1 // SPDX-License-Identifier: GPL-2.0
3 * RTC subsystem, base class
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
8 * class skeleton from drivers/hwmon/hwmon.c
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/kdev_t.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
23 static DEFINE_IDA(rtc_ida
);
25 static void rtc_device_release(struct device
*dev
)
27 struct rtc_device
*rtc
= to_rtc_device(dev
);
28 struct timerqueue_head
*head
= &rtc
->timerqueue
;
29 struct timerqueue_node
*node
;
31 mutex_lock(&rtc
->ops_lock
);
32 while ((node
= timerqueue_getnext(head
)))
33 timerqueue_del(head
, node
);
34 mutex_unlock(&rtc
->ops_lock
);
36 cancel_work_sync(&rtc
->irqwork
);
38 ida_free(&rtc_ida
, rtc
->id
);
39 mutex_destroy(&rtc
->ops_lock
);
43 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
44 /* Result of the last RTC to system clock attempt. */
45 int rtc_hctosys_ret
= -ENODEV
;
47 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
48 * whether it stores the most close value or the value with partial
49 * seconds truncated. However, it is important that we use it to store
50 * the truncated value. This is because otherwise it is necessary,
51 * in an rtc sync function, to read both xtime.tv_sec and
52 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
53 * of >32bits is not possible. So storing the most close value would
54 * slow down the sync API. So here we have the truncated value and
55 * the best guess is to add 0.5s.
58 static void rtc_hctosys(struct rtc_device
*rtc
)
62 struct timespec64 tv64
= {
63 .tv_nsec
= NSEC_PER_SEC
>> 1,
66 err
= rtc_read_time(rtc
, &tm
);
68 dev_err(rtc
->dev
.parent
,
69 "hctosys: unable to read the hardware clock\n");
73 tv64
.tv_sec
= rtc_tm_to_time64(&tm
);
75 #if BITS_PER_LONG == 32
76 if (tv64
.tv_sec
> INT_MAX
) {
82 err
= do_settimeofday64(&tv64
);
84 dev_info(rtc
->dev
.parent
, "setting system clock to %ptR UTC (%lld)\n",
85 &tm
, (long long)tv64
.tv_sec
);
88 rtc_hctosys_ret
= err
;
92 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
94 * On suspend(), measure the delta between one RTC and the
95 * system's wall clock; restore it on resume().
98 static struct timespec64 old_rtc
, old_system
, old_delta
;
100 static int rtc_suspend(struct device
*dev
)
102 struct rtc_device
*rtc
= to_rtc_device(dev
);
104 struct timespec64 delta
, delta_delta
;
107 if (timekeeping_rtc_skipsuspend())
110 if (strcmp(dev_name(&rtc
->dev
), CONFIG_RTC_HCTOSYS_DEVICE
) != 0)
113 /* snapshot the current RTC and system time at suspend*/
114 err
= rtc_read_time(rtc
, &tm
);
116 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc
->dev
));
120 ktime_get_real_ts64(&old_system
);
121 old_rtc
.tv_sec
= rtc_tm_to_time64(&tm
);
124 * To avoid drift caused by repeated suspend/resumes,
125 * which each can add ~1 second drift error,
126 * try to compensate so the difference in system time
127 * and rtc time stays close to constant.
129 delta
= timespec64_sub(old_system
, old_rtc
);
130 delta_delta
= timespec64_sub(delta
, old_delta
);
131 if (delta_delta
.tv_sec
< -2 || delta_delta
.tv_sec
>= 2) {
133 * if delta_delta is too large, assume time correction
134 * has occurred and set old_delta to the current delta.
138 /* Otherwise try to adjust old_system to compensate */
139 old_system
= timespec64_sub(old_system
, delta_delta
);
145 static int rtc_resume(struct device
*dev
)
147 struct rtc_device
*rtc
= to_rtc_device(dev
);
149 struct timespec64 new_system
, new_rtc
;
150 struct timespec64 sleep_time
;
153 if (timekeeping_rtc_skipresume())
156 rtc_hctosys_ret
= -ENODEV
;
157 if (strcmp(dev_name(&rtc
->dev
), CONFIG_RTC_HCTOSYS_DEVICE
) != 0)
160 /* snapshot the current rtc and system time at resume */
161 ktime_get_real_ts64(&new_system
);
162 err
= rtc_read_time(rtc
, &tm
);
164 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc
->dev
));
168 new_rtc
.tv_sec
= rtc_tm_to_time64(&tm
);
171 if (new_rtc
.tv_sec
< old_rtc
.tv_sec
) {
172 pr_debug("%s: time travel!\n", dev_name(&rtc
->dev
));
176 /* calculate the RTC time delta (sleep time)*/
177 sleep_time
= timespec64_sub(new_rtc
, old_rtc
);
180 * Since these RTC suspend/resume handlers are not called
181 * at the very end of suspend or the start of resume,
182 * some run-time may pass on either sides of the sleep time
183 * so subtract kernel run-time between rtc_suspend to rtc_resume
184 * to keep things accurate.
186 sleep_time
= timespec64_sub(sleep_time
,
187 timespec64_sub(new_system
, old_system
));
189 if (sleep_time
.tv_sec
>= 0)
190 timekeeping_inject_sleeptime64(&sleep_time
);
195 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops
, rtc_suspend
, rtc_resume
);
196 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
198 #define RTC_CLASS_DEV_PM_OPS NULL
201 const struct class rtc_class
= {
203 .pm
= RTC_CLASS_DEV_PM_OPS
,
206 /* Ensure the caller will set the id before releasing the device */
207 static struct rtc_device
*rtc_allocate_device(void)
209 struct rtc_device
*rtc
;
211 rtc
= kzalloc(sizeof(*rtc
), GFP_KERNEL
);
215 device_initialize(&rtc
->dev
);
218 * Drivers can revise this default after allocating the device.
219 * The default is what most RTCs do: Increment seconds exactly one
220 * second after the write happened. This adds a default transport
221 * time of 5ms which is at least halfways close to reality.
223 rtc
->set_offset_nsec
= NSEC_PER_SEC
+ 5 * NSEC_PER_MSEC
;
226 rtc
->max_user_freq
= 64;
227 rtc
->dev
.class = &rtc_class
;
228 rtc
->dev
.groups
= rtc_get_dev_attribute_groups();
229 rtc
->dev
.release
= rtc_device_release
;
231 mutex_init(&rtc
->ops_lock
);
232 spin_lock_init(&rtc
->irq_lock
);
233 init_waitqueue_head(&rtc
->irq_queue
);
235 /* Init timerqueue */
236 timerqueue_init_head(&rtc
->timerqueue
);
237 INIT_WORK(&rtc
->irqwork
, rtc_timer_do_work
);
239 rtc_timer_init(&rtc
->aie_timer
, rtc_aie_update_irq
, rtc
);
241 rtc_timer_init(&rtc
->uie_rtctimer
, rtc_uie_update_irq
, rtc
);
243 hrtimer_init(&rtc
->pie_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
244 rtc
->pie_timer
.function
= rtc_pie_update_irq
;
245 rtc
->pie_enabled
= 0;
247 set_bit(RTC_FEATURE_ALARM
, rtc
->features
);
248 set_bit(RTC_FEATURE_UPDATE_INTERRUPT
, rtc
->features
);
253 static int rtc_device_get_id(struct device
*dev
)
255 int of_id
= -1, id
= -1;
258 of_id
= of_alias_get_id(dev
->of_node
, "rtc");
259 else if (dev
->parent
&& dev
->parent
->of_node
)
260 of_id
= of_alias_get_id(dev
->parent
->of_node
, "rtc");
263 id
= ida_alloc_range(&rtc_ida
, of_id
, of_id
, GFP_KERNEL
);
265 dev_warn(dev
, "/aliases ID %d not available\n", of_id
);
269 id
= ida_alloc(&rtc_ida
, GFP_KERNEL
);
274 static void rtc_device_get_offset(struct rtc_device
*rtc
)
281 * If RTC driver did not implement the range of RTC hardware device,
282 * then we can not expand the RTC range by adding or subtracting one
285 if (rtc
->range_min
== rtc
->range_max
)
288 ret
= device_property_read_u32(rtc
->dev
.parent
, "start-year",
291 rtc
->start_secs
= mktime64(start_year
, 1, 1, 0, 0, 0);
292 rtc
->set_start_time
= true;
296 * If user did not implement the start time for RTC driver, then no
297 * need to expand the RTC range.
299 if (!rtc
->set_start_time
)
302 range_secs
= rtc
->range_max
- rtc
->range_min
+ 1;
305 * If the start_secs is larger than the maximum seconds (rtc->range_max)
306 * supported by RTC hardware or the maximum seconds of new expanded
307 * range (start_secs + rtc->range_max - rtc->range_min) is less than
308 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
309 * RTC hardware will be mapped to start_secs by adding one offset, so
310 * the offset seconds calculation formula should be:
311 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
313 * If the start_secs is larger than the minimum seconds (rtc->range_min)
314 * supported by RTC hardware, then there is one region is overlapped
315 * between the original RTC hardware range and the new expanded range,
316 * and this overlapped region do not need to be mapped into the new
317 * expanded range due to it is valid for RTC device. So the minimum
318 * seconds of RTC hardware (rtc->range_min) should be mapped to
319 * rtc->range_max + 1, then the offset seconds formula should be:
320 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
322 * If the start_secs is less than the minimum seconds (rtc->range_min),
323 * which is similar to case 2. So the start_secs should be mapped to
324 * start_secs + rtc->range_max - rtc->range_min + 1, then the
325 * offset seconds formula should be:
326 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
328 * Otherwise the offset seconds should be 0.
330 if (rtc
->start_secs
> rtc
->range_max
||
331 rtc
->start_secs
+ range_secs
- 1 < rtc
->range_min
)
332 rtc
->offset_secs
= rtc
->start_secs
- rtc
->range_min
;
333 else if (rtc
->start_secs
> rtc
->range_min
)
334 rtc
->offset_secs
= range_secs
;
335 else if (rtc
->start_secs
< rtc
->range_min
)
336 rtc
->offset_secs
= -range_secs
;
338 rtc
->offset_secs
= 0;
341 static void devm_rtc_unregister_device(void *data
)
343 struct rtc_device
*rtc
= data
;
345 mutex_lock(&rtc
->ops_lock
);
347 * Remove innards of this RTC, then disable it, before
348 * letting any rtc_class_open() users access it again
350 rtc_proc_del_device(rtc
);
351 if (!test_bit(RTC_NO_CDEV
, &rtc
->flags
))
352 cdev_device_del(&rtc
->char_dev
, &rtc
->dev
);
354 mutex_unlock(&rtc
->ops_lock
);
357 static void devm_rtc_release_device(void *res
)
359 struct rtc_device
*rtc
= res
;
361 put_device(&rtc
->dev
);
364 struct rtc_device
*devm_rtc_allocate_device(struct device
*dev
)
366 struct rtc_device
*rtc
;
369 id
= rtc_device_get_id(dev
);
373 rtc
= rtc_allocate_device();
375 ida_free(&rtc_ida
, id
);
376 return ERR_PTR(-ENOMEM
);
380 rtc
->dev
.parent
= dev
;
381 err
= devm_add_action_or_reset(dev
, devm_rtc_release_device
, rtc
);
385 err
= dev_set_name(&rtc
->dev
, "rtc%d", id
);
391 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device
);
393 int __devm_rtc_register_device(struct module
*owner
, struct rtc_device
*rtc
)
395 struct rtc_wkalrm alrm
;
399 dev_dbg(&rtc
->dev
, "no ops set\n");
403 if (!rtc
->ops
->set_alarm
)
404 clear_bit(RTC_FEATURE_ALARM
, rtc
->features
);
406 if (rtc
->ops
->set_offset
)
407 set_bit(RTC_FEATURE_CORRECTION
, rtc
->features
);
410 rtc_device_get_offset(rtc
);
412 /* Check to see if there is an ALARM already set in hw */
413 err
= __rtc_read_alarm(rtc
, &alrm
);
414 if (!err
&& !rtc_valid_tm(&alrm
.time
))
415 rtc_initialize_alarm(rtc
, &alrm
);
417 rtc_dev_prepare(rtc
);
419 err
= cdev_device_add(&rtc
->char_dev
, &rtc
->dev
);
421 set_bit(RTC_NO_CDEV
, &rtc
->flags
);
422 dev_warn(rtc
->dev
.parent
, "failed to add char device %d:%d\n",
423 MAJOR(rtc
->dev
.devt
), rtc
->id
);
425 dev_dbg(rtc
->dev
.parent
, "char device (%d:%d)\n",
426 MAJOR(rtc
->dev
.devt
), rtc
->id
);
429 rtc_proc_add_device(rtc
);
431 dev_info(rtc
->dev
.parent
, "registered as %s\n",
432 dev_name(&rtc
->dev
));
434 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
435 if (!strcmp(dev_name(&rtc
->dev
), CONFIG_RTC_HCTOSYS_DEVICE
))
439 return devm_add_action_or_reset(rtc
->dev
.parent
,
440 devm_rtc_unregister_device
, rtc
);
442 EXPORT_SYMBOL_GPL(__devm_rtc_register_device
);
445 * devm_rtc_device_register - resource managed rtc_device_register()
446 * @dev: the device to register
447 * @name: the name of the device (unused)
448 * @ops: the rtc operations structure
449 * @owner: the module owner
451 * @return a struct rtc on success, or an ERR_PTR on error
453 * Managed rtc_device_register(). The rtc_device returned from this function
454 * are automatically freed on driver detach.
455 * This function is deprecated, use devm_rtc_allocate_device and
456 * rtc_register_device instead
458 struct rtc_device
*devm_rtc_device_register(struct device
*dev
,
460 const struct rtc_class_ops
*ops
,
461 struct module
*owner
)
463 struct rtc_device
*rtc
;
466 rtc
= devm_rtc_allocate_device(dev
);
472 err
= __devm_rtc_register_device(owner
, rtc
);
478 EXPORT_SYMBOL_GPL(devm_rtc_device_register
);
480 static int __init
rtc_init(void)
484 err
= class_register(&rtc_class
);
492 subsys_initcall(rtc_init
);