1 // SPDX-License-Identifier: GPL-2.0-only
3 * TI K3 R5F (MCU) Remote Processor driver
5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
16 #include <linux/of_address.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/of_platform.h>
19 #include <linux/omap-mailbox.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/remoteproc.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
26 #include "omap_remoteproc.h"
27 #include "remoteproc_internal.h"
28 #include "ti_sci_proc.h"
30 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
31 #define K3_R5_TCM_DEV_ADDR 0x41010000
33 /* R5 TI-SCI Processor Configuration Flags */
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
35 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
36 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
37 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
38 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
39 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
40 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
41 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
42 /* Available from J7200 SoCs onwards */
43 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
44 /* Applicable to only AM64x SoCs */
45 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
47 /* R5 TI-SCI Processor Control Flags */
48 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
50 /* R5 TI-SCI Processor Status Flags */
51 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
52 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
53 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
54 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
55 /* Applicable to only AM64x SoCs */
56 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
59 * struct k3_r5_mem - internal memory structure
60 * @cpu_addr: MPU virtual address of the memory region
61 * @bus_addr: Bus address used to access the memory region
62 * @dev_addr: Device address from remoteproc view
63 * @size: Size of the memory region
66 void __iomem
*cpu_addr
;
73 * All cluster mode values are not applicable on all SoCs. The following
74 * are the modes supported on various SoCs:
75 * Split mode : AM65x, J721E, J7200 and AM64x SoCs
76 * LockStep mode : AM65x, J721E and J7200 SoCs
77 * Single-CPU mode : AM64x SoCs only
78 * Single-Core mode : AM62x, AM62A SoCs
81 CLUSTER_MODE_SPLIT
= 0,
82 CLUSTER_MODE_LOCKSTEP
,
83 CLUSTER_MODE_SINGLECPU
,
84 CLUSTER_MODE_SINGLECORE
88 * struct k3_r5_soc_data - match data to handle SoC variations
89 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
90 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
91 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
92 * @is_single_core: flag to denote if SoC/IP has only single core R5
94 struct k3_r5_soc_data
{
96 bool tcm_ecc_autoinit
;
102 * struct k3_r5_cluster - K3 R5F Cluster structure
103 * @dev: cached device pointer
104 * @mode: Mode to configure the Cluster - Split or LockStep
105 * @cores: list of R5 cores within the cluster
106 * @core_transition: wait queue to sync core state changes
107 * @soc_data: SoC-specific feature data for a R5FSS
109 struct k3_r5_cluster
{
111 enum cluster_mode mode
;
112 struct list_head cores
;
113 wait_queue_head_t core_transition
;
114 const struct k3_r5_soc_data
*soc_data
;
118 * struct k3_r5_core - K3 R5 core structure
119 * @elem: linked list item
120 * @dev: cached device pointer
121 * @rproc: rproc handle representing this core
122 * @mem: internal memory regions data
123 * @sram: on-chip SRAM memory regions data
124 * @num_mems: number of internal memory regions
125 * @num_sram: number of on-chip SRAM memory regions
126 * @reset: reset control handle
127 * @tsp: TI-SCI processor control handle
128 * @ti_sci: TI-SCI handle
129 * @ti_sci_id: TI-SCI device identifier
130 * @atcm_enable: flag to control ATCM enablement
131 * @btcm_enable: flag to control BTCM enablement
132 * @loczrama: flag to dictate which TCM is at device address 0x0
133 * @released_from_reset: flag to signal when core is out of reset
136 struct list_head elem
;
139 struct k3_r5_mem
*mem
;
140 struct k3_r5_mem
*sram
;
143 struct reset_control
*reset
;
144 struct ti_sci_proc
*tsp
;
145 const struct ti_sci_handle
*ti_sci
;
150 bool released_from_reset
;
154 * struct k3_r5_rproc - K3 remote processor state
155 * @dev: cached device pointer
156 * @cluster: cached pointer to parent cluster structure
157 * @mbox: mailbox channel handle
158 * @client: mailbox client to request the mailbox channel
159 * @rproc: rproc handle
160 * @core: cached pointer to r5 core structure being used
161 * @rmem: reserved memory regions data
162 * @num_rmems: number of reserved memory regions
166 struct k3_r5_cluster
*cluster
;
167 struct mbox_chan
*mbox
;
168 struct mbox_client client
;
170 struct k3_r5_core
*core
;
171 struct k3_r5_mem
*rmem
;
176 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
177 * @client: mailbox client pointer used for requesting the mailbox channel
178 * @data: mailbox payload
180 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
181 * message is received. Usually, the mailbox payload simply contains
182 * the index of the virtqueue that is kicked by the remote processor,
183 * and we let remoteproc core handle it.
185 * In addition to virtqueue indices, we also have some out-of-band values
186 * that indicate different events. Those values are deliberately very
187 * large so they don't coincide with virtqueue indices.
189 static void k3_r5_rproc_mbox_callback(struct mbox_client
*client
, void *data
)
191 struct k3_r5_rproc
*kproc
= container_of(client
, struct k3_r5_rproc
,
193 struct device
*dev
= kproc
->rproc
->dev
.parent
;
194 const char *name
= kproc
->rproc
->name
;
195 u32 msg
= omap_mbox_message(data
);
197 /* Do not forward message from a detached core */
198 if (kproc
->rproc
->state
== RPROC_DETACHED
)
201 dev_dbg(dev
, "mbox msg: 0x%x\n", msg
);
206 * remoteproc detected an exception, but error recovery is not
207 * supported. So, just log this for now
209 dev_err(dev
, "K3 R5F rproc %s crashed\n", name
);
211 case RP_MBOX_ECHO_REPLY
:
212 dev_info(dev
, "received echo reply from %s\n", name
);
215 /* silently handle all other valid messages */
216 if (msg
>= RP_MBOX_READY
&& msg
< RP_MBOX_END_MSG
)
218 if (msg
> kproc
->rproc
->max_notifyid
) {
219 dev_dbg(dev
, "dropping unknown message 0x%x", msg
);
222 /* msg contains the index of the triggered vring */
223 if (rproc_vq_interrupt(kproc
->rproc
, msg
) == IRQ_NONE
)
224 dev_dbg(dev
, "no message was found in vqid %d\n", msg
);
228 /* kick a virtqueue */
229 static void k3_r5_rproc_kick(struct rproc
*rproc
, int vqid
)
231 struct k3_r5_rproc
*kproc
= rproc
->priv
;
232 struct device
*dev
= rproc
->dev
.parent
;
233 mbox_msg_t msg
= (mbox_msg_t
)vqid
;
236 /* Do not forward message to a detached core */
237 if (kproc
->rproc
->state
== RPROC_DETACHED
)
240 /* send the index of the triggered virtqueue in the mailbox payload */
241 ret
= mbox_send_message(kproc
->mbox
, (void *)msg
);
243 dev_err(dev
, "failed to send mailbox message, status = %d\n",
247 static int k3_r5_split_reset(struct k3_r5_core
*core
)
251 ret
= reset_control_assert(core
->reset
);
253 dev_err(core
->dev
, "local-reset assert failed, ret = %d\n",
258 ret
= core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
261 dev_err(core
->dev
, "module-reset assert failed, ret = %d\n",
263 if (reset_control_deassert(core
->reset
))
264 dev_warn(core
->dev
, "local-reset deassert back failed\n");
270 static int k3_r5_split_release(struct k3_r5_core
*core
)
274 ret
= core
->ti_sci
->ops
.dev_ops
.get_device(core
->ti_sci
,
277 dev_err(core
->dev
, "module-reset deassert failed, ret = %d\n",
282 ret
= reset_control_deassert(core
->reset
);
284 dev_err(core
->dev
, "local-reset deassert failed, ret = %d\n",
286 if (core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
288 dev_warn(core
->dev
, "module-reset assert back failed\n");
294 static int k3_r5_lockstep_reset(struct k3_r5_cluster
*cluster
)
296 struct k3_r5_core
*core
;
299 /* assert local reset on all applicable cores */
300 list_for_each_entry(core
, &cluster
->cores
, elem
) {
301 ret
= reset_control_assert(core
->reset
);
303 dev_err(core
->dev
, "local-reset assert failed, ret = %d\n",
305 core
= list_prev_entry(core
, elem
);
306 goto unroll_local_reset
;
310 /* disable PSC modules on all applicable cores */
311 list_for_each_entry(core
, &cluster
->cores
, elem
) {
312 ret
= core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
315 dev_err(core
->dev
, "module-reset assert failed, ret = %d\n",
317 goto unroll_module_reset
;
324 list_for_each_entry_continue_reverse(core
, &cluster
->cores
, elem
) {
325 if (core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
327 dev_warn(core
->dev
, "module-reset assert back failed\n");
329 core
= list_last_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
331 list_for_each_entry_from_reverse(core
, &cluster
->cores
, elem
) {
332 if (reset_control_deassert(core
->reset
))
333 dev_warn(core
->dev
, "local-reset deassert back failed\n");
339 static int k3_r5_lockstep_release(struct k3_r5_cluster
*cluster
)
341 struct k3_r5_core
*core
;
344 /* enable PSC modules on all applicable cores */
345 list_for_each_entry_reverse(core
, &cluster
->cores
, elem
) {
346 ret
= core
->ti_sci
->ops
.dev_ops
.get_device(core
->ti_sci
,
349 dev_err(core
->dev
, "module-reset deassert failed, ret = %d\n",
351 core
= list_next_entry(core
, elem
);
352 goto unroll_module_reset
;
356 /* deassert local reset on all applicable cores */
357 list_for_each_entry_reverse(core
, &cluster
->cores
, elem
) {
358 ret
= reset_control_deassert(core
->reset
);
360 dev_err(core
->dev
, "module-reset deassert failed, ret = %d\n",
362 goto unroll_local_reset
;
369 list_for_each_entry_continue(core
, &cluster
->cores
, elem
) {
370 if (reset_control_assert(core
->reset
))
371 dev_warn(core
->dev
, "local-reset assert back failed\n");
373 core
= list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
375 list_for_each_entry_from(core
, &cluster
->cores
, elem
) {
376 if (core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
378 dev_warn(core
->dev
, "module-reset assert back failed\n");
384 static inline int k3_r5_core_halt(struct k3_r5_core
*core
)
386 return ti_sci_proc_set_control(core
->tsp
,
387 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT
, 0);
390 static inline int k3_r5_core_run(struct k3_r5_core
*core
)
392 return ti_sci_proc_set_control(core
->tsp
,
393 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT
);
396 static int k3_r5_rproc_request_mbox(struct rproc
*rproc
)
398 struct k3_r5_rproc
*kproc
= rproc
->priv
;
399 struct mbox_client
*client
= &kproc
->client
;
400 struct device
*dev
= kproc
->dev
;
404 client
->tx_done
= NULL
;
405 client
->rx_callback
= k3_r5_rproc_mbox_callback
;
406 client
->tx_block
= false;
407 client
->knows_txdone
= false;
409 kproc
->mbox
= mbox_request_channel(client
, 0);
410 if (IS_ERR(kproc
->mbox
))
411 return dev_err_probe(dev
, PTR_ERR(kproc
->mbox
),
412 "mbox_request_channel failed\n");
415 * Ping the remote processor, this is only for sanity-sake for now;
416 * there is no functional effect whatsoever.
418 * Note that the reply will _not_ arrive immediately: this message
419 * will wait in the mailbox fifo until the remote processor is booted.
421 ret
= mbox_send_message(kproc
->mbox
, (void *)RP_MBOX_ECHO_REQUEST
);
423 dev_err(dev
, "mbox_send_message failed: %d\n", ret
);
424 mbox_free_channel(kproc
->mbox
);
432 * The R5F cores have controls for both a reset and a halt/run. The code
433 * execution from DDR requires the initial boot-strapping code to be run
434 * from the internal TCMs. This function is used to release the resets on
435 * applicable cores to allow loading into the TCMs. The .prepare() ops is
436 * invoked by remoteproc core before any firmware loading, and is followed
437 * by the .start() ops after loading to actually let the R5 cores run.
439 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
440 * execute code, but combines the TCMs from both cores. The resets for both
441 * cores need to be released to make this possible, as the TCMs are in general
442 * private to each core. Only Core0 needs to be unhalted for running the
443 * cluster in this mode. The function uses the same reset logic as LockStep
444 * mode for this (though the behavior is agnostic of the reset release order).
445 * This callback is invoked only in remoteproc mode.
447 static int k3_r5_rproc_prepare(struct rproc
*rproc
)
449 struct k3_r5_rproc
*kproc
= rproc
->priv
;
450 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
451 struct k3_r5_core
*core
= kproc
->core
;
452 struct device
*dev
= kproc
->dev
;
453 u32 ctrl
= 0, cfg
= 0, stat
= 0;
458 ret
= ti_sci_proc_get_status(core
->tsp
, &boot_vec
, &cfg
, &ctrl
, &stat
);
461 mem_init_dis
= !!(cfg
& PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS
);
463 /* Re-use LockStep-mode reset logic for Single-CPU mode */
464 ret
= (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
||
465 cluster
->mode
== CLUSTER_MODE_SINGLECPU
) ?
466 k3_r5_lockstep_release(cluster
) : k3_r5_split_release(core
);
468 dev_err(dev
, "unable to enable cores for TCM loading, ret = %d\n",
474 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
475 * of TCMs, so there is no need to perform the s/w memzero. This bit is
476 * configurable through System Firmware, the default value does perform
477 * auto-init, but account for it in case it is disabled
479 if (cluster
->soc_data
->tcm_ecc_autoinit
&& !mem_init_dis
) {
480 dev_dbg(dev
, "leveraging h/w init for TCM memories\n");
485 * Zero out both TCMs unconditionally (access from v8 Arm core is not
486 * affected by ATCM & BTCM enable configuration values) so that ECC
487 * can be effective on all TCM addresses.
489 dev_dbg(dev
, "zeroing out ATCM memory\n");
490 memset_io(core
->mem
[0].cpu_addr
, 0x00, core
->mem
[0].size
);
492 dev_dbg(dev
, "zeroing out BTCM memory\n");
493 memset_io(core
->mem
[1].cpu_addr
, 0x00, core
->mem
[1].size
);
499 * This function implements the .unprepare() ops and performs the complimentary
500 * operations to that of the .prepare() ops. The function is used to assert the
501 * resets on all applicable cores for the rproc device (depending on LockStep
502 * or Split mode). This completes the second portion of powering down the R5F
503 * cores. The cores themselves are only halted in the .stop() ops, and the
504 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
507 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
508 * both cores. The access is made possible only with releasing the resets for
509 * both cores, but with only Core0 unhalted. This function re-uses the same
510 * reset assert logic as LockStep mode for this mode (though the behavior is
511 * agnostic of the reset assert order). This callback is invoked only in
514 static int k3_r5_rproc_unprepare(struct rproc
*rproc
)
516 struct k3_r5_rproc
*kproc
= rproc
->priv
;
517 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
518 struct k3_r5_core
*core
= kproc
->core
;
519 struct device
*dev
= kproc
->dev
;
522 /* Re-use LockStep-mode reset logic for Single-CPU mode */
523 ret
= (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
||
524 cluster
->mode
== CLUSTER_MODE_SINGLECPU
) ?
525 k3_r5_lockstep_reset(cluster
) : k3_r5_split_reset(core
);
527 dev_err(dev
, "unable to disable cores, ret = %d\n", ret
);
533 * The R5F start sequence includes two different operations
534 * 1. Configure the boot vector for R5F core(s)
535 * 2. Unhalt/Run the R5F core(s)
537 * The sequence is different between LockStep and Split modes. The LockStep
538 * mode requires the boot vector to be configured only for Core0, and then
539 * unhalt both the cores to start the execution - Core1 needs to be unhalted
540 * first followed by Core0. The Split-mode requires that Core0 to be maintained
541 * always in a higher power state that Core1 (implying Core1 needs to be started
542 * always only after Core0 is started).
544 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
545 * code, so only Core0 needs to be unhalted. The function uses the same logic
546 * flow as Split-mode for this. This callback is invoked only in remoteproc
549 static int k3_r5_rproc_start(struct rproc
*rproc
)
551 struct k3_r5_rproc
*kproc
= rproc
->priv
;
552 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
553 struct device
*dev
= kproc
->dev
;
554 struct k3_r5_core
*core0
, *core
;
558 boot_addr
= rproc
->bootaddr
;
559 /* TODO: add boot_addr sanity checking */
560 dev_dbg(dev
, "booting R5F core using boot addr = 0x%x\n", boot_addr
);
562 /* boot vector need not be programmed for Core1 in LockStep mode */
564 ret
= ti_sci_proc_set_config(core
->tsp
, boot_addr
, 0, 0);
568 /* unhalt/run all applicable cores */
569 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) {
570 list_for_each_entry_reverse(core
, &cluster
->cores
, elem
) {
571 ret
= k3_r5_core_run(core
);
573 goto unroll_core_run
;
576 /* do not allow core 1 to start before core 0 */
577 core0
= list_first_entry(&cluster
->cores
, struct k3_r5_core
,
579 if (core
!= core0
&& core0
->rproc
->state
== RPROC_OFFLINE
) {
580 dev_err(dev
, "%s: can not start core 1 before core 0\n",
585 ret
= k3_r5_core_run(core
);
589 core
->released_from_reset
= true;
590 wake_up_interruptible(&cluster
->core_transition
);
596 list_for_each_entry_continue(core
, &cluster
->cores
, elem
) {
597 if (k3_r5_core_halt(core
))
598 dev_warn(core
->dev
, "core halt back failed\n");
604 * The R5F stop function includes the following operations
605 * 1. Halt R5F core(s)
607 * The sequence is different between LockStep and Split modes, and the order
608 * of cores the operations are performed are also in general reverse to that
609 * of the start function. The LockStep mode requires each operation to be
610 * performed first on Core0 followed by Core1. The Split-mode requires that
611 * Core0 to be maintained always in a higher power state that Core1 (implying
612 * Core1 needs to be stopped first before Core0).
614 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
615 * code, so only Core0 needs to be halted. The function uses the same logic
616 * flow as Split-mode for this.
618 * Note that the R5F halt operation in general is not effective when the R5F
619 * core is running, but is needed to make sure the core won't run after
620 * deasserting the reset the subsequent time. The asserting of reset can
621 * be done here, but is preferred to be done in the .unprepare() ops - this
622 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
623 * and .unprepare() ops, and also balances them well between sysfs 'state'
624 * flow and device bind/unbind or module removal. This callback is invoked
625 * only in remoteproc mode.
627 static int k3_r5_rproc_stop(struct rproc
*rproc
)
629 struct k3_r5_rproc
*kproc
= rproc
->priv
;
630 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
631 struct device
*dev
= kproc
->dev
;
632 struct k3_r5_core
*core1
, *core
= kproc
->core
;
635 /* halt all applicable cores */
636 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) {
637 list_for_each_entry(core
, &cluster
->cores
, elem
) {
638 ret
= k3_r5_core_halt(core
);
640 core
= list_prev_entry(core
, elem
);
641 goto unroll_core_halt
;
645 /* do not allow core 0 to stop before core 1 */
646 core1
= list_last_entry(&cluster
->cores
, struct k3_r5_core
,
648 if (core
!= core1
&& core1
->rproc
->state
!= RPROC_OFFLINE
) {
649 dev_err(dev
, "%s: can not stop core 0 before core 1\n",
655 ret
= k3_r5_core_halt(core
);
663 list_for_each_entry_from_reverse(core
, &cluster
->cores
, elem
) {
664 if (k3_r5_core_run(core
))
665 dev_warn(core
->dev
, "core run back failed\n");
672 * Attach to a running R5F remote processor (IPC-only mode)
674 * The R5F attach callback is a NOP. The remote processor is already booted, and
675 * all required resources have been acquired during probe routine, so there is
676 * no need to issue any TI-SCI commands to boot the R5F cores in IPC-only mode.
677 * This callback is invoked only in IPC-only mode and exists because
678 * rproc_validate() checks for its existence.
680 static int k3_r5_rproc_attach(struct rproc
*rproc
) { return 0; }
683 * Detach from a running R5F remote processor (IPC-only mode)
685 * The R5F detach callback is a NOP. The R5F cores are not stopped and will be
686 * left in booted state in IPC-only mode. This callback is invoked only in
687 * IPC-only mode and exists for sanity sake.
689 static int k3_r5_rproc_detach(struct rproc
*rproc
) { return 0; }
692 * This function implements the .get_loaded_rsc_table() callback and is used
693 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
694 * firmwares follow a design-by-contract approach and are expected to have the
695 * resource table at the base of the DDR region reserved for firmware usage.
696 * This provides flexibility for the remote processor to be booted by different
697 * bootloaders that may or may not have the ability to publish the resource table
698 * address and size through a DT property. This callback is invoked only in
701 static struct resource_table
*k3_r5_get_loaded_rsc_table(struct rproc
*rproc
,
702 size_t *rsc_table_sz
)
704 struct k3_r5_rproc
*kproc
= rproc
->priv
;
705 struct device
*dev
= kproc
->dev
;
707 if (!kproc
->rmem
[0].cpu_addr
) {
708 dev_err(dev
, "memory-region #1 does not exist, loaded rsc table can't be found");
709 return ERR_PTR(-ENOMEM
);
713 * NOTE: The resource table size is currently hard-coded to a maximum
714 * of 256 bytes. The most common resource table usage for K3 firmwares
715 * is to only have the vdev resource entry and an optional trace entry.
716 * The exact size could be computed based on resource table address, but
717 * the hard-coded value suffices to support the IPC-only mode.
720 return (__force
struct resource_table
*)kproc
->rmem
[0].cpu_addr
;
724 * Internal Memory translation helper
726 * Custom function implementing the rproc .da_to_va ops to provide address
727 * translation (device address to kernel virtual address) for internal RAMs
728 * present in a DSP or IPU device). The translated addresses can be used
729 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
731 static void *k3_r5_rproc_da_to_va(struct rproc
*rproc
, u64 da
, size_t len
, bool *is_iomem
)
733 struct k3_r5_rproc
*kproc
= rproc
->priv
;
734 struct k3_r5_core
*core
= kproc
->core
;
735 void __iomem
*va
= NULL
;
736 phys_addr_t bus_addr
;
737 u32 dev_addr
, offset
;
744 /* handle both R5 and SoC views of ATCM and BTCM */
745 for (i
= 0; i
< core
->num_mems
; i
++) {
746 bus_addr
= core
->mem
[i
].bus_addr
;
747 dev_addr
= core
->mem
[i
].dev_addr
;
748 size
= core
->mem
[i
].size
;
750 /* handle R5-view addresses of TCMs */
751 if (da
>= dev_addr
&& ((da
+ len
) <= (dev_addr
+ size
))) {
752 offset
= da
- dev_addr
;
753 va
= core
->mem
[i
].cpu_addr
+ offset
;
754 return (__force
void *)va
;
757 /* handle SoC-view addresses of TCMs */
758 if (da
>= bus_addr
&& ((da
+ len
) <= (bus_addr
+ size
))) {
759 offset
= da
- bus_addr
;
760 va
= core
->mem
[i
].cpu_addr
+ offset
;
761 return (__force
void *)va
;
765 /* handle any SRAM regions using SoC-view addresses */
766 for (i
= 0; i
< core
->num_sram
; i
++) {
767 dev_addr
= core
->sram
[i
].dev_addr
;
768 size
= core
->sram
[i
].size
;
770 if (da
>= dev_addr
&& ((da
+ len
) <= (dev_addr
+ size
))) {
771 offset
= da
- dev_addr
;
772 va
= core
->sram
[i
].cpu_addr
+ offset
;
773 return (__force
void *)va
;
777 /* handle static DDR reserved memory regions */
778 for (i
= 0; i
< kproc
->num_rmems
; i
++) {
779 dev_addr
= kproc
->rmem
[i
].dev_addr
;
780 size
= kproc
->rmem
[i
].size
;
782 if (da
>= dev_addr
&& ((da
+ len
) <= (dev_addr
+ size
))) {
783 offset
= da
- dev_addr
;
784 va
= kproc
->rmem
[i
].cpu_addr
+ offset
;
785 return (__force
void *)va
;
792 static const struct rproc_ops k3_r5_rproc_ops
= {
793 .prepare
= k3_r5_rproc_prepare
,
794 .unprepare
= k3_r5_rproc_unprepare
,
795 .start
= k3_r5_rproc_start
,
796 .stop
= k3_r5_rproc_stop
,
797 .kick
= k3_r5_rproc_kick
,
798 .da_to_va
= k3_r5_rproc_da_to_va
,
802 * Internal R5F Core configuration
804 * Each R5FSS has a cluster-level setting for configuring the processor
805 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
806 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
807 * as an alternate for LockStep mode that exercises only a single R5F core
808 * called Single-CPU mode. Each R5F core has a number of settings to either
809 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
810 * address 0x0. These settings need to be configured before the resets for the
811 * corresponding core are released. These settings are all protected and managed
812 * by the System Processor.
814 * This function is used to pre-configure these settings for each R5F core, and
815 * the configuration is all done through various ti_sci_proc functions that
816 * communicate with the System Processor. The function also ensures that both
817 * the cores are halted before the .prepare() step.
819 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
820 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
821 * for LockStep-mode is dictated by an eFUSE register bit, and the config
822 * settings retrieved from DT are adjusted accordingly as per the permitted
823 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
824 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
825 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
826 * and retrieved using Core0.
828 * The function behavior is different based on the cluster mode. The R5F cores
829 * are configured independently as per their individual settings in Split mode.
830 * They are identically configured in LockStep mode using the primary Core0
831 * settings. However, some individual settings cannot be set in LockStep mode.
832 * This is overcome by switching to Split-mode initially and then programming
833 * both the cores with the same settings, before reconfiguing again for
836 static int k3_r5_rproc_configure(struct k3_r5_rproc
*kproc
)
838 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
839 struct device
*dev
= kproc
->dev
;
840 struct k3_r5_core
*core0
, *core
, *temp
;
841 u32 ctrl
= 0, cfg
= 0, stat
= 0;
842 u32 set_cfg
= 0, clr_cfg
= 0;
848 core0
= list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
849 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
||
850 cluster
->mode
== CLUSTER_MODE_SINGLECPU
||
851 cluster
->mode
== CLUSTER_MODE_SINGLECORE
) {
857 ret
= ti_sci_proc_get_status(core
->tsp
, &boot_vec
, &cfg
, &ctrl
,
862 dev_dbg(dev
, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
863 boot_vec
, cfg
, ctrl
, stat
);
865 single_cpu
= !!(stat
& PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY
);
866 lockstep_en
= !!(stat
& PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED
);
868 /* Override to single CPU mode if set in status flag */
869 if (single_cpu
&& cluster
->mode
== CLUSTER_MODE_SPLIT
) {
870 dev_err(cluster
->dev
, "split-mode not permitted, force configuring for single-cpu mode\n");
871 cluster
->mode
= CLUSTER_MODE_SINGLECPU
;
874 /* Override to split mode if lockstep enable bit is not set in status flag */
875 if (!lockstep_en
&& cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) {
876 dev_err(cluster
->dev
, "lockstep mode not permitted, force configuring for split-mode\n");
877 cluster
->mode
= CLUSTER_MODE_SPLIT
;
880 /* always enable ARM mode and set boot vector to 0 */
883 clr_cfg
= PROC_BOOT_CFG_FLAG_R5_TEINIT
;
885 * Single-CPU configuration bit can only be configured
886 * on Core0 and system firmware will NACK any requests
887 * with the bit configured, so program it only on
890 if (cluster
->mode
== CLUSTER_MODE_SINGLECPU
||
891 cluster
->mode
== CLUSTER_MODE_SINGLECORE
) {
892 set_cfg
= PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE
;
895 * LockStep configuration bit is Read-only on Split-mode
896 * _only_ devices and system firmware will NACK any
897 * requests with the bit configured, so program it only
898 * on permitted devices
901 clr_cfg
|= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP
;
905 if (core
->atcm_enable
)
906 set_cfg
|= PROC_BOOT_CFG_FLAG_R5_ATCM_EN
;
908 clr_cfg
|= PROC_BOOT_CFG_FLAG_R5_ATCM_EN
;
910 if (core
->btcm_enable
)
911 set_cfg
|= PROC_BOOT_CFG_FLAG_R5_BTCM_EN
;
913 clr_cfg
|= PROC_BOOT_CFG_FLAG_R5_BTCM_EN
;
916 set_cfg
|= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE
;
918 clr_cfg
|= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE
;
920 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) {
922 * work around system firmware limitations to make sure both
923 * cores are programmed symmetrically in LockStep. LockStep
924 * and TEINIT config is only allowed with Core0.
926 list_for_each_entry(temp
, &cluster
->cores
, elem
) {
927 ret
= k3_r5_core_halt(temp
);
932 clr_cfg
&= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP
;
933 clr_cfg
&= ~PROC_BOOT_CFG_FLAG_R5_TEINIT
;
935 ret
= ti_sci_proc_set_config(temp
->tsp
, boot_vec
,
941 set_cfg
= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP
;
943 ret
= ti_sci_proc_set_config(core
->tsp
, boot_vec
,
946 ret
= k3_r5_core_halt(core
);
950 ret
= ti_sci_proc_set_config(core
->tsp
, boot_vec
,
958 static int k3_r5_reserved_mem_init(struct k3_r5_rproc
*kproc
)
960 struct device
*dev
= kproc
->dev
;
961 struct device_node
*np
= dev_of_node(dev
);
962 struct device_node
*rmem_np
;
963 struct reserved_mem
*rmem
;
967 num_rmems
= of_property_count_elems_of_size(np
, "memory-region",
969 if (num_rmems
<= 0) {
970 dev_err(dev
, "device does not have reserved memory regions, ret = %d\n",
975 dev_err(dev
, "device needs at least two memory regions to be defined, num = %d\n",
980 /* use reserved memory region 0 for vring DMA allocations */
981 ret
= of_reserved_mem_device_init_by_idx(dev
, np
, 0);
983 dev_err(dev
, "device cannot initialize DMA pool, ret = %d\n",
989 kproc
->rmem
= kcalloc(num_rmems
, sizeof(*kproc
->rmem
), GFP_KERNEL
);
995 /* use remaining reserved memory regions for static carveouts */
996 for (i
= 0; i
< num_rmems
; i
++) {
997 rmem_np
= of_parse_phandle(np
, "memory-region", i
+ 1);
1003 rmem
= of_reserved_mem_lookup(rmem_np
);
1004 of_node_put(rmem_np
);
1010 kproc
->rmem
[i
].bus_addr
= rmem
->base
;
1012 * R5Fs do not have an MMU, but have a Region Address Translator
1013 * (RAT) module that provides a fixed entry translation between
1014 * the 32-bit processor addresses to 64-bit bus addresses. The
1015 * RAT is programmable only by the R5F cores. Support for RAT
1016 * is currently not supported, so 64-bit address regions are not
1017 * supported. The absence of MMUs implies that the R5F device
1018 * addresses/supported memory regions are restricted to 32-bit
1019 * bus addresses, and are identical
1021 kproc
->rmem
[i
].dev_addr
= (u32
)rmem
->base
;
1022 kproc
->rmem
[i
].size
= rmem
->size
;
1023 kproc
->rmem
[i
].cpu_addr
= ioremap_wc(rmem
->base
, rmem
->size
);
1024 if (!kproc
->rmem
[i
].cpu_addr
) {
1025 dev_err(dev
, "failed to map reserved memory#%d at %pa of size %pa\n",
1026 i
+ 1, &rmem
->base
, &rmem
->size
);
1031 dev_dbg(dev
, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1032 i
+ 1, &kproc
->rmem
[i
].bus_addr
,
1033 kproc
->rmem
[i
].size
, kproc
->rmem
[i
].cpu_addr
,
1034 kproc
->rmem
[i
].dev_addr
);
1036 kproc
->num_rmems
= num_rmems
;
1041 for (i
--; i
>= 0; i
--)
1042 iounmap(kproc
->rmem
[i
].cpu_addr
);
1045 of_reserved_mem_device_release(dev
);
1049 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc
*kproc
)
1053 for (i
= 0; i
< kproc
->num_rmems
; i
++)
1054 iounmap(kproc
->rmem
[i
].cpu_addr
);
1057 of_reserved_mem_device_release(kproc
->dev
);
1061 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
1062 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
1063 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1064 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1065 * leveraging the Core1 TCMs as well in certain modes where they would have
1066 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1067 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
1068 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
1069 * the Core0 TCMs, and the dts representation reflects this increased size on
1070 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
1071 * half the original size in Split mode.
1073 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc
*kproc
)
1075 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
1076 struct k3_r5_core
*core
= kproc
->core
;
1077 struct device
*cdev
= core
->dev
;
1078 struct k3_r5_core
*core0
;
1080 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
||
1081 cluster
->mode
== CLUSTER_MODE_SINGLECPU
||
1082 cluster
->mode
== CLUSTER_MODE_SINGLECORE
||
1083 !cluster
->soc_data
->tcm_is_double
)
1086 core0
= list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
1087 if (core
== core0
) {
1088 WARN_ON(core
->mem
[0].size
!= SZ_64K
);
1089 WARN_ON(core
->mem
[1].size
!= SZ_64K
);
1091 core
->mem
[0].size
/= 2;
1092 core
->mem
[1].size
/= 2;
1094 dev_dbg(cdev
, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
1095 core
->mem
[0].size
, core
->mem
[1].size
);
1100 * This function checks and configures a R5F core for IPC-only or remoteproc
1101 * mode. The driver is configured to be in IPC-only mode for a R5F core when
1102 * the core has been loaded and started by a bootloader. The IPC-only mode is
1103 * detected by querying the System Firmware for reset, power on and halt status
1104 * and ensuring that the core is running. Any incomplete steps at bootloader
1105 * are validated and errored out.
1107 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1108 * and cluster mode parsed originally from kernel DT are updated to reflect the
1109 * actual values configured by bootloader. The driver internal device memory
1110 * addresses for TCMs are also updated.
1112 static int k3_r5_rproc_configure_mode(struct k3_r5_rproc
*kproc
)
1114 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
1115 struct k3_r5_core
*core
= kproc
->core
;
1116 struct device
*cdev
= core
->dev
;
1117 bool r_state
= false, c_state
= false, lockstep_en
= false, single_cpu
= false;
1118 u32 ctrl
= 0, cfg
= 0, stat
= 0, halted
= 0;
1120 u32 atcm_enable
, btcm_enable
, loczrama
;
1121 struct k3_r5_core
*core0
;
1122 enum cluster_mode mode
= cluster
->mode
;
1123 int reset_ctrl_status
;
1126 core0
= list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
1128 ret
= core
->ti_sci
->ops
.dev_ops
.is_on(core
->ti_sci
, core
->ti_sci_id
,
1129 &r_state
, &c_state
);
1131 dev_err(cdev
, "failed to get initial state, mode cannot be determined, ret = %d\n",
1135 if (r_state
!= c_state
) {
1136 dev_warn(cdev
, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
1140 reset_ctrl_status
= reset_control_status(core
->reset
);
1141 if (reset_ctrl_status
< 0) {
1142 dev_err(cdev
, "failed to get initial local reset status, ret = %d\n",
1144 return reset_ctrl_status
;
1148 * Skip the waiting mechanism for sequential power-on of cores if the
1149 * core has already been booted by another entity.
1151 core
->released_from_reset
= c_state
;
1153 ret
= ti_sci_proc_get_status(core
->tsp
, &boot_vec
, &cfg
, &ctrl
,
1156 dev_err(cdev
, "failed to get initial processor status, ret = %d\n",
1160 atcm_enable
= cfg
& PROC_BOOT_CFG_FLAG_R5_ATCM_EN
? 1 : 0;
1161 btcm_enable
= cfg
& PROC_BOOT_CFG_FLAG_R5_BTCM_EN
? 1 : 0;
1162 loczrama
= cfg
& PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE
? 1 : 0;
1163 single_cpu
= cfg
& PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE
? 1 : 0;
1164 lockstep_en
= cfg
& PROC_BOOT_CFG_FLAG_R5_LOCKSTEP
? 1 : 0;
1166 if (single_cpu
&& mode
!= CLUSTER_MODE_SINGLECORE
)
1167 mode
= CLUSTER_MODE_SINGLECPU
;
1169 mode
= CLUSTER_MODE_LOCKSTEP
;
1171 halted
= ctrl
& PROC_BOOT_CTRL_FLAG_R5_CORE_HALT
;
1174 * IPC-only mode detection requires both local and module resets to
1175 * be deasserted and R5F core to be unhalted. Local reset status is
1176 * irrelevant if module reset is asserted (POR value has local reset
1177 * deasserted), and is deemed as remoteproc mode
1179 if (c_state
&& !reset_ctrl_status
&& !halted
) {
1180 dev_info(cdev
, "configured R5F for IPC-only mode\n");
1181 kproc
->rproc
->state
= RPROC_DETACHED
;
1183 /* override rproc ops with only required IPC-only mode ops */
1184 kproc
->rproc
->ops
->prepare
= NULL
;
1185 kproc
->rproc
->ops
->unprepare
= NULL
;
1186 kproc
->rproc
->ops
->start
= NULL
;
1187 kproc
->rproc
->ops
->stop
= NULL
;
1188 kproc
->rproc
->ops
->attach
= k3_r5_rproc_attach
;
1189 kproc
->rproc
->ops
->detach
= k3_r5_rproc_detach
;
1190 kproc
->rproc
->ops
->get_loaded_rsc_table
=
1191 k3_r5_get_loaded_rsc_table
;
1192 } else if (!c_state
) {
1193 dev_info(cdev
, "configured R5F for remoteproc mode\n");
1196 dev_err(cdev
, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
1197 !reset_ctrl_status
? "deasserted" : "asserted",
1198 c_state
? "deasserted" : "asserted",
1199 halted
? "halted" : "unhalted");
1203 /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
1206 cluster
->mode
= mode
;
1207 core
->atcm_enable
= atcm_enable
;
1208 core
->btcm_enable
= btcm_enable
;
1209 core
->loczrama
= loczrama
;
1210 core
->mem
[0].dev_addr
= loczrama
? 0 : K3_R5_TCM_DEV_ADDR
;
1211 core
->mem
[1].dev_addr
= loczrama
? K3_R5_TCM_DEV_ADDR
: 0;
1217 static int k3_r5_cluster_rproc_init(struct platform_device
*pdev
)
1219 struct k3_r5_cluster
*cluster
= platform_get_drvdata(pdev
);
1220 struct device
*dev
= &pdev
->dev
;
1221 struct k3_r5_rproc
*kproc
;
1222 struct k3_r5_core
*core
, *core1
;
1223 struct device
*cdev
;
1224 const char *fw_name
;
1225 struct rproc
*rproc
;
1228 core1
= list_last_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
1229 list_for_each_entry(core
, &cluster
->cores
, elem
) {
1231 ret
= rproc_of_parse_firmware(cdev
, 0, &fw_name
);
1233 dev_err(dev
, "failed to parse firmware-name property, ret = %d\n",
1238 rproc
= devm_rproc_alloc(cdev
, dev_name(cdev
), &k3_r5_rproc_ops
,
1239 fw_name
, sizeof(*kproc
));
1245 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
1246 rproc
->has_iommu
= false;
1247 /* error recovery is not supported at present */
1248 rproc
->recovery_disabled
= true;
1250 kproc
= rproc
->priv
;
1251 kproc
->cluster
= cluster
;
1254 kproc
->rproc
= rproc
;
1255 core
->rproc
= rproc
;
1257 ret
= k3_r5_rproc_request_mbox(rproc
);
1261 ret
= k3_r5_rproc_configure_mode(kproc
);
1267 ret
= k3_r5_rproc_configure(kproc
);
1269 dev_err(dev
, "initial configure failed, ret = %d\n",
1275 k3_r5_adjust_tcm_sizes(kproc
);
1277 ret
= k3_r5_reserved_mem_init(kproc
);
1279 dev_err(dev
, "reserved memory init failed, ret = %d\n",
1284 ret
= rproc_add(rproc
);
1286 dev_err(dev
, "rproc_add failed, ret = %d\n", ret
);
1290 /* create only one rproc in lockstep, single-cpu or
1293 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
||
1294 cluster
->mode
== CLUSTER_MODE_SINGLECPU
||
1295 cluster
->mode
== CLUSTER_MODE_SINGLECORE
)
1299 * R5 cores require to be powered on sequentially, core0
1300 * should be in higher power state than core1 in a cluster
1301 * So, wait for current core to power up before proceeding
1302 * to next core and put timeout of 2sec for each core.
1304 * This waiting mechanism is necessary because
1305 * rproc_auto_boot_callback() for core1 can be called before
1306 * core0 due to thread execution order.
1308 ret
= wait_event_interruptible_timeout(cluster
->core_transition
,
1309 core
->released_from_reset
,
1310 msecs_to_jiffies(2000));
1313 "Timed out waiting for %s core to power up!\n",
1322 if (rproc
->state
== RPROC_ATTACHED
) {
1323 ret1
= rproc_detach(rproc
);
1325 dev_err(kproc
->dev
, "failed to detach rproc, ret = %d\n",
1334 k3_r5_reserved_mem_exit(kproc
);
1336 /* undo core0 upon any failures on core1 in split-mode */
1337 if (cluster
->mode
== CLUSTER_MODE_SPLIT
&& core
== core1
) {
1338 core
= list_prev_entry(core
, elem
);
1339 rproc
= core
->rproc
;
1340 kproc
= rproc
->priv
;
1346 static void k3_r5_cluster_rproc_exit(void *data
)
1348 struct k3_r5_cluster
*cluster
= platform_get_drvdata(data
);
1349 struct k3_r5_rproc
*kproc
;
1350 struct k3_r5_core
*core
;
1351 struct rproc
*rproc
;
1355 * lockstep mode and single-cpu modes have only one rproc associated
1356 * with first core, whereas split-mode has two rprocs associated with
1357 * each core, and requires that core1 be powered down first
1359 core
= (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
||
1360 cluster
->mode
== CLUSTER_MODE_SINGLECPU
) ?
1361 list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
) :
1362 list_last_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
1364 list_for_each_entry_from_reverse(core
, &cluster
->cores
, elem
) {
1365 rproc
= core
->rproc
;
1366 kproc
= rproc
->priv
;
1368 if (rproc
->state
== RPROC_ATTACHED
) {
1369 ret
= rproc_detach(rproc
);
1371 dev_err(kproc
->dev
, "failed to detach rproc, ret = %d\n", ret
);
1376 mbox_free_channel(kproc
->mbox
);
1380 k3_r5_reserved_mem_exit(kproc
);
1384 static int k3_r5_core_of_get_internal_memories(struct platform_device
*pdev
,
1385 struct k3_r5_core
*core
)
1387 static const char * const mem_names
[] = {"atcm", "btcm"};
1388 struct device
*dev
= &pdev
->dev
;
1389 struct resource
*res
;
1393 num_mems
= ARRAY_SIZE(mem_names
);
1394 core
->mem
= devm_kcalloc(dev
, num_mems
, sizeof(*core
->mem
), GFP_KERNEL
);
1398 for (i
= 0; i
< num_mems
; i
++) {
1399 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1402 dev_err(dev
, "found no memory resource for %s\n",
1406 if (!devm_request_mem_region(dev
, res
->start
,
1409 dev_err(dev
, "could not request %s region for resource\n",
1415 * TCMs are designed in general to support RAM-like backing
1416 * memories. So, map these as Normal Non-Cached memories. This
1417 * also avoids/fixes any potential alignment faults due to
1418 * unaligned data accesses when using memcpy() or memset()
1419 * functions (normally seen with device type memory).
1421 core
->mem
[i
].cpu_addr
= devm_ioremap_wc(dev
, res
->start
,
1422 resource_size(res
));
1423 if (!core
->mem
[i
].cpu_addr
) {
1424 dev_err(dev
, "failed to map %s memory\n", mem_names
[i
]);
1427 core
->mem
[i
].bus_addr
= res
->start
;
1431 * The R5F cores can place ATCM & BTCM anywhere in its address
1432 * based on the corresponding Region Registers in the System
1433 * Control coprocessor. For now, place ATCM and BTCM at
1434 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1435 * SoCs) based on loczrama setting
1437 if (!strcmp(mem_names
[i
], "atcm")) {
1438 core
->mem
[i
].dev_addr
= core
->loczrama
?
1439 0 : K3_R5_TCM_DEV_ADDR
;
1441 core
->mem
[i
].dev_addr
= core
->loczrama
?
1442 K3_R5_TCM_DEV_ADDR
: 0;
1444 core
->mem
[i
].size
= resource_size(res
);
1446 dev_dbg(dev
, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1447 mem_names
[i
], &core
->mem
[i
].bus_addr
,
1448 core
->mem
[i
].size
, core
->mem
[i
].cpu_addr
,
1449 core
->mem
[i
].dev_addr
);
1451 core
->num_mems
= num_mems
;
1456 static int k3_r5_core_of_get_sram_memories(struct platform_device
*pdev
,
1457 struct k3_r5_core
*core
)
1459 struct device_node
*np
= pdev
->dev
.of_node
;
1460 struct device
*dev
= &pdev
->dev
;
1461 struct device_node
*sram_np
;
1462 struct resource res
;
1466 num_sram
= of_property_count_elems_of_size(np
, "sram", sizeof(phandle
));
1467 if (num_sram
<= 0) {
1468 dev_dbg(dev
, "device does not use reserved on-chip memories, num_sram = %d\n",
1473 core
->sram
= devm_kcalloc(dev
, num_sram
, sizeof(*core
->sram
), GFP_KERNEL
);
1477 for (i
= 0; i
< num_sram
; i
++) {
1478 sram_np
= of_parse_phandle(np
, "sram", i
);
1482 if (!of_device_is_available(sram_np
)) {
1483 of_node_put(sram_np
);
1487 ret
= of_address_to_resource(sram_np
, 0, &res
);
1488 of_node_put(sram_np
);
1492 core
->sram
[i
].bus_addr
= res
.start
;
1493 core
->sram
[i
].dev_addr
= res
.start
;
1494 core
->sram
[i
].size
= resource_size(&res
);
1495 core
->sram
[i
].cpu_addr
= devm_ioremap_wc(dev
, res
.start
,
1496 resource_size(&res
));
1497 if (!core
->sram
[i
].cpu_addr
) {
1498 dev_err(dev
, "failed to parse and map sram%d memory at %pad\n",
1503 dev_dbg(dev
, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1504 i
, &core
->sram
[i
].bus_addr
,
1505 core
->sram
[i
].size
, core
->sram
[i
].cpu_addr
,
1506 core
->sram
[i
].dev_addr
);
1508 core
->num_sram
= num_sram
;
1513 static int k3_r5_core_of_init(struct platform_device
*pdev
)
1515 struct device
*dev
= &pdev
->dev
;
1516 struct device_node
*np
= dev_of_node(dev
);
1517 struct k3_r5_core
*core
;
1520 if (!devres_open_group(dev
, k3_r5_core_of_init
, GFP_KERNEL
))
1523 core
= devm_kzalloc(dev
, sizeof(*core
), GFP_KERNEL
);
1531 * Use SoC Power-on-Reset values as default if no DT properties are
1532 * used to dictate the TCM configurations
1534 core
->atcm_enable
= 0;
1535 core
->btcm_enable
= 1;
1538 ret
= of_property_read_u32(np
, "ti,atcm-enable", &core
->atcm_enable
);
1539 if (ret
< 0 && ret
!= -EINVAL
) {
1540 dev_err(dev
, "invalid format for ti,atcm-enable, ret = %d\n",
1545 ret
= of_property_read_u32(np
, "ti,btcm-enable", &core
->btcm_enable
);
1546 if (ret
< 0 && ret
!= -EINVAL
) {
1547 dev_err(dev
, "invalid format for ti,btcm-enable, ret = %d\n",
1552 ret
= of_property_read_u32(np
, "ti,loczrama", &core
->loczrama
);
1553 if (ret
< 0 && ret
!= -EINVAL
) {
1554 dev_err(dev
, "invalid format for ti,loczrama, ret = %d\n", ret
);
1558 core
->ti_sci
= devm_ti_sci_get_by_phandle(dev
, "ti,sci");
1559 if (IS_ERR(core
->ti_sci
)) {
1560 ret
= dev_err_probe(dev
, PTR_ERR(core
->ti_sci
), "failed to get ti-sci handle\n");
1561 core
->ti_sci
= NULL
;
1565 ret
= of_property_read_u32(np
, "ti,sci-dev-id", &core
->ti_sci_id
);
1567 dev_err(dev
, "missing 'ti,sci-dev-id' property\n");
1571 core
->reset
= devm_reset_control_get_exclusive(dev
, NULL
);
1572 if (IS_ERR_OR_NULL(core
->reset
)) {
1573 ret
= PTR_ERR_OR_ZERO(core
->reset
);
1576 dev_err_probe(dev
, ret
, "failed to get reset handle\n");
1580 core
->tsp
= ti_sci_proc_of_get_tsp(dev
, core
->ti_sci
);
1581 if (IS_ERR(core
->tsp
)) {
1582 ret
= dev_err_probe(dev
, PTR_ERR(core
->tsp
),
1583 "failed to construct ti-sci proc control\n");
1587 ret
= k3_r5_core_of_get_internal_memories(pdev
, core
);
1589 dev_err(dev
, "failed to get internal memories, ret = %d\n",
1594 ret
= k3_r5_core_of_get_sram_memories(pdev
, core
);
1596 dev_err(dev
, "failed to get sram memories, ret = %d\n", ret
);
1600 ret
= ti_sci_proc_request(core
->tsp
);
1602 dev_err(dev
, "ti_sci_proc_request failed, ret = %d\n", ret
);
1606 platform_set_drvdata(pdev
, core
);
1607 devres_close_group(dev
, k3_r5_core_of_init
);
1612 devres_release_group(dev
, k3_r5_core_of_init
);
1617 * free the resources explicitly since driver model is not being used
1618 * for the child R5F devices
1620 static void k3_r5_core_of_exit(struct platform_device
*pdev
)
1622 struct k3_r5_core
*core
= platform_get_drvdata(pdev
);
1623 struct device
*dev
= &pdev
->dev
;
1626 ret
= ti_sci_proc_release(core
->tsp
);
1628 dev_err(dev
, "failed to release proc, ret = %d\n", ret
);
1630 platform_set_drvdata(pdev
, NULL
);
1631 devres_release_group(dev
, k3_r5_core_of_init
);
1634 static void k3_r5_cluster_of_exit(void *data
)
1636 struct k3_r5_cluster
*cluster
= platform_get_drvdata(data
);
1637 struct platform_device
*cpdev
;
1638 struct k3_r5_core
*core
, *temp
;
1640 list_for_each_entry_safe_reverse(core
, temp
, &cluster
->cores
, elem
) {
1641 list_del(&core
->elem
);
1642 cpdev
= to_platform_device(core
->dev
);
1643 k3_r5_core_of_exit(cpdev
);
1647 static int k3_r5_cluster_of_init(struct platform_device
*pdev
)
1649 struct k3_r5_cluster
*cluster
= platform_get_drvdata(pdev
);
1650 struct device
*dev
= &pdev
->dev
;
1651 struct device_node
*np
= dev_of_node(dev
);
1652 struct platform_device
*cpdev
;
1653 struct k3_r5_core
*core
;
1656 for_each_available_child_of_node_scoped(np
, child
) {
1657 cpdev
= of_find_device_by_node(child
);
1660 dev_err(dev
, "could not get R5 core platform device\n");
1664 ret
= k3_r5_core_of_init(cpdev
);
1666 dev_err(dev
, "k3_r5_core_of_init failed, ret = %d\n",
1668 put_device(&cpdev
->dev
);
1672 core
= platform_get_drvdata(cpdev
);
1673 put_device(&cpdev
->dev
);
1674 list_add_tail(&core
->elem
, &cluster
->cores
);
1680 k3_r5_cluster_of_exit(pdev
);
1684 static int k3_r5_probe(struct platform_device
*pdev
)
1686 struct device
*dev
= &pdev
->dev
;
1687 struct device_node
*np
= dev_of_node(dev
);
1688 struct k3_r5_cluster
*cluster
;
1689 const struct k3_r5_soc_data
*data
;
1693 data
= of_device_get_match_data(&pdev
->dev
);
1695 dev_err(dev
, "SoC-specific data is not defined\n");
1699 cluster
= devm_kzalloc(dev
, sizeof(*cluster
), GFP_KERNEL
);
1704 cluster
->soc_data
= data
;
1705 INIT_LIST_HEAD(&cluster
->cores
);
1706 init_waitqueue_head(&cluster
->core_transition
);
1708 ret
= of_property_read_u32(np
, "ti,cluster-mode", &cluster
->mode
);
1709 if (ret
< 0 && ret
!= -EINVAL
)
1710 return dev_err_probe(dev
, ret
, "invalid format for ti,cluster-mode\n");
1712 if (ret
== -EINVAL
) {
1714 * default to most common efuse configurations - Split-mode on AM64x
1715 * and LockStep-mode on all others
1716 * default to most common efuse configurations -
1717 * Split-mode on AM64x
1718 * Single core on AM62x
1719 * LockStep-mode on all others
1721 if (!data
->is_single_core
)
1722 cluster
->mode
= data
->single_cpu_mode
?
1723 CLUSTER_MODE_SPLIT
: CLUSTER_MODE_LOCKSTEP
;
1725 cluster
->mode
= CLUSTER_MODE_SINGLECORE
;
1728 if ((cluster
->mode
== CLUSTER_MODE_SINGLECPU
&& !data
->single_cpu_mode
) ||
1729 (cluster
->mode
== CLUSTER_MODE_SINGLECORE
&& !data
->is_single_core
))
1730 return dev_err_probe(dev
, -EINVAL
,
1731 "Cluster mode = %d is not supported on this SoC\n",
1734 num_cores
= of_get_available_child_count(np
);
1735 if (num_cores
!= 2 && !data
->is_single_core
)
1736 return dev_err_probe(dev
, -ENODEV
,
1737 "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
1740 if (num_cores
!= 1 && data
->is_single_core
)
1741 return dev_err_probe(dev
, -ENODEV
,
1742 "SoC supports only single core R5 but num_cores is set to %d\n",
1745 platform_set_drvdata(pdev
, cluster
);
1747 ret
= devm_of_platform_populate(dev
);
1749 return dev_err_probe(dev
, ret
, "devm_of_platform_populate failed\n");
1751 ret
= k3_r5_cluster_of_init(pdev
);
1753 return dev_err_probe(dev
, ret
, "k3_r5_cluster_of_init failed\n");
1755 ret
= devm_add_action_or_reset(dev
, k3_r5_cluster_of_exit
, pdev
);
1759 ret
= k3_r5_cluster_rproc_init(pdev
);
1761 return dev_err_probe(dev
, ret
, "k3_r5_cluster_rproc_init failed\n");
1763 ret
= devm_add_action_or_reset(dev
, k3_r5_cluster_rproc_exit
, pdev
);
1770 static const struct k3_r5_soc_data am65_j721e_soc_data
= {
1771 .tcm_is_double
= false,
1772 .tcm_ecc_autoinit
= false,
1773 .single_cpu_mode
= false,
1774 .is_single_core
= false,
1777 static const struct k3_r5_soc_data j7200_j721s2_soc_data
= {
1778 .tcm_is_double
= true,
1779 .tcm_ecc_autoinit
= true,
1780 .single_cpu_mode
= false,
1781 .is_single_core
= false,
1784 static const struct k3_r5_soc_data am64_soc_data
= {
1785 .tcm_is_double
= true,
1786 .tcm_ecc_autoinit
= true,
1787 .single_cpu_mode
= true,
1788 .is_single_core
= false,
1791 static const struct k3_r5_soc_data am62_soc_data
= {
1792 .tcm_is_double
= false,
1793 .tcm_ecc_autoinit
= true,
1794 .single_cpu_mode
= false,
1795 .is_single_core
= true,
1798 static const struct of_device_id k3_r5_of_match
[] = {
1799 { .compatible
= "ti,am654-r5fss", .data
= &am65_j721e_soc_data
, },
1800 { .compatible
= "ti,j721e-r5fss", .data
= &am65_j721e_soc_data
, },
1801 { .compatible
= "ti,j7200-r5fss", .data
= &j7200_j721s2_soc_data
, },
1802 { .compatible
= "ti,am64-r5fss", .data
= &am64_soc_data
, },
1803 { .compatible
= "ti,am62-r5fss", .data
= &am62_soc_data
, },
1804 { .compatible
= "ti,j721s2-r5fss", .data
= &j7200_j721s2_soc_data
, },
1807 MODULE_DEVICE_TABLE(of
, k3_r5_of_match
);
1809 static struct platform_driver k3_r5_rproc_driver
= {
1810 .probe
= k3_r5_probe
,
1812 .name
= "k3_r5_rproc",
1813 .of_match_table
= k3_r5_of_match
,
1817 module_platform_driver(k3_r5_rproc_driver
);
1819 MODULE_LICENSE("GPL v2");
1820 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1821 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");