Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / rtc / rtc-sc27xx.c
blobce7a2ddbbc16b0123d0c159adff998181dd236b8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 Spreadtrum Communications Inc.
5 */
7 #include <linux/bitops.h>
8 #include <linux/delay.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/regmap.h>
14 #include <linux/rtc.h>
16 #define SPRD_RTC_SEC_CNT_VALUE 0x0
17 #define SPRD_RTC_MIN_CNT_VALUE 0x4
18 #define SPRD_RTC_HOUR_CNT_VALUE 0x8
19 #define SPRD_RTC_DAY_CNT_VALUE 0xc
20 #define SPRD_RTC_SEC_CNT_UPD 0x10
21 #define SPRD_RTC_MIN_CNT_UPD 0x14
22 #define SPRD_RTC_HOUR_CNT_UPD 0x18
23 #define SPRD_RTC_DAY_CNT_UPD 0x1c
24 #define SPRD_RTC_SEC_ALM_UPD 0x20
25 #define SPRD_RTC_MIN_ALM_UPD 0x24
26 #define SPRD_RTC_HOUR_ALM_UPD 0x28
27 #define SPRD_RTC_DAY_ALM_UPD 0x2c
28 #define SPRD_RTC_INT_EN 0x30
29 #define SPRD_RTC_INT_RAW_STS 0x34
30 #define SPRD_RTC_INT_CLR 0x38
31 #define SPRD_RTC_INT_MASK_STS 0x3C
32 #define SPRD_RTC_SEC_ALM_VALUE 0x40
33 #define SPRD_RTC_MIN_ALM_VALUE 0x44
34 #define SPRD_RTC_HOUR_ALM_VALUE 0x48
35 #define SPRD_RTC_DAY_ALM_VALUE 0x4c
36 #define SPRD_RTC_SPG_VALUE 0x50
37 #define SPRD_RTC_SPG_UPD 0x54
38 #define SPRD_RTC_PWR_CTRL 0x58
39 #define SPRD_RTC_PWR_STS 0x5c
40 #define SPRD_RTC_SEC_AUXALM_UPD 0x60
41 #define SPRD_RTC_MIN_AUXALM_UPD 0x64
42 #define SPRD_RTC_HOUR_AUXALM_UPD 0x68
43 #define SPRD_RTC_DAY_AUXALM_UPD 0x6c
45 /* BIT & MASK definition for SPRD_RTC_INT_* registers */
46 #define SPRD_RTC_SEC_EN BIT(0)
47 #define SPRD_RTC_MIN_EN BIT(1)
48 #define SPRD_RTC_HOUR_EN BIT(2)
49 #define SPRD_RTC_DAY_EN BIT(3)
50 #define SPRD_RTC_ALARM_EN BIT(4)
51 #define SPRD_RTC_HRS_FORMAT_EN BIT(5)
52 #define SPRD_RTC_AUXALM_EN BIT(6)
53 #define SPRD_RTC_SPG_UPD_EN BIT(7)
54 #define SPRD_RTC_SEC_UPD_EN BIT(8)
55 #define SPRD_RTC_MIN_UPD_EN BIT(9)
56 #define SPRD_RTC_HOUR_UPD_EN BIT(10)
57 #define SPRD_RTC_DAY_UPD_EN BIT(11)
58 #define SPRD_RTC_ALMSEC_UPD_EN BIT(12)
59 #define SPRD_RTC_ALMMIN_UPD_EN BIT(13)
60 #define SPRD_RTC_ALMHOUR_UPD_EN BIT(14)
61 #define SPRD_RTC_ALMDAY_UPD_EN BIT(15)
62 #define SPRD_RTC_INT_MASK GENMASK(15, 0)
64 #define SPRD_RTC_TIME_INT_MASK \
65 (SPRD_RTC_SEC_UPD_EN | SPRD_RTC_MIN_UPD_EN | \
66 SPRD_RTC_HOUR_UPD_EN | SPRD_RTC_DAY_UPD_EN)
68 #define SPRD_RTC_ALMTIME_INT_MASK \
69 (SPRD_RTC_ALMSEC_UPD_EN | SPRD_RTC_ALMMIN_UPD_EN | \
70 SPRD_RTC_ALMHOUR_UPD_EN | SPRD_RTC_ALMDAY_UPD_EN)
72 #define SPRD_RTC_ALM_INT_MASK \
73 (SPRD_RTC_SEC_EN | SPRD_RTC_MIN_EN | \
74 SPRD_RTC_HOUR_EN | SPRD_RTC_DAY_EN | \
75 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN)
77 /* second/minute/hour/day values mask definition */
78 #define SPRD_RTC_SEC_MASK GENMASK(5, 0)
79 #define SPRD_RTC_MIN_MASK GENMASK(5, 0)
80 #define SPRD_RTC_HOUR_MASK GENMASK(4, 0)
81 #define SPRD_RTC_DAY_MASK GENMASK(15, 0)
83 /* alarm lock definition for SPRD_RTC_SPG_UPD register */
84 #define SPRD_RTC_ALMLOCK_MASK GENMASK(7, 0)
85 #define SPRD_RTC_ALM_UNLOCK 0xa5
86 #define SPRD_RTC_ALM_LOCK (~SPRD_RTC_ALM_UNLOCK & \
87 SPRD_RTC_ALMLOCK_MASK)
89 /* SPG values definition for SPRD_RTC_SPG_UPD register */
90 #define SPRD_RTC_POWEROFF_ALM_FLAG BIT(8)
92 /* power control/status definition */
93 #define SPRD_RTC_POWER_RESET_VALUE 0x96
94 #define SPRD_RTC_POWER_STS_CLEAR GENMASK(7, 0)
95 #define SPRD_RTC_POWER_STS_SHIFT 8
96 #define SPRD_RTC_POWER_STS_VALID \
97 (~SPRD_RTC_POWER_RESET_VALUE << SPRD_RTC_POWER_STS_SHIFT)
99 /* timeout of synchronizing time and alarm registers (us) */
100 #define SPRD_RTC_POLL_TIMEOUT 200000
101 #define SPRD_RTC_POLL_DELAY_US 20000
103 struct sprd_rtc {
104 struct rtc_device *rtc;
105 struct regmap *regmap;
106 struct device *dev;
107 u32 base;
108 int irq;
109 bool valid;
113 * The Spreadtrum RTC controller has 3 groups registers, including time, normal
114 * alarm and auxiliary alarm. The time group registers are used to set RTC time,
115 * the normal alarm registers are used to set normal alarm, and the auxiliary
116 * alarm registers are used to set auxiliary alarm. Both alarm event and
117 * auxiliary alarm event can wake up system from deep sleep, but only alarm
118 * event can power up system from power down status.
120 enum sprd_rtc_reg_types {
121 SPRD_RTC_TIME,
122 SPRD_RTC_ALARM,
123 SPRD_RTC_AUX_ALARM,
126 static int sprd_rtc_clear_alarm_ints(struct sprd_rtc *rtc)
128 return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
129 SPRD_RTC_ALM_INT_MASK);
132 static int sprd_rtc_lock_alarm(struct sprd_rtc *rtc, bool lock)
134 int ret;
135 u32 val;
137 ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
138 if (ret)
139 return ret;
141 val &= ~SPRD_RTC_ALMLOCK_MASK;
142 if (lock)
143 val |= SPRD_RTC_ALM_LOCK;
144 else
145 val |= SPRD_RTC_ALM_UNLOCK | SPRD_RTC_POWEROFF_ALM_FLAG;
147 ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_SPG_UPD, val);
148 if (ret)
149 return ret;
151 /* wait until the SPG value is updated successfully */
152 ret = regmap_read_poll_timeout(rtc->regmap,
153 rtc->base + SPRD_RTC_INT_RAW_STS, val,
154 (val & SPRD_RTC_SPG_UPD_EN),
155 SPRD_RTC_POLL_DELAY_US,
156 SPRD_RTC_POLL_TIMEOUT);
157 if (ret) {
158 dev_err(rtc->dev, "failed to update SPG value:%d\n", ret);
159 return ret;
162 return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
163 SPRD_RTC_SPG_UPD_EN);
166 static int sprd_rtc_get_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
167 time64_t *secs)
169 u32 sec_reg, min_reg, hour_reg, day_reg;
170 u32 val, sec, min, hour, day;
171 int ret;
173 switch (type) {
174 case SPRD_RTC_TIME:
175 sec_reg = SPRD_RTC_SEC_CNT_VALUE;
176 min_reg = SPRD_RTC_MIN_CNT_VALUE;
177 hour_reg = SPRD_RTC_HOUR_CNT_VALUE;
178 day_reg = SPRD_RTC_DAY_CNT_VALUE;
179 break;
180 case SPRD_RTC_ALARM:
181 sec_reg = SPRD_RTC_SEC_ALM_VALUE;
182 min_reg = SPRD_RTC_MIN_ALM_VALUE;
183 hour_reg = SPRD_RTC_HOUR_ALM_VALUE;
184 day_reg = SPRD_RTC_DAY_ALM_VALUE;
185 break;
186 case SPRD_RTC_AUX_ALARM:
187 sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
188 min_reg = SPRD_RTC_MIN_AUXALM_UPD;
189 hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
190 day_reg = SPRD_RTC_DAY_AUXALM_UPD;
191 break;
192 default:
193 return -EINVAL;
196 ret = regmap_read(rtc->regmap, rtc->base + sec_reg, &val);
197 if (ret)
198 return ret;
200 sec = val & SPRD_RTC_SEC_MASK;
202 ret = regmap_read(rtc->regmap, rtc->base + min_reg, &val);
203 if (ret)
204 return ret;
206 min = val & SPRD_RTC_MIN_MASK;
208 ret = regmap_read(rtc->regmap, rtc->base + hour_reg, &val);
209 if (ret)
210 return ret;
212 hour = val & SPRD_RTC_HOUR_MASK;
214 ret = regmap_read(rtc->regmap, rtc->base + day_reg, &val);
215 if (ret)
216 return ret;
218 day = val & SPRD_RTC_DAY_MASK;
219 *secs = (((time64_t)(day * 24) + hour) * 60 + min) * 60 + sec;
220 return 0;
223 static int sprd_rtc_set_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
224 time64_t secs)
226 u32 sec_reg, min_reg, hour_reg, day_reg, sts_mask;
227 u32 sec, min, hour, day, val;
228 int ret, rem;
230 /* convert seconds to RTC time format */
231 day = div_s64_rem(secs, 86400, &rem);
232 hour = rem / 3600;
233 rem -= hour * 3600;
234 min = rem / 60;
235 sec = rem - min * 60;
237 switch (type) {
238 case SPRD_RTC_TIME:
239 sec_reg = SPRD_RTC_SEC_CNT_UPD;
240 min_reg = SPRD_RTC_MIN_CNT_UPD;
241 hour_reg = SPRD_RTC_HOUR_CNT_UPD;
242 day_reg = SPRD_RTC_DAY_CNT_UPD;
243 sts_mask = SPRD_RTC_TIME_INT_MASK;
244 break;
245 case SPRD_RTC_ALARM:
246 sec_reg = SPRD_RTC_SEC_ALM_UPD;
247 min_reg = SPRD_RTC_MIN_ALM_UPD;
248 hour_reg = SPRD_RTC_HOUR_ALM_UPD;
249 day_reg = SPRD_RTC_DAY_ALM_UPD;
250 sts_mask = SPRD_RTC_ALMTIME_INT_MASK;
251 break;
252 case SPRD_RTC_AUX_ALARM:
253 sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
254 min_reg = SPRD_RTC_MIN_AUXALM_UPD;
255 hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
256 day_reg = SPRD_RTC_DAY_AUXALM_UPD;
257 sts_mask = 0;
258 break;
259 default:
260 return -EINVAL;
263 ret = regmap_write(rtc->regmap, rtc->base + sec_reg, sec);
264 if (ret)
265 return ret;
267 ret = regmap_write(rtc->regmap, rtc->base + min_reg, min);
268 if (ret)
269 return ret;
271 ret = regmap_write(rtc->regmap, rtc->base + hour_reg, hour);
272 if (ret)
273 return ret;
275 ret = regmap_write(rtc->regmap, rtc->base + day_reg, day);
276 if (ret)
277 return ret;
279 if (type == SPRD_RTC_AUX_ALARM)
280 return 0;
283 * Since the time and normal alarm registers are put in always-power-on
284 * region supplied by VDDRTC, then these registers changing time will
285 * be very long, about 125ms. Thus here we should wait until all
286 * values are updated successfully.
288 ret = regmap_read_poll_timeout(rtc->regmap,
289 rtc->base + SPRD_RTC_INT_RAW_STS, val,
290 ((val & sts_mask) == sts_mask),
291 SPRD_RTC_POLL_DELAY_US,
292 SPRD_RTC_POLL_TIMEOUT);
293 if (ret < 0) {
294 dev_err(rtc->dev, "set time/alarm values timeout\n");
295 return ret;
298 return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
299 sts_mask);
302 static int sprd_rtc_set_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
304 struct sprd_rtc *rtc = dev_get_drvdata(dev);
305 time64_t secs = rtc_tm_to_time64(&alrm->time);
306 int ret;
308 /* clear the auxiliary alarm interrupt status */
309 ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
310 SPRD_RTC_AUXALM_EN);
311 if (ret)
312 return ret;
314 ret = sprd_rtc_set_secs(rtc, SPRD_RTC_AUX_ALARM, secs);
315 if (ret)
316 return ret;
318 if (alrm->enabled) {
319 ret = regmap_update_bits(rtc->regmap,
320 rtc->base + SPRD_RTC_INT_EN,
321 SPRD_RTC_AUXALM_EN,
322 SPRD_RTC_AUXALM_EN);
323 } else {
324 ret = regmap_update_bits(rtc->regmap,
325 rtc->base + SPRD_RTC_INT_EN,
326 SPRD_RTC_AUXALM_EN, 0);
329 return ret;
332 static int sprd_rtc_read_time(struct device *dev, struct rtc_time *tm)
334 struct sprd_rtc *rtc = dev_get_drvdata(dev);
335 time64_t secs;
336 int ret;
338 if (!rtc->valid) {
339 dev_warn(dev, "RTC values are invalid\n");
340 return -EINVAL;
343 ret = sprd_rtc_get_secs(rtc, SPRD_RTC_TIME, &secs);
344 if (ret)
345 return ret;
347 rtc_time64_to_tm(secs, tm);
348 return 0;
351 static int sprd_rtc_set_time(struct device *dev, struct rtc_time *tm)
353 struct sprd_rtc *rtc = dev_get_drvdata(dev);
354 time64_t secs = rtc_tm_to_time64(tm);
355 int ret;
357 ret = sprd_rtc_set_secs(rtc, SPRD_RTC_TIME, secs);
358 if (ret)
359 return ret;
361 if (!rtc->valid) {
362 /* Clear RTC power status firstly */
363 ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
364 SPRD_RTC_POWER_STS_CLEAR);
365 if (ret)
366 return ret;
369 * Set RTC power status to indicate now RTC has valid time
370 * values.
372 ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
373 SPRD_RTC_POWER_STS_VALID);
374 if (ret)
375 return ret;
377 rtc->valid = true;
380 return 0;
383 static int sprd_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
385 struct sprd_rtc *rtc = dev_get_drvdata(dev);
386 time64_t secs;
387 int ret;
388 u32 val;
391 * The RTC core checks to see if there is an alarm already set in RTC
392 * hardware, and we always read the normal alarm at this time.
394 ret = sprd_rtc_get_secs(rtc, SPRD_RTC_ALARM, &secs);
395 if (ret)
396 return ret;
398 rtc_time64_to_tm(secs, &alrm->time);
400 ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
401 if (ret)
402 return ret;
404 alrm->enabled = !!(val & SPRD_RTC_ALARM_EN);
406 ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
407 if (ret)
408 return ret;
410 alrm->pending = !!(val & SPRD_RTC_ALARM_EN);
411 return 0;
414 static int sprd_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
416 struct sprd_rtc *rtc = dev_get_drvdata(dev);
417 time64_t secs = rtc_tm_to_time64(&alrm->time);
418 struct rtc_time aie_time =
419 rtc_ktime_to_tm(rtc->rtc->aie_timer.node.expires);
420 int ret;
423 * We have 2 groups alarms: normal alarm and auxiliary alarm. Since
424 * both normal alarm event and auxiliary alarm event can wake up system
425 * from deep sleep, but only alarm event can power up system from power
426 * down status. Moreover we do not need to poll about 125ms when
427 * updating auxiliary alarm registers. Thus we usually set auxiliary
428 * alarm when wake up system from deep sleep, and for other scenarios,
429 * we should set normal alarm with polling status.
431 * So here we check if the alarm time is set by aie_timer, if yes, we
432 * should set normal alarm, if not, we should set auxiliary alarm which
433 * means it is just a wake event.
435 if (!rtc->rtc->aie_timer.enabled || rtc_tm_sub(&aie_time, &alrm->time))
436 return sprd_rtc_set_aux_alarm(dev, alrm);
438 /* clear the alarm interrupt status firstly */
439 ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
440 SPRD_RTC_ALARM_EN);
441 if (ret)
442 return ret;
444 ret = sprd_rtc_set_secs(rtc, SPRD_RTC_ALARM, secs);
445 if (ret)
446 return ret;
448 if (alrm->enabled) {
449 ret = regmap_update_bits(rtc->regmap,
450 rtc->base + SPRD_RTC_INT_EN,
451 SPRD_RTC_ALARM_EN,
452 SPRD_RTC_ALARM_EN);
453 if (ret)
454 return ret;
456 /* unlock the alarm to enable the alarm function. */
457 ret = sprd_rtc_lock_alarm(rtc, false);
458 } else {
459 regmap_update_bits(rtc->regmap,
460 rtc->base + SPRD_RTC_INT_EN,
461 SPRD_RTC_ALARM_EN, 0);
464 * Lock the alarm function in case fake alarm event will power
465 * up systems.
467 ret = sprd_rtc_lock_alarm(rtc, true);
470 return ret;
473 static int sprd_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
475 struct sprd_rtc *rtc = dev_get_drvdata(dev);
476 int ret;
478 if (enabled) {
479 ret = regmap_update_bits(rtc->regmap,
480 rtc->base + SPRD_RTC_INT_EN,
481 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN,
482 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN);
483 if (ret)
484 return ret;
486 ret = sprd_rtc_lock_alarm(rtc, false);
487 } else {
488 regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
489 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN, 0);
491 ret = sprd_rtc_lock_alarm(rtc, true);
494 return ret;
497 static const struct rtc_class_ops sprd_rtc_ops = {
498 .read_time = sprd_rtc_read_time,
499 .set_time = sprd_rtc_set_time,
500 .read_alarm = sprd_rtc_read_alarm,
501 .set_alarm = sprd_rtc_set_alarm,
502 .alarm_irq_enable = sprd_rtc_alarm_irq_enable,
505 static irqreturn_t sprd_rtc_handler(int irq, void *dev_id)
507 struct sprd_rtc *rtc = dev_id;
508 int ret;
510 ret = sprd_rtc_clear_alarm_ints(rtc);
511 if (ret)
512 return IRQ_RETVAL(ret);
514 rtc_update_irq(rtc->rtc, 1, RTC_AF | RTC_IRQF);
515 return IRQ_HANDLED;
518 static int sprd_rtc_check_power_down(struct sprd_rtc *rtc)
520 u32 val;
521 int ret;
523 ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_PWR_STS, &val);
524 if (ret)
525 return ret;
528 * If the RTC power status value is SPRD_RTC_POWER_RESET_VALUE, which
529 * means the RTC has been powered down, so the RTC time values are
530 * invalid.
532 rtc->valid = val != SPRD_RTC_POWER_RESET_VALUE;
533 return 0;
536 static int sprd_rtc_check_alarm_int(struct sprd_rtc *rtc)
538 u32 val;
539 int ret;
541 ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
542 if (ret)
543 return ret;
546 * The SPRD_RTC_INT_EN register is not put in always-power-on region
547 * supplied by VDDRTC, so we should check if we need enable the alarm
548 * interrupt when system booting.
550 * If we have set SPRD_RTC_POWEROFF_ALM_FLAG which is saved in
551 * always-power-on region, that means we have set one alarm last time,
552 * so we should enable the alarm interrupt to help RTC core to see if
553 * there is an alarm already set in RTC hardware.
555 if (!(val & SPRD_RTC_POWEROFF_ALM_FLAG))
556 return 0;
558 return regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
559 SPRD_RTC_ALARM_EN, SPRD_RTC_ALARM_EN);
562 static int sprd_rtc_probe(struct platform_device *pdev)
564 struct device_node *node = pdev->dev.of_node;
565 struct sprd_rtc *rtc;
566 int ret;
568 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
569 if (!rtc)
570 return -ENOMEM;
572 rtc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
573 if (!rtc->regmap)
574 return -ENODEV;
576 ret = of_property_read_u32(node, "reg", &rtc->base);
577 if (ret) {
578 dev_err(&pdev->dev, "failed to get RTC base address\n");
579 return ret;
582 rtc->irq = platform_get_irq(pdev, 0);
583 if (rtc->irq < 0)
584 return rtc->irq;
586 rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
587 if (IS_ERR(rtc->rtc))
588 return PTR_ERR(rtc->rtc);
590 rtc->dev = &pdev->dev;
591 platform_set_drvdata(pdev, rtc);
593 /* check if we need set the alarm interrupt */
594 ret = sprd_rtc_check_alarm_int(rtc);
595 if (ret) {
596 dev_err(&pdev->dev, "failed to check RTC alarm interrupt\n");
597 return ret;
600 /* check if RTC time values are valid */
601 ret = sprd_rtc_check_power_down(rtc);
602 if (ret) {
603 dev_err(&pdev->dev, "failed to check RTC time values\n");
604 return ret;
607 ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
608 sprd_rtc_handler,
609 IRQF_ONESHOT | IRQF_EARLY_RESUME,
610 pdev->name, rtc);
611 if (ret < 0) {
612 dev_err(&pdev->dev, "failed to request RTC irq\n");
613 return ret;
616 device_init_wakeup(&pdev->dev, 1);
618 rtc->rtc->ops = &sprd_rtc_ops;
619 rtc->rtc->range_min = 0;
620 rtc->rtc->range_max = 5662310399LL;
621 ret = devm_rtc_register_device(rtc->rtc);
622 if (ret) {
623 device_init_wakeup(&pdev->dev, 0);
624 return ret;
627 return 0;
630 static const struct of_device_id sprd_rtc_of_match[] = {
631 { .compatible = "sprd,sc2731-rtc", },
632 { },
634 MODULE_DEVICE_TABLE(of, sprd_rtc_of_match);
636 static struct platform_driver sprd_rtc_driver = {
637 .driver = {
638 .name = "sprd-rtc",
639 .of_match_table = sprd_rtc_of_match,
641 .probe = sprd_rtc_probe,
643 module_platform_driver(sprd_rtc_driver);
645 MODULE_LICENSE("GPL v2");
646 MODULE_DESCRIPTION("Spreadtrum RTC Device Driver");
647 MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");