Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / rtc / interface.c
blobaaf76406cd7d7d2cfd5479fc1fc892fcb5efbb6b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * RTC subsystem, interface functions
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
8 * based on arch/arm/common/rtctime.c
9 */
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
25 time64_t secs;
27 if (!rtc->offset_secs)
28 return;
30 secs = rtc_tm_to_time64(tm);
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
36 * the offset.
38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 (rtc->start_secs < rtc->range_min &&
40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 return;
43 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
48 time64_t secs;
50 if (!rtc->offset_secs)
51 return;
53 secs = rtc_tm_to_time64(tm);
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
61 if (secs >= rtc->range_min && secs <= rtc->range_max)
62 return;
64 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
69 if (rtc->range_min != rtc->range_max) {
70 time64_t time = rtc_tm_to_time64(tm);
71 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 rtc->range_min;
73 timeu64_t range_max = rtc->set_start_time ?
74 (rtc->start_secs + rtc->range_max - rtc->range_min) :
75 rtc->range_max;
77 if (time < range_min || time > range_max)
78 return -ERANGE;
81 return 0;
84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
86 int err;
88 if (!rtc->ops) {
89 err = -ENODEV;
90 } else if (!rtc->ops->read_time) {
91 err = -EINVAL;
92 } else {
93 memset(tm, 0, sizeof(struct rtc_time));
94 err = rtc->ops->read_time(rtc->dev.parent, tm);
95 if (err < 0) {
96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 err);
98 return err;
101 rtc_add_offset(rtc, tm);
103 err = rtc_valid_tm(tm);
104 if (err < 0)
105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
107 return err;
110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
112 int err;
114 err = mutex_lock_interruptible(&rtc->ops_lock);
115 if (err)
116 return err;
118 err = __rtc_read_time(rtc, tm);
119 mutex_unlock(&rtc->ops_lock);
121 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 return err;
124 EXPORT_SYMBOL_GPL(rtc_read_time);
126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
128 int err, uie;
130 err = rtc_valid_tm(tm);
131 if (err != 0)
132 return err;
134 err = rtc_valid_range(rtc, tm);
135 if (err)
136 return err;
138 rtc_subtract_offset(rtc, tm);
140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142 #else
143 uie = rtc->uie_rtctimer.enabled;
144 #endif
145 if (uie) {
146 err = rtc_update_irq_enable(rtc, 0);
147 if (err)
148 return err;
151 err = mutex_lock_interruptible(&rtc->ops_lock);
152 if (err)
153 return err;
155 if (!rtc->ops)
156 err = -ENODEV;
157 else if (rtc->ops->set_time)
158 err = rtc->ops->set_time(rtc->dev.parent, tm);
159 else
160 err = -EINVAL;
162 pm_stay_awake(rtc->dev.parent);
163 mutex_unlock(&rtc->ops_lock);
164 /* A timer might have just expired */
165 schedule_work(&rtc->irqwork);
167 if (uie) {
168 err = rtc_update_irq_enable(rtc, 1);
169 if (err)
170 return err;
173 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
174 return err;
176 EXPORT_SYMBOL_GPL(rtc_set_time);
178 static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 struct rtc_wkalrm *alarm)
181 int err;
183 err = mutex_lock_interruptible(&rtc->ops_lock);
184 if (err)
185 return err;
187 if (!rtc->ops) {
188 err = -ENODEV;
189 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
190 err = -EINVAL;
191 } else {
192 alarm->enabled = 0;
193 alarm->pending = 0;
194 alarm->time.tm_sec = -1;
195 alarm->time.tm_min = -1;
196 alarm->time.tm_hour = -1;
197 alarm->time.tm_mday = -1;
198 alarm->time.tm_mon = -1;
199 alarm->time.tm_year = -1;
200 alarm->time.tm_wday = -1;
201 alarm->time.tm_yday = -1;
202 alarm->time.tm_isdst = -1;
203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
206 mutex_unlock(&rtc->ops_lock);
208 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
209 return err;
212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
214 int err;
215 struct rtc_time before, now;
216 int first_time = 1;
217 time64_t t_now, t_alm;
218 enum { none, day, month, year } missing = none;
219 unsigned int days;
221 /* The lower level RTC driver may return -1 in some fields,
222 * creating invalid alarm->time values, for reasons like:
224 * - The hardware may not be capable of filling them in;
225 * many alarms match only on time-of-day fields, not
226 * day/month/year calendar data.
228 * - Some hardware uses illegal values as "wildcard" match
229 * values, which non-Linux firmware (like a BIOS) may try
230 * to set up as e.g. "alarm 15 minutes after each hour".
231 * Linux uses only oneshot alarms.
233 * When we see that here, we deal with it by using values from
234 * a current RTC timestamp for any missing (-1) values. The
235 * RTC driver prevents "periodic alarm" modes.
237 * But this can be racey, because some fields of the RTC timestamp
238 * may have wrapped in the interval since we read the RTC alarm,
239 * which would lead to us inserting inconsistent values in place
240 * of the -1 fields.
242 * Reading the alarm and timestamp in the reverse sequence
243 * would have the same race condition, and not solve the issue.
245 * So, we must first read the RTC timestamp,
246 * then read the RTC alarm value,
247 * and then read a second RTC timestamp.
249 * If any fields of the second timestamp have changed
250 * when compared with the first timestamp, then we know
251 * our timestamp may be inconsistent with that used by
252 * the low-level rtc_read_alarm_internal() function.
254 * So, when the two timestamps disagree, we just loop and do
255 * the process again to get a fully consistent set of values.
257 * This could all instead be done in the lower level driver,
258 * but since more than one lower level RTC implementation needs it,
259 * then it's probably best to do it here instead of there..
262 /* Get the "before" timestamp */
263 err = rtc_read_time(rtc, &before);
264 if (err < 0)
265 return err;
266 do {
267 if (!first_time)
268 memcpy(&before, &now, sizeof(struct rtc_time));
269 first_time = 0;
271 /* get the RTC alarm values, which may be incomplete */
272 err = rtc_read_alarm_internal(rtc, alarm);
273 if (err)
274 return err;
276 /* full-function RTCs won't have such missing fields */
277 err = rtc_valid_tm(&alarm->time);
278 if (!err)
279 goto done;
281 /* get the "after" timestamp, to detect wrapped fields */
282 err = rtc_read_time(rtc, &now);
283 if (err < 0)
284 return err;
286 /* note that tm_sec is a "don't care" value here: */
287 } while (before.tm_min != now.tm_min ||
288 before.tm_hour != now.tm_hour ||
289 before.tm_mon != now.tm_mon ||
290 before.tm_year != now.tm_year);
292 /* Fill in the missing alarm fields using the timestamp; we
293 * know there's at least one since alarm->time is invalid.
295 if (alarm->time.tm_sec == -1)
296 alarm->time.tm_sec = now.tm_sec;
297 if (alarm->time.tm_min == -1)
298 alarm->time.tm_min = now.tm_min;
299 if (alarm->time.tm_hour == -1)
300 alarm->time.tm_hour = now.tm_hour;
302 /* For simplicity, only support date rollover for now */
303 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
304 alarm->time.tm_mday = now.tm_mday;
305 missing = day;
307 if ((unsigned int)alarm->time.tm_mon >= 12) {
308 alarm->time.tm_mon = now.tm_mon;
309 if (missing == none)
310 missing = month;
312 if (alarm->time.tm_year == -1) {
313 alarm->time.tm_year = now.tm_year;
314 if (missing == none)
315 missing = year;
318 /* Can't proceed if alarm is still invalid after replacing
319 * missing fields.
321 err = rtc_valid_tm(&alarm->time);
322 if (err)
323 goto done;
325 /* with luck, no rollover is needed */
326 t_now = rtc_tm_to_time64(&now);
327 t_alm = rtc_tm_to_time64(&alarm->time);
328 if (t_now < t_alm)
329 goto done;
331 switch (missing) {
332 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
333 * that will trigger at 5am will do so at 5am Tuesday, which
334 * could also be in the next month or year. This is a common
335 * case, especially for PCs.
337 case day:
338 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
339 t_alm += 24 * 60 * 60;
340 rtc_time64_to_tm(t_alm, &alarm->time);
341 break;
343 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
344 * be next month. An alarm matching on the 30th, 29th, or 28th
345 * may end up in the month after that! Many newer PCs support
346 * this type of alarm.
348 case month:
349 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
350 do {
351 if (alarm->time.tm_mon < 11) {
352 alarm->time.tm_mon++;
353 } else {
354 alarm->time.tm_mon = 0;
355 alarm->time.tm_year++;
357 days = rtc_month_days(alarm->time.tm_mon,
358 alarm->time.tm_year);
359 } while (days < alarm->time.tm_mday);
360 break;
362 /* Year rollover ... easy except for leap years! */
363 case year:
364 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
365 do {
366 alarm->time.tm_year++;
367 } while (!is_leap_year(alarm->time.tm_year + 1900) &&
368 rtc_valid_tm(&alarm->time) != 0);
369 break;
371 default:
372 dev_warn(&rtc->dev, "alarm rollover not handled\n");
375 err = rtc_valid_tm(&alarm->time);
377 done:
378 if (err && alarm->enabled)
379 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
380 &alarm->time);
381 else
382 rtc_add_offset(rtc, &alarm->time);
384 return err;
387 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
389 int err;
391 err = mutex_lock_interruptible(&rtc->ops_lock);
392 if (err)
393 return err;
394 if (!rtc->ops) {
395 err = -ENODEV;
396 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) {
397 err = -EINVAL;
398 } else {
399 memset(alarm, 0, sizeof(struct rtc_wkalrm));
400 alarm->enabled = rtc->aie_timer.enabled;
401 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
403 mutex_unlock(&rtc->ops_lock);
405 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
406 return err;
408 EXPORT_SYMBOL_GPL(rtc_read_alarm);
410 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
412 struct rtc_time tm;
413 time64_t now, scheduled;
414 int err;
416 err = rtc_valid_tm(&alarm->time);
417 if (err)
418 return err;
420 scheduled = rtc_tm_to_time64(&alarm->time);
422 /* Make sure we're not setting alarms in the past */
423 err = __rtc_read_time(rtc, &tm);
424 if (err)
425 return err;
426 now = rtc_tm_to_time64(&tm);
428 if (scheduled <= now)
429 return -ETIME;
431 * XXX - We just checked to make sure the alarm time is not
432 * in the past, but there is still a race window where if
433 * the is alarm set for the next second and the second ticks
434 * over right here, before we set the alarm.
437 rtc_subtract_offset(rtc, &alarm->time);
439 if (!rtc->ops)
440 err = -ENODEV;
441 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
442 err = -EINVAL;
443 else
444 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
446 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
447 return err;
450 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
452 ktime_t alarm_time;
453 int err;
455 if (!rtc->ops)
456 return -ENODEV;
457 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
458 return -EINVAL;
460 err = rtc_valid_tm(&alarm->time);
461 if (err != 0)
462 return err;
464 err = rtc_valid_range(rtc, &alarm->time);
465 if (err)
466 return err;
468 err = mutex_lock_interruptible(&rtc->ops_lock);
469 if (err)
470 return err;
471 if (rtc->aie_timer.enabled)
472 rtc_timer_remove(rtc, &rtc->aie_timer);
474 alarm_time = rtc_tm_to_ktime(alarm->time);
476 * Round down so we never miss a deadline, checking for past deadline is
477 * done in __rtc_set_alarm
479 if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features))
480 alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC);
482 rtc->aie_timer.node.expires = alarm_time;
483 rtc->aie_timer.period = 0;
484 if (alarm->enabled)
485 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
487 mutex_unlock(&rtc->ops_lock);
489 return err;
491 EXPORT_SYMBOL_GPL(rtc_set_alarm);
493 /* Called once per device from rtc_device_register */
494 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
496 int err;
497 struct rtc_time now;
499 err = rtc_valid_tm(&alarm->time);
500 if (err != 0)
501 return err;
503 err = rtc_read_time(rtc, &now);
504 if (err)
505 return err;
507 err = mutex_lock_interruptible(&rtc->ops_lock);
508 if (err)
509 return err;
511 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
512 rtc->aie_timer.period = 0;
514 /* Alarm has to be enabled & in the future for us to enqueue it */
515 if (alarm->enabled && (rtc_tm_to_ktime(now) <
516 rtc->aie_timer.node.expires)) {
517 rtc->aie_timer.enabled = 1;
518 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
519 trace_rtc_timer_enqueue(&rtc->aie_timer);
521 mutex_unlock(&rtc->ops_lock);
522 return err;
524 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
526 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
528 int err;
530 err = mutex_lock_interruptible(&rtc->ops_lock);
531 if (err)
532 return err;
534 if (rtc->aie_timer.enabled != enabled) {
535 if (enabled)
536 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
537 else
538 rtc_timer_remove(rtc, &rtc->aie_timer);
541 if (err)
542 /* nothing */;
543 else if (!rtc->ops)
544 err = -ENODEV;
545 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
546 err = -EINVAL;
547 else
548 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
550 mutex_unlock(&rtc->ops_lock);
552 trace_rtc_alarm_irq_enable(enabled, err);
553 return err;
555 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
557 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
559 int err;
561 err = mutex_lock_interruptible(&rtc->ops_lock);
562 if (err)
563 return err;
565 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
566 if (enabled == 0 && rtc->uie_irq_active) {
567 mutex_unlock(&rtc->ops_lock);
568 return rtc_dev_update_irq_enable_emul(rtc, 0);
570 #endif
571 /* make sure we're changing state */
572 if (rtc->uie_rtctimer.enabled == enabled)
573 goto out;
575 if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) ||
576 !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
577 mutex_unlock(&rtc->ops_lock);
578 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
579 return rtc_dev_update_irq_enable_emul(rtc, enabled);
580 #else
581 return -EINVAL;
582 #endif
585 if (enabled) {
586 struct rtc_time tm;
587 ktime_t now, onesec;
589 err = __rtc_read_time(rtc, &tm);
590 if (err)
591 goto out;
592 onesec = ktime_set(1, 0);
593 now = rtc_tm_to_ktime(tm);
594 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
595 rtc->uie_rtctimer.period = ktime_set(1, 0);
596 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
597 } else {
598 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
601 out:
602 mutex_unlock(&rtc->ops_lock);
604 return err;
606 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
609 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
610 * @rtc: pointer to the rtc device
611 * @num: number of occurence of the event
612 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
614 * This function is called when an AIE, UIE or PIE mode interrupt
615 * has occurred (or been emulated).
618 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
620 unsigned long flags;
622 /* mark one irq of the appropriate mode */
623 spin_lock_irqsave(&rtc->irq_lock, flags);
624 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
625 spin_unlock_irqrestore(&rtc->irq_lock, flags);
627 wake_up_interruptible(&rtc->irq_queue);
628 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
632 * rtc_aie_update_irq - AIE mode rtctimer hook
633 * @rtc: pointer to the rtc_device
635 * This functions is called when the aie_timer expires.
637 void rtc_aie_update_irq(struct rtc_device *rtc)
639 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
643 * rtc_uie_update_irq - UIE mode rtctimer hook
644 * @rtc: pointer to the rtc_device
646 * This functions is called when the uie_timer expires.
648 void rtc_uie_update_irq(struct rtc_device *rtc)
650 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
654 * rtc_pie_update_irq - PIE mode hrtimer hook
655 * @timer: pointer to the pie mode hrtimer
657 * This function is used to emulate PIE mode interrupts
658 * using an hrtimer. This function is called when the periodic
659 * hrtimer expires.
661 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
663 struct rtc_device *rtc;
664 ktime_t period;
665 u64 count;
667 rtc = container_of(timer, struct rtc_device, pie_timer);
669 period = NSEC_PER_SEC / rtc->irq_freq;
670 count = hrtimer_forward_now(timer, period);
672 rtc_handle_legacy_irq(rtc, count, RTC_PF);
674 return HRTIMER_RESTART;
678 * rtc_update_irq - Triggered when a RTC interrupt occurs.
679 * @rtc: the rtc device
680 * @num: how many irqs are being reported (usually one)
681 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
682 * Context: any
684 void rtc_update_irq(struct rtc_device *rtc,
685 unsigned long num, unsigned long events)
687 if (IS_ERR_OR_NULL(rtc))
688 return;
690 pm_stay_awake(rtc->dev.parent);
691 schedule_work(&rtc->irqwork);
693 EXPORT_SYMBOL_GPL(rtc_update_irq);
695 struct rtc_device *rtc_class_open(const char *name)
697 struct device *dev;
698 struct rtc_device *rtc = NULL;
700 dev = class_find_device_by_name(&rtc_class, name);
701 if (dev)
702 rtc = to_rtc_device(dev);
704 if (rtc) {
705 if (!try_module_get(rtc->owner)) {
706 put_device(dev);
707 rtc = NULL;
711 return rtc;
713 EXPORT_SYMBOL_GPL(rtc_class_open);
715 void rtc_class_close(struct rtc_device *rtc)
717 module_put(rtc->owner);
718 put_device(&rtc->dev);
720 EXPORT_SYMBOL_GPL(rtc_class_close);
722 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
725 * We always cancel the timer here first, because otherwise
726 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
727 * when we manage to start the timer before the callback
728 * returns HRTIMER_RESTART.
730 * We cannot use hrtimer_cancel() here as a running callback
731 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
732 * would spin forever.
734 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
735 return -1;
737 if (enabled) {
738 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
740 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
742 return 0;
746 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
747 * @rtc: the rtc device
748 * @enabled: true to enable periodic IRQs
749 * Context: any
751 * Note that rtc_irq_set_freq() should previously have been used to
752 * specify the desired frequency of periodic IRQ.
754 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
756 int err = 0;
758 while (rtc_update_hrtimer(rtc, enabled) < 0)
759 cpu_relax();
761 rtc->pie_enabled = enabled;
763 trace_rtc_irq_set_state(enabled, err);
764 return err;
768 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
769 * @rtc: the rtc device
770 * @freq: positive frequency
771 * Context: any
773 * Note that rtc_irq_set_state() is used to enable or disable the
774 * periodic IRQs.
776 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
778 int err = 0;
780 if (freq <= 0 || freq > RTC_MAX_FREQ)
781 return -EINVAL;
783 rtc->irq_freq = freq;
784 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
785 cpu_relax();
787 trace_rtc_irq_set_freq(freq, err);
788 return err;
792 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
793 * @rtc: rtc device
794 * @timer: timer being added.
796 * Enqueues a timer onto the rtc devices timerqueue and sets
797 * the next alarm event appropriately.
799 * Sets the enabled bit on the added timer.
801 * Must hold ops_lock for proper serialization of timerqueue
803 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
805 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
806 struct rtc_time tm;
807 ktime_t now;
808 int err;
810 err = __rtc_read_time(rtc, &tm);
811 if (err)
812 return err;
814 timer->enabled = 1;
815 now = rtc_tm_to_ktime(tm);
817 /* Skip over expired timers */
818 while (next) {
819 if (next->expires >= now)
820 break;
821 next = timerqueue_iterate_next(next);
824 timerqueue_add(&rtc->timerqueue, &timer->node);
825 trace_rtc_timer_enqueue(timer);
826 if (!next || ktime_before(timer->node.expires, next->expires)) {
827 struct rtc_wkalrm alarm;
829 alarm.time = rtc_ktime_to_tm(timer->node.expires);
830 alarm.enabled = 1;
831 err = __rtc_set_alarm(rtc, &alarm);
832 if (err == -ETIME) {
833 pm_stay_awake(rtc->dev.parent);
834 schedule_work(&rtc->irqwork);
835 } else if (err) {
836 timerqueue_del(&rtc->timerqueue, &timer->node);
837 trace_rtc_timer_dequeue(timer);
838 timer->enabled = 0;
839 return err;
842 return 0;
845 static void rtc_alarm_disable(struct rtc_device *rtc)
847 if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
848 return;
850 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
851 trace_rtc_alarm_irq_enable(0, 0);
855 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
856 * @rtc: rtc device
857 * @timer: timer being removed.
859 * Removes a timer onto the rtc devices timerqueue and sets
860 * the next alarm event appropriately.
862 * Clears the enabled bit on the removed timer.
864 * Must hold ops_lock for proper serialization of timerqueue
866 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
868 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
870 timerqueue_del(&rtc->timerqueue, &timer->node);
871 trace_rtc_timer_dequeue(timer);
872 timer->enabled = 0;
873 if (next == &timer->node) {
874 struct rtc_wkalrm alarm;
875 int err;
877 next = timerqueue_getnext(&rtc->timerqueue);
878 if (!next) {
879 rtc_alarm_disable(rtc);
880 return;
882 alarm.time = rtc_ktime_to_tm(next->expires);
883 alarm.enabled = 1;
884 err = __rtc_set_alarm(rtc, &alarm);
885 if (err == -ETIME) {
886 pm_stay_awake(rtc->dev.parent);
887 schedule_work(&rtc->irqwork);
893 * rtc_timer_do_work - Expires rtc timers
894 * @work: work item
896 * Expires rtc timers. Reprograms next alarm event if needed.
897 * Called via worktask.
899 * Serializes access to timerqueue via ops_lock mutex
901 void rtc_timer_do_work(struct work_struct *work)
903 struct rtc_timer *timer;
904 struct timerqueue_node *next;
905 ktime_t now;
906 struct rtc_time tm;
907 int err;
909 struct rtc_device *rtc =
910 container_of(work, struct rtc_device, irqwork);
912 mutex_lock(&rtc->ops_lock);
913 again:
914 err = __rtc_read_time(rtc, &tm);
915 if (err) {
916 mutex_unlock(&rtc->ops_lock);
917 return;
919 now = rtc_tm_to_ktime(tm);
920 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
921 if (next->expires > now)
922 break;
924 /* expire timer */
925 timer = container_of(next, struct rtc_timer, node);
926 timerqueue_del(&rtc->timerqueue, &timer->node);
927 trace_rtc_timer_dequeue(timer);
928 timer->enabled = 0;
929 if (timer->func)
930 timer->func(timer->rtc);
932 trace_rtc_timer_fired(timer);
933 /* Re-add/fwd periodic timers */
934 if (ktime_to_ns(timer->period)) {
935 timer->node.expires = ktime_add(timer->node.expires,
936 timer->period);
937 timer->enabled = 1;
938 timerqueue_add(&rtc->timerqueue, &timer->node);
939 trace_rtc_timer_enqueue(timer);
943 /* Set next alarm */
944 if (next) {
945 struct rtc_wkalrm alarm;
946 int err;
947 int retry = 3;
949 alarm.time = rtc_ktime_to_tm(next->expires);
950 alarm.enabled = 1;
951 reprogram:
952 err = __rtc_set_alarm(rtc, &alarm);
953 if (err == -ETIME) {
954 goto again;
955 } else if (err) {
956 if (retry-- > 0)
957 goto reprogram;
959 timer = container_of(next, struct rtc_timer, node);
960 timerqueue_del(&rtc->timerqueue, &timer->node);
961 trace_rtc_timer_dequeue(timer);
962 timer->enabled = 0;
963 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
964 goto again;
966 } else {
967 rtc_alarm_disable(rtc);
970 pm_relax(rtc->dev.parent);
971 mutex_unlock(&rtc->ops_lock);
974 /* rtc_timer_init - Initializes an rtc_timer
975 * @timer: timer to be intiialized
976 * @f: function pointer to be called when timer fires
977 * @rtc: pointer to the rtc_device
979 * Kernel interface to initializing an rtc_timer.
981 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
982 struct rtc_device *rtc)
984 timerqueue_init(&timer->node);
985 timer->enabled = 0;
986 timer->func = f;
987 timer->rtc = rtc;
990 /* rtc_timer_start - Sets an rtc_timer to fire in the future
991 * @ rtc: rtc device to be used
992 * @ timer: timer being set
993 * @ expires: time at which to expire the timer
994 * @ period: period that the timer will recur
996 * Kernel interface to set an rtc_timer
998 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
999 ktime_t expires, ktime_t period)
1001 int ret = 0;
1003 mutex_lock(&rtc->ops_lock);
1004 if (timer->enabled)
1005 rtc_timer_remove(rtc, timer);
1007 timer->node.expires = expires;
1008 timer->period = period;
1010 ret = rtc_timer_enqueue(rtc, timer);
1012 mutex_unlock(&rtc->ops_lock);
1013 return ret;
1016 /* rtc_timer_cancel - Stops an rtc_timer
1017 * @ rtc: rtc device to be used
1018 * @ timer: timer being set
1020 * Kernel interface to cancel an rtc_timer
1022 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1024 mutex_lock(&rtc->ops_lock);
1025 if (timer->enabled)
1026 rtc_timer_remove(rtc, timer);
1027 mutex_unlock(&rtc->ops_lock);
1031 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1032 * @rtc: rtc device to be used
1033 * @offset: the offset in parts per billion
1035 * see below for details.
1037 * Kernel interface to read rtc clock offset
1038 * Returns 0 on success, or a negative number on error.
1039 * If read_offset() is not implemented for the rtc, return -EINVAL
1041 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1043 int ret;
1045 if (!rtc->ops)
1046 return -ENODEV;
1048 if (!rtc->ops->read_offset)
1049 return -EINVAL;
1051 mutex_lock(&rtc->ops_lock);
1052 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1053 mutex_unlock(&rtc->ops_lock);
1055 trace_rtc_read_offset(*offset, ret);
1056 return ret;
1060 * rtc_set_offset - Adjusts the duration of the average second
1061 * @rtc: rtc device to be used
1062 * @offset: the offset in parts per billion
1064 * Some rtc's allow an adjustment to the average duration of a second
1065 * to compensate for differences in the actual clock rate due to temperature,
1066 * the crystal, capacitor, etc.
1068 * The adjustment applied is as follows:
1069 * t = t0 * (1 + offset * 1e-9)
1070 * where t0 is the measured length of 1 RTC second with offset = 0
1072 * Kernel interface to adjust an rtc clock offset.
1073 * Return 0 on success, or a negative number on error.
1074 * If the rtc offset is not setable (or not implemented), return -EINVAL
1076 int rtc_set_offset(struct rtc_device *rtc, long offset)
1078 int ret;
1080 if (!rtc->ops)
1081 return -ENODEV;
1083 if (!rtc->ops->set_offset)
1084 return -EINVAL;
1086 mutex_lock(&rtc->ops_lock);
1087 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1088 mutex_unlock(&rtc->ops_lock);
1090 trace_rtc_set_offset(offset, ret);
1091 return ret;