Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / rtc / rtc-pcf2123.c
blobe714661e61a916707fc4be148540823ba7463fe5
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * An SPI driver for the Philips PCF2123 RTC
4 * Copyright 2009 Cyber Switching, Inc.
6 * Author: Chris Verges <chrisv@cyberswitching.com>
7 * Maintainers: http://www.cyberswitching.com
9 * based on the RS5C348 driver in this same directory.
11 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
12 * the sysfs contributions to this driver.
14 * Please note that the CS is active high, so platform data
15 * should look something like:
17 * static struct spi_board_info ek_spi_devices[] = {
18 * ...
19 * {
20 * .modalias = "rtc-pcf2123",
21 * .chip_select = 1,
22 * .controller_data = (void *)AT91_PIN_PA10,
23 * .max_speed_hz = 1000 * 1000,
24 * .mode = SPI_CS_HIGH,
25 * .bus_num = 0,
26 * },
27 * ...
28 *};
31 #include <linux/bcd.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/kernel.h>
37 #include <linux/of.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/rtc.h>
41 #include <linux/spi/spi.h>
42 #include <linux/module.h>
43 #include <linux/regmap.h>
45 /* REGISTERS */
46 #define PCF2123_REG_CTRL1 (0x00) /* Control Register 1 */
47 #define PCF2123_REG_CTRL2 (0x01) /* Control Register 2 */
48 #define PCF2123_REG_SC (0x02) /* datetime */
49 #define PCF2123_REG_MN (0x03)
50 #define PCF2123_REG_HR (0x04)
51 #define PCF2123_REG_DM (0x05)
52 #define PCF2123_REG_DW (0x06)
53 #define PCF2123_REG_MO (0x07)
54 #define PCF2123_REG_YR (0x08)
55 #define PCF2123_REG_ALRM_MN (0x09) /* Alarm Registers */
56 #define PCF2123_REG_ALRM_HR (0x0a)
57 #define PCF2123_REG_ALRM_DM (0x0b)
58 #define PCF2123_REG_ALRM_DW (0x0c)
59 #define PCF2123_REG_OFFSET (0x0d) /* Clock Rate Offset Register */
60 #define PCF2123_REG_TMR_CLKOUT (0x0e) /* Timer Registers */
61 #define PCF2123_REG_CTDWN_TMR (0x0f)
63 /* PCF2123_REG_CTRL1 BITS */
64 #define CTRL1_CLEAR (0) /* Clear */
65 #define CTRL1_CORR_INT BIT(1) /* Correction irq enable */
66 #define CTRL1_12_HOUR BIT(2) /* 12 hour time */
67 #define CTRL1_SW_RESET (BIT(3) | BIT(4) | BIT(6)) /* Software reset */
68 #define CTRL1_STOP BIT(5) /* Stop the clock */
69 #define CTRL1_EXT_TEST BIT(7) /* External clock test mode */
71 /* PCF2123_REG_CTRL2 BITS */
72 #define CTRL2_TIE BIT(0) /* Countdown timer irq enable */
73 #define CTRL2_AIE BIT(1) /* Alarm irq enable */
74 #define CTRL2_TF BIT(2) /* Countdown timer flag */
75 #define CTRL2_AF BIT(3) /* Alarm flag */
76 #define CTRL2_TI_TP BIT(4) /* Irq pin generates pulse */
77 #define CTRL2_MSF BIT(5) /* Minute or second irq flag */
78 #define CTRL2_SI BIT(6) /* Second irq enable */
79 #define CTRL2_MI BIT(7) /* Minute irq enable */
81 /* PCF2123_REG_SC BITS */
82 #define OSC_HAS_STOPPED BIT(7) /* Clock has been stopped */
84 /* PCF2123_REG_ALRM_XX BITS */
85 #define ALRM_DISABLE BIT(7) /* MN, HR, DM, or DW alarm matching */
87 /* PCF2123_REG_TMR_CLKOUT BITS */
88 #define CD_TMR_4096KHZ (0) /* 4096 KHz countdown timer */
89 #define CD_TMR_64HZ (1) /* 64 Hz countdown timer */
90 #define CD_TMR_1HZ (2) /* 1 Hz countdown timer */
91 #define CD_TMR_60th_HZ (3) /* 60th Hz countdown timer */
92 #define CD_TMR_TE BIT(3) /* Countdown timer enable */
94 /* PCF2123_REG_OFFSET BITS */
95 #define OFFSET_SIGN_BIT 6 /* 2's complement sign bit */
96 #define OFFSET_COARSE BIT(7) /* Coarse mode offset */
97 #define OFFSET_STEP (2170) /* Offset step in parts per billion */
98 #define OFFSET_MASK GENMASK(6, 0) /* Offset value */
100 /* READ/WRITE ADDRESS BITS */
101 #define PCF2123_WRITE BIT(4)
102 #define PCF2123_READ (BIT(4) | BIT(7))
105 static struct spi_driver pcf2123_driver;
107 struct pcf2123_data {
108 struct rtc_device *rtc;
109 struct regmap *map;
112 static const struct regmap_config pcf2123_regmap_config = {
113 .reg_bits = 8,
114 .val_bits = 8,
115 .read_flag_mask = PCF2123_READ,
116 .write_flag_mask = PCF2123_WRITE,
117 .max_register = PCF2123_REG_CTDWN_TMR,
120 static int pcf2123_read_offset(struct device *dev, long *offset)
122 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
123 int ret, val;
124 unsigned int reg;
126 ret = regmap_read(pcf2123->map, PCF2123_REG_OFFSET, &reg);
127 if (ret)
128 return ret;
130 val = sign_extend32((reg & OFFSET_MASK), OFFSET_SIGN_BIT);
132 if (reg & OFFSET_COARSE)
133 val *= 2;
135 *offset = ((long)val) * OFFSET_STEP;
137 return 0;
141 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
142 * The main difference between the two is normal offset adjusts the first
143 * second of n minutes every other hour, with 61, 62 and 63 being shoved
144 * into the 60th minute.
145 * The coarse adjustment does the same, but every hour.
146 * the two overlap, with every even normal offset value corresponding
147 * to a coarse offset. Based on this algorithm, it seems that despite the
148 * name, coarse offset is a better fit for overlapping values.
150 static int pcf2123_set_offset(struct device *dev, long offset)
152 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
153 s8 reg;
155 if (offset > OFFSET_STEP * 127)
156 reg = 127;
157 else if (offset < OFFSET_STEP * -128)
158 reg = -128;
159 else
160 reg = DIV_ROUND_CLOSEST(offset, OFFSET_STEP);
162 /* choose fine offset only for odd values in the normal range */
163 if (reg & 1 && reg <= 63 && reg >= -64) {
164 /* Normal offset. Clear the coarse bit */
165 reg &= ~OFFSET_COARSE;
166 } else {
167 /* Coarse offset. Divide by 2 and set the coarse bit */
168 reg >>= 1;
169 reg |= OFFSET_COARSE;
172 return regmap_write(pcf2123->map, PCF2123_REG_OFFSET, (unsigned int)reg);
175 static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
177 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
178 u8 rxbuf[7];
179 int ret;
181 ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_SC, rxbuf,
182 sizeof(rxbuf));
183 if (ret)
184 return ret;
186 if (rxbuf[0] & OSC_HAS_STOPPED) {
187 dev_info(dev, "clock was stopped. Time is not valid\n");
188 return -EINVAL;
191 tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
192 tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
193 tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
194 tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
195 tm->tm_wday = rxbuf[4] & 0x07;
196 tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
197 tm->tm_year = bcd2bin(rxbuf[6]) + 100;
199 dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
201 return 0;
204 static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
206 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
207 u8 txbuf[7];
208 int ret;
210 dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
212 /* Stop the counter first */
213 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
214 if (ret)
215 return ret;
217 /* Set the new time */
218 txbuf[0] = bin2bcd(tm->tm_sec & 0x7F);
219 txbuf[1] = bin2bcd(tm->tm_min & 0x7F);
220 txbuf[2] = bin2bcd(tm->tm_hour & 0x3F);
221 txbuf[3] = bin2bcd(tm->tm_mday & 0x3F);
222 txbuf[4] = tm->tm_wday & 0x07;
223 txbuf[5] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
224 txbuf[6] = bin2bcd(tm->tm_year - 100);
226 ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_SC, txbuf,
227 sizeof(txbuf));
228 if (ret)
229 return ret;
231 /* Start the counter */
232 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
233 if (ret)
234 return ret;
236 return 0;
239 static int pcf2123_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
241 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
243 return regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE,
244 en ? CTRL2_AIE : 0);
247 static int pcf2123_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
249 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
250 u8 rxbuf[4];
251 int ret;
252 unsigned int val = 0;
254 ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_ALRM_MN, rxbuf,
255 sizeof(rxbuf));
256 if (ret)
257 return ret;
259 alm->time.tm_min = bcd2bin(rxbuf[0] & 0x7F);
260 alm->time.tm_hour = bcd2bin(rxbuf[1] & 0x3F);
261 alm->time.tm_mday = bcd2bin(rxbuf[2] & 0x3F);
262 alm->time.tm_wday = bcd2bin(rxbuf[3] & 0x07);
264 dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
266 ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
267 if (ret)
268 return ret;
270 alm->enabled = !!(val & CTRL2_AIE);
272 return 0;
275 static int pcf2123_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
277 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
278 u8 txbuf[4];
279 int ret;
281 dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
283 /* Disable alarm interrupt */
284 ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE, 0);
285 if (ret)
286 return ret;
288 /* Ensure alarm flag is clear */
289 ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
290 if (ret)
291 return ret;
293 /* Set new alarm */
294 txbuf[0] = bin2bcd(alm->time.tm_min & 0x7F);
295 txbuf[1] = bin2bcd(alm->time.tm_hour & 0x3F);
296 txbuf[2] = bin2bcd(alm->time.tm_mday & 0x3F);
297 txbuf[3] = ALRM_DISABLE;
299 ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_ALRM_MN, txbuf,
300 sizeof(txbuf));
301 if (ret)
302 return ret;
304 return pcf2123_rtc_alarm_irq_enable(dev, alm->enabled);
307 static irqreturn_t pcf2123_rtc_irq(int irq, void *dev)
309 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
310 unsigned int val = 0;
311 int ret = IRQ_NONE;
313 rtc_lock(pcf2123->rtc);
314 regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
316 /* Alarm? */
317 if (val & CTRL2_AF) {
318 ret = IRQ_HANDLED;
320 /* Clear alarm flag */
321 regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
323 rtc_update_irq(pcf2123->rtc, 1, RTC_IRQF | RTC_AF);
326 rtc_unlock(pcf2123->rtc);
328 return ret;
331 static int pcf2123_reset(struct device *dev)
333 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
334 int ret;
335 unsigned int val = 0;
337 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
338 if (ret)
339 return ret;
341 /* Stop the counter */
342 dev_dbg(dev, "stopping RTC\n");
343 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
344 if (ret)
345 return ret;
347 /* See if the counter was actually stopped */
348 dev_dbg(dev, "checking for presence of RTC\n");
349 ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL1, &val);
350 if (ret)
351 return ret;
353 dev_dbg(dev, "received data from RTC (0x%08X)\n", val);
354 if (!(val & CTRL1_STOP))
355 return -ENODEV;
357 /* Start the counter */
358 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
359 if (ret)
360 return ret;
362 return 0;
365 static const struct rtc_class_ops pcf2123_rtc_ops = {
366 .read_time = pcf2123_rtc_read_time,
367 .set_time = pcf2123_rtc_set_time,
368 .read_offset = pcf2123_read_offset,
369 .set_offset = pcf2123_set_offset,
370 .read_alarm = pcf2123_rtc_read_alarm,
371 .set_alarm = pcf2123_rtc_set_alarm,
372 .alarm_irq_enable = pcf2123_rtc_alarm_irq_enable,
375 static int pcf2123_probe(struct spi_device *spi)
377 struct rtc_device *rtc;
378 struct rtc_time tm;
379 struct pcf2123_data *pcf2123;
380 int ret = 0;
382 pcf2123 = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_data),
383 GFP_KERNEL);
384 if (!pcf2123)
385 return -ENOMEM;
387 dev_set_drvdata(&spi->dev, pcf2123);
389 pcf2123->map = devm_regmap_init_spi(spi, &pcf2123_regmap_config);
390 if (IS_ERR(pcf2123->map)) {
391 dev_err(&spi->dev, "regmap init failed.\n");
392 return PTR_ERR(pcf2123->map);
395 ret = pcf2123_rtc_read_time(&spi->dev, &tm);
396 if (ret < 0) {
397 ret = pcf2123_reset(&spi->dev);
398 if (ret < 0) {
399 dev_err(&spi->dev, "chip not found\n");
400 return ret;
404 dev_info(&spi->dev, "spiclk %u KHz.\n",
405 (spi->max_speed_hz + 500) / 1000);
407 /* Finalize the initialization */
408 rtc = devm_rtc_allocate_device(&spi->dev);
409 if (IS_ERR(rtc))
410 return PTR_ERR(rtc);
412 pcf2123->rtc = rtc;
414 /* Register alarm irq */
415 if (spi->irq > 0) {
416 unsigned long irqflags = IRQF_TRIGGER_LOW;
418 if (dev_fwnode(&spi->dev))
419 irqflags = 0;
421 ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
422 pcf2123_rtc_irq,
423 irqflags | IRQF_ONESHOT,
424 pcf2123_driver.driver.name, &spi->dev);
425 if (!ret)
426 device_init_wakeup(&spi->dev, true);
427 else
428 dev_err(&spi->dev, "could not request irq.\n");
431 /* The PCF2123's alarm only has minute accuracy. Must add timer
432 * support to this driver to generate interrupts more than once
433 * per minute.
435 set_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features);
436 clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features);
437 rtc->ops = &pcf2123_rtc_ops;
438 rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
439 rtc->range_max = RTC_TIMESTAMP_END_2099;
440 rtc->set_start_time = true;
442 ret = devm_rtc_register_device(rtc);
443 if (ret)
444 return ret;
446 return 0;
449 #ifdef CONFIG_OF
450 static const struct of_device_id pcf2123_dt_ids[] = {
451 { .compatible = "nxp,pcf2123", },
452 { .compatible = "microcrystal,rv2123", },
453 /* Deprecated, do not use */
454 { .compatible = "nxp,rtc-pcf2123", },
455 { /* sentinel */ }
457 MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
458 #endif
460 static const struct spi_device_id pcf2123_spi_ids[] = {
461 { .name = "pcf2123", },
462 { .name = "rv2123", },
463 { .name = "rtc-pcf2123", },
464 { /* sentinel */ }
466 MODULE_DEVICE_TABLE(spi, pcf2123_spi_ids);
468 static struct spi_driver pcf2123_driver = {
469 .driver = {
470 .name = "rtc-pcf2123",
471 .of_match_table = of_match_ptr(pcf2123_dt_ids),
473 .probe = pcf2123_probe,
474 .id_table = pcf2123_spi_ids,
477 module_spi_driver(pcf2123_driver);
479 MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
480 MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
481 MODULE_LICENSE("GPL");