1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * RTC driver for the Armada 38x Marvell SoCs
5 * Copyright (C) 2015 Marvell
7 * Gregory Clement <gregory.clement@free-electrons.com>
10 #include <linux/delay.h>
12 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtc.h>
17 #define RTC_STATUS 0x0
18 #define RTC_STATUS_ALARM1 BIT(0)
19 #define RTC_STATUS_ALARM2 BIT(1)
20 #define RTC_IRQ1_CONF 0x4
21 #define RTC_IRQ2_CONF 0x8
22 #define RTC_IRQ_AL_EN BIT(0)
23 #define RTC_IRQ_FREQ_EN BIT(1)
24 #define RTC_IRQ_FREQ_1HZ BIT(2)
26 #define RTC_CCR_MODE BIT(15)
27 #define RTC_CONF_TEST 0x1C
28 #define RTC_NOMINAL_TIMING BIT(13)
31 #define RTC_ALARM1 0x10
32 #define RTC_ALARM2 0x14
34 /* Armada38x SoC registers */
35 #define RTC_38X_BRIDGE_TIMING_CTL 0x0
36 #define RTC_38X_PERIOD_OFFS 0
37 #define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
38 #define RTC_38X_READ_DELAY_OFFS 26
39 #define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
41 /* Armada 7K/8K registers */
42 #define RTC_8K_BRIDGE_TIMING_CTL0 0x0
43 #define RTC_8K_WRCLK_PERIOD_OFFS 0
44 #define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
45 #define RTC_8K_WRCLK_SETUP_OFFS 16
46 #define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
47 #define RTC_8K_BRIDGE_TIMING_CTL1 0x4
48 #define RTC_8K_READ_DELAY_OFFS 0
49 #define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
51 #define RTC_8K_ISR 0x10
52 #define RTC_8K_IMR 0x14
53 #define RTC_8K_ALARM2 BIT(0)
55 #define SOC_RTC_INTERRUPT 0x8
56 #define SOC_RTC_ALARM1 BIT(0)
57 #define SOC_RTC_ALARM2 BIT(1)
58 #define SOC_RTC_ALARM1_MASK BIT(2)
59 #define SOC_RTC_ALARM2_MASK BIT(3)
63 struct value_to_freq
{
68 struct armada38x_rtc
{
69 struct rtc_device
*rtc_dev
;
71 void __iomem
*regs_soc
;
75 struct value_to_freq
*val_to_freq
;
76 const struct armada38x_rtc_data
*data
;
82 #define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
84 struct armada38x_rtc_data
{
85 /* Initialize the RTC-MBUS bridge timing */
86 void (*update_mbus_timing
)(struct armada38x_rtc
*rtc
);
87 u32 (*read_rtc_reg
)(struct armada38x_rtc
*rtc
, u8 rtc_reg
);
88 void (*clear_isr
)(struct armada38x_rtc
*rtc
);
89 void (*unmask_interrupt
)(struct armada38x_rtc
*rtc
);
94 * According to the datasheet, the OS should wait 5us after every
95 * register write to the RTC hard macro so that the required update
96 * can occur without holding off the system bus
97 * According to errata RES-3124064, Write to any RTC register
98 * may fail. As a workaround, before writing to RTC
99 * register, issue a dummy write of 0x0 twice to RTC Status
103 static void rtc_delayed_write(u32 val
, struct armada38x_rtc
*rtc
, int offset
)
105 writel(0, rtc
->regs
+ RTC_STATUS
);
106 writel(0, rtc
->regs
+ RTC_STATUS
);
107 writel(val
, rtc
->regs
+ offset
);
111 /* Update RTC-MBUS bridge timing parameters */
112 static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc
*rtc
)
116 reg
= readl(rtc
->regs_soc
+ RTC_38X_BRIDGE_TIMING_CTL
);
117 reg
&= ~RTC_38X_PERIOD_MASK
;
118 reg
|= 0x3FF << RTC_38X_PERIOD_OFFS
; /* Maximum value */
119 reg
&= ~RTC_38X_READ_DELAY_MASK
;
120 reg
|= 0x1F << RTC_38X_READ_DELAY_OFFS
; /* Maximum value */
121 writel(reg
, rtc
->regs_soc
+ RTC_38X_BRIDGE_TIMING_CTL
);
124 static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc
*rtc
)
128 reg
= readl(rtc
->regs_soc
+ RTC_8K_BRIDGE_TIMING_CTL0
);
129 reg
&= ~RTC_8K_WRCLK_PERIOD_MASK
;
130 reg
|= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS
;
131 reg
&= ~RTC_8K_WRCLK_SETUP_MASK
;
132 reg
|= 0x29 << RTC_8K_WRCLK_SETUP_OFFS
;
133 writel(reg
, rtc
->regs_soc
+ RTC_8K_BRIDGE_TIMING_CTL0
);
135 reg
= readl(rtc
->regs_soc
+ RTC_8K_BRIDGE_TIMING_CTL1
);
136 reg
&= ~RTC_8K_READ_DELAY_MASK
;
137 reg
|= 0x3F << RTC_8K_READ_DELAY_OFFS
;
138 writel(reg
, rtc
->regs_soc
+ RTC_8K_BRIDGE_TIMING_CTL1
);
141 static u32
read_rtc_register(struct armada38x_rtc
*rtc
, u8 rtc_reg
)
143 return readl(rtc
->regs
+ rtc_reg
);
146 static u32
read_rtc_register_38x_wa(struct armada38x_rtc
*rtc
, u8 rtc_reg
)
148 int i
, index_max
= 0, max
= 0;
150 for (i
= 0; i
< SAMPLE_NR
; i
++) {
151 rtc
->val_to_freq
[i
].value
= readl(rtc
->regs
+ rtc_reg
);
152 rtc
->val_to_freq
[i
].freq
= 0;
155 for (i
= 0; i
< SAMPLE_NR
; i
++) {
157 u32 value
= rtc
->val_to_freq
[i
].value
;
159 while (rtc
->val_to_freq
[j
].freq
) {
160 if (rtc
->val_to_freq
[j
].value
== value
) {
161 rtc
->val_to_freq
[j
].freq
++;
167 if (!rtc
->val_to_freq
[j
].freq
) {
168 rtc
->val_to_freq
[j
].value
= value
;
169 rtc
->val_to_freq
[j
].freq
= 1;
172 if (rtc
->val_to_freq
[j
].freq
> max
) {
174 max
= rtc
->val_to_freq
[j
].freq
;
178 * If a value already has half of the sample this is the most
179 * frequent one and we can stop the research right now
181 if (max
> SAMPLE_NR
/ 2)
185 return rtc
->val_to_freq
[index_max
].value
;
188 static void armada38x_clear_isr(struct armada38x_rtc
*rtc
)
190 u32 val
= readl(rtc
->regs_soc
+ SOC_RTC_INTERRUPT
);
192 writel(val
& ~SOC_RTC_ALARM1
, rtc
->regs_soc
+ SOC_RTC_INTERRUPT
);
195 static void armada38x_unmask_interrupt(struct armada38x_rtc
*rtc
)
197 u32 val
= readl(rtc
->regs_soc
+ SOC_RTC_INTERRUPT
);
199 writel(val
| SOC_RTC_ALARM1_MASK
, rtc
->regs_soc
+ SOC_RTC_INTERRUPT
);
202 static void armada8k_clear_isr(struct armada38x_rtc
*rtc
)
204 writel(RTC_8K_ALARM2
, rtc
->regs_soc
+ RTC_8K_ISR
);
207 static void armada8k_unmask_interrupt(struct armada38x_rtc
*rtc
)
209 writel(RTC_8K_ALARM2
, rtc
->regs_soc
+ RTC_8K_IMR
);
212 static int armada38x_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
214 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
215 unsigned long time
, flags
;
217 spin_lock_irqsave(&rtc
->lock
, flags
);
218 time
= rtc
->data
->read_rtc_reg(rtc
, RTC_TIME
);
219 spin_unlock_irqrestore(&rtc
->lock
, flags
);
221 rtc_time64_to_tm(time
, tm
);
226 static void armada38x_rtc_reset(struct armada38x_rtc
*rtc
)
230 reg
= rtc
->data
->read_rtc_reg(rtc
, RTC_CONF_TEST
);
231 /* If bits [7:0] are non-zero, assume RTC was uninitialized */
233 rtc_delayed_write(0, rtc
, RTC_CONF_TEST
);
234 msleep(500); /* Oscillator startup time */
235 rtc_delayed_write(0, rtc
, RTC_TIME
);
236 rtc_delayed_write(SOC_RTC_ALARM1
| SOC_RTC_ALARM2
, rtc
,
238 rtc_delayed_write(RTC_NOMINAL_TIMING
, rtc
, RTC_CCR
);
240 rtc
->initialized
= true;
243 static int armada38x_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
245 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
246 unsigned long time
, flags
;
248 time
= rtc_tm_to_time64(tm
);
250 if (!rtc
->initialized
)
251 armada38x_rtc_reset(rtc
);
253 spin_lock_irqsave(&rtc
->lock
, flags
);
254 rtc_delayed_write(time
, rtc
, RTC_TIME
);
255 spin_unlock_irqrestore(&rtc
->lock
, flags
);
260 static int armada38x_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
262 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
263 unsigned long time
, flags
;
264 u32 reg
= ALARM_REG(RTC_ALARM1
, rtc
->data
->alarm
);
265 u32 reg_irq
= ALARM_REG(RTC_IRQ1_CONF
, rtc
->data
->alarm
);
268 spin_lock_irqsave(&rtc
->lock
, flags
);
270 time
= rtc
->data
->read_rtc_reg(rtc
, reg
);
271 val
= rtc
->data
->read_rtc_reg(rtc
, reg_irq
) & RTC_IRQ_AL_EN
;
273 spin_unlock_irqrestore(&rtc
->lock
, flags
);
275 alrm
->enabled
= val
? 1 : 0;
276 rtc_time64_to_tm(time
, &alrm
->time
);
281 static int armada38x_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
283 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
284 u32 reg
= ALARM_REG(RTC_ALARM1
, rtc
->data
->alarm
);
285 u32 reg_irq
= ALARM_REG(RTC_IRQ1_CONF
, rtc
->data
->alarm
);
286 unsigned long time
, flags
;
288 time
= rtc_tm_to_time64(&alrm
->time
);
290 spin_lock_irqsave(&rtc
->lock
, flags
);
292 rtc_delayed_write(time
, rtc
, reg
);
295 rtc_delayed_write(RTC_IRQ_AL_EN
, rtc
, reg_irq
);
296 rtc
->data
->unmask_interrupt(rtc
);
299 spin_unlock_irqrestore(&rtc
->lock
, flags
);
304 static int armada38x_rtc_alarm_irq_enable(struct device
*dev
,
305 unsigned int enabled
)
307 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
308 u32 reg_irq
= ALARM_REG(RTC_IRQ1_CONF
, rtc
->data
->alarm
);
311 spin_lock_irqsave(&rtc
->lock
, flags
);
314 rtc_delayed_write(RTC_IRQ_AL_EN
, rtc
, reg_irq
);
316 rtc_delayed_write(0, rtc
, reg_irq
);
318 spin_unlock_irqrestore(&rtc
->lock
, flags
);
323 static irqreturn_t
armada38x_rtc_alarm_irq(int irq
, void *data
)
325 struct armada38x_rtc
*rtc
= data
;
327 int event
= RTC_IRQF
| RTC_AF
;
328 u32 reg_irq
= ALARM_REG(RTC_IRQ1_CONF
, rtc
->data
->alarm
);
330 dev_dbg(&rtc
->rtc_dev
->dev
, "%s:irq(%d)\n", __func__
, irq
);
332 spin_lock(&rtc
->lock
);
334 rtc
->data
->clear_isr(rtc
);
335 val
= rtc
->data
->read_rtc_reg(rtc
, reg_irq
);
336 /* disable all the interrupts for alarm*/
337 rtc_delayed_write(0, rtc
, reg_irq
);
339 rtc_delayed_write(1 << rtc
->data
->alarm
, rtc
, RTC_STATUS
);
341 spin_unlock(&rtc
->lock
);
343 if (val
& RTC_IRQ_FREQ_EN
) {
344 if (val
& RTC_IRQ_FREQ_1HZ
)
350 rtc_update_irq(rtc
->rtc_dev
, 1, event
);
356 * The information given in the Armada 388 functional spec is complex.
357 * They give two different formulas for calculating the offset value,
358 * but when considering "Offset" as an 8-bit signed integer, they both
359 * reduce down to (we shall rename "Offset" as "val" here):
361 * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768
363 * Converting to time, f = 1/t:
364 * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768
366 * => t_measured / t_ideal = val * resolution + 1
368 * "offset" in the RTC interface is defined as:
369 * t = t0 * (1 + offset * 1e-9)
370 * where t is the desired period, t0 is the measured period with a zero
371 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
372 * offset = (t_ideal / t_measured - 1) / 1e-9
374 * => t_ideal / t_measured = offset * 1e-9 + 1
378 * offset * 1e-9 + 1 = 1 / (val * resolution + 1)
380 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
381 * offset = 1e18 / (val * R + 1e9) - 1e9
382 * val = (1e18 / (offset + 1e9) - 1e9) / R
383 * with a common transformation:
384 * f(x) = 1e18 / (x + 1e9) - 1e9
385 * offset = f(val * R)
386 * val = f(offset) / R
388 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
390 static long armada38x_ppb_convert(long ppb
)
392 long div
= ppb
+ 1000000000L;
394 return div_s64(1000000000000000000LL + div
/ 2, div
) - 1000000000L;
397 static int armada38x_rtc_read_offset(struct device
*dev
, long *offset
)
399 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
400 unsigned long ccr
, flags
;
403 spin_lock_irqsave(&rtc
->lock
, flags
);
404 ccr
= rtc
->data
->read_rtc_reg(rtc
, RTC_CCR
);
405 spin_unlock_irqrestore(&rtc
->lock
, flags
);
407 ppb_cor
= (ccr
& RTC_CCR_MODE
? 3815 : 954) * (s8
)ccr
;
408 /* ppb_cor + 1000000000L can never be zero */
409 *offset
= armada38x_ppb_convert(ppb_cor
);
414 static int armada38x_rtc_set_offset(struct device
*dev
, long offset
)
416 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
417 unsigned long ccr
= 0;
421 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
422 * need to clamp the input. This equates to -484270 .. 488558.
423 * Not only is this to stop out of range "off" but also to
424 * avoid the division by zero in armada38x_ppb_convert().
426 offset
= clamp(offset
, -484270L, 488558L);
428 ppb_cor
= armada38x_ppb_convert(offset
);
431 * Use low update mode where possible, which gives a better
432 * resolution of correction.
434 off
= DIV_ROUND_CLOSEST(ppb_cor
, 954);
435 if (off
> 127 || off
< -128) {
437 off
= DIV_ROUND_CLOSEST(ppb_cor
, 3815);
441 * Armada 388 requires a bit pattern in bits 14..8 depending on
442 * the sign bit: { 0, ~S, S, S, S, S, S }
444 ccr
|= (off
& 0x3fff) ^ 0x2000;
445 rtc_delayed_write(ccr
, rtc
, RTC_CCR
);
450 static const struct rtc_class_ops armada38x_rtc_ops
= {
451 .read_time
= armada38x_rtc_read_time
,
452 .set_time
= armada38x_rtc_set_time
,
453 .read_alarm
= armada38x_rtc_read_alarm
,
454 .set_alarm
= armada38x_rtc_set_alarm
,
455 .alarm_irq_enable
= armada38x_rtc_alarm_irq_enable
,
456 .read_offset
= armada38x_rtc_read_offset
,
457 .set_offset
= armada38x_rtc_set_offset
,
460 static const struct armada38x_rtc_data armada38x_data
= {
461 .update_mbus_timing
= rtc_update_38x_mbus_timing_params
,
462 .read_rtc_reg
= read_rtc_register_38x_wa
,
463 .clear_isr
= armada38x_clear_isr
,
464 .unmask_interrupt
= armada38x_unmask_interrupt
,
468 static const struct armada38x_rtc_data armada8k_data
= {
469 .update_mbus_timing
= rtc_update_8k_mbus_timing_params
,
470 .read_rtc_reg
= read_rtc_register
,
471 .clear_isr
= armada8k_clear_isr
,
472 .unmask_interrupt
= armada8k_unmask_interrupt
,
476 static const struct of_device_id armada38x_rtc_of_match_table
[] = {
478 .compatible
= "marvell,armada-380-rtc",
479 .data
= &armada38x_data
,
482 .compatible
= "marvell,armada-8k-rtc",
483 .data
= &armada8k_data
,
487 MODULE_DEVICE_TABLE(of
, armada38x_rtc_of_match_table
);
489 static __init
int armada38x_rtc_probe(struct platform_device
*pdev
)
491 struct armada38x_rtc
*rtc
;
493 rtc
= devm_kzalloc(&pdev
->dev
, sizeof(struct armada38x_rtc
),
498 rtc
->data
= of_device_get_match_data(&pdev
->dev
);
500 rtc
->val_to_freq
= devm_kcalloc(&pdev
->dev
, SAMPLE_NR
,
501 sizeof(struct value_to_freq
), GFP_KERNEL
);
502 if (!rtc
->val_to_freq
)
505 spin_lock_init(&rtc
->lock
);
507 rtc
->regs
= devm_platform_ioremap_resource_byname(pdev
, "rtc");
508 if (IS_ERR(rtc
->regs
))
509 return PTR_ERR(rtc
->regs
);
510 rtc
->regs_soc
= devm_platform_ioremap_resource_byname(pdev
, "rtc-soc");
511 if (IS_ERR(rtc
->regs_soc
))
512 return PTR_ERR(rtc
->regs_soc
);
514 rtc
->irq
= platform_get_irq(pdev
, 0);
518 rtc
->rtc_dev
= devm_rtc_allocate_device(&pdev
->dev
);
519 if (IS_ERR(rtc
->rtc_dev
))
520 return PTR_ERR(rtc
->rtc_dev
);
522 if (devm_request_irq(&pdev
->dev
, rtc
->irq
, armada38x_rtc_alarm_irq
,
523 0, pdev
->name
, rtc
) < 0) {
524 dev_warn(&pdev
->dev
, "Interrupt not available.\n");
527 platform_set_drvdata(pdev
, rtc
);
530 device_init_wakeup(&pdev
->dev
, 1);
532 clear_bit(RTC_FEATURE_ALARM
, rtc
->rtc_dev
->features
);
534 /* Update RTC-MBUS bridge timing parameters */
535 rtc
->data
->update_mbus_timing(rtc
);
537 rtc
->rtc_dev
->ops
= &armada38x_rtc_ops
;
538 rtc
->rtc_dev
->range_max
= U32_MAX
;
540 return devm_rtc_register_device(rtc
->rtc_dev
);
543 #ifdef CONFIG_PM_SLEEP
544 static int armada38x_rtc_suspend(struct device
*dev
)
546 if (device_may_wakeup(dev
)) {
547 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
549 return enable_irq_wake(rtc
->irq
);
555 static int armada38x_rtc_resume(struct device
*dev
)
557 if (device_may_wakeup(dev
)) {
558 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
560 /* Update RTC-MBUS bridge timing parameters */
561 rtc
->data
->update_mbus_timing(rtc
);
563 return disable_irq_wake(rtc
->irq
);
570 static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops
,
571 armada38x_rtc_suspend
, armada38x_rtc_resume
);
573 static struct platform_driver armada38x_rtc_driver
= {
575 .name
= "armada38x-rtc",
576 .pm
= &armada38x_rtc_pm_ops
,
577 .of_match_table
= armada38x_rtc_of_match_table
,
581 module_platform_driver_probe(armada38x_rtc_driver
, armada38x_rtc_probe
);
583 MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
584 MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
585 MODULE_LICENSE("GPL");