Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / rtc / rtc-isl12022.c
blob9b44839a7402c9ab7da634d95152c2520eb8552e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * An I2C driver for the Intersil ISL 12022
5 * Author: Roman Fietze <roman.fietze@telemotive.de>
7 * Based on the Philips PCF8563 RTC
8 * by Alessandro Zummo <a.zummo@towertech.it>.
9 */
11 #include <linux/bcd.h>
12 #include <linux/bitfield.h>
13 #include <linux/clk-provider.h>
14 #include <linux/err.h>
15 #include <linux/hwmon.h>
16 #include <linux/i2c.h>
17 #include <linux/module.h>
18 #include <linux/regmap.h>
19 #include <linux/rtc.h>
20 #include <linux/slab.h>
22 #include <asm/byteorder.h>
24 /* RTC - Real time clock registers */
25 #define ISL12022_REG_SC 0x00
26 #define ISL12022_REG_MN 0x01
27 #define ISL12022_REG_HR 0x02
28 #define ISL12022_REG_DT 0x03
29 #define ISL12022_REG_MO 0x04
30 #define ISL12022_REG_YR 0x05
31 #define ISL12022_REG_DW 0x06
33 /* CSR - Control and status registers */
34 #define ISL12022_REG_SR 0x07
35 #define ISL12022_REG_INT 0x08
36 #define ISL12022_REG_PWR_VBAT 0x0a
37 #define ISL12022_REG_BETA 0x0d
39 /* ALARM - Alarm registers */
40 #define ISL12022_REG_SCA0 0x10
41 #define ISL12022_REG_MNA0 0x11
42 #define ISL12022_REG_HRA0 0x12
43 #define ISL12022_REG_DTA0 0x13
44 #define ISL12022_REG_MOA0 0x14
45 #define ISL12022_REG_DWA0 0x15
46 #define ISL12022_ALARM ISL12022_REG_SCA0
47 #define ISL12022_ALARM_LEN (ISL12022_REG_DWA0 - ISL12022_REG_SCA0 + 1)
49 /* TEMP - Temperature sensor registers */
50 #define ISL12022_REG_TEMP_L 0x28
52 /* ISL register bits */
53 #define ISL12022_HR_MIL (1 << 7) /* military or 24 hour time */
55 #define ISL12022_SR_ALM (1 << 4)
56 #define ISL12022_SR_LBAT85 (1 << 2)
57 #define ISL12022_SR_LBAT75 (1 << 1)
59 #define ISL12022_INT_ARST (1 << 7)
60 #define ISL12022_INT_WRTC (1 << 6)
61 #define ISL12022_INT_IM (1 << 5)
62 #define ISL12022_INT_FOBATB (1 << 4)
63 #define ISL12022_INT_FO_MASK GENMASK(3, 0)
64 #define ISL12022_INT_FO_OFF 0x0
65 #define ISL12022_INT_FO_32K 0x1
67 #define ISL12022_REG_VB85_MASK GENMASK(5, 3)
68 #define ISL12022_REG_VB75_MASK GENMASK(2, 0)
70 #define ISL12022_ALARM_ENABLE (1 << 7) /* for all ALARM registers */
72 #define ISL12022_BETA_TSE (1 << 7)
74 static struct i2c_driver isl12022_driver;
76 struct isl12022 {
77 struct rtc_device *rtc;
78 struct regmap *regmap;
79 int irq;
80 bool irq_enabled;
83 static umode_t isl12022_hwmon_is_visible(const void *data,
84 enum hwmon_sensor_types type,
85 u32 attr, int channel)
87 if (type == hwmon_temp && attr == hwmon_temp_input)
88 return 0444;
90 return 0;
94 * A user-initiated temperature conversion is not started by this function,
95 * so the temperature is updated once every ~60 seconds.
97 static int isl12022_hwmon_read_temp(struct device *dev, long *mC)
99 struct regmap *regmap = dev_get_drvdata(dev);
100 int temp, ret;
101 __le16 buf;
103 ret = regmap_bulk_read(regmap, ISL12022_REG_TEMP_L, &buf, sizeof(buf));
104 if (ret)
105 return ret;
107 * Temperature is represented as a 10-bit number, unit half-Kelvins.
109 temp = le16_to_cpu(buf);
110 temp *= 500;
111 temp -= 273000;
113 *mC = temp;
115 return 0;
118 static int isl12022_hwmon_read(struct device *dev,
119 enum hwmon_sensor_types type,
120 u32 attr, int channel, long *val)
122 if (type == hwmon_temp && attr == hwmon_temp_input)
123 return isl12022_hwmon_read_temp(dev, val);
125 return -EOPNOTSUPP;
128 static const struct hwmon_channel_info * const isl12022_hwmon_info[] = {
129 HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
130 NULL
133 static const struct hwmon_ops isl12022_hwmon_ops = {
134 .is_visible = isl12022_hwmon_is_visible,
135 .read = isl12022_hwmon_read,
138 static const struct hwmon_chip_info isl12022_hwmon_chip_info = {
139 .ops = &isl12022_hwmon_ops,
140 .info = isl12022_hwmon_info,
143 static void isl12022_hwmon_register(struct device *dev)
145 struct isl12022 *isl12022 = dev_get_drvdata(dev);
146 struct regmap *regmap = isl12022->regmap;
147 struct device *hwmon;
148 int ret;
150 if (!IS_REACHABLE(CONFIG_HWMON))
151 return;
153 ret = regmap_update_bits(regmap, ISL12022_REG_BETA,
154 ISL12022_BETA_TSE, ISL12022_BETA_TSE);
155 if (ret) {
156 dev_warn(dev, "unable to enable temperature sensor\n");
157 return;
160 hwmon = devm_hwmon_device_register_with_info(dev, "isl12022", regmap,
161 &isl12022_hwmon_chip_info,
162 NULL);
163 if (IS_ERR(hwmon))
164 dev_warn(dev, "unable to register hwmon device: %pe\n", hwmon);
168 * In the routines that deal directly with the isl12022 hardware, we use
169 * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
171 static int isl12022_rtc_read_time(struct device *dev, struct rtc_time *tm)
173 struct isl12022 *isl12022 = dev_get_drvdata(dev);
174 struct regmap *regmap = isl12022->regmap;
175 u8 buf[ISL12022_REG_INT + 1];
176 int ret;
178 ret = regmap_bulk_read(regmap, ISL12022_REG_SC, buf, sizeof(buf));
179 if (ret)
180 return ret;
182 dev_dbg(dev,
183 "raw data is sec=%02x, min=%02x, hr=%02x, mday=%02x, mon=%02x, year=%02x, wday=%02x, sr=%02x, int=%02x",
184 buf[ISL12022_REG_SC],
185 buf[ISL12022_REG_MN],
186 buf[ISL12022_REG_HR],
187 buf[ISL12022_REG_DT],
188 buf[ISL12022_REG_MO],
189 buf[ISL12022_REG_YR],
190 buf[ISL12022_REG_DW],
191 buf[ISL12022_REG_SR],
192 buf[ISL12022_REG_INT]);
194 tm->tm_sec = bcd2bin(buf[ISL12022_REG_SC] & 0x7F);
195 tm->tm_min = bcd2bin(buf[ISL12022_REG_MN] & 0x7F);
196 tm->tm_hour = bcd2bin(buf[ISL12022_REG_HR] & 0x3F);
197 tm->tm_mday = bcd2bin(buf[ISL12022_REG_DT] & 0x3F);
198 tm->tm_wday = buf[ISL12022_REG_DW] & 0x07;
199 tm->tm_mon = bcd2bin(buf[ISL12022_REG_MO] & 0x1F) - 1;
200 tm->tm_year = bcd2bin(buf[ISL12022_REG_YR]) + 100;
202 dev_dbg(dev, "%s: %ptR\n", __func__, tm);
204 return 0;
207 static int isl12022_rtc_set_time(struct device *dev, struct rtc_time *tm)
209 struct isl12022 *isl12022 = dev_get_drvdata(dev);
210 struct regmap *regmap = isl12022->regmap;
211 int ret;
212 u8 buf[ISL12022_REG_DW + 1];
214 dev_dbg(dev, "%s: %ptR\n", __func__, tm);
216 /* Ensure the write enable bit is set. */
217 ret = regmap_update_bits(regmap, ISL12022_REG_INT,
218 ISL12022_INT_WRTC, ISL12022_INT_WRTC);
219 if (ret)
220 return ret;
222 /* hours, minutes and seconds */
223 buf[ISL12022_REG_SC] = bin2bcd(tm->tm_sec);
224 buf[ISL12022_REG_MN] = bin2bcd(tm->tm_min);
225 buf[ISL12022_REG_HR] = bin2bcd(tm->tm_hour) | ISL12022_HR_MIL;
227 buf[ISL12022_REG_DT] = bin2bcd(tm->tm_mday);
229 /* month, 1 - 12 */
230 buf[ISL12022_REG_MO] = bin2bcd(tm->tm_mon + 1);
232 /* year and century */
233 buf[ISL12022_REG_YR] = bin2bcd(tm->tm_year % 100);
235 buf[ISL12022_REG_DW] = tm->tm_wday & 0x07;
237 return regmap_bulk_write(regmap, ISL12022_REG_SC, buf, sizeof(buf));
240 static int isl12022_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
242 struct rtc_time *tm = &alarm->time;
243 struct isl12022 *isl12022 = dev_get_drvdata(dev);
244 struct regmap *regmap = isl12022->regmap;
245 u8 buf[ISL12022_ALARM_LEN];
246 unsigned int i, yr;
247 int ret;
249 ret = regmap_bulk_read(regmap, ISL12022_ALARM, buf, sizeof(buf));
250 if (ret) {
251 dev_dbg(dev, "%s: reading ALARM registers failed\n",
252 __func__);
253 return ret;
256 /* The alarm doesn't store the year so get it from the rtc section */
257 ret = regmap_read(regmap, ISL12022_REG_YR, &yr);
258 if (ret) {
259 dev_dbg(dev, "%s: reading YR register failed\n", __func__);
260 return ret;
263 dev_dbg(dev,
264 "%s: sc=%02x, mn=%02x, hr=%02x, dt=%02x, mo=%02x, dw=%02x yr=%u\n",
265 __func__, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], yr);
267 tm->tm_sec = bcd2bin(buf[ISL12022_REG_SCA0 - ISL12022_ALARM] & 0x7F);
268 tm->tm_min = bcd2bin(buf[ISL12022_REG_MNA0 - ISL12022_ALARM] & 0x7F);
269 tm->tm_hour = bcd2bin(buf[ISL12022_REG_HRA0 - ISL12022_ALARM] & 0x3F);
270 tm->tm_mday = bcd2bin(buf[ISL12022_REG_DTA0 - ISL12022_ALARM] & 0x3F);
271 tm->tm_mon = bcd2bin(buf[ISL12022_REG_MOA0 - ISL12022_ALARM] & 0x1F) - 1;
272 tm->tm_wday = buf[ISL12022_REG_DWA0 - ISL12022_ALARM] & 0x07;
273 tm->tm_year = bcd2bin(yr) + 100;
275 for (i = 0; i < ISL12022_ALARM_LEN; i++) {
276 if (buf[i] & ISL12022_ALARM_ENABLE) {
277 alarm->enabled = 1;
278 break;
282 dev_dbg(dev, "%s: %ptR\n", __func__, tm);
284 return 0;
287 static int isl12022_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
289 struct rtc_time *alarm_tm = &alarm->time;
290 struct isl12022 *isl12022 = dev_get_drvdata(dev);
291 struct regmap *regmap = isl12022->regmap;
292 u8 regs[ISL12022_ALARM_LEN] = { 0, };
293 struct rtc_time rtc_tm;
294 int ret, enable, dw;
296 ret = isl12022_rtc_read_time(dev, &rtc_tm);
297 if (ret)
298 return ret;
300 /* If the alarm time is before the current time disable the alarm */
301 if (!alarm->enabled || rtc_tm_sub(alarm_tm, &rtc_tm) <= 0)
302 enable = 0;
303 else
304 enable = ISL12022_ALARM_ENABLE;
307 * Set non-matching day of the week to safeguard against early false
308 * matching while setting all the alarm registers (this rtc lacks a
309 * general alarm/irq enable/disable bit).
311 ret = regmap_read(regmap, ISL12022_REG_DW, &dw);
312 if (ret) {
313 dev_dbg(dev, "%s: reading DW failed\n", __func__);
314 return ret;
316 /* ~4 days into the future should be enough to avoid match */
317 dw = ((dw + 4) % 7) | ISL12022_ALARM_ENABLE;
318 ret = regmap_write(regmap, ISL12022_REG_DWA0, dw);
319 if (ret) {
320 dev_dbg(dev, "%s: writing DWA0 failed\n", __func__);
321 return ret;
324 /* Program the alarm and enable it for each setting */
325 regs[ISL12022_REG_SCA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_sec) | enable;
326 regs[ISL12022_REG_MNA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_min) | enable;
327 regs[ISL12022_REG_HRA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_hour) | enable;
328 regs[ISL12022_REG_DTA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mday) | enable;
329 regs[ISL12022_REG_MOA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mon + 1) | enable;
330 regs[ISL12022_REG_DWA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_wday & 7) | enable;
332 /* write ALARM registers */
333 ret = regmap_bulk_write(regmap, ISL12022_ALARM, &regs, sizeof(regs));
334 if (ret) {
335 dev_dbg(dev, "%s: writing ALARM registers failed\n", __func__);
336 return ret;
339 return 0;
342 static irqreturn_t isl12022_rtc_interrupt(int irq, void *data)
344 struct isl12022 *isl12022 = data;
345 struct rtc_device *rtc = isl12022->rtc;
346 struct device *dev = &rtc->dev;
347 struct regmap *regmap = isl12022->regmap;
348 u32 val = 0;
349 unsigned long events = 0;
350 int ret;
352 ret = regmap_read(regmap, ISL12022_REG_SR, &val);
353 if (ret) {
354 dev_dbg(dev, "%s: reading SR failed\n", __func__);
355 return IRQ_HANDLED;
358 if (val & ISL12022_SR_ALM)
359 events |= RTC_IRQF | RTC_AF;
361 if (events & RTC_AF)
362 dev_dbg(dev, "alarm!\n");
364 if (!events)
365 return IRQ_NONE;
367 rtc_update_irq(rtc, 1, events);
368 return IRQ_HANDLED;
371 static int isl12022_rtc_alarm_irq_enable(struct device *dev,
372 unsigned int enabled)
374 struct isl12022 *isl12022 = dev_get_drvdata(dev);
376 /* Make sure enabled is 0 or 1 */
377 enabled = !!enabled;
379 if (isl12022->irq_enabled == enabled)
380 return 0;
382 if (enabled)
383 enable_irq(isl12022->irq);
384 else
385 disable_irq(isl12022->irq);
387 isl12022->irq_enabled = enabled;
389 return 0;
392 static int isl12022_setup_irq(struct device *dev, int irq)
394 struct isl12022 *isl12022 = dev_get_drvdata(dev);
395 struct regmap *regmap = isl12022->regmap;
396 unsigned int reg_mask, reg_val;
397 u8 buf[ISL12022_ALARM_LEN] = { 0, };
398 int ret;
400 /* Clear and disable all alarm registers */
401 ret = regmap_bulk_write(regmap, ISL12022_ALARM, buf, sizeof(buf));
402 if (ret)
403 return ret;
406 * Enable automatic reset of ALM bit and enable single event interrupt
407 * mode.
409 reg_mask = ISL12022_INT_ARST | ISL12022_INT_IM | ISL12022_INT_FO_MASK;
410 reg_val = ISL12022_INT_ARST | ISL12022_INT_FO_OFF;
411 ret = regmap_write_bits(regmap, ISL12022_REG_INT,
412 reg_mask, reg_val);
413 if (ret)
414 return ret;
416 ret = devm_request_threaded_irq(dev, irq, NULL,
417 isl12022_rtc_interrupt,
418 IRQF_SHARED | IRQF_ONESHOT,
419 isl12022_driver.driver.name,
420 isl12022);
421 if (ret)
422 return dev_err_probe(dev, ret, "Unable to request irq %d\n", irq);
424 isl12022->irq = irq;
425 return 0;
428 static int isl12022_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
430 struct isl12022 *isl12022 = dev_get_drvdata(dev);
431 struct regmap *regmap = isl12022->regmap;
432 u32 user, val;
433 int ret;
435 switch (cmd) {
436 case RTC_VL_READ:
437 ret = regmap_read(regmap, ISL12022_REG_SR, &val);
438 if (ret)
439 return ret;
441 user = 0;
442 if (val & ISL12022_SR_LBAT85)
443 user |= RTC_VL_BACKUP_LOW;
445 if (val & ISL12022_SR_LBAT75)
446 user |= RTC_VL_BACKUP_EMPTY;
448 return put_user(user, (u32 __user *)arg);
450 default:
451 return -ENOIOCTLCMD;
455 static const struct rtc_class_ops isl12022_rtc_ops = {
456 .ioctl = isl12022_rtc_ioctl,
457 .read_time = isl12022_rtc_read_time,
458 .set_time = isl12022_rtc_set_time,
459 .read_alarm = isl12022_rtc_read_alarm,
460 .set_alarm = isl12022_rtc_set_alarm,
461 .alarm_irq_enable = isl12022_rtc_alarm_irq_enable,
464 static const struct regmap_config regmap_config = {
465 .reg_bits = 8,
466 .val_bits = 8,
467 .use_single_write = true,
470 static int isl12022_register_clock(struct device *dev)
472 struct isl12022 *isl12022 = dev_get_drvdata(dev);
473 struct regmap *regmap = isl12022->regmap;
474 struct clk_hw *hw;
475 int ret;
477 if (!device_property_present(dev, "#clock-cells")) {
479 * Disabling the F_OUT pin reduces the power
480 * consumption in battery mode by ~25%.
482 regmap_update_bits(regmap, ISL12022_REG_INT, ISL12022_INT_FO_MASK,
483 ISL12022_INT_FO_OFF);
485 return 0;
488 if (!IS_ENABLED(CONFIG_COMMON_CLK))
489 return 0;
492 * For now, only support a fixed clock of 32768Hz (the reset default).
494 ret = regmap_update_bits(regmap, ISL12022_REG_INT,
495 ISL12022_INT_FO_MASK, ISL12022_INT_FO_32K);
496 if (ret)
497 return ret;
499 hw = devm_clk_hw_register_fixed_rate(dev, "isl12022", NULL, 0, 32768);
500 if (IS_ERR(hw))
501 return PTR_ERR(hw);
503 return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
506 static const u32 trip_levels[2][7] = {
507 { 2125000, 2295000, 2550000, 2805000, 3060000, 4250000, 4675000 },
508 { 1875000, 2025000, 2250000, 2475000, 2700000, 3750000, 4125000 },
511 static void isl12022_set_trip_levels(struct device *dev)
513 struct isl12022 *isl12022 = dev_get_drvdata(dev);
514 struct regmap *regmap = isl12022->regmap;
515 u32 levels[2] = {0, 0};
516 int ret, i, j, x[2];
517 u8 val, mask;
519 device_property_read_u32_array(dev, "isil,battery-trip-levels-microvolt",
520 levels, 2);
522 for (i = 0; i < 2; i++) {
523 for (j = 0; j < ARRAY_SIZE(trip_levels[i]) - 1; j++) {
524 if (levels[i] <= trip_levels[i][j])
525 break;
527 x[i] = j;
530 val = FIELD_PREP(ISL12022_REG_VB85_MASK, x[0]) |
531 FIELD_PREP(ISL12022_REG_VB75_MASK, x[1]);
532 mask = ISL12022_REG_VB85_MASK | ISL12022_REG_VB75_MASK;
534 ret = regmap_update_bits(regmap, ISL12022_REG_PWR_VBAT, mask, val);
535 if (ret)
536 dev_warn(dev, "unable to set battery alarm levels: %d\n", ret);
539 * Force a write of the TSE bit in the BETA register, in order
540 * to trigger an update of the LBAT75 and LBAT85 bits in the
541 * status register. In battery backup mode, those bits have
542 * another meaning, so without this, they may contain stale
543 * values for up to a minute after power-on.
545 regmap_write_bits(regmap, ISL12022_REG_BETA,
546 ISL12022_BETA_TSE, ISL12022_BETA_TSE);
549 static int isl12022_probe(struct i2c_client *client)
551 struct isl12022 *isl12022;
552 struct rtc_device *rtc;
553 struct regmap *regmap;
554 int ret;
556 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
557 return -ENODEV;
559 /* Allocate driver state */
560 isl12022 = devm_kzalloc(&client->dev, sizeof(*isl12022), GFP_KERNEL);
561 if (!isl12022)
562 return -ENOMEM;
564 regmap = devm_regmap_init_i2c(client, &regmap_config);
565 if (IS_ERR(regmap))
566 return dev_err_probe(&client->dev, PTR_ERR(regmap), "regmap allocation failed\n");
567 isl12022->regmap = regmap;
569 dev_set_drvdata(&client->dev, isl12022);
571 ret = isl12022_register_clock(&client->dev);
572 if (ret)
573 return ret;
575 isl12022_set_trip_levels(&client->dev);
576 isl12022_hwmon_register(&client->dev);
578 rtc = devm_rtc_allocate_device(&client->dev);
579 if (IS_ERR(rtc))
580 return PTR_ERR(rtc);
581 isl12022->rtc = rtc;
583 rtc->ops = &isl12022_rtc_ops;
584 rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
585 rtc->range_max = RTC_TIMESTAMP_END_2099;
587 if (client->irq > 0) {
588 ret = isl12022_setup_irq(&client->dev, client->irq);
589 if (ret)
590 return ret;
591 } else {
592 clear_bit(RTC_FEATURE_ALARM, rtc->features);
595 return devm_rtc_register_device(rtc);
598 static const struct of_device_id isl12022_dt_match[] = {
599 { .compatible = "isl,isl12022" }, /* for backward compat., don't use */
600 { .compatible = "isil,isl12022" },
601 { },
603 MODULE_DEVICE_TABLE(of, isl12022_dt_match);
605 static const struct i2c_device_id isl12022_id[] = {
606 { "isl12022" },
609 MODULE_DEVICE_TABLE(i2c, isl12022_id);
611 static struct i2c_driver isl12022_driver = {
612 .driver = {
613 .name = "rtc-isl12022",
614 .of_match_table = isl12022_dt_match,
616 .probe = isl12022_probe,
617 .id_table = isl12022_id,
620 module_i2c_driver(isl12022_driver);
622 MODULE_AUTHOR("roman.fietze@telemotive.de");
623 MODULE_DESCRIPTION("ISL 12022 RTC driver");
624 MODULE_LICENSE("GPL");