Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / scsi / csiostor / csio_wr.c
bloba516df019c2240fab1f9851701fb658e7a047b07
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
39 #include <asm/page.h>
40 #include <linux/cache.h>
42 #include "t4_values.h"
43 #include "csio_hw.h"
44 #include "csio_wr.h"
45 #include "csio_mb.h"
46 #include "csio_defs.h"
48 int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
49 static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */
51 int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */
52 static int csio_sge_timer_reg = 1;
54 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
55 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
57 static void
58 csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
60 sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
61 reg * sizeof(uint32_t));
64 /* Free list buffer size */
65 static inline uint32_t
66 csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
68 return sge->sge_fl_buf_size[buf->paddr & 0xF];
71 /* Size of the egress queue status page */
72 static inline uint32_t
73 csio_wr_qstat_pgsz(struct csio_hw *hw)
75 return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
78 /* Ring freelist doorbell */
79 static inline void
80 csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
83 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
84 * number of bytes in the freelist queue. This translates to atleast
85 * 8 freelist buffer pointers (since each pointer is 8 bytes).
87 if (flq->inc_idx >= 8) {
88 csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
89 PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
90 MYPF_REG(SGE_PF_KDOORBELL_A));
91 flq->inc_idx &= 7;
95 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
96 static void
97 csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
99 csio_wr_reg32(hw, CIDXINC_V(0) |
100 INGRESSQID_V(iqid) |
101 TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
102 MYPF_REG(SGE_PF_GTS_A));
106 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
107 * @hw: HW module.
108 * @flq: Freelist queue.
110 * Fill up freelist buffer entries with buffers of size specified
111 * in the size register.
114 static int
115 csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
117 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
118 struct csio_sge *sge = &wrm->sge;
119 __be64 *d = (__be64 *)(flq->vstart);
120 struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
121 uint64_t paddr;
122 int sreg = flq->un.fl.sreg;
123 int n = flq->credits;
125 while (n--) {
126 buf->len = sge->sge_fl_buf_size[sreg];
127 buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len,
128 &buf->paddr, GFP_KERNEL);
129 if (!buf->vaddr) {
130 csio_err(hw, "Could only fill %d buffers!\n", n + 1);
131 return -ENOMEM;
134 paddr = buf->paddr | (sreg & 0xF);
136 *d++ = cpu_to_be64(paddr);
137 buf++;
140 return 0;
144 * csio_wr_update_fl -
145 * @hw: HW module.
146 * @flq: Freelist queue.
150 static inline void
151 csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
154 flq->inc_idx += n;
155 flq->pidx += n;
156 if (unlikely(flq->pidx >= flq->credits))
157 flq->pidx -= (uint16_t)flq->credits;
159 CSIO_INC_STATS(flq, n_flq_refill);
163 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
164 * @hw: HW module
165 * @qsize: Size of the queue in bytes
166 * @wrsize: Since of WR in this queue, if fixed.
167 * @type: Type of queue (Ingress/Egress/Freelist)
168 * @owner: Module that owns this queue.
169 * @nflb: Number of freelist buffers for FL.
170 * @sreg: What is the FL buffer size register?
171 * @iq_int_handler: Ingress queue handler in INTx mode.
173 * This function allocates and sets up a queue for the caller
174 * of size qsize, aligned at the required boundary. This is subject to
175 * be free entries being available in the queue array. If one is found,
176 * it is initialized with the allocated queue, marked as being used (owner),
177 * and a handle returned to the caller in form of the queue's index
178 * into the q_arr array.
179 * If user has indicated a freelist (by specifying nflb > 0), create
180 * another queue (with its own index into q_arr) for the freelist. Allocate
181 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
182 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
183 * with its owning ingress queue.
186 csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
187 uint16_t type, void *owner, uint32_t nflb, int sreg,
188 iq_handler_t iq_intx_handler)
190 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
191 struct csio_q *q, *flq;
192 int free_idx = wrm->free_qidx;
193 int ret_idx = free_idx;
194 uint32_t qsz;
195 int flq_idx;
197 if (free_idx >= wrm->num_q) {
198 csio_err(hw, "No more free queues.\n");
199 return -1;
202 switch (type) {
203 case CSIO_EGRESS:
204 qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
205 break;
206 case CSIO_INGRESS:
207 switch (wrsize) {
208 case 16:
209 case 32:
210 case 64:
211 case 128:
212 break;
213 default:
214 csio_err(hw, "Invalid Ingress queue WR size:%d\n",
215 wrsize);
216 return -1;
220 * Number of elements must be a multiple of 16
221 * So this includes status page size
223 qsz = ALIGN(qsize/wrsize, 16) * wrsize;
225 break;
226 case CSIO_FREELIST:
227 qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
228 break;
229 default:
230 csio_err(hw, "Invalid queue type: 0x%x\n", type);
231 return -1;
234 q = wrm->q_arr[free_idx];
236 q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart,
237 GFP_KERNEL);
238 if (!q->vstart) {
239 csio_err(hw,
240 "Failed to allocate DMA memory for "
241 "queue at id: %d size: %d\n", free_idx, qsize);
242 return -1;
245 q->type = type;
246 q->owner = owner;
247 q->pidx = q->cidx = q->inc_idx = 0;
248 q->size = qsz;
249 q->wr_sz = wrsize; /* If using fixed size WRs */
251 wrm->free_qidx++;
253 if (type == CSIO_INGRESS) {
254 /* Since queue area is set to zero */
255 q->un.iq.genbit = 1;
258 * Ingress queue status page size is always the size of
259 * the ingress queue entry.
261 q->credits = (qsz - q->wr_sz) / q->wr_sz;
262 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
263 - q->wr_sz);
265 /* Allocate memory for FL if requested */
266 if (nflb > 0) {
267 flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
268 sizeof(__be64), CSIO_FREELIST,
269 owner, 0, sreg, NULL);
270 if (flq_idx == -1) {
271 csio_err(hw,
272 "Failed to allocate FL queue"
273 " for IQ idx:%d\n", free_idx);
274 return -1;
277 /* Associate the new FL with the Ingress quue */
278 q->un.iq.flq_idx = flq_idx;
280 flq = wrm->q_arr[q->un.iq.flq_idx];
281 flq->un.fl.bufs = kcalloc(flq->credits,
282 sizeof(struct csio_dma_buf),
283 GFP_KERNEL);
284 if (!flq->un.fl.bufs) {
285 csio_err(hw,
286 "Failed to allocate FL queue bufs"
287 " for IQ idx:%d\n", free_idx);
288 return -1;
291 flq->un.fl.packen = 0;
292 flq->un.fl.offset = 0;
293 flq->un.fl.sreg = sreg;
295 /* Fill up the free list buffers */
296 if (csio_wr_fill_fl(hw, flq))
297 return -1;
300 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
301 * remains unpopulated,otherwise HW thinks
302 * FLQ is empty.
304 flq->pidx = flq->inc_idx = flq->credits - 8;
305 } else {
306 q->un.iq.flq_idx = -1;
309 /* Associate the IQ INTx handler. */
310 q->un.iq.iq_intx_handler = iq_intx_handler;
312 csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
314 } else if (type == CSIO_EGRESS) {
315 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
316 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
317 - csio_wr_qstat_pgsz(hw));
318 csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
319 } else { /* Freelist */
320 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
321 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
322 - csio_wr_qstat_pgsz(hw));
323 csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
326 return ret_idx;
330 * csio_wr_iq_create_rsp - Response handler for IQ creation.
331 * @hw: The HW module.
332 * @mbp: Mailbox.
333 * @iq_idx: Ingress queue that got created.
335 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
337 static int
338 csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
340 struct csio_iq_params iqp;
341 enum fw_retval retval;
342 uint32_t iq_id;
343 int flq_idx;
345 memset(&iqp, 0, sizeof(struct csio_iq_params));
347 csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
349 if (retval != FW_SUCCESS) {
350 csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
351 mempool_free(mbp, hw->mb_mempool);
352 return -EINVAL;
355 csio_q_iqid(hw, iq_idx) = iqp.iqid;
356 csio_q_physiqid(hw, iq_idx) = iqp.physiqid;
357 csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0;
358 csio_q_inc_idx(hw, iq_idx) = 0;
360 /* Actual iq-id. */
361 iq_id = iqp.iqid - hw->wrm.fw_iq_start;
363 /* Set the iq-id to iq map table. */
364 if (iq_id >= CSIO_MAX_IQ) {
365 csio_err(hw,
366 "Exceeding MAX_IQ(%d) supported!"
367 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
368 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
369 mempool_free(mbp, hw->mb_mempool);
370 return -EINVAL;
372 csio_q_set_intr_map(hw, iq_idx, iq_id);
375 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
376 * ingress context of this queue. This will block interrupts to
377 * this queue until the next GTS write. Therefore, we do a
378 * 0-cidx increment GTS write for this queue just to clear the
379 * interrupt_sent bit. This will re-enable interrupts to this
380 * queue.
382 csio_wr_sge_intr_enable(hw, iqp.physiqid);
384 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
385 if (flq_idx != -1) {
386 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
388 csio_q_flid(hw, flq_idx) = iqp.fl0id;
389 csio_q_cidx(hw, flq_idx) = 0;
390 csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
391 csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
393 /* Now update SGE about the buffers allocated during init */
394 csio_wr_ring_fldb(hw, flq);
397 mempool_free(mbp, hw->mb_mempool);
399 return 0;
403 * csio_wr_iq_create - Configure an Ingress queue with FW.
404 * @hw: The HW module.
405 * @priv: Private data object.
406 * @iq_idx: Ingress queue index in the WR module.
407 * @vec: MSIX vector.
408 * @portid: PCIE Channel to be associated with this queue.
409 * @async: Is this a FW asynchronous message handling queue?
410 * @cbfn: Completion callback.
412 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
413 * with alloc/write bits set.
416 csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
417 uint32_t vec, uint8_t portid, bool async,
418 void (*cbfn) (struct csio_hw *, struct csio_mb *))
420 struct csio_mb *mbp;
421 struct csio_iq_params iqp;
422 int flq_idx;
424 memset(&iqp, 0, sizeof(struct csio_iq_params));
425 csio_q_portid(hw, iq_idx) = portid;
427 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
428 if (!mbp) {
429 csio_err(hw, "IQ command out of memory!\n");
430 return -ENOMEM;
433 switch (hw->intr_mode) {
434 case CSIO_IM_INTX:
435 case CSIO_IM_MSI:
436 /* For interrupt forwarding queue only */
437 if (hw->intr_iq_idx == iq_idx)
438 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
439 else
440 iqp.iqandst = X_INTERRUPTDESTINATION_IQ;
441 iqp.iqandstindex =
442 csio_q_physiqid(hw, hw->intr_iq_idx);
443 break;
444 case CSIO_IM_MSIX:
445 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
446 iqp.iqandstindex = (uint16_t)vec;
447 break;
448 case CSIO_IM_NONE:
449 mempool_free(mbp, hw->mb_mempool);
450 return -EINVAL;
453 /* Pass in the ingress queue cmd parameters */
454 iqp.pfn = hw->pfn;
455 iqp.vfn = 0;
456 iqp.iq_start = 1;
457 iqp.viid = 0;
458 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
459 iqp.iqasynch = async;
460 if (csio_intr_coalesce_cnt)
461 iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
462 else
463 iqp.iqanus = X_UPDATESCHEDULING_TIMER;
464 iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT;
465 iqp.iqpciech = portid;
466 iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg;
468 switch (csio_q_wr_sz(hw, iq_idx)) {
469 case 16:
470 iqp.iqesize = 0; break;
471 case 32:
472 iqp.iqesize = 1; break;
473 case 64:
474 iqp.iqesize = 2; break;
475 case 128:
476 iqp.iqesize = 3; break;
479 iqp.iqsize = csio_q_size(hw, iq_idx) /
480 csio_q_wr_sz(hw, iq_idx);
481 iqp.iqaddr = csio_q_pstart(hw, iq_idx);
483 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
484 if (flq_idx != -1) {
485 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
486 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
488 iqp.fl0paden = 1;
489 iqp.fl0packen = flq->un.fl.packen ? 1 : 0;
490 iqp.fl0fbmin = X_FETCHBURSTMIN_64B;
491 iqp.fl0fbmax = ((chip == CHELSIO_T5) ?
492 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
493 iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
494 iqp.fl0addr = csio_q_pstart(hw, flq_idx);
497 csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
499 if (csio_mb_issue(hw, mbp)) {
500 csio_err(hw, "Issue of IQ cmd failed!\n");
501 mempool_free(mbp, hw->mb_mempool);
502 return -EINVAL;
505 if (cbfn != NULL)
506 return 0;
508 return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
512 * csio_wr_eq_create_rsp - Response handler for EQ creation.
513 * @hw: The HW module.
514 * @mbp: Mailbox.
515 * @eq_idx: Egress queue that got created.
517 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
519 static int
520 csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
522 struct csio_eq_params eqp;
523 enum fw_retval retval;
525 memset(&eqp, 0, sizeof(struct csio_eq_params));
527 csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
529 if (retval != FW_SUCCESS) {
530 csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
531 mempool_free(mbp, hw->mb_mempool);
532 return -EINVAL;
535 csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
536 csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
537 csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
538 csio_q_inc_idx(hw, eq_idx) = 0;
540 mempool_free(mbp, hw->mb_mempool);
542 return 0;
546 * csio_wr_eq_create - Configure an Egress queue with FW.
547 * @hw: HW module.
548 * @priv: Private data.
549 * @eq_idx: Egress queue index in the WR module.
550 * @iq_idx: Associated ingress queue index.
551 * @cbfn: Completion callback.
553 * This API configures a offload egress queue with FW by issuing a
554 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
557 csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
558 int iq_idx, uint8_t portid,
559 void (*cbfn) (struct csio_hw *, struct csio_mb *))
561 struct csio_mb *mbp;
562 struct csio_eq_params eqp;
564 memset(&eqp, 0, sizeof(struct csio_eq_params));
566 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
567 if (!mbp) {
568 csio_err(hw, "EQ command out of memory!\n");
569 return -ENOMEM;
572 eqp.pfn = hw->pfn;
573 eqp.vfn = 0;
574 eqp.eqstart = 1;
575 eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE;
576 eqp.iqid = csio_q_iqid(hw, iq_idx);
577 eqp.fbmin = X_FETCHBURSTMIN_64B;
578 eqp.fbmax = X_FETCHBURSTMAX_512B;
579 eqp.cidxfthresh = 0;
580 eqp.pciechn = portid;
581 eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
582 eqp.eqaddr = csio_q_pstart(hw, eq_idx);
584 csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
585 &eqp, cbfn);
587 if (csio_mb_issue(hw, mbp)) {
588 csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
589 mempool_free(mbp, hw->mb_mempool);
590 return -EINVAL;
593 if (cbfn != NULL)
594 return 0;
596 return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
600 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
601 * @hw: The HW module.
602 * @mbp: Mailbox.
603 * @iq_idx: Ingress queue that was freed.
605 * Handle FW_IQ_CMD (free) mailbox completion.
607 static int
608 csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
610 enum fw_retval retval = csio_mb_fw_retval(mbp);
611 int rv = 0;
613 if (retval != FW_SUCCESS)
614 rv = -EINVAL;
616 mempool_free(mbp, hw->mb_mempool);
618 return rv;
622 * csio_wr_iq_destroy - Free an ingress queue.
623 * @hw: The HW module.
624 * @priv: Private data object.
625 * @iq_idx: Ingress queue index to destroy
626 * @cbfn: Completion callback.
628 * This API frees an ingress queue by issuing the FW_IQ_CMD
629 * with the free bit set.
631 static int
632 csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
633 void (*cbfn)(struct csio_hw *, struct csio_mb *))
635 int rv = 0;
636 struct csio_mb *mbp;
637 struct csio_iq_params iqp;
638 int flq_idx;
640 memset(&iqp, 0, sizeof(struct csio_iq_params));
642 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
643 if (!mbp)
644 return -ENOMEM;
646 iqp.pfn = hw->pfn;
647 iqp.vfn = 0;
648 iqp.iqid = csio_q_iqid(hw, iq_idx);
649 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
651 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
652 if (flq_idx != -1)
653 iqp.fl0id = csio_q_flid(hw, flq_idx);
654 else
655 iqp.fl0id = 0xFFFF;
657 iqp.fl1id = 0xFFFF;
659 csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
661 rv = csio_mb_issue(hw, mbp);
662 if (rv != 0) {
663 mempool_free(mbp, hw->mb_mempool);
664 return rv;
667 if (cbfn != NULL)
668 return 0;
670 return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
674 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
675 * @hw: The HW module.
676 * @mbp: Mailbox.
677 * @eq_idx: Egress queue that was freed.
679 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
681 static int
682 csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
684 enum fw_retval retval = csio_mb_fw_retval(mbp);
685 int rv = 0;
687 if (retval != FW_SUCCESS)
688 rv = -EINVAL;
690 mempool_free(mbp, hw->mb_mempool);
692 return rv;
696 * csio_wr_eq_destroy - Free an Egress queue.
697 * @hw: The HW module.
698 * @priv: Private data object.
699 * @eq_idx: Egress queue index to destroy
700 * @cbfn: Completion callback.
702 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
703 * with the free bit set.
705 static int
706 csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
707 void (*cbfn) (struct csio_hw *, struct csio_mb *))
709 int rv = 0;
710 struct csio_mb *mbp;
711 struct csio_eq_params eqp;
713 memset(&eqp, 0, sizeof(struct csio_eq_params));
715 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
716 if (!mbp)
717 return -ENOMEM;
719 eqp.pfn = hw->pfn;
720 eqp.vfn = 0;
721 eqp.eqid = csio_q_eqid(hw, eq_idx);
723 csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
725 rv = csio_mb_issue(hw, mbp);
726 if (rv != 0) {
727 mempool_free(mbp, hw->mb_mempool);
728 return rv;
731 if (cbfn != NULL)
732 return 0;
734 return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
738 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
739 * @hw: HW module
740 * @qidx: Egress queue index
742 * Cleanup the Egress queue status page.
744 static void
745 csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
747 struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx];
748 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
750 memset(stp, 0, sizeof(*stp));
754 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
755 * @hw: HW module
756 * @qidx: Ingress queue index
758 * Cleanup the footer entries in the given ingress queue,
759 * set to 1 the internal copy of genbit.
761 static void
762 csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
764 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
765 struct csio_q *q = wrm->q_arr[qidx];
766 void *wr;
767 struct csio_iqwr_footer *ftr;
768 uint32_t i = 0;
770 /* set to 1 since we are just about zero out genbit */
771 q->un.iq.genbit = 1;
773 for (i = 0; i < q->credits; i++) {
774 /* Get the WR */
775 wr = (void *)((uintptr_t)q->vstart +
776 (i * q->wr_sz));
777 /* Get the footer */
778 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
779 (q->wr_sz - sizeof(*ftr)));
780 /* Zero out footer */
781 memset(ftr, 0, sizeof(*ftr));
786 csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
788 int i, flq_idx;
789 struct csio_q *q;
790 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
791 int rv;
793 for (i = 0; i < wrm->free_qidx; i++) {
794 q = wrm->q_arr[i];
796 switch (q->type) {
797 case CSIO_EGRESS:
798 if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
799 csio_wr_cleanup_eq_stpg(hw, i);
800 if (!cmd) {
801 csio_q_eqid(hw, i) = CSIO_MAX_QID;
802 continue;
805 rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
806 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
807 cmd = false;
809 csio_q_eqid(hw, i) = CSIO_MAX_QID;
811 fallthrough;
812 case CSIO_INGRESS:
813 if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
814 csio_wr_cleanup_iq_ftr(hw, i);
815 if (!cmd) {
816 csio_q_iqid(hw, i) = CSIO_MAX_QID;
817 flq_idx = csio_q_iq_flq_idx(hw, i);
818 if (flq_idx != -1)
819 csio_q_flid(hw, flq_idx) =
820 CSIO_MAX_QID;
821 continue;
824 rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
825 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
826 cmd = false;
828 csio_q_iqid(hw, i) = CSIO_MAX_QID;
829 flq_idx = csio_q_iq_flq_idx(hw, i);
830 if (flq_idx != -1)
831 csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
833 break;
834 default:
835 break;
839 hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
841 return 0;
845 * csio_wr_get - Get requested size of WR entry/entries from queue.
846 * @hw: HW module.
847 * @qidx: Index of queue.
848 * @size: Cumulative size of Work request(s).
849 * @wrp: Work request pair.
851 * If requested credits are available, return the start address of the
852 * work request in the work request pair. Set pidx accordingly and
853 * return.
855 * NOTE about WR pair:
856 * ==================
857 * A WR can start towards the end of a queue, and then continue at the
858 * beginning, since the queue is considered to be circular. This will
859 * require a pair of address/size to be passed back to the caller -
860 * hence Work request pair format.
863 csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
864 struct csio_wr_pair *wrp)
866 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
867 struct csio_q *q = wrm->q_arr[qidx];
868 void *cwr = (void *)((uintptr_t)(q->vstart) +
869 (q->pidx * CSIO_QCREDIT_SZ));
870 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
871 uint16_t cidx = q->cidx = ntohs(stp->cidx);
872 uint16_t pidx = q->pidx;
873 uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
874 int req_credits = req_sz / CSIO_QCREDIT_SZ;
875 int credits;
877 CSIO_DB_ASSERT(q->owner != NULL);
878 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
879 CSIO_DB_ASSERT(cidx <= q->credits);
881 /* Calculate credits */
882 if (pidx > cidx) {
883 credits = q->credits - (pidx - cidx) - 1;
884 } else if (cidx > pidx) {
885 credits = cidx - pidx - 1;
886 } else {
887 /* cidx == pidx, empty queue */
888 credits = q->credits;
889 CSIO_INC_STATS(q, n_qempty);
893 * Check if we have enough credits.
894 * credits = 1 implies queue is full.
896 if (!credits || (req_credits > credits)) {
897 CSIO_INC_STATS(q, n_qfull);
898 return -EBUSY;
902 * If we are here, we have enough credits to satisfy the
903 * request. Check if we are near the end of q, and if WR spills over.
904 * If it does, use the first addr/size to cover the queue until
905 * the end. Fit the remainder portion of the request at the top
906 * of queue and return it in the second addr/len. Set pidx
907 * accordingly.
909 if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
910 wrp->addr1 = cwr;
911 wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
912 wrp->addr2 = q->vstart;
913 wrp->size2 = req_sz - wrp->size1;
914 q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
915 CSIO_QCREDIT_SZ);
916 CSIO_INC_STATS(q, n_qwrap);
917 CSIO_INC_STATS(q, n_eq_wr_split);
918 } else {
919 wrp->addr1 = cwr;
920 wrp->size1 = req_sz;
921 wrp->addr2 = NULL;
922 wrp->size2 = 0;
923 q->pidx += (uint16_t)req_credits;
925 /* We are the end of queue, roll back pidx to top of queue */
926 if (unlikely(q->pidx == q->credits)) {
927 q->pidx = 0;
928 CSIO_INC_STATS(q, n_qwrap);
932 q->inc_idx = (uint16_t)req_credits;
934 CSIO_INC_STATS(q, n_tot_reqs);
936 return 0;
940 * csio_wr_copy_to_wrp - Copies given data into WR.
941 * @data_buf - Data buffer
942 * @wrp - Work request pair.
943 * @wr_off - Work request offset.
944 * @data_len - Data length.
946 * Copies the given data in Work Request. Work request pair(wrp) specifies
947 * address information of Work request.
948 * Returns: none
950 void
951 csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
952 uint32_t wr_off, uint32_t data_len)
954 uint32_t nbytes;
956 /* Number of space available in buffer addr1 of WRP */
957 nbytes = ((wrp->size1 - wr_off) >= data_len) ?
958 data_len : (wrp->size1 - wr_off);
960 memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
961 data_len -= nbytes;
963 /* Write the remaining data from the begining of circular buffer */
964 if (data_len) {
965 CSIO_DB_ASSERT(data_len <= wrp->size2);
966 CSIO_DB_ASSERT(wrp->addr2 != NULL);
967 memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
972 * csio_wr_issue - Notify chip of Work request.
973 * @hw: HW module.
974 * @qidx: Index of queue.
975 * @prio: 0: Low priority, 1: High priority
977 * Rings the SGE Doorbell by writing the current producer index of the passed
978 * in queue into the register.
982 csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
984 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
985 struct csio_q *q = wrm->q_arr[qidx];
987 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
989 wmb();
990 /* Ring SGE Doorbell writing q->pidx into it */
991 csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
992 PIDX_T5_V(q->inc_idx) | DBTYPE_F,
993 MYPF_REG(SGE_PF_KDOORBELL_A));
994 q->inc_idx = 0;
996 return 0;
999 static inline uint32_t
1000 csio_wr_avail_qcredits(struct csio_q *q)
1002 if (q->pidx > q->cidx)
1003 return q->pidx - q->cidx;
1004 else if (q->cidx > q->pidx)
1005 return q->credits - (q->cidx - q->pidx);
1006 else
1007 return 0; /* cidx == pidx, empty queue */
1011 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1012 * @hw: HW module.
1013 * @flq: The freelist queue.
1015 * Invalidate the driver's version of a freelist buffer entry,
1016 * without freeing the associated the DMA memory. The entry
1017 * to be invalidated is picked up from the current Free list
1018 * queue cidx.
1021 static inline void
1022 csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1024 flq->cidx++;
1025 if (flq->cidx == flq->credits) {
1026 flq->cidx = 0;
1027 CSIO_INC_STATS(flq, n_qwrap);
1032 * csio_wr_process_fl - Process a freelist completion.
1033 * @hw: HW module.
1034 * @q: The ingress queue attached to the Freelist.
1035 * @wr: The freelist completion WR in the ingress queue.
1036 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1037 * @iq_handler: Caller's handler for this completion.
1038 * @priv: Private pointer of caller
1041 static inline void
1042 csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1043 void *wr, uint32_t len_to_qid,
1044 void (*iq_handler)(struct csio_hw *, void *,
1045 uint32_t, struct csio_fl_dma_buf *,
1046 void *),
1047 void *priv)
1049 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1050 struct csio_sge *sge = &wrm->sge;
1051 struct csio_fl_dma_buf flb;
1052 struct csio_dma_buf *buf, *fbuf;
1053 uint32_t bufsz, len, lastlen = 0;
1054 struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1056 CSIO_DB_ASSERT(flq != NULL);
1058 len = len_to_qid;
1060 if (len & IQWRF_NEWBUF) {
1061 if (flq->un.fl.offset > 0) {
1062 csio_wr_inval_flq_buf(hw, flq);
1063 flq->un.fl.offset = 0;
1065 len = IQWRF_LEN_GET(len);
1068 CSIO_DB_ASSERT(len != 0);
1070 flb.totlen = len;
1072 /* Consume all freelist buffers used for len bytes */
1073 for (fbuf = flb.flbufs; ; fbuf++) {
1074 buf = &flq->un.fl.bufs[flq->cidx];
1075 bufsz = csio_wr_fl_bufsz(sge, buf);
1077 fbuf->paddr = buf->paddr;
1078 fbuf->vaddr = buf->vaddr;
1080 flb.offset = flq->un.fl.offset;
1081 lastlen = min(bufsz, len);
1082 fbuf->len = lastlen;
1084 len -= lastlen;
1085 if (!len)
1086 break;
1087 csio_wr_inval_flq_buf(hw, flq);
1090 flb.defer_free = flq->un.fl.packen ? 0 : 1;
1092 iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1093 &flb, priv);
1095 if (flq->un.fl.packen)
1096 flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1097 else
1098 csio_wr_inval_flq_buf(hw, flq);
1103 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1104 * @q: Ingress quueue.
1105 * @ftr: Ingress queue WR SGE footer.
1107 * The entry is new if our generation bit matches the corresponding
1108 * bit in the footer of the current WR.
1110 static inline bool
1111 csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1113 return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1117 * csio_wr_process_iq - Process elements in Ingress queue.
1118 * @hw: HW pointer
1119 * @qidx: Index of queue
1120 * @iq_handler: Handler for this queue
1121 * @priv: Caller's private pointer
1123 * This routine walks through every entry of the ingress queue, calling
1124 * the provided iq_handler with the entry, until the generation bit
1125 * flips.
1128 csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1129 void (*iq_handler)(struct csio_hw *, void *,
1130 uint32_t, struct csio_fl_dma_buf *,
1131 void *),
1132 void *priv)
1134 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1135 void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1136 struct csio_iqwr_footer *ftr;
1137 uint32_t wr_type, fw_qid, qid;
1138 struct csio_q *q_completed;
1139 struct csio_q *flq = csio_iq_has_fl(q) ?
1140 wrm->q_arr[q->un.iq.flq_idx] : NULL;
1141 int rv = 0;
1143 /* Get the footer */
1144 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1145 (q->wr_sz - sizeof(*ftr)));
1148 * When q wrapped around last time, driver should have inverted
1149 * ic.genbit as well.
1151 while (csio_is_new_iqwr(q, ftr)) {
1153 CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1154 (uintptr_t)q->vwrap);
1155 rmb();
1156 wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1158 switch (wr_type) {
1159 case X_RSPD_TYPE_CPL:
1160 /* Subtract footer from WR len */
1161 iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1162 break;
1163 case X_RSPD_TYPE_FLBUF:
1164 csio_wr_process_fl(hw, q, wr,
1165 ntohl(ftr->pldbuflen_qid),
1166 iq_handler, priv);
1167 break;
1168 case X_RSPD_TYPE_INTR:
1169 fw_qid = ntohl(ftr->pldbuflen_qid);
1170 qid = fw_qid - wrm->fw_iq_start;
1171 q_completed = hw->wrm.intr_map[qid];
1173 if (unlikely(qid ==
1174 csio_q_physiqid(hw, hw->intr_iq_idx))) {
1176 * We are already in the Forward Interrupt
1177 * Interrupt Queue Service! Do-not service
1178 * again!
1181 } else {
1182 CSIO_DB_ASSERT(q_completed);
1183 CSIO_DB_ASSERT(
1184 q_completed->un.iq.iq_intx_handler);
1186 /* Call the queue handler. */
1187 q_completed->un.iq.iq_intx_handler(hw, NULL,
1188 0, NULL, (void *)q_completed);
1190 break;
1191 default:
1192 csio_warn(hw, "Unknown resp type 0x%x received\n",
1193 wr_type);
1194 CSIO_INC_STATS(q, n_rsp_unknown);
1195 break;
1199 * Ingress *always* has fixed size WR entries. Therefore,
1200 * there should always be complete WRs towards the end of
1201 * queue.
1203 if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1205 /* Roll over to start of queue */
1206 q->cidx = 0;
1207 wr = q->vstart;
1209 /* Toggle genbit */
1210 q->un.iq.genbit ^= 0x1;
1212 CSIO_INC_STATS(q, n_qwrap);
1213 } else {
1214 q->cidx++;
1215 wr = (void *)((uintptr_t)(q->vstart) +
1216 (q->cidx * q->wr_sz));
1219 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1220 (q->wr_sz - sizeof(*ftr)));
1221 q->inc_idx++;
1223 } /* while (q->un.iq.genbit == hdr->genbit) */
1226 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1227 * especially in msix mode. With INTx, this may be a common occurence.
1229 if (unlikely(!q->inc_idx)) {
1230 CSIO_INC_STATS(q, n_stray_comp);
1231 rv = -EINVAL;
1232 goto restart;
1235 /* Replenish free list buffers if pending falls below low water mark */
1236 if (flq) {
1237 uint32_t avail = csio_wr_avail_qcredits(flq);
1238 if (avail <= 16) {
1239 /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1240 * remains unpopulated otherwise HW thinks
1241 * FLQ is empty.
1243 csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1244 csio_wr_ring_fldb(hw, flq);
1248 restart:
1249 /* Now inform SGE about our incremental index value */
1250 csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) |
1251 INGRESSQID_V(q->un.iq.physiqid) |
1252 TIMERREG_V(csio_sge_timer_reg),
1253 MYPF_REG(SGE_PF_GTS_A));
1254 q->stats.n_tot_rsps += q->inc_idx;
1256 q->inc_idx = 0;
1258 return rv;
1262 csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1263 void (*iq_handler)(struct csio_hw *, void *,
1264 uint32_t, struct csio_fl_dma_buf *,
1265 void *),
1266 void *priv)
1268 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1269 struct csio_q *iq = wrm->q_arr[qidx];
1271 return csio_wr_process_iq(hw, iq, iq_handler, priv);
1274 static int
1275 csio_closest_timer(struct csio_sge *s, int time)
1277 int i, delta, match = 0, min_delta = INT_MAX;
1279 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1280 delta = time - s->timer_val[i];
1281 if (delta < 0)
1282 delta = -delta;
1283 if (delta < min_delta) {
1284 min_delta = delta;
1285 match = i;
1288 return match;
1291 static int
1292 csio_closest_thresh(struct csio_sge *s, int cnt)
1294 int i, delta, match = 0, min_delta = INT_MAX;
1296 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1297 delta = cnt - s->counter_val[i];
1298 if (delta < 0)
1299 delta = -delta;
1300 if (delta < min_delta) {
1301 min_delta = delta;
1302 match = i;
1305 return match;
1308 static void
1309 csio_wr_fixup_host_params(struct csio_hw *hw)
1311 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1312 struct csio_sge *sge = &wrm->sge;
1313 uint32_t clsz = L1_CACHE_BYTES;
1314 uint32_t s_hps = PAGE_SHIFT - 10;
1315 uint32_t stat_len = clsz > 64 ? 128 : 64;
1316 u32 fl_align = clsz < 32 ? 32 : clsz;
1317 u32 pack_align;
1318 u32 ingpad, ingpack;
1320 csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1321 HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1322 HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1323 HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1324 SGE_HOST_PAGE_SIZE_A);
1326 /* T5 introduced the separation of the Free List Padding and
1327 * Packing Boundaries. Thus, we can select a smaller Padding
1328 * Boundary to avoid uselessly chewing up PCIe Link and Memory
1329 * Bandwidth, and use a Packing Boundary which is large enough
1330 * to avoid false sharing between CPUs, etc.
1332 * For the PCI Link, the smaller the Padding Boundary the
1333 * better. For the Memory Controller, a smaller Padding
1334 * Boundary is better until we cross under the Memory Line
1335 * Size (the minimum unit of transfer to/from Memory). If we
1336 * have a Padding Boundary which is smaller than the Memory
1337 * Line Size, that'll involve a Read-Modify-Write cycle on the
1338 * Memory Controller which is never good.
1341 /* We want the Packing Boundary to be based on the Cache Line
1342 * Size in order to help avoid False Sharing performance
1343 * issues between CPUs, etc. We also want the Packing
1344 * Boundary to incorporate the PCI-E Maximum Payload Size. We
1345 * get best performance when the Packing Boundary is a
1346 * multiple of the Maximum Payload Size.
1348 pack_align = fl_align;
1349 if (pci_is_pcie(hw->pdev)) {
1350 u32 mps, mps_log;
1351 u16 devctl;
1353 /* The PCIe Device Control Maximum Payload Size field
1354 * [bits 7:5] encodes sizes as powers of 2 starting at
1355 * 128 bytes.
1357 pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl);
1358 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
1359 mps = 1 << mps_log;
1360 if (mps > pack_align)
1361 pack_align = mps;
1364 /* T5/T6 have a special interpretation of the "0"
1365 * value for the Packing Boundary. This corresponds to 16
1366 * bytes instead of the expected 32 bytes.
1368 if (pack_align <= 16) {
1369 ingpack = INGPACKBOUNDARY_16B_X;
1370 fl_align = 16;
1371 } else if (pack_align == 32) {
1372 ingpack = INGPACKBOUNDARY_64B_X;
1373 fl_align = 64;
1374 } else {
1375 u32 pack_align_log = fls(pack_align) - 1;
1377 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
1378 fl_align = pack_align;
1381 /* Use the smallest Ingress Padding which isn't smaller than
1382 * the Memory Controller Read/Write Size. We'll take that as
1383 * being 8 bytes since we don't know of any system with a
1384 * wider Memory Controller Bus Width.
1386 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
1387 ingpad = INGPADBOUNDARY_32B_X;
1388 else
1389 ingpad = T6_INGPADBOUNDARY_8B_X;
1391 csio_set_reg_field(hw, SGE_CONTROL_A,
1392 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1393 EGRSTATUSPAGESIZE_F,
1394 INGPADBOUNDARY_V(ingpad) |
1395 EGRSTATUSPAGESIZE_V(stat_len != 64));
1396 csio_set_reg_field(hw, SGE_CONTROL2_A,
1397 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
1398 INGPACKBOUNDARY_V(ingpack));
1400 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1401 csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1404 * If using hard params, the following will get set correctly
1405 * in csio_wr_set_sge().
1407 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1408 csio_wr_reg32(hw,
1409 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1410 fl_align - 1) & ~(fl_align - 1),
1411 SGE_FL_BUFFER_SIZE2_A);
1412 csio_wr_reg32(hw,
1413 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1414 fl_align - 1) & ~(fl_align - 1),
1415 SGE_FL_BUFFER_SIZE3_A);
1418 sge->csio_fl_align = fl_align;
1420 csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1422 /* default value of rx_dma_offset of the NIC driver */
1423 csio_set_reg_field(hw, SGE_CONTROL_A,
1424 PKTSHIFT_V(PKTSHIFT_M),
1425 PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1427 csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1428 CSUM_HAS_PSEUDO_HDR_F, 0);
1431 static void
1432 csio_init_intr_coalesce_parms(struct csio_hw *hw)
1434 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1435 struct csio_sge *sge = &wrm->sge;
1437 csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1438 if (csio_intr_coalesce_cnt) {
1439 csio_sge_thresh_reg = 0;
1440 csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1441 return;
1444 csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1448 * csio_wr_get_sge - Get SGE register values.
1449 * @hw: HW module.
1451 * Used by non-master functions and by master-functions relying on config file.
1453 static void
1454 csio_wr_get_sge(struct csio_hw *hw)
1456 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1457 struct csio_sge *sge = &wrm->sge;
1458 uint32_t ingpad;
1459 int i;
1460 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1461 u32 ingress_rx_threshold;
1463 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1465 ingpad = INGPADBOUNDARY_G(sge->sge_control);
1467 switch (ingpad) {
1468 case X_INGPCIEBOUNDARY_32B:
1469 sge->csio_fl_align = 32; break;
1470 case X_INGPCIEBOUNDARY_64B:
1471 sge->csio_fl_align = 64; break;
1472 case X_INGPCIEBOUNDARY_128B:
1473 sge->csio_fl_align = 128; break;
1474 case X_INGPCIEBOUNDARY_256B:
1475 sge->csio_fl_align = 256; break;
1476 case X_INGPCIEBOUNDARY_512B:
1477 sge->csio_fl_align = 512; break;
1478 case X_INGPCIEBOUNDARY_1024B:
1479 sge->csio_fl_align = 1024; break;
1480 case X_INGPCIEBOUNDARY_2048B:
1481 sge->csio_fl_align = 2048; break;
1482 case X_INGPCIEBOUNDARY_4096B:
1483 sge->csio_fl_align = 4096; break;
1486 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1487 csio_get_flbuf_size(hw, sge, i);
1489 timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1490 timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1491 timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1493 sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1494 TIMERVALUE0_G(timer_value_0_and_1));
1495 sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1496 TIMERVALUE1_G(timer_value_0_and_1));
1497 sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1498 TIMERVALUE2_G(timer_value_2_and_3));
1499 sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1500 TIMERVALUE3_G(timer_value_2_and_3));
1501 sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1502 TIMERVALUE4_G(timer_value_4_and_5));
1503 sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1504 TIMERVALUE5_G(timer_value_4_and_5));
1506 ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1507 sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1508 sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1509 sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1510 sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1512 csio_init_intr_coalesce_parms(hw);
1516 * csio_wr_set_sge - Initialize SGE registers
1517 * @hw: HW module.
1519 * Used by Master function to initialize SGE registers in the absence
1520 * of a config file.
1522 static void
1523 csio_wr_set_sge(struct csio_hw *hw)
1525 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1526 struct csio_sge *sge = &wrm->sge;
1527 int i;
1530 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1531 * Queue and Packet Date to the Free List.
1533 csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1535 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1537 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1540 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1541 * and generate an interrupt when this occurs so we can recover.
1543 csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1544 LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1545 LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1546 csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1547 HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1548 HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1550 csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1551 ENABLE_DROP_F);
1553 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1555 CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1556 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1557 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1558 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1559 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1560 CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1561 CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1562 CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1563 CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1564 CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1566 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1567 csio_get_flbuf_size(hw, sge, i);
1569 /* Initialize interrupt coalescing attributes */
1570 sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1571 sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1572 sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1573 sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1574 sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1575 sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1577 sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1578 sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1579 sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1580 sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1582 csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1583 THRESHOLD_1_V(sge->counter_val[1]) |
1584 THRESHOLD_2_V(sge->counter_val[2]) |
1585 THRESHOLD_3_V(sge->counter_val[3]),
1586 SGE_INGRESS_RX_THRESHOLD_A);
1588 csio_wr_reg32(hw,
1589 TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1590 TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1591 SGE_TIMER_VALUE_0_AND_1_A);
1593 csio_wr_reg32(hw,
1594 TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1595 TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1596 SGE_TIMER_VALUE_2_AND_3_A);
1598 csio_wr_reg32(hw,
1599 TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1600 TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1601 SGE_TIMER_VALUE_4_AND_5_A);
1603 csio_init_intr_coalesce_parms(hw);
1606 void
1607 csio_wr_sge_init(struct csio_hw *hw)
1610 * If we are master and chip is not initialized:
1611 * - If we plan to use the config file, we need to fixup some
1612 * host specific registers, and read the rest of the SGE
1613 * configuration.
1614 * - If we dont plan to use the config file, we need to initialize
1615 * SGE entirely, including fixing the host specific registers.
1616 * If we are master and chip is initialized, just read and work off of
1617 * the already initialized SGE values.
1618 * If we arent the master, we are only allowed to read and work off of
1619 * the already initialized SGE values.
1621 * Therefore, before calling this function, we assume that the master-
1622 * ship of the card, state and whether to use config file or not, have
1623 * already been decided.
1625 if (csio_is_hw_master(hw)) {
1626 if (hw->fw_state != CSIO_DEV_STATE_INIT)
1627 csio_wr_fixup_host_params(hw);
1629 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1630 csio_wr_get_sge(hw);
1631 else
1632 csio_wr_set_sge(hw);
1633 } else
1634 csio_wr_get_sge(hw);
1638 * csio_wrm_init - Initialize Work request module.
1639 * @wrm: WR module
1640 * @hw: HW pointer
1642 * Allocates memory for an array of queue pointers starting at q_arr.
1645 csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1647 int i;
1649 if (!wrm->num_q) {
1650 csio_err(hw, "Num queues is not set\n");
1651 return -EINVAL;
1654 wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
1655 if (!wrm->q_arr)
1656 goto err;
1658 for (i = 0; i < wrm->num_q; i++) {
1659 wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1660 if (!wrm->q_arr[i]) {
1661 while (--i >= 0)
1662 kfree(wrm->q_arr[i]);
1663 goto err_free_arr;
1666 wrm->free_qidx = 0;
1668 return 0;
1670 err_free_arr:
1671 kfree(wrm->q_arr);
1672 err:
1673 return -ENOMEM;
1677 * csio_wrm_exit - Initialize Work request module.
1678 * @wrm: WR module
1679 * @hw: HW module
1681 * Uninitialize WR module. Free q_arr and pointers in it.
1682 * We have the additional job of freeing the DMA memory associated
1683 * with the queues.
1685 void
1686 csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1688 int i;
1689 uint32_t j;
1690 struct csio_q *q;
1691 struct csio_dma_buf *buf;
1693 for (i = 0; i < wrm->num_q; i++) {
1694 q = wrm->q_arr[i];
1696 if (wrm->free_qidx && (i < wrm->free_qidx)) {
1697 if (q->type == CSIO_FREELIST) {
1698 if (!q->un.fl.bufs)
1699 continue;
1700 for (j = 0; j < q->credits; j++) {
1701 buf = &q->un.fl.bufs[j];
1702 if (!buf->vaddr)
1703 continue;
1704 dma_free_coherent(&hw->pdev->dev,
1705 buf->len, buf->vaddr,
1706 buf->paddr);
1708 kfree(q->un.fl.bufs);
1710 dma_free_coherent(&hw->pdev->dev, q->size,
1711 q->vstart, q->pstart);
1713 kfree(q);
1716 hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1718 kfree(wrm->q_arr);