1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2010 Orex Computed Radiography
8 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
9 * to implement a Linux RTC. Times and alarms are truncated to seconds.
10 * Since the RTC framework performs API locking via rtc->ops_lock the
11 * only simultaneous accesses we need to deal with is updating DryIce
12 * registers while servicing an alarm.
14 * Note that reading the DSR (DryIce Status Register) automatically clears
15 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
16 * LP (Low Power) domain and set the WCF upon completion. Writes to the
17 * DIER (DryIce Interrupt Enable Register) are the only exception. These
18 * occur at normal bus speeds and do not set WCF. Periodic interrupts are
19 * not supported by the hardware.
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/rtc.h>
29 #include <linux/sched.h>
30 #include <linux/spinlock.h>
31 #include <linux/workqueue.h>
34 /* DryIce Register Definitions */
36 #define DTCMR 0x00 /* Time Counter MSB Reg */
37 #define DTCLR 0x04 /* Time Counter LSB Reg */
39 #define DCAMR 0x08 /* Clock Alarm MSB Reg */
40 #define DCALR 0x0c /* Clock Alarm LSB Reg */
41 #define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */
43 #define DCR 0x10 /* Control Reg */
44 #define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */
45 #define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */
46 #define DCR_KSSL (1 << 27) /* Key-select soft lock */
47 #define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */
48 #define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */
49 #define DCR_TCHL (1 << 18) /* Timer-counter hard lock */
50 #define DCR_TCSL (1 << 17) /* Timer-counter soft lock */
51 #define DCR_FSHL (1 << 16) /* Failure state hard lock */
52 #define DCR_TCE (1 << 3) /* Time Counter Enable */
53 #define DCR_MCE (1 << 2) /* Monotonic Counter Enable */
55 #define DSR 0x14 /* Status Reg */
56 #define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */
57 #define DSR_ETBD (1 << 22) /* External tamper B detected */
58 #define DSR_ETAD (1 << 21) /* External tamper A detected */
59 #define DSR_EBD (1 << 20) /* External boot detected */
60 #define DSR_SAD (1 << 19) /* SCC alarm detected */
61 #define DSR_TTD (1 << 18) /* Temperature tamper detected */
62 #define DSR_CTD (1 << 17) /* Clock tamper detected */
63 #define DSR_VTD (1 << 16) /* Voltage tamper detected */
64 #define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */
65 #define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */
66 #define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/
67 #define DSR_WEF (1 << 7) /* Write Error Flag */
68 #define DSR_CAF (1 << 4) /* Clock Alarm Flag */
69 #define DSR_MCO (1 << 3) /* monotonic counter overflow */
70 #define DSR_TCO (1 << 2) /* time counter overflow */
71 #define DSR_NVF (1 << 1) /* Non-Valid Flag */
72 #define DSR_SVF (1 << 0) /* Security Violation Flag */
74 #define DIER 0x18 /* Interrupt Enable Reg (synchronous) */
75 #define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */
76 #define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */
77 #define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */
78 #define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */
79 #define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */
81 #define DMCR 0x1c /* DryIce Monotonic Counter Reg */
83 #define DTCR 0x28 /* DryIce Tamper Configuration Reg */
84 #define DTCR_MOE (1 << 9) /* monotonic overflow enabled */
85 #define DTCR_TOE (1 << 8) /* time overflow enabled */
86 #define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */
87 #define DTCR_ETBE (1 << 6) /* external B tamper enabled */
88 #define DTCR_ETAE (1 << 5) /* external A tamper enabled */
89 #define DTCR_EBE (1 << 4) /* external boot tamper enabled */
90 #define DTCR_SAIE (1 << 3) /* SCC enabled */
91 #define DTCR_TTE (1 << 2) /* temperature tamper enabled */
92 #define DTCR_CTE (1 << 1) /* clock tamper enabled */
93 #define DTCR_VTE (1 << 0) /* voltage tamper enabled */
95 #define DGPR 0x3c /* DryIce General Purpose Reg */
98 * struct imxdi_dev - private imxdi rtc data
99 * @pdev: pointer to platform dev
100 * @rtc: pointer to rtc struct
101 * @ioaddr: IO registers pointer
102 * @clk: input reference clock
103 * @dsr: copy of the DSR register
104 * @irq_lock: interrupt enable register (DIER) lock
105 * @write_wait: registers write complete queue
106 * @write_mutex: serialize registers write
107 * @work: schedule alarm work
110 struct platform_device
*pdev
;
111 struct rtc_device
*rtc
;
112 void __iomem
*ioaddr
;
116 wait_queue_head_t write_wait
;
117 struct mutex write_mutex
;
118 struct work_struct work
;
123 * The DryIce unit is a complex security/tamper monitor device. To be able do
124 * its job in a useful manner it runs a bigger statemachine to bring it into
125 * security/tamper failure state and once again to bring it out of this state.
127 * This unit can be in one of three states:
129 * - "NON-VALID STATE"
130 * always after the battery power was removed
132 * if one of the enabled security events has happened
134 * if the unit works as expected
136 * Everything stops when the unit enters the failure state including the RTC
137 * counter (to be able to detect the time the security event happened).
139 * The following events (when enabled) let the DryIce unit enter the failure
142 * - wire-mesh-tamper detect
143 * - external tamper B detect
144 * - external tamper A detect
145 * - temperature tamper detect
146 * - clock tamper detect
147 * - voltage tamper detect
148 * - RTC counter overflow
149 * - monotonic counter overflow
152 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
153 * can only detect this state. In this case the unit is completely locked and
154 * must force a second "SYSTEM POR" to bring the DryIce into the
155 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
156 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
157 * a battery power cycle is required.
159 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
160 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
161 * task, we bring back this unit into life.
165 * Do a write into the unit without interrupt support.
166 * We do not need to check the WEF here, because the only reason this kind of
167 * write error can happen is if we write to the unit twice within the 122 us
168 * interval. This cannot happen, since we are using this function only while
169 * setting up the unit.
171 static void di_write_busy_wait(const struct imxdi_dev
*imxdi
, u32 val
,
174 /* do the register write */
175 writel(val
, imxdi
->ioaddr
+ reg
);
178 * now it takes four 32,768 kHz clock cycles to take
179 * the change into effect = 122 us
181 usleep_range(130, 200);
184 static void di_report_tamper_info(struct imxdi_dev
*imxdi
, u32 dsr
)
188 dtcr
= readl(imxdi
->ioaddr
+ DTCR
);
190 dev_emerg(&imxdi
->pdev
->dev
, "DryIce tamper event detected\n");
191 /* the following flags force a transition into the "FAILURE STATE" */
193 dev_emerg(&imxdi
->pdev
->dev
, "%sVoltage Tamper Event\n",
194 dtcr
& DTCR_VTE
? "" : "Spurious ");
197 dev_emerg(&imxdi
->pdev
->dev
, "%s32768 Hz Clock Tamper Event\n",
198 dtcr
& DTCR_CTE
? "" : "Spurious ");
201 dev_emerg(&imxdi
->pdev
->dev
, "%sTemperature Tamper Event\n",
202 dtcr
& DTCR_TTE
? "" : "Spurious ");
205 dev_emerg(&imxdi
->pdev
->dev
,
206 "%sSecure Controller Alarm Event\n",
207 dtcr
& DTCR_SAIE
? "" : "Spurious ");
210 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Boot Tamper Event\n",
211 dtcr
& DTCR_EBE
? "" : "Spurious ");
214 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Tamper A Event\n",
215 dtcr
& DTCR_ETAE
? "" : "Spurious ");
218 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Tamper B Event\n",
219 dtcr
& DTCR_ETBE
? "" : "Spurious ");
222 dev_emerg(&imxdi
->pdev
->dev
, "%sWire-mesh Tamper Event\n",
223 dtcr
& DTCR_WTE
? "" : "Spurious ");
226 dev_emerg(&imxdi
->pdev
->dev
,
227 "%sMonotonic-counter Overflow Event\n",
228 dtcr
& DTCR_MOE
? "" : "Spurious ");
231 dev_emerg(&imxdi
->pdev
->dev
, "%sTimer-counter Overflow Event\n",
232 dtcr
& DTCR_TOE
? "" : "Spurious ");
235 static void di_what_is_to_be_done(struct imxdi_dev
*imxdi
,
236 const char *power_supply
)
238 dev_emerg(&imxdi
->pdev
->dev
, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
242 static int di_handle_failure_state(struct imxdi_dev
*imxdi
, u32 dsr
)
246 dev_dbg(&imxdi
->pdev
->dev
, "DSR register reports: %08X\n", dsr
);
248 /* report the cause */
249 di_report_tamper_info(imxdi
, dsr
);
251 dcr
= readl(imxdi
->ioaddr
+ DCR
);
253 if (dcr
& DCR_FSHL
) {
254 /* we are out of luck */
255 di_what_is_to_be_done(imxdi
, "battery");
259 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
260 * into the "NON-VALID STATE" + "FAILURE STATE"
262 di_what_is_to_be_done(imxdi
, "main");
267 static int di_handle_valid_state(struct imxdi_dev
*imxdi
, u32 dsr
)
269 /* initialize alarm */
270 di_write_busy_wait(imxdi
, DCAMR_UNSET
, DCAMR
);
271 di_write_busy_wait(imxdi
, 0, DCALR
);
273 /* clear alarm flag */
275 di_write_busy_wait(imxdi
, DSR_CAF
, DSR
);
280 static int di_handle_invalid_state(struct imxdi_dev
*imxdi
, u32 dsr
)
285 * lets disable all sources which can force the DryIce unit into
286 * the "FAILURE STATE" for now
288 di_write_busy_wait(imxdi
, 0x00000000, DTCR
);
289 /* and lets protect them at runtime from any change */
290 di_write_busy_wait(imxdi
, DCR_TDCSL
, DCR
);
292 sec
= readl(imxdi
->ioaddr
+ DTCMR
);
294 dev_warn(&imxdi
->pdev
->dev
,
295 "The security violation has happened at %u seconds\n",
298 * the timer cannot be set/modified if
299 * - the TCHL or TCSL bit is set in DCR
301 dcr
= readl(imxdi
->ioaddr
+ DCR
);
302 if (!(dcr
& DCR_TCE
)) {
303 if (dcr
& DCR_TCHL
) {
304 /* we are out of luck */
305 di_what_is_to_be_done(imxdi
, "battery");
308 if (dcr
& DCR_TCSL
) {
309 di_what_is_to_be_done(imxdi
, "main");
314 * - the timer counter stops/is stopped if
315 * - its overflow flag is set (TCO in DSR)
316 * -> clear overflow bit to make it count again
317 * - NVF is set in DSR
318 * -> clear non-valid bit to make it count again
319 * - its TCE (DCR) is cleared
320 * -> set TCE to make it count
321 * - it was never set before
322 * -> write a time into it (required again if the NVF was set)
325 di_write_busy_wait(imxdi
, DSR_NVF
, DSR
);
326 /* clear overflow flag */
327 di_write_busy_wait(imxdi
, DSR_TCO
, DSR
);
328 /* enable the counter */
329 di_write_busy_wait(imxdi
, dcr
| DCR_TCE
, DCR
);
330 /* set and trigger it to make it count */
331 di_write_busy_wait(imxdi
, sec
, DTCMR
);
333 /* now prepare for the valid state */
334 return di_handle_valid_state(imxdi
, __raw_readl(imxdi
->ioaddr
+ DSR
));
337 static int di_handle_invalid_and_failure_state(struct imxdi_dev
*imxdi
, u32 dsr
)
342 * now we must first remove the tamper sources in order to get the
343 * device out of the "FAILURE STATE"
344 * To disable any of the following sources we need to modify the DTCR
346 if (dsr
& (DSR_WTD
| DSR_ETBD
| DSR_ETAD
| DSR_EBD
| DSR_SAD
|
347 DSR_TTD
| DSR_CTD
| DSR_VTD
| DSR_MCO
| DSR_TCO
)) {
348 dcr
= __raw_readl(imxdi
->ioaddr
+ DCR
);
349 if (dcr
& DCR_TDCHL
) {
351 * the tamper register is locked. We cannot disable the
352 * tamper detection. The TDCHL can only be reset by a
353 * DRYICE POR, but we cannot force a DRYICE POR in
354 * software because we are still in "FAILURE STATE".
355 * We need a DRYICE POR via battery power cycling....
359 * we cannot disable them without a DRYICE POR
361 di_what_is_to_be_done(imxdi
, "battery");
364 if (dcr
& DCR_TDCSL
) {
365 /* a soft lock can be removed by a SYSTEM POR */
366 di_what_is_to_be_done(imxdi
, "main");
371 /* disable all sources */
372 di_write_busy_wait(imxdi
, 0x00000000, DTCR
);
374 /* clear the status bits now */
375 di_write_busy_wait(imxdi
, dsr
& (DSR_WTD
| DSR_ETBD
| DSR_ETAD
|
376 DSR_EBD
| DSR_SAD
| DSR_TTD
| DSR_CTD
| DSR_VTD
|
377 DSR_MCO
| DSR_TCO
), DSR
);
379 dsr
= readl(imxdi
->ioaddr
+ DSR
);
380 if ((dsr
& ~(DSR_NVF
| DSR_SVF
| DSR_WBF
| DSR_WNF
|
381 DSR_WCF
| DSR_WEF
)) != 0)
382 dev_warn(&imxdi
->pdev
->dev
,
383 "There are still some sources of pain in DSR: %08x!\n",
384 dsr
& ~(DSR_NVF
| DSR_SVF
| DSR_WBF
| DSR_WNF
|
388 * now we are trying to clear the "Security-violation flag" to
389 * get the DryIce out of this state
391 di_write_busy_wait(imxdi
, DSR_SVF
, DSR
);
394 dsr
= readl(imxdi
->ioaddr
+ DSR
);
396 dev_crit(&imxdi
->pdev
->dev
,
397 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
399 di_what_is_to_be_done(imxdi
, "battery");
404 * now we have left the "FAILURE STATE" and ending up in the
405 * "NON-VALID STATE" time to recover everything
407 return di_handle_invalid_state(imxdi
, dsr
);
410 static int di_handle_state(struct imxdi_dev
*imxdi
)
415 dsr
= readl(imxdi
->ioaddr
+ DSR
);
417 switch (dsr
& (DSR_NVF
| DSR_SVF
)) {
419 dev_warn(&imxdi
->pdev
->dev
, "Invalid stated unit detected\n");
420 rc
= di_handle_invalid_state(imxdi
, dsr
);
423 dev_warn(&imxdi
->pdev
->dev
, "Failure stated unit detected\n");
424 rc
= di_handle_failure_state(imxdi
, dsr
);
426 case DSR_NVF
| DSR_SVF
:
427 dev_warn(&imxdi
->pdev
->dev
,
428 "Failure+Invalid stated unit detected\n");
429 rc
= di_handle_invalid_and_failure_state(imxdi
, dsr
);
432 dev_notice(&imxdi
->pdev
->dev
, "Unlocked unit detected\n");
433 rc
= di_handle_valid_state(imxdi
, dsr
);
440 * enable a dryice interrupt
442 static void di_int_enable(struct imxdi_dev
*imxdi
, u32 intr
)
446 spin_lock_irqsave(&imxdi
->irq_lock
, flags
);
447 writel(readl(imxdi
->ioaddr
+ DIER
) | intr
,
448 imxdi
->ioaddr
+ DIER
);
449 spin_unlock_irqrestore(&imxdi
->irq_lock
, flags
);
453 * disable a dryice interrupt
455 static void di_int_disable(struct imxdi_dev
*imxdi
, u32 intr
)
459 spin_lock_irqsave(&imxdi
->irq_lock
, flags
);
460 writel(readl(imxdi
->ioaddr
+ DIER
) & ~intr
,
461 imxdi
->ioaddr
+ DIER
);
462 spin_unlock_irqrestore(&imxdi
->irq_lock
, flags
);
466 * This function attempts to clear the dryice write-error flag.
468 * A dryice write error is similar to a bus fault and should not occur in
469 * normal operation. Clearing the flag requires another write, so the root
470 * cause of the problem may need to be fixed before the flag can be cleared.
472 static void clear_write_error(struct imxdi_dev
*imxdi
)
476 dev_warn(&imxdi
->pdev
->dev
, "WARNING: Register write error!\n");
478 /* clear the write error flag */
479 writel(DSR_WEF
, imxdi
->ioaddr
+ DSR
);
481 /* wait for it to take effect */
482 for (cnt
= 0; cnt
< 1000; cnt
++) {
483 if ((readl(imxdi
->ioaddr
+ DSR
) & DSR_WEF
) == 0)
487 dev_err(&imxdi
->pdev
->dev
,
488 "ERROR: Cannot clear write-error flag!\n");
492 * Write a dryice register and wait until it completes.
494 * This function uses interrupts to determine when the
495 * write has completed.
497 static int di_write_wait(struct imxdi_dev
*imxdi
, u32 val
, int reg
)
502 /* serialize register writes */
503 mutex_lock(&imxdi
->write_mutex
);
505 /* enable the write-complete interrupt */
506 di_int_enable(imxdi
, DIER_WCIE
);
510 /* do the register write */
511 writel(val
, imxdi
->ioaddr
+ reg
);
513 /* wait for the write to finish */
514 ret
= wait_event_interruptible_timeout(imxdi
->write_wait
,
515 imxdi
->dsr
& (DSR_WCF
| DSR_WEF
), msecs_to_jiffies(1));
519 } else if (ret
== 0) {
520 dev_warn(&imxdi
->pdev
->dev
,
521 "Write-wait timeout "
522 "val = 0x%08x reg = 0x%08x\n", val
, reg
);
525 /* check for write error */
526 if (imxdi
->dsr
& DSR_WEF
) {
527 clear_write_error(imxdi
);
532 mutex_unlock(&imxdi
->write_mutex
);
538 * read the seconds portion of the current time from the dryice time counter
540 static int dryice_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
542 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
545 now
= readl(imxdi
->ioaddr
+ DTCMR
);
546 rtc_time64_to_tm(now
, tm
);
552 * set the seconds portion of dryice time counter and clear the
555 static int dryice_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
557 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
561 dcr
= readl(imxdi
->ioaddr
+ DCR
);
562 dsr
= readl(imxdi
->ioaddr
+ DSR
);
564 if (!(dcr
& DCR_TCE
) || (dsr
& DSR_SVF
)) {
565 if (dcr
& DCR_TCHL
) {
566 /* we are even more out of luck */
567 di_what_is_to_be_done(imxdi
, "battery");
570 if ((dcr
& DCR_TCSL
) || (dsr
& DSR_SVF
)) {
571 /* we are out of luck for now */
572 di_what_is_to_be_done(imxdi
, "main");
577 /* zero the fractional part first */
578 rc
= di_write_wait(imxdi
, 0, DTCLR
);
582 rc
= di_write_wait(imxdi
, rtc_tm_to_time64(tm
), DTCMR
);
586 return di_write_wait(imxdi
, readl(imxdi
->ioaddr
+ DCR
) | DCR_TCE
, DCR
);
589 static int dryice_rtc_alarm_irq_enable(struct device
*dev
,
590 unsigned int enabled
)
592 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
595 di_int_enable(imxdi
, DIER_CAIE
);
597 di_int_disable(imxdi
, DIER_CAIE
);
603 * read the seconds portion of the alarm register.
604 * the fractional part of the alarm register is always zero.
606 static int dryice_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
608 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
611 dcamr
= readl(imxdi
->ioaddr
+ DCAMR
);
612 rtc_time64_to_tm(dcamr
, &alarm
->time
);
614 /* alarm is enabled if the interrupt is enabled */
615 alarm
->enabled
= (readl(imxdi
->ioaddr
+ DIER
) & DIER_CAIE
) != 0;
617 /* don't allow the DSR read to mess up DSR_WCF */
618 mutex_lock(&imxdi
->write_mutex
);
620 /* alarm is pending if the alarm flag is set */
621 alarm
->pending
= (readl(imxdi
->ioaddr
+ DSR
) & DSR_CAF
) != 0;
623 mutex_unlock(&imxdi
->write_mutex
);
629 * set the seconds portion of dryice alarm register
631 static int dryice_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
633 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
636 /* write the new alarm time */
637 rc
= di_write_wait(imxdi
, rtc_tm_to_time64(&alarm
->time
), DCAMR
);
642 di_int_enable(imxdi
, DIER_CAIE
); /* enable alarm intr */
644 di_int_disable(imxdi
, DIER_CAIE
); /* disable alarm intr */
649 static const struct rtc_class_ops dryice_rtc_ops
= {
650 .read_time
= dryice_rtc_read_time
,
651 .set_time
= dryice_rtc_set_time
,
652 .alarm_irq_enable
= dryice_rtc_alarm_irq_enable
,
653 .read_alarm
= dryice_rtc_read_alarm
,
654 .set_alarm
= dryice_rtc_set_alarm
,
658 * interrupt handler for dryice "normal" and security violation interrupt
660 static irqreturn_t
dryice_irq(int irq
, void *dev_id
)
662 struct imxdi_dev
*imxdi
= dev_id
;
664 irqreturn_t rc
= IRQ_NONE
;
666 dier
= readl(imxdi
->ioaddr
+ DIER
);
667 dsr
= readl(imxdi
->ioaddr
+ DSR
);
669 /* handle the security violation event */
670 if (dier
& DIER_SVIE
) {
673 * Disable the interrupt when this kind of event has
675 * There cannot be more than one event of this type,
676 * because it needs a complex state change
677 * including a main power cycle to get again out of
680 di_int_disable(imxdi
, DIER_SVIE
);
681 /* report the violation */
682 di_report_tamper_info(imxdi
, dsr
);
687 /* handle write complete and write error cases */
688 if (dier
& DIER_WCIE
) {
689 /*If the write wait queue is empty then there is no pending
690 operations. It means the interrupt is for DryIce -Security.
691 IRQ must be returned as none.*/
692 if (list_empty_careful(&imxdi
->write_wait
.head
))
695 /* DSR_WCF clears itself on DSR read */
696 if (dsr
& (DSR_WCF
| DSR_WEF
)) {
697 /* mask the interrupt */
698 di_int_disable(imxdi
, DIER_WCIE
);
700 /* save the dsr value for the wait queue */
703 wake_up_interruptible(&imxdi
->write_wait
);
708 /* handle the alarm case */
709 if (dier
& DIER_CAIE
) {
710 /* DSR_WCF clears itself on DSR read */
712 /* mask the interrupt */
713 di_int_disable(imxdi
, DIER_CAIE
);
715 /* finish alarm in user context */
716 schedule_work(&imxdi
->work
);
724 * post the alarm event from user context so it can sleep
725 * on the write completion.
727 static void dryice_work(struct work_struct
*work
)
729 struct imxdi_dev
*imxdi
= container_of(work
,
730 struct imxdi_dev
, work
);
732 /* dismiss the interrupt (ignore error) */
733 di_write_wait(imxdi
, DSR_CAF
, DSR
);
735 /* pass the alarm event to the rtc framework. */
736 rtc_update_irq(imxdi
->rtc
, 1, RTC_AF
| RTC_IRQF
);
740 * probe for dryice rtc device
742 static int __init
dryice_rtc_probe(struct platform_device
*pdev
)
744 struct imxdi_dev
*imxdi
;
745 int norm_irq
, sec_irq
;
748 imxdi
= devm_kzalloc(&pdev
->dev
, sizeof(*imxdi
), GFP_KERNEL
);
754 imxdi
->ioaddr
= devm_platform_ioremap_resource(pdev
, 0);
755 if (IS_ERR(imxdi
->ioaddr
))
756 return PTR_ERR(imxdi
->ioaddr
);
758 spin_lock_init(&imxdi
->irq_lock
);
760 norm_irq
= platform_get_irq(pdev
, 0);
764 /* the 2nd irq is the security violation irq
765 * make this optional, don't break the device tree ABI
767 sec_irq
= platform_get_irq(pdev
, 1);
769 sec_irq
= IRQ_NOTCONNECTED
;
771 init_waitqueue_head(&imxdi
->write_wait
);
773 INIT_WORK(&imxdi
->work
, dryice_work
);
775 mutex_init(&imxdi
->write_mutex
);
777 imxdi
->rtc
= devm_rtc_allocate_device(&pdev
->dev
);
778 if (IS_ERR(imxdi
->rtc
))
779 return PTR_ERR(imxdi
->rtc
);
781 imxdi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
782 if (IS_ERR(imxdi
->clk
))
783 return PTR_ERR(imxdi
->clk
);
784 rc
= clk_prepare_enable(imxdi
->clk
);
789 * Initialize dryice hardware
792 /* mask all interrupts */
793 writel(0, imxdi
->ioaddr
+ DIER
);
795 rc
= di_handle_state(imxdi
);
799 rc
= devm_request_irq(&pdev
->dev
, norm_irq
, dryice_irq
,
800 IRQF_SHARED
, pdev
->name
, imxdi
);
802 dev_warn(&pdev
->dev
, "interrupt not available.\n");
806 rc
= devm_request_irq(&pdev
->dev
, sec_irq
, dryice_irq
,
807 IRQF_SHARED
, pdev
->name
, imxdi
);
809 dev_warn(&pdev
->dev
, "security violation interrupt not available.\n");
810 /* this is not an error, see above */
813 platform_set_drvdata(pdev
, imxdi
);
815 device_init_wakeup(&pdev
->dev
, true);
816 dev_pm_set_wake_irq(&pdev
->dev
, norm_irq
);
818 imxdi
->rtc
->ops
= &dryice_rtc_ops
;
819 imxdi
->rtc
->range_max
= U32_MAX
;
821 rc
= devm_rtc_register_device(imxdi
->rtc
);
828 clk_disable_unprepare(imxdi
->clk
);
833 static void __exit
dryice_rtc_remove(struct platform_device
*pdev
)
835 struct imxdi_dev
*imxdi
= platform_get_drvdata(pdev
);
837 flush_work(&imxdi
->work
);
839 /* mask all interrupts */
840 writel(0, imxdi
->ioaddr
+ DIER
);
842 clk_disable_unprepare(imxdi
->clk
);
845 static const struct of_device_id dryice_dt_ids
[] = {
846 { .compatible
= "fsl,imx25-rtc" },
850 MODULE_DEVICE_TABLE(of
, dryice_dt_ids
);
853 * dryice_rtc_remove() lives in .exit.text. For drivers registered via
854 * module_platform_driver_probe() this is ok because they cannot get unbound at
855 * runtime. So mark the driver struct with __refdata to prevent modpost
856 * triggering a section mismatch warning.
858 static struct platform_driver dryice_rtc_driver __refdata
= {
861 .of_match_table
= dryice_dt_ids
,
863 .remove
= __exit_p(dryice_rtc_remove
),
866 module_platform_driver_probe(dryice_rtc_driver
, dryice_rtc_probe
);
868 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
869 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
870 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
871 MODULE_LICENSE("GPL");