_table
)
2261 * When adding a remote processor, the state of the device
2262 * can be offline or detached, nothing else.
2271 * rproc_add() - register a remote processor
2272 * @rproc: the remote processor handle to register
2274 * Registers @rproc with the remoteproc framework, after it has been
2275 * allocated with rproc_alloc().
2277 * This is called by the platform-specific rproc implementation, whenever
2278 * a new remote processor device is probed.
2280 * Note: this function initiates an asynchronous firmware loading
2281 * context, which will look for virtio devices supported by the rproc's
2284 * If found, those virtio devices will be created and added, so as a result
2285 * of registering this remote processor, additional virtio drivers might be
2288 * Return: 0 on success and an appropriate error code otherwise
2290 int rproc_add(struct rproc
*rproc
)
2292 struct device
*dev
= &rproc
->dev
;
2295 ret
= rproc_validate(rproc
);
2299 /* add char device for this remoteproc */
2300 ret
= rproc_char_device_add(rproc
);
2304 ret
= device_add(dev
);
2307 goto rproc_remove_cdev
;
2310 dev_info(dev
, "%s is available\n", rproc
->name
);
2312 /* create debugfs entries */
2313 rproc_create_debug_dir(rproc
);
2315 /* if rproc is marked always-on, request it to boot */
2316 if (rproc
->auto_boot
) {
2317 ret
= rproc_trigger_auto_boot(rproc
);
2319 goto rproc_remove_dev
;
2322 /* expose to rproc_get_by_phandle users */
2323 mutex_lock(&rproc_list_mutex
);
2324 list_add_rcu(&rproc
->node
, &rproc_list
);
2325 mutex_unlock(&rproc_list_mutex
);
2330 rproc_delete_debug_dir(rproc
);
2333 rproc_char_device_remove(rproc
);
2336 EXPORT_SYMBOL(rproc_add
);
2338 static void devm_rproc_remove(void *rproc
)
2344 * devm_rproc_add() - resource managed rproc_add()
2345 * @dev: the underlying device
2346 * @rproc: the remote processor handle to register
2348 * This function performs like rproc_add() but the registered rproc device will
2349 * automatically be removed on driver detach.
2351 * Return: 0 on success, negative errno on failure
2353 int devm_rproc_add(struct device
*dev
, struct rproc
*rproc
)
2357 err
= rproc_add(rproc
);
2361 return devm_add_action_or_reset(dev
, devm_rproc_remove
, rproc
);
2363 EXPORT_SYMBOL(devm_rproc_add
);
2366 * rproc_type_release() - release a remote processor instance
2367 * @dev: the rproc's device
2369 * This function should _never_ be called directly.
2371 * It will be called by the driver core when no one holds a valid pointer
2374 static void rproc_type_release(struct device
*dev
)
2376 struct rproc
*rproc
= container_of(dev
, struct rproc
, dev
);
2378 dev_info(&rproc
->dev
, "releasing %s\n", rproc
->name
);
2380 idr_destroy(&rproc
->notifyids
);
2382 if (rproc
->index
>= 0)
2383 ida_free(&rproc_dev_index
, rproc
->index
);
2385 kfree_const(rproc
->firmware
);
2386 kfree_const(rproc
->name
);
2391 static const struct device_type rproc_type
= {
2392 .name
= "remoteproc",
2393 .release
= rproc_type_release
,
2396 static int rproc_alloc_firmware(struct rproc
*rproc
,
2397 const char *name
, const char *firmware
)
2402 * Allocate a firmware name if the caller gave us one to work
2403 * with. Otherwise construct a new one using a default pattern.
2406 p
= kstrdup_const(firmware
, GFP_KERNEL
);
2408 p
= kasprintf(GFP_KERNEL
, "rproc-%s-fw", name
);
2413 rproc
->firmware
= p
;
2418 static int rproc_alloc_ops(struct rproc
*rproc
, const struct rproc_ops
*ops
)
2420 rproc
->ops
= kmemdup(ops
, sizeof(*ops
), GFP_KERNEL
);
2424 /* Default to rproc_coredump if no coredump function is specified */
2425 if (!rproc
->ops
->coredump
)
2426 rproc
->ops
->coredump
= rproc_coredump
;
2428 if (rproc
->ops
->load
)
2431 /* Default to ELF loader if no load function is specified */
2432 rproc
->ops
->load
= rproc_elf_load_segments
;
2433 rproc
->ops
->parse_fw
= rproc_elf_load_rsc_table
;
2434 rproc
->ops
->find_loaded_rsc_table
= rproc_elf_find_loaded_rsc_table
;
2435 rproc
->ops
->sanity_check
= rproc_elf_sanity_check
;
2436 rproc
->ops
->get_boot_addr
= rproc_elf_get_boot_addr
;
2442 * rproc_alloc() - allocate a remote processor handle
2443 * @dev: the underlying device
2444 * @name: name of this remote processor
2445 * @ops: platform-specific handlers (mainly start/stop)
2446 * @firmware: name of firmware file to load, can be NULL
2447 * @len: length of private data needed by the rproc driver (in bytes)
2449 * Allocates a new remote processor handle, but does not register
2450 * it yet. if @firmware is NULL, a default name is used.
2452 * This function should be used by rproc implementations during initialization
2453 * of the remote processor.
2455 * After creating an rproc handle using this function, and when ready,
2456 * implementations should then call rproc_add() to complete
2457 * the registration of the remote processor.
2459 * Note: _never_ directly deallocate @rproc, even if it was not registered
2460 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2462 * Return: new rproc pointer on success, and NULL on failure
2464 struct rproc
*rproc_alloc(struct device
*dev
, const char *name
,
2465 const struct rproc_ops
*ops
,
2466 const char *firmware
, int len
)
2468 struct rproc
*rproc
;
2470 if (!dev
|| !name
|| !ops
)
2473 rproc
= kzalloc(sizeof(struct rproc
) + len
, GFP_KERNEL
);
2477 rproc
->priv
= &rproc
[1];
2478 rproc
->auto_boot
= true;
2479 rproc
->elf_class
= ELFCLASSNONE
;
2480 rproc
->elf_machine
= EM_NONE
;
2482 device_initialize(&rproc
->dev
);
2483 rproc
->dev
.parent
= dev
;
2484 rproc
->dev
.type
= &rproc_type
;
2485 rproc
->dev
.class = &rproc_class
;
2486 rproc
->dev
.driver_data
= rproc
;
2487 idr_init(&rproc
->notifyids
);
2489 rproc
->name
= kstrdup_const(name
, GFP_KERNEL
);
2493 if (rproc_alloc_firmware(rproc
, name
, firmware
))
2496 if (rproc_alloc_ops(rproc
, ops
))
2499 /* Assign a unique device index and name */
2500 rproc
->index
= ida_alloc(&rproc_dev_index
, GFP_KERNEL
);
2501 if (rproc
->index
< 0) {
2502 dev_err(dev
, "ida_alloc failed: %d\n", rproc
->index
);
2506 dev_set_name(&rproc
->dev
, "remoteproc%d", rproc
->index
);
2508 atomic_set(&rproc
->power
, 0);
2510 mutex_init(&rproc
->lock
);
2512 INIT_LIST_HEAD(&rproc
->carveouts
);
2513 INIT_LIST_HEAD(&rproc
->mappings
);
2514 INIT_LIST_HEAD(&rproc
->traces
);
2515 INIT_LIST_HEAD(&rproc
->rvdevs
);
2516 INIT_LIST_HEAD(&rproc
->subdevs
);
2517 INIT_LIST_HEAD(&rproc
->dump_segments
);
2519 INIT_WORK(&rproc
->crash_handler
, rproc_crash_handler_work
);
2521 rproc
->state
= RPROC_OFFLINE
;
2526 put_device(&rproc
->dev
);
2529 EXPORT_SYMBOL(rproc_alloc
);
2532 * rproc_free() - unroll rproc_alloc()
2533 * @rproc: the remote processor handle
2535 * This function decrements the rproc dev refcount.
2537 * If no one holds any reference to rproc anymore, then its refcount would
2538 * now drop to zero, and it would be freed.
2540 void rproc_free(struct rproc
*rproc
)
2542 put_device(&rproc
->dev
);
2544 EXPORT_SYMBOL(rproc_free
);
2547 * rproc_put() - release rproc reference
2548 * @rproc: the remote processor handle
2550 * This function decrements the rproc dev refcount.
2552 * If no one holds any reference to rproc anymore, then its refcount would
2553 * now drop to zero, and it would be freed.
2555 void rproc_put(struct rproc
*rproc
)
2557 if (rproc
->dev
.parent
->driver
)
2558 module_put(rproc
->dev
.parent
->driver
->owner
);
2560 module_put(rproc
->dev
.parent
->parent
->driver
->owner
);
2562 put_device(&rproc
->dev
);
2564 EXPORT_SYMBOL(rproc_put
);
2567 * rproc_del() - unregister a remote processor
2568 * @rproc: rproc handle to unregister
2570 * This function should be called when the platform specific rproc
2571 * implementation decides to remove the rproc device. it should
2572 * _only_ be called if a previous invocation of rproc_add()
2573 * has completed successfully.
2575 * After rproc_del() returns, @rproc isn't freed yet, because
2576 * of the outstanding reference created by rproc_alloc. To decrement that
2577 * one last refcount, one still needs to call rproc_free().
2579 * Return: 0 on success and -EINVAL if @rproc isn't valid
2581 int rproc_del(struct rproc
*rproc
)
2586 /* TODO: make sure this works with rproc->power > 1 */
2587 rproc_shutdown(rproc
);
2589 mutex_lock(&rproc
->lock
);
2590 rproc
->state
= RPROC_DELETED
;
2591 mutex_unlock(&rproc
->lock
);
2593 rproc_delete_debug_dir(rproc
);
2595 /* the rproc is downref'ed as soon as it's removed from the klist */
2596 mutex_lock(&rproc_list_mutex
);
2597 list_del_rcu(&rproc
->node
);
2598 mutex_unlock(&rproc_list_mutex
);
2600 /* Ensure that no readers of rproc_list are still active */
2603 device_del(&rproc
->dev
);
2604 rproc_char_device_remove(rproc
);
2608 EXPORT_SYMBOL(rproc_del
);
2610 static void devm_rproc_free(struct device
*dev
, void *res
)
2612 rproc_free(*(struct rproc
**)res
);
2616 * devm_rproc_alloc() - resource managed rproc_alloc()
2617 * @dev: the underlying device
2618 * @name: name of this remote processor
2619 * @ops: platform-specific handlers (mainly start/stop)
2620 * @firmware: name of firmware file to load, can be NULL
2621 * @len: length of private data needed by the rproc driver (in bytes)
2623 * This function performs like rproc_alloc() but the acquired rproc device will
2624 * automatically be released on driver detach.
2626 * Return: new rproc instance, or NULL on failure
2628 struct rproc
*devm_rproc_alloc(struct device
*dev
, const char *name
,
2629 const struct rproc_ops
*ops
,
2630 const char *firmware
, int len
)
2632 struct rproc
**ptr
, *rproc
;
2634 ptr
= devres_alloc(devm_rproc_free
, sizeof(*ptr
), GFP_KERNEL
);
2638 rproc
= rproc_alloc(dev
, name
, ops
, firmware
, len
);
2641 devres_add(dev
, ptr
);
2648 EXPORT_SYMBOL(devm_rproc_alloc
);
2651 * rproc_add_subdev() - add a subdevice to a remoteproc
2652 * @rproc: rproc handle to add the subdevice to
2653 * @subdev: subdev handle to register
2655 * Caller is responsible for populating optional subdevice function pointers.
2657 void rproc_add_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2659 list_add_tail(&subdev
->node
, &rproc
->subdevs
);
2661 EXPORT_SYMBOL(rproc_add_subdev
);
2664 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2665 * @rproc: rproc handle to remove the subdevice from
2666 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2668 void rproc_remove_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2670 list_del(&subdev
->node
);
2672 EXPORT_SYMBOL(rproc_remove_subdev
);
2675 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2676 * @dev: child device to find ancestor of
2678 * Return: the ancestor rproc instance, or NULL if not found
2680 struct rproc
*rproc_get_by_child(struct device
*dev
)
2682 for (dev
= dev
->parent
; dev
; dev
= dev
->parent
) {
2683 if (dev
->type
== &rproc_type
)
2684 return dev
->driver_data
;
2689 EXPORT_SYMBOL(rproc_get_by_child
);
2692 * rproc_report_crash() - rproc crash reporter function
2693 * @rproc: remote processor
2696 * This function must be called every time a crash is detected by the low-level
2697 * drivers implementing a specific remoteproc. This should not be called from a
2698 * non-remoteproc driver.
2700 * This function can be called from atomic/interrupt context.
2702 void rproc_report_crash(struct rproc
*rproc
, enum rproc_crash_type type
)
2705 pr_err("NULL rproc pointer\n");
2709 /* Prevent suspend while the remoteproc is being recovered */
2710 pm_stay_awake(rproc
->dev
.parent
);
2712 dev_err(&rproc
->dev
, "crash detected in %s: type %s\n",
2713 rproc
->name
, rproc_crash_to_string(type
));
2715 queue_work(rproc_recovery_wq
, &rproc
->crash_handler
);
2717 EXPORT_SYMBOL(rproc_report_crash
);
2719 static int rproc_panic_handler(struct notifier_block
*nb
, unsigned long event
,
2722 unsigned int longest
= 0;
2723 struct rproc
*rproc
;
2727 list_for_each_entry_rcu(rproc
, &rproc_list
, node
) {
2728 if (!rproc
->ops
->panic
)
2731 if (rproc
->state
!= RPROC_RUNNING
&&
2732 rproc
->state
!= RPROC_ATTACHED
)
2735 d
= rproc
->ops
->panic(rproc
);
2736 longest
= max(longest
, d
);
2741 * Delay for the longest requested duration before returning. This can
2742 * be used by the remoteproc drivers to give the remote processor time
2743 * to perform any requested operations (such as flush caches), when
2744 * it's not possible to signal the Linux side due to the panic.
2751 static void __init
rproc_init_panic(void)
2753 rproc_panic_nb
.notifier_call
= rproc_panic_handler
;
2754 atomic_notifier_chain_register(&panic_notifier_list
, &rproc_panic_nb
);
2757 static void __exit
rproc_exit_panic(void)
2759 atomic_notifier_chain_unregister(&panic_notifier_list
, &rproc_panic_nb
);
2762 static int __init
remoteproc_init(void)
2764 rproc_recovery_wq
= alloc_workqueue("rproc_recovery_wq",
2765 WQ_UNBOUND
| WQ_FREEZABLE
, 0);
2766 if (!rproc_recovery_wq
) {
2767 pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2772 rproc_init_debugfs();
2778 subsys_initcall(remoteproc_init
);
2780 static void __exit
remoteproc_exit(void)
2782 ida_destroy(&rproc_dev_index
);
2784 if (!rproc_recovery_wq
)
2788 rproc_exit_debugfs();
2790 destroy_workqueue(rproc_recovery_wq
);
2792 module_exit(remoteproc_exit
);
2794 MODULE_DESCRIPTION("Generic Remote Processor Framework");