1 // SPDX-License-Identifier: GPL-2.0-only
3 * RTC Driver for X-Powers AC100
5 * Copyright (c) 2016 Chen-Yu Tsai
7 * Chen-Yu Tsai <wens@csie.org>
10 #include <linux/bcd.h>
11 #include <linux/clk-provider.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/mfd/ac100.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
19 #include <linux/platform_device.h>
20 #include <linux/regmap.h>
21 #include <linux/rtc.h>
22 #include <linux/types.h>
24 /* Control register */
25 #define AC100_RTC_CTRL_24HOUR BIT(0)
27 /* Clock output register bits */
28 #define AC100_CLKOUT_PRE_DIV_SHIFT 5
29 #define AC100_CLKOUT_PRE_DIV_WIDTH 3
30 #define AC100_CLKOUT_MUX_SHIFT 4
31 #define AC100_CLKOUT_MUX_WIDTH 1
32 #define AC100_CLKOUT_DIV_SHIFT 1
33 #define AC100_CLKOUT_DIV_WIDTH 3
34 #define AC100_CLKOUT_EN BIT(0)
37 #define AC100_RTC_SEC_MASK GENMASK(6, 0)
38 #define AC100_RTC_MIN_MASK GENMASK(6, 0)
39 #define AC100_RTC_HOU_MASK GENMASK(5, 0)
40 #define AC100_RTC_WEE_MASK GENMASK(2, 0)
41 #define AC100_RTC_DAY_MASK GENMASK(5, 0)
42 #define AC100_RTC_MON_MASK GENMASK(4, 0)
43 #define AC100_RTC_YEA_MASK GENMASK(7, 0)
44 #define AC100_RTC_YEA_LEAP BIT(15)
45 #define AC100_RTC_UPD_TRIGGER BIT(15)
47 /* Alarm (wall clock) */
48 #define AC100_ALM_INT_ENABLE BIT(0)
50 #define AC100_ALM_SEC_MASK GENMASK(6, 0)
51 #define AC100_ALM_MIN_MASK GENMASK(6, 0)
52 #define AC100_ALM_HOU_MASK GENMASK(5, 0)
53 #define AC100_ALM_WEE_MASK GENMASK(2, 0)
54 #define AC100_ALM_DAY_MASK GENMASK(5, 0)
55 #define AC100_ALM_MON_MASK GENMASK(4, 0)
56 #define AC100_ALM_YEA_MASK GENMASK(7, 0)
57 #define AC100_ALM_ENABLE_FLAG BIT(15)
58 #define AC100_ALM_UPD_TRIGGER BIT(15)
61 * The year parameter passed to the driver is usually an offset relative to
62 * the year 1900. This macro is used to convert this offset to another one
63 * relative to the minimum year allowed by the hardware.
65 * The year range is 1970 - 2069. This range is selected to match Allwinner's
68 #define AC100_YEAR_MIN 1970
69 #define AC100_YEAR_MAX 2069
70 #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900)
74 struct regmap
*regmap
;
78 #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
80 #define AC100_RTC_32K_NAME "ac100-rtc-32k"
81 #define AC100_RTC_32K_RATE 32768
82 #define AC100_CLKOUT_NUM 3
84 static const char * const ac100_clkout_names
[AC100_CLKOUT_NUM
] = {
90 struct ac100_rtc_dev
{
91 struct rtc_device
*rtc
;
93 struct regmap
*regmap
;
97 struct clk_hw
*rtc_32k_clk
;
98 struct ac100_clkout clks
[AC100_CLKOUT_NUM
];
99 struct clk_hw_onecell_data
*clk_data
;
103 * Clock controls for 3 clock output pins
106 static const struct clk_div_table ac100_clkout_prediv
[] = {
107 { .val
= 0, .div
= 1 },
108 { .val
= 1, .div
= 2 },
109 { .val
= 2, .div
= 4 },
110 { .val
= 3, .div
= 8 },
111 { .val
= 4, .div
= 16 },
112 { .val
= 5, .div
= 32 },
113 { .val
= 6, .div
= 64 },
114 { .val
= 7, .div
= 122 },
118 /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
119 static unsigned long ac100_clkout_recalc_rate(struct clk_hw
*hw
,
122 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
123 unsigned int reg
, div
;
125 regmap_read(clk
->regmap
, clk
->offset
, ®
);
127 /* Handle pre-divider first */
128 if (prate
!= AC100_RTC_32K_RATE
) {
129 div
= (reg
>> AC100_CLKOUT_PRE_DIV_SHIFT
) &
130 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH
) - 1);
131 prate
= divider_recalc_rate(hw
, prate
, div
,
132 ac100_clkout_prediv
, 0,
133 AC100_CLKOUT_PRE_DIV_WIDTH
);
136 div
= (reg
>> AC100_CLKOUT_DIV_SHIFT
) &
137 (BIT(AC100_CLKOUT_DIV_WIDTH
) - 1);
138 return divider_recalc_rate(hw
, prate
, div
, NULL
,
139 CLK_DIVIDER_POWER_OF_TWO
,
140 AC100_CLKOUT_DIV_WIDTH
);
143 static long ac100_clkout_round_rate(struct clk_hw
*hw
, unsigned long rate
,
146 unsigned long best_rate
= 0, tmp_rate
, tmp_prate
;
149 if (prate
== AC100_RTC_32K_RATE
)
150 return divider_round_rate(hw
, rate
, &prate
, NULL
,
151 AC100_CLKOUT_DIV_WIDTH
,
152 CLK_DIVIDER_POWER_OF_TWO
);
154 for (i
= 0; ac100_clkout_prediv
[i
].div
; i
++) {
155 tmp_prate
= DIV_ROUND_UP(prate
, ac100_clkout_prediv
[i
].val
);
156 tmp_rate
= divider_round_rate(hw
, rate
, &tmp_prate
, NULL
,
157 AC100_CLKOUT_DIV_WIDTH
,
158 CLK_DIVIDER_POWER_OF_TWO
);
162 if (rate
- tmp_rate
< best_rate
- tmp_rate
)
163 best_rate
= tmp_rate
;
169 static int ac100_clkout_determine_rate(struct clk_hw
*hw
,
170 struct clk_rate_request
*req
)
172 struct clk_hw
*best_parent
;
173 unsigned long best
= 0;
174 int i
, num_parents
= clk_hw_get_num_parents(hw
);
176 for (i
= 0; i
< num_parents
; i
++) {
177 struct clk_hw
*parent
= clk_hw_get_parent_by_index(hw
, i
);
178 unsigned long tmp
, prate
;
181 * The clock has two parents, one is a fixed clock which is
182 * internally registered by the ac100 driver. The other parent
183 * is a clock from the codec side of the chip, which we
184 * properly declare and reference in the devicetree and is
185 * not implemented in any driver right now.
186 * If the clock core looks for the parent of that second
187 * missing clock, it can't find one that is registered and
189 * So we end up in a situation where clk_hw_get_num_parents
190 * returns the amount of clocks we can be parented to, but
191 * clk_hw_get_parent_by_index will not return the orphan
193 * Thus we need to check if the parent exists before
194 * we get the parent rate, so we could use the RTC
195 * without waiting for the codec to be supported.
200 prate
= clk_hw_get_rate(parent
);
202 tmp
= ac100_clkout_round_rate(hw
, req
->rate
, prate
);
206 if (req
->rate
- tmp
< req
->rate
- best
) {
208 best_parent
= parent
;
215 req
->best_parent_hw
= best_parent
;
216 req
->best_parent_rate
= best
;
222 static int ac100_clkout_set_rate(struct clk_hw
*hw
, unsigned long rate
,
225 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
226 int div
= 0, pre_div
= 0;
229 div
= divider_get_val(rate
* ac100_clkout_prediv
[pre_div
].div
,
230 prate
, NULL
, AC100_CLKOUT_DIV_WIDTH
,
231 CLK_DIVIDER_POWER_OF_TWO
);
234 } while (prate
!= AC100_RTC_32K_RATE
&&
235 ac100_clkout_prediv
[++pre_div
].div
);
240 pre_div
= ac100_clkout_prediv
[pre_div
].val
;
242 regmap_update_bits(clk
->regmap
, clk
->offset
,
243 ((1 << AC100_CLKOUT_DIV_WIDTH
) - 1) << AC100_CLKOUT_DIV_SHIFT
|
244 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH
) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT
,
245 (div
- 1) << AC100_CLKOUT_DIV_SHIFT
|
246 (pre_div
- 1) << AC100_CLKOUT_PRE_DIV_SHIFT
);
251 static int ac100_clkout_prepare(struct clk_hw
*hw
)
253 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
255 return regmap_update_bits(clk
->regmap
, clk
->offset
, AC100_CLKOUT_EN
,
259 static void ac100_clkout_unprepare(struct clk_hw
*hw
)
261 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
263 regmap_update_bits(clk
->regmap
, clk
->offset
, AC100_CLKOUT_EN
, 0);
266 static int ac100_clkout_is_prepared(struct clk_hw
*hw
)
268 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
271 regmap_read(clk
->regmap
, clk
->offset
, ®
);
273 return reg
& AC100_CLKOUT_EN
;
276 static u8
ac100_clkout_get_parent(struct clk_hw
*hw
)
278 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
281 regmap_read(clk
->regmap
, clk
->offset
, ®
);
283 return (reg
>> AC100_CLKOUT_MUX_SHIFT
) & 0x1;
286 static int ac100_clkout_set_parent(struct clk_hw
*hw
, u8 index
)
288 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
290 return regmap_update_bits(clk
->regmap
, clk
->offset
,
291 BIT(AC100_CLKOUT_MUX_SHIFT
),
292 index
? BIT(AC100_CLKOUT_MUX_SHIFT
) : 0);
295 static const struct clk_ops ac100_clkout_ops
= {
296 .prepare
= ac100_clkout_prepare
,
297 .unprepare
= ac100_clkout_unprepare
,
298 .is_prepared
= ac100_clkout_is_prepared
,
299 .recalc_rate
= ac100_clkout_recalc_rate
,
300 .determine_rate
= ac100_clkout_determine_rate
,
301 .get_parent
= ac100_clkout_get_parent
,
302 .set_parent
= ac100_clkout_set_parent
,
303 .set_rate
= ac100_clkout_set_rate
,
306 static int ac100_rtc_register_clks(struct ac100_rtc_dev
*chip
)
308 struct device_node
*np
= chip
->dev
->of_node
;
309 const char *parents
[2] = {AC100_RTC_32K_NAME
};
312 chip
->clk_data
= devm_kzalloc(chip
->dev
,
313 struct_size(chip
->clk_data
, hws
,
319 chip
->rtc_32k_clk
= clk_hw_register_fixed_rate(chip
->dev
,
323 if (IS_ERR(chip
->rtc_32k_clk
)) {
324 ret
= PTR_ERR(chip
->rtc_32k_clk
);
325 dev_err(chip
->dev
, "Failed to register RTC-32k clock: %d\n",
330 parents
[1] = of_clk_get_parent_name(np
, 0);
332 dev_err(chip
->dev
, "Failed to get ADDA 4M clock\n");
336 for (i
= 0; i
< AC100_CLKOUT_NUM
; i
++) {
337 struct ac100_clkout
*clk
= &chip
->clks
[i
];
338 struct clk_init_data init
= {
339 .name
= ac100_clkout_names
[i
],
340 .ops
= &ac100_clkout_ops
,
341 .parent_names
= parents
,
342 .num_parents
= ARRAY_SIZE(parents
),
346 of_property_read_string_index(np
, "clock-output-names",
348 clk
->regmap
= chip
->regmap
;
349 clk
->offset
= AC100_CLKOUT_CTRL1
+ i
;
350 clk
->hw
.init
= &init
;
352 ret
= devm_clk_hw_register(chip
->dev
, &clk
->hw
);
354 dev_err(chip
->dev
, "Failed to register clk '%s': %d\n",
356 goto err_unregister_rtc_32k
;
359 chip
->clk_data
->hws
[i
] = &clk
->hw
;
362 chip
->clk_data
->num
= i
;
363 ret
= of_clk_add_hw_provider(np
, of_clk_hw_onecell_get
, chip
->clk_data
);
365 goto err_unregister_rtc_32k
;
369 err_unregister_rtc_32k
:
370 clk_unregister_fixed_rate(chip
->rtc_32k_clk
->clk
);
375 static void ac100_rtc_unregister_clks(struct ac100_rtc_dev
*chip
)
377 of_clk_del_provider(chip
->dev
->of_node
);
378 clk_unregister_fixed_rate(chip
->rtc_32k_clk
->clk
);
384 static int ac100_rtc_get_time(struct device
*dev
, struct rtc_time
*rtc_tm
)
386 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
387 struct regmap
*regmap
= chip
->regmap
;
391 ret
= regmap_bulk_read(regmap
, AC100_RTC_SEC
, reg
, 7);
395 rtc_tm
->tm_sec
= bcd2bin(reg
[0] & AC100_RTC_SEC_MASK
);
396 rtc_tm
->tm_min
= bcd2bin(reg
[1] & AC100_RTC_MIN_MASK
);
397 rtc_tm
->tm_hour
= bcd2bin(reg
[2] & AC100_RTC_HOU_MASK
);
398 rtc_tm
->tm_wday
= bcd2bin(reg
[3] & AC100_RTC_WEE_MASK
);
399 rtc_tm
->tm_mday
= bcd2bin(reg
[4] & AC100_RTC_DAY_MASK
);
400 rtc_tm
->tm_mon
= bcd2bin(reg
[5] & AC100_RTC_MON_MASK
) - 1;
401 rtc_tm
->tm_year
= bcd2bin(reg
[6] & AC100_RTC_YEA_MASK
) +
407 static int ac100_rtc_set_time(struct device
*dev
, struct rtc_time
*rtc_tm
)
409 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
410 struct regmap
*regmap
= chip
->regmap
;
414 /* our RTC has a limited year range... */
415 year
= rtc_tm
->tm_year
- AC100_YEAR_OFF
;
416 if (year
< 0 || year
> (AC100_YEAR_MAX
- 1900)) {
417 dev_err(dev
, "rtc only supports year in range %d - %d\n",
418 AC100_YEAR_MIN
, AC100_YEAR_MAX
);
423 reg
[0] = bin2bcd(rtc_tm
->tm_sec
) & AC100_RTC_SEC_MASK
;
424 reg
[1] = bin2bcd(rtc_tm
->tm_min
) & AC100_RTC_MIN_MASK
;
425 reg
[2] = bin2bcd(rtc_tm
->tm_hour
) & AC100_RTC_HOU_MASK
;
426 reg
[3] = bin2bcd(rtc_tm
->tm_wday
) & AC100_RTC_WEE_MASK
;
427 reg
[4] = bin2bcd(rtc_tm
->tm_mday
) & AC100_RTC_DAY_MASK
;
428 reg
[5] = bin2bcd(rtc_tm
->tm_mon
+ 1) & AC100_RTC_MON_MASK
;
429 reg
[6] = bin2bcd(year
) & AC100_RTC_YEA_MASK
;
431 reg
[7] = AC100_RTC_UPD_TRIGGER
;
433 /* Is it a leap year? */
434 if (is_leap_year(year
+ AC100_YEAR_OFF
+ 1900))
435 reg
[6] |= AC100_RTC_YEA_LEAP
;
437 return regmap_bulk_write(regmap
, AC100_RTC_SEC
, reg
, 8);
440 static int ac100_rtc_alarm_irq_enable(struct device
*dev
, unsigned int en
)
442 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
443 struct regmap
*regmap
= chip
->regmap
;
446 val
= en
? AC100_ALM_INT_ENABLE
: 0;
448 return regmap_write(regmap
, AC100_ALM_INT_ENA
, val
);
451 static int ac100_rtc_get_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
453 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
454 struct regmap
*regmap
= chip
->regmap
;
455 struct rtc_time
*alrm_tm
= &alrm
->time
;
460 ret
= regmap_read(regmap
, AC100_ALM_INT_ENA
, &val
);
464 alrm
->enabled
= !!(val
& AC100_ALM_INT_ENABLE
);
466 ret
= regmap_bulk_read(regmap
, AC100_ALM_SEC
, reg
, 7);
470 alrm_tm
->tm_sec
= bcd2bin(reg
[0] & AC100_ALM_SEC_MASK
);
471 alrm_tm
->tm_min
= bcd2bin(reg
[1] & AC100_ALM_MIN_MASK
);
472 alrm_tm
->tm_hour
= bcd2bin(reg
[2] & AC100_ALM_HOU_MASK
);
473 alrm_tm
->tm_wday
= bcd2bin(reg
[3] & AC100_ALM_WEE_MASK
);
474 alrm_tm
->tm_mday
= bcd2bin(reg
[4] & AC100_ALM_DAY_MASK
);
475 alrm_tm
->tm_mon
= bcd2bin(reg
[5] & AC100_ALM_MON_MASK
) - 1;
476 alrm_tm
->tm_year
= bcd2bin(reg
[6] & AC100_ALM_YEA_MASK
) +
482 static int ac100_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
484 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
485 struct regmap
*regmap
= chip
->regmap
;
486 struct rtc_time
*alrm_tm
= &alrm
->time
;
491 /* our alarm has a limited year range... */
492 year
= alrm_tm
->tm_year
- AC100_YEAR_OFF
;
493 if (year
< 0 || year
> (AC100_YEAR_MAX
- 1900)) {
494 dev_err(dev
, "alarm only supports year in range %d - %d\n",
495 AC100_YEAR_MIN
, AC100_YEAR_MAX
);
500 reg
[0] = (bin2bcd(alrm_tm
->tm_sec
) & AC100_ALM_SEC_MASK
) |
501 AC100_ALM_ENABLE_FLAG
;
502 reg
[1] = (bin2bcd(alrm_tm
->tm_min
) & AC100_ALM_MIN_MASK
) |
503 AC100_ALM_ENABLE_FLAG
;
504 reg
[2] = (bin2bcd(alrm_tm
->tm_hour
) & AC100_ALM_HOU_MASK
) |
505 AC100_ALM_ENABLE_FLAG
;
506 /* Do not enable weekday alarm */
507 reg
[3] = bin2bcd(alrm_tm
->tm_wday
) & AC100_ALM_WEE_MASK
;
508 reg
[4] = (bin2bcd(alrm_tm
->tm_mday
) & AC100_ALM_DAY_MASK
) |
509 AC100_ALM_ENABLE_FLAG
;
510 reg
[5] = (bin2bcd(alrm_tm
->tm_mon
+ 1) & AC100_ALM_MON_MASK
) |
511 AC100_ALM_ENABLE_FLAG
;
512 reg
[6] = (bin2bcd(year
) & AC100_ALM_YEA_MASK
) |
513 AC100_ALM_ENABLE_FLAG
;
515 reg
[7] = AC100_ALM_UPD_TRIGGER
;
517 ret
= regmap_bulk_write(regmap
, AC100_ALM_SEC
, reg
, 8);
521 return ac100_rtc_alarm_irq_enable(dev
, alrm
->enabled
);
524 static irqreturn_t
ac100_rtc_irq(int irq
, void *data
)
526 struct ac100_rtc_dev
*chip
= data
;
527 struct regmap
*regmap
= chip
->regmap
;
528 unsigned int val
= 0;
534 ret
= regmap_read(regmap
, AC100_ALM_INT_STA
, &val
);
538 if (val
& AC100_ALM_INT_ENABLE
) {
539 /* signal rtc framework */
540 rtc_update_irq(chip
->rtc
, 1, RTC_AF
| RTC_IRQF
);
543 ret
= regmap_write(regmap
, AC100_ALM_INT_STA
, val
);
547 /* disable interrupt */
548 ret
= ac100_rtc_alarm_irq_enable(chip
->dev
, 0);
554 rtc_unlock(chip
->rtc
);
558 static const struct rtc_class_ops ac100_rtc_ops
= {
559 .read_time
= ac100_rtc_get_time
,
560 .set_time
= ac100_rtc_set_time
,
561 .read_alarm
= ac100_rtc_get_alarm
,
562 .set_alarm
= ac100_rtc_set_alarm
,
563 .alarm_irq_enable
= ac100_rtc_alarm_irq_enable
,
566 static int ac100_rtc_probe(struct platform_device
*pdev
)
568 struct ac100_dev
*ac100
= dev_get_drvdata(pdev
->dev
.parent
);
569 struct ac100_rtc_dev
*chip
;
572 chip
= devm_kzalloc(&pdev
->dev
, sizeof(*chip
), GFP_KERNEL
);
576 platform_set_drvdata(pdev
, chip
);
577 chip
->dev
= &pdev
->dev
;
578 chip
->regmap
= ac100
->regmap
;
580 chip
->irq
= platform_get_irq(pdev
, 0);
584 chip
->rtc
= devm_rtc_allocate_device(&pdev
->dev
);
585 if (IS_ERR(chip
->rtc
))
586 return PTR_ERR(chip
->rtc
);
588 chip
->rtc
->ops
= &ac100_rtc_ops
;
590 ret
= devm_request_threaded_irq(&pdev
->dev
, chip
->irq
, NULL
,
592 IRQF_SHARED
| IRQF_ONESHOT
,
593 dev_name(&pdev
->dev
), chip
);
595 dev_err(&pdev
->dev
, "Could not request IRQ\n");
599 /* always use 24 hour mode */
600 regmap_write_bits(chip
->regmap
, AC100_RTC_CTRL
, AC100_RTC_CTRL_24HOUR
,
601 AC100_RTC_CTRL_24HOUR
);
603 /* disable counter alarm interrupt */
604 regmap_write(chip
->regmap
, AC100_ALM_INT_ENA
, 0);
606 /* clear counter alarm pending interrupts */
607 regmap_write(chip
->regmap
, AC100_ALM_INT_STA
, AC100_ALM_INT_ENABLE
);
609 ret
= ac100_rtc_register_clks(chip
);
613 return devm_rtc_register_device(chip
->rtc
);
616 static void ac100_rtc_remove(struct platform_device
*pdev
)
618 struct ac100_rtc_dev
*chip
= platform_get_drvdata(pdev
);
620 ac100_rtc_unregister_clks(chip
);
623 static const struct of_device_id ac100_rtc_match
[] = {
624 { .compatible
= "x-powers,ac100-rtc" },
627 MODULE_DEVICE_TABLE(of
, ac100_rtc_match
);
629 static struct platform_driver ac100_rtc_driver
= {
630 .probe
= ac100_rtc_probe
,
631 .remove
= ac100_rtc_remove
,
634 .of_match_table
= of_match_ptr(ac100_rtc_match
),
637 module_platform_driver(ac100_rtc_driver
);
639 MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
640 MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
641 MODULE_LICENSE("GPL v2");