1 // SPDX-License-Identifier: GPL-2.0+
3 * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
6 * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
8 * Detailed datasheet of the chip is available here:
10 * https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
12 * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
16 #include <linux/module.h>
17 #include <linux/rtc.h>
18 #include <linux/i2c.h>
19 #include <linux/bcd.h>
21 #include <linux/regmap.h>
22 #include <linux/interrupt.h>
24 #define DRV_NAME "rtc-ab-b5ze-s3"
27 #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
28 #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
29 #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
30 #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
31 #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
32 #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
33 #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
34 #define ABB5ZES3_REG_CTRL1_CAP BIT(7)
36 #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
37 #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
38 #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
39 #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
40 #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
41 #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
42 #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
43 #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
44 #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
46 #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
47 #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
48 #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
49 #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
50 #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
51 #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
52 #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
53 #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
55 #define ABB5ZES3_CTRL_SEC_LEN 3
58 #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
59 #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
60 #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
61 #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
62 #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
63 #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
64 #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
65 #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
66 #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
68 #define ABB5ZES3_RTC_SEC_LEN 7
70 /* Alarm section (enable bits are all active low) */
71 #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
72 #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
73 #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
74 #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
75 #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
76 #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
77 #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
78 #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
80 #define ABB5ZES3_ALRM_SEC_LEN 4
82 /* Frequency offset section */
83 #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
84 #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
86 /* CLOCKOUT section */
87 #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
88 #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
89 #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
90 #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
91 #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
92 #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
93 #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
94 #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
95 #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
98 #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
99 #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
100 #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
101 #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
102 #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
104 #define ABB5ZES3_TIMA_SEC_LEN 2
106 /* Timer B Section */
107 #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
108 #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
109 #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
110 #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
111 #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
112 #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
113 #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
114 #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
115 #define ABB5ZES3_TIMB_SEC_LEN 2
117 #define ABB5ZES3_MEM_MAP_LEN 0x14
119 struct abb5zes3_rtc_data
{
120 struct rtc_device
*rtc
;
121 struct regmap
*regmap
;
126 bool timer_alarm
; /* current alarm is via timer A */
130 * Try and match register bits w/ fixed null values to see whether we
131 * are dealing with an ABB5ZES3.
133 static int abb5zes3_i2c_validate_chip(struct regmap
*regmap
)
135 u8 regs
[ABB5ZES3_MEM_MAP_LEN
];
136 static const u8 mask
[ABB5ZES3_MEM_MAP_LEN
] = { 0x00, 0x00, 0x10, 0x00,
137 0x80, 0xc0, 0xc0, 0xf8,
138 0xe0, 0x00, 0x00, 0x40,
139 0x40, 0x78, 0x00, 0x00,
140 0xf8, 0x00, 0x88, 0x00 };
143 ret
= regmap_bulk_read(regmap
, 0, regs
, ABB5ZES3_MEM_MAP_LEN
);
147 for (i
= 0; i
< ABB5ZES3_MEM_MAP_LEN
; ++i
) {
148 if (regs
[i
] & mask
[i
]) /* check if bits are cleared */
155 /* Clear alarm status bit. */
156 static int _abb5zes3_rtc_clear_alarm(struct device
*dev
)
158 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
161 ret
= regmap_update_bits(data
->regmap
, ABB5ZES3_REG_CTRL2
,
162 ABB5ZES3_REG_CTRL2_AF
, 0);
164 dev_err(dev
, "%s: clearing alarm failed (%d)\n", __func__
, ret
);
169 /* Enable or disable alarm (i.e. alarm interrupt generation) */
170 static int _abb5zes3_rtc_update_alarm(struct device
*dev
, bool enable
)
172 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
175 ret
= regmap_update_bits(data
->regmap
, ABB5ZES3_REG_CTRL1
,
176 ABB5ZES3_REG_CTRL1_AIE
,
177 enable
? ABB5ZES3_REG_CTRL1_AIE
: 0);
179 dev_err(dev
, "%s: writing alarm INT failed (%d)\n",
185 /* Enable or disable timer (watchdog timer A interrupt generation) */
186 static int _abb5zes3_rtc_update_timer(struct device
*dev
, bool enable
)
188 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
191 ret
= regmap_update_bits(data
->regmap
, ABB5ZES3_REG_CTRL2
,
192 ABB5ZES3_REG_CTRL2_WTAIE
,
193 enable
? ABB5ZES3_REG_CTRL2_WTAIE
: 0);
195 dev_err(dev
, "%s: writing timer INT failed (%d)\n",
202 * Note: we only read, so regmap inner lock protection is sufficient, i.e.
203 * we do not need driver's main lock protection.
205 static int _abb5zes3_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
207 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
208 u8 regs
[ABB5ZES3_REG_RTC_SC
+ ABB5ZES3_RTC_SEC_LEN
];
212 * As we need to read CTRL1 register anyway to access 24/12h
213 * mode bit, we do a single bulk read of both control and RTC
214 * sections (they are consecutive). This also ease indexing
215 * of register values after bulk read.
217 ret
= regmap_bulk_read(data
->regmap
, ABB5ZES3_REG_CTRL1
, regs
,
220 dev_err(dev
, "%s: reading RTC time failed (%d)\n",
225 /* If clock integrity is not guaranteed, do not return a time value */
226 if (regs
[ABB5ZES3_REG_RTC_SC
] & ABB5ZES3_REG_RTC_SC_OSC
)
229 tm
->tm_sec
= bcd2bin(regs
[ABB5ZES3_REG_RTC_SC
] & 0x7F);
230 tm
->tm_min
= bcd2bin(regs
[ABB5ZES3_REG_RTC_MN
]);
232 if (regs
[ABB5ZES3_REG_CTRL1
] & ABB5ZES3_REG_CTRL1_PM
) { /* 12hr mode */
233 tm
->tm_hour
= bcd2bin(regs
[ABB5ZES3_REG_RTC_HR
] & 0x1f);
234 if (regs
[ABB5ZES3_REG_RTC_HR
] & ABB5ZES3_REG_RTC_HR_PM
) /* PM */
236 } else { /* 24hr mode */
237 tm
->tm_hour
= bcd2bin(regs
[ABB5ZES3_REG_RTC_HR
]);
240 tm
->tm_mday
= bcd2bin(regs
[ABB5ZES3_REG_RTC_DT
]);
241 tm
->tm_wday
= bcd2bin(regs
[ABB5ZES3_REG_RTC_DW
]);
242 tm
->tm_mon
= bcd2bin(regs
[ABB5ZES3_REG_RTC_MO
]) - 1; /* starts at 1 */
243 tm
->tm_year
= bcd2bin(regs
[ABB5ZES3_REG_RTC_YR
]) + 100;
248 static int abb5zes3_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
250 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
251 u8 regs
[ABB5ZES3_REG_RTC_SC
+ ABB5ZES3_RTC_SEC_LEN
];
254 regs
[ABB5ZES3_REG_RTC_SC
] = bin2bcd(tm
->tm_sec
); /* MSB=0 clears OSC */
255 regs
[ABB5ZES3_REG_RTC_MN
] = bin2bcd(tm
->tm_min
);
256 regs
[ABB5ZES3_REG_RTC_HR
] = bin2bcd(tm
->tm_hour
); /* 24-hour format */
257 regs
[ABB5ZES3_REG_RTC_DT
] = bin2bcd(tm
->tm_mday
);
258 regs
[ABB5ZES3_REG_RTC_DW
] = bin2bcd(tm
->tm_wday
);
259 regs
[ABB5ZES3_REG_RTC_MO
] = bin2bcd(tm
->tm_mon
+ 1);
260 regs
[ABB5ZES3_REG_RTC_YR
] = bin2bcd(tm
->tm_year
- 100);
262 ret
= regmap_bulk_write(data
->regmap
, ABB5ZES3_REG_RTC_SC
,
263 regs
+ ABB5ZES3_REG_RTC_SC
,
264 ABB5ZES3_RTC_SEC_LEN
);
270 * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
271 * given number of seconds.
273 static inline void sec_to_timer_a(u8 secs
, u8
*taq
, u8
*timer_a
)
275 *taq
= ABB5ZES3_REG_TIMA_CLK_TAQ1
; /* 1Hz */
280 * Return current number of seconds in Timer A. As we only use
281 * timer A with a 1Hz freq, this is what we expect to have.
283 static inline int sec_from_timer_a(u8
*secs
, u8 taq
, u8 timer_a
)
285 if (taq
!= ABB5ZES3_REG_TIMA_CLK_TAQ1
) /* 1Hz */
294 * Read alarm currently configured via a watchdog timer using timer A. This
295 * is done by reading current RTC time and adding remaining timer time.
297 static int _abb5zes3_rtc_read_timer(struct device
*dev
,
298 struct rtc_wkalrm
*alarm
)
300 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
301 struct rtc_time rtc_tm
, *alarm_tm
= &alarm
->time
;
302 u8 regs
[ABB5ZES3_TIMA_SEC_LEN
+ 1];
303 unsigned long rtc_secs
;
309 * Instead of doing two separate calls, because they are consecutive,
310 * we grab both clockout register and Timer A section. The latter is
311 * used to decide if timer A is enabled (as a watchdog timer).
313 ret
= regmap_bulk_read(data
->regmap
, ABB5ZES3_REG_TIM_CLK
, regs
,
314 ABB5ZES3_TIMA_SEC_LEN
+ 1);
316 dev_err(dev
, "%s: reading Timer A section failed (%d)\n",
321 /* get current time ... */
322 ret
= _abb5zes3_rtc_read_time(dev
, &rtc_tm
);
326 /* ... convert to seconds ... */
327 rtc_secs
= rtc_tm_to_time64(&rtc_tm
);
329 /* ... add remaining timer A time ... */
330 ret
= sec_from_timer_a(&timer_secs
, regs
[1], regs
[2]);
334 /* ... and convert back. */
335 rtc_time64_to_tm(rtc_secs
+ timer_secs
, alarm_tm
);
337 ret
= regmap_read(data
->regmap
, ABB5ZES3_REG_CTRL2
, ®
);
339 dev_err(dev
, "%s: reading ctrl reg failed (%d)\n",
344 alarm
->enabled
= !!(reg
& ABB5ZES3_REG_CTRL2_WTAIE
);
349 /* Read alarm currently configured via a RTC alarm registers. */
350 static int _abb5zes3_rtc_read_alarm(struct device
*dev
,
351 struct rtc_wkalrm
*alarm
)
353 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
354 struct rtc_time rtc_tm
, *alarm_tm
= &alarm
->time
;
355 unsigned long rtc_secs
, alarm_secs
;
356 u8 regs
[ABB5ZES3_ALRM_SEC_LEN
];
360 ret
= regmap_bulk_read(data
->regmap
, ABB5ZES3_REG_ALRM_MN
, regs
,
361 ABB5ZES3_ALRM_SEC_LEN
);
363 dev_err(dev
, "%s: reading alarm section failed (%d)\n",
368 alarm_tm
->tm_sec
= 0;
369 alarm_tm
->tm_min
= bcd2bin(regs
[0] & 0x7f);
370 alarm_tm
->tm_hour
= bcd2bin(regs
[1] & 0x3f);
371 alarm_tm
->tm_mday
= bcd2bin(regs
[2] & 0x3f);
372 alarm_tm
->tm_wday
= -1;
375 * The alarm section does not store year/month. We use the ones in rtc
376 * section as a basis and increment month and then year if needed to get
377 * alarm after current time.
379 ret
= _abb5zes3_rtc_read_time(dev
, &rtc_tm
);
383 alarm_tm
->tm_year
= rtc_tm
.tm_year
;
384 alarm_tm
->tm_mon
= rtc_tm
.tm_mon
;
386 rtc_secs
= rtc_tm_to_time64(&rtc_tm
);
387 alarm_secs
= rtc_tm_to_time64(alarm_tm
);
389 if (alarm_secs
< rtc_secs
) {
390 if (alarm_tm
->tm_mon
== 11) {
391 alarm_tm
->tm_mon
= 0;
392 alarm_tm
->tm_year
+= 1;
394 alarm_tm
->tm_mon
+= 1;
398 ret
= regmap_read(data
->regmap
, ABB5ZES3_REG_CTRL1
, ®
);
400 dev_err(dev
, "%s: reading ctrl reg failed (%d)\n",
405 alarm
->enabled
= !!(reg
& ABB5ZES3_REG_CTRL1_AIE
);
411 * As the Alarm mechanism supported by the chip is only accurate to the
412 * minute, we use the watchdog timer mechanism provided by timer A
413 * (up to 256 seconds w/ a second accuracy) for low alarm values (below
414 * 4 minutes). Otherwise, we use the common alarm mechanism provided
415 * by the chip. In order for that to work, we keep track of currently
416 * configured timer type via 'timer_alarm' flag in our private data
419 static int abb5zes3_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
421 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
424 if (data
->timer_alarm
)
425 ret
= _abb5zes3_rtc_read_timer(dev
, alarm
);
427 ret
= _abb5zes3_rtc_read_alarm(dev
, alarm
);
433 * Set alarm using chip alarm mechanism. It is only accurate to the
434 * minute (not the second). The function expects alarm interrupt to
437 static int _abb5zes3_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
439 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
440 struct rtc_time
*alarm_tm
= &alarm
->time
;
441 u8 regs
[ABB5ZES3_ALRM_SEC_LEN
];
442 struct rtc_time rtc_tm
;
445 if (!alarm
->enabled
) {
448 unsigned long rtc_secs
, alarm_secs
;
451 * Chip only support alarms up to one month in the future. Let's
452 * return an error if we get something after that limit.
453 * Comparison is done by incrementing rtc_tm month field by one
454 * and checking alarm value is still below.
456 ret
= _abb5zes3_rtc_read_time(dev
, &rtc_tm
);
460 if (rtc_tm
.tm_mon
== 11) { /* handle year wrapping */
467 rtc_secs
= rtc_tm_to_time64(&rtc_tm
);
468 alarm_secs
= rtc_tm_to_time64(alarm_tm
);
470 if (alarm_secs
> rtc_secs
) {
471 dev_err(dev
, "%s: alarm maximum is one month in the future (%d)\n",
478 * Program all alarm registers but DW one. For each register, setting
479 * MSB to 0 enables associated alarm.
481 regs
[0] = bin2bcd(alarm_tm
->tm_min
) & 0x7f;
482 regs
[1] = bin2bcd(alarm_tm
->tm_hour
) & 0x3f;
483 regs
[2] = bin2bcd(alarm_tm
->tm_mday
) & 0x3f;
484 regs
[3] = ABB5ZES3_REG_ALRM_DW_AE
; /* do not match day of the week */
486 ret
= regmap_bulk_write(data
->regmap
, ABB5ZES3_REG_ALRM_MN
, regs
,
487 ABB5ZES3_ALRM_SEC_LEN
);
489 dev_err(dev
, "%s: writing ALARM section failed (%d)\n",
494 /* Record currently configured alarm is not a timer */
495 data
->timer_alarm
= 0;
497 /* Enable or disable alarm interrupt generation */
498 return _abb5zes3_rtc_update_alarm(dev
, enable
);
502 * Set alarm using timer watchdog (via timer A) mechanism. The function expects
503 * timer A interrupt to be disabled.
505 static int _abb5zes3_rtc_set_timer(struct device
*dev
, struct rtc_wkalrm
*alarm
,
508 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
509 u8 regs
[ABB5ZES3_TIMA_SEC_LEN
];
510 u8 mask
= ABB5ZES3_REG_TIM_CLK_TAC0
| ABB5ZES3_REG_TIM_CLK_TAC1
;
513 /* Program given number of seconds to Timer A registers */
514 sec_to_timer_a(secs
, ®s
[0], ®s
[1]);
515 ret
= regmap_bulk_write(data
->regmap
, ABB5ZES3_REG_TIMA_CLK
, regs
,
516 ABB5ZES3_TIMA_SEC_LEN
);
518 dev_err(dev
, "%s: writing timer section failed\n", __func__
);
522 /* Configure Timer A as a watchdog timer */
523 ret
= regmap_update_bits(data
->regmap
, ABB5ZES3_REG_TIM_CLK
,
524 mask
, ABB5ZES3_REG_TIM_CLK_TAC1
);
526 dev_err(dev
, "%s: failed to update timer\n", __func__
);
528 /* Record currently configured alarm is a timer */
529 data
->timer_alarm
= 1;
531 /* Enable or disable timer interrupt generation */
532 return _abb5zes3_rtc_update_timer(dev
, alarm
->enabled
);
536 * The chip has an alarm which is only accurate to the minute. In order to
537 * handle alarms below that limit, we use the watchdog timer function of
538 * timer A. More precisely, the timer method is used for alarms below 240
541 static int abb5zes3_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
543 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
544 struct rtc_time
*alarm_tm
= &alarm
->time
;
545 unsigned long rtc_secs
, alarm_secs
;
546 struct rtc_time rtc_tm
;
549 ret
= _abb5zes3_rtc_read_time(dev
, &rtc_tm
);
553 rtc_secs
= rtc_tm_to_time64(&rtc_tm
);
554 alarm_secs
= rtc_tm_to_time64(alarm_tm
);
556 /* Let's first disable both the alarm and the timer interrupts */
557 ret
= _abb5zes3_rtc_update_alarm(dev
, false);
559 dev_err(dev
, "%s: unable to disable alarm (%d)\n", __func__
,
563 ret
= _abb5zes3_rtc_update_timer(dev
, false);
565 dev_err(dev
, "%s: unable to disable timer (%d)\n", __func__
,
570 data
->timer_alarm
= 0;
573 * Let's now configure the alarm; if we are expected to ring in
574 * more than 240s, then we setup an alarm. Otherwise, a timer.
576 if ((alarm_secs
> rtc_secs
) && ((alarm_secs
- rtc_secs
) <= 240))
577 ret
= _abb5zes3_rtc_set_timer(dev
, alarm
,
578 alarm_secs
- rtc_secs
);
580 ret
= _abb5zes3_rtc_set_alarm(dev
, alarm
);
583 dev_err(dev
, "%s: unable to configure alarm (%d)\n", __func__
,
589 /* Enable or disable battery low irq generation */
590 static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap
*regmap
,
593 return regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL3
,
594 ABB5ZES3_REG_CTRL3_BLIE
,
595 enable
? ABB5ZES3_REG_CTRL3_BLIE
: 0);
599 * Check current RTC status and enable/disable what needs to be. Return 0 if
600 * everything went ok and a negative value upon error.
602 static int abb5zes3_rtc_check_setup(struct device
*dev
)
604 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
605 struct regmap
*regmap
= data
->regmap
;
611 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
612 * is disabled here to prevent polluting the interrupt line and
613 * uselessly triggering the IRQ handler we install for alarm and battery
614 * low events. Note: this is done before clearing int. status below
616 * We also disable all timers and set timer interrupt to permanent (not
619 mask
= (ABB5ZES3_REG_TIM_CLK_TBC
| ABB5ZES3_REG_TIM_CLK_TAC0
|
620 ABB5ZES3_REG_TIM_CLK_TAC1
| ABB5ZES3_REG_TIM_CLK_COF0
|
621 ABB5ZES3_REG_TIM_CLK_COF1
| ABB5ZES3_REG_TIM_CLK_COF2
|
622 ABB5ZES3_REG_TIM_CLK_TBM
| ABB5ZES3_REG_TIM_CLK_TAM
);
623 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_TIM_CLK
, mask
,
624 ABB5ZES3_REG_TIM_CLK_COF0
|
625 ABB5ZES3_REG_TIM_CLK_COF1
|
626 ABB5ZES3_REG_TIM_CLK_COF2
);
628 dev_err(dev
, "%s: unable to initialize clkout register (%d)\n",
634 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
635 * individually by clearing/setting MSB of each associated register. So,
636 * we set all alarm enable bits to disable current alarm setting.
638 mask
= (ABB5ZES3_REG_ALRM_MN_AE
| ABB5ZES3_REG_ALRM_HR_AE
|
639 ABB5ZES3_REG_ALRM_DT_AE
| ABB5ZES3_REG_ALRM_DW_AE
);
640 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL2
, mask
, mask
);
642 dev_err(dev
, "%s: unable to disable alarm setting (%d)\n",
647 /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
648 mask
= (ABB5ZES3_REG_CTRL1_CIE
| ABB5ZES3_REG_CTRL1_AIE
|
649 ABB5ZES3_REG_CTRL1_SIE
| ABB5ZES3_REG_CTRL1_PM
|
650 ABB5ZES3_REG_CTRL1_CAP
| ABB5ZES3_REG_CTRL1_STOP
);
651 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL1
, mask
, 0);
653 dev_err(dev
, "%s: unable to initialize CTRL1 register (%d)\n",
659 * Set Control 2 register (timer int. disabled, alarm status cleared).
660 * WTAF is read-only and cleared automatically by reading the register.
662 mask
= (ABB5ZES3_REG_CTRL2_CTBIE
| ABB5ZES3_REG_CTRL2_CTAIE
|
663 ABB5ZES3_REG_CTRL2_WTAIE
| ABB5ZES3_REG_CTRL2_AF
|
664 ABB5ZES3_REG_CTRL2_SF
| ABB5ZES3_REG_CTRL2_CTBF
|
665 ABB5ZES3_REG_CTRL2_CTAF
);
666 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL2
, mask
, 0);
668 dev_err(dev
, "%s: unable to initialize CTRL2 register (%d)\n",
674 * Enable battery low detection function and battery switchover function
675 * (standard mode). Disable associated interrupts. Clear battery
676 * switchover flag but not battery low flag. The latter is checked
679 mask
= (ABB5ZES3_REG_CTRL3_PM0
| ABB5ZES3_REG_CTRL3_PM1
|
680 ABB5ZES3_REG_CTRL3_PM2
| ABB5ZES3_REG_CTRL3_BLIE
|
681 ABB5ZES3_REG_CTRL3_BSIE
| ABB5ZES3_REG_CTRL3_BSF
);
682 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL3
, mask
, 0);
684 dev_err(dev
, "%s: unable to initialize CTRL3 register (%d)\n",
689 /* Check oscillator integrity flag */
690 ret
= regmap_read(regmap
, ABB5ZES3_REG_RTC_SC
, ®
);
692 dev_err(dev
, "%s: unable to read osc. integrity flag (%d)\n",
697 if (reg
& ABB5ZES3_REG_RTC_SC_OSC
) {
698 dev_err(dev
, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
699 dev_err(dev
, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
703 * Check battery low flag at startup: this allows reporting battery
704 * is low at startup when IRQ line is not connected. Note: we record
705 * current status to avoid reenabling this interrupt later in probe
706 * function if battery is low.
708 ret
= regmap_read(regmap
, ABB5ZES3_REG_CTRL3
, ®
);
710 dev_err(dev
, "%s: unable to read battery low flag (%d)\n",
715 data
->battery_low
= reg
& ABB5ZES3_REG_CTRL3_BLF
;
716 if (data
->battery_low
) {
717 dev_err(dev
, "RTC battery is low; please, consider changing it!\n");
719 ret
= _abb5zes3_rtc_battery_low_irq_enable(regmap
, false);
721 dev_err(dev
, "%s: disabling battery low interrupt generation failed (%d)\n",
728 static int abb5zes3_rtc_alarm_irq_enable(struct device
*dev
,
731 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(dev
);
735 if (rtc_data
->timer_alarm
)
736 ret
= _abb5zes3_rtc_update_timer(dev
, enable
);
738 ret
= _abb5zes3_rtc_update_alarm(dev
, enable
);
744 static irqreturn_t
_abb5zes3_rtc_interrupt(int irq
, void *data
)
746 struct i2c_client
*client
= data
;
747 struct device
*dev
= &client
->dev
;
748 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(dev
);
749 struct rtc_device
*rtc
= rtc_data
->rtc
;
750 u8 regs
[ABB5ZES3_CTRL_SEC_LEN
];
751 int ret
, handled
= IRQ_NONE
;
753 ret
= regmap_bulk_read(rtc_data
->regmap
, 0, regs
,
754 ABB5ZES3_CTRL_SEC_LEN
);
756 dev_err(dev
, "%s: unable to read control section (%d)!\n",
762 * Check battery low detection flag and disable battery low interrupt
763 * generation if flag is set (interrupt can only be cleared when
764 * battery is replaced).
766 if (regs
[ABB5ZES3_REG_CTRL3
] & ABB5ZES3_REG_CTRL3_BLF
) {
767 dev_err(dev
, "RTC battery is low; please change it!\n");
769 _abb5zes3_rtc_battery_low_irq_enable(rtc_data
->regmap
, false);
771 handled
= IRQ_HANDLED
;
774 /* Check alarm flag */
775 if (regs
[ABB5ZES3_REG_CTRL2
] & ABB5ZES3_REG_CTRL2_AF
) {
776 dev_dbg(dev
, "RTC alarm!\n");
778 rtc_update_irq(rtc
, 1, RTC_IRQF
| RTC_AF
);
780 /* Acknowledge and disable the alarm */
781 _abb5zes3_rtc_clear_alarm(dev
);
782 _abb5zes3_rtc_update_alarm(dev
, 0);
784 handled
= IRQ_HANDLED
;
787 /* Check watchdog Timer A flag */
788 if (regs
[ABB5ZES3_REG_CTRL2
] & ABB5ZES3_REG_CTRL2_WTAF
) {
789 dev_dbg(dev
, "RTC timer!\n");
791 rtc_update_irq(rtc
, 1, RTC_IRQF
| RTC_AF
);
794 * Acknowledge and disable the alarm. Note: WTAF
795 * flag had been cleared when reading CTRL2
797 _abb5zes3_rtc_update_timer(dev
, 0);
799 rtc_data
->timer_alarm
= 0;
801 handled
= IRQ_HANDLED
;
807 static const struct rtc_class_ops rtc_ops
= {
808 .read_time
= _abb5zes3_rtc_read_time
,
809 .set_time
= abb5zes3_rtc_set_time
,
810 .read_alarm
= abb5zes3_rtc_read_alarm
,
811 .set_alarm
= abb5zes3_rtc_set_alarm
,
812 .alarm_irq_enable
= abb5zes3_rtc_alarm_irq_enable
,
815 static const struct regmap_config abb5zes3_rtc_regmap_config
= {
820 static int abb5zes3_probe(struct i2c_client
*client
)
822 struct abb5zes3_rtc_data
*data
= NULL
;
823 struct device
*dev
= &client
->dev
;
824 struct regmap
*regmap
;
827 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_I2C
|
828 I2C_FUNC_SMBUS_BYTE_DATA
|
829 I2C_FUNC_SMBUS_I2C_BLOCK
))
832 regmap
= devm_regmap_init_i2c(client
, &abb5zes3_rtc_regmap_config
);
833 if (IS_ERR(regmap
)) {
834 ret
= PTR_ERR(regmap
);
835 dev_err(dev
, "%s: regmap allocation failed: %d\n",
840 ret
= abb5zes3_i2c_validate_chip(regmap
);
844 data
= devm_kzalloc(dev
, sizeof(*data
), GFP_KERNEL
);
848 data
->regmap
= regmap
;
849 dev_set_drvdata(dev
, data
);
851 ret
= abb5zes3_rtc_check_setup(dev
);
855 data
->rtc
= devm_rtc_allocate_device(dev
);
856 ret
= PTR_ERR_OR_ZERO(data
->rtc
);
858 dev_err(dev
, "%s: unable to allocate RTC device (%d)\n",
863 if (client
->irq
> 0) {
864 ret
= devm_request_threaded_irq(dev
, client
->irq
, NULL
,
865 _abb5zes3_rtc_interrupt
,
866 IRQF_SHARED
| IRQF_ONESHOT
,
869 device_init_wakeup(dev
, true);
870 data
->irq
= client
->irq
;
871 dev_dbg(dev
, "%s: irq %d used by RTC\n", __func__
,
874 dev_err(dev
, "%s: irq %d unavailable (%d)\n",
875 __func__
, client
->irq
, ret
);
880 data
->rtc
->ops
= &rtc_ops
;
881 data
->rtc
->range_min
= RTC_TIMESTAMP_BEGIN_2000
;
882 data
->rtc
->range_max
= RTC_TIMESTAMP_END_2099
;
884 /* Enable battery low detection interrupt if battery not already low */
885 if (!data
->battery_low
&& data
->irq
) {
886 ret
= _abb5zes3_rtc_battery_low_irq_enable(regmap
, true);
888 dev_err(dev
, "%s: enabling battery low interrupt generation failed (%d)\n",
894 ret
= devm_rtc_register_device(data
->rtc
);
897 if (ret
&& data
->irq
)
898 device_init_wakeup(dev
, false);
902 #ifdef CONFIG_PM_SLEEP
903 static int abb5zes3_rtc_suspend(struct device
*dev
)
905 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(dev
);
907 if (device_may_wakeup(dev
))
908 return enable_irq_wake(rtc_data
->irq
);
913 static int abb5zes3_rtc_resume(struct device
*dev
)
915 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(dev
);
917 if (device_may_wakeup(dev
))
918 return disable_irq_wake(rtc_data
->irq
);
924 static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops
, abb5zes3_rtc_suspend
,
925 abb5zes3_rtc_resume
);
928 static const struct of_device_id abb5zes3_dt_match
[] = {
929 { .compatible
= "abracon,abb5zes3" },
932 MODULE_DEVICE_TABLE(of
, abb5zes3_dt_match
);
935 static const struct i2c_device_id abb5zes3_id
[] = {
939 MODULE_DEVICE_TABLE(i2c
, abb5zes3_id
);
941 static struct i2c_driver abb5zes3_driver
= {
944 .pm
= &abb5zes3_rtc_pm_ops
,
945 .of_match_table
= of_match_ptr(abb5zes3_dt_match
),
947 .probe
= abb5zes3_probe
,
948 .id_table
= abb5zes3_id
,
950 module_i2c_driver(abb5zes3_driver
);
952 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
953 MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
954 MODULE_LICENSE("GPL");