1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
5 * Copyright 2016 Broadcom
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/mtd/spi-nor.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
27 #define DRIVER_NAME "bcm_qspi"
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID 0x000
32 #define BSPI_SCRATCH 0x004
33 #define BSPI_MAST_N_BOOT_CTRL 0x008
34 #define BSPI_BUSY_STATUS 0x00c
35 #define BSPI_INTR_STATUS 0x010
36 #define BSPI_B0_STATUS 0x014
37 #define BSPI_B0_CTRL 0x018
38 #define BSPI_B1_STATUS 0x01c
39 #define BSPI_B1_CTRL 0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL 0x024
41 #define BSPI_FLEX_MODE_ENABLE 0x028
42 #define BSPI_BITS_PER_CYCLE 0x02c
43 #define BSPI_BITS_PER_PHASE 0x030
44 #define BSPI_CMD_AND_MODE_BYTE 0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
46 #define BSPI_BSPI_XOR_VALUE 0x03c
47 #define BSPI_BSPI_XOR_ENABLE 0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE 0x044
49 #define BSPI_BSPI_PIO_IODIR 0x048
50 #define BSPI_BSPI_PIO_DATA 0x04c
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR 0x100
54 #define BSPI_RAF_NUM_WORDS 0x104
55 #define BSPI_RAF_CTRL 0x108
56 #define BSPI_RAF_FULLNESS 0x10c
57 #define BSPI_RAF_WATERMARK 0x110
58 #define BSPI_RAF_STATUS 0x114
59 #define BSPI_RAF_READ_DATA 0x118
60 #define BSPI_RAF_WORD_CNT 0x11c
61 #define BSPI_RAF_CURR_ADDR 0x120
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
70 #define BSPI_ADDRLEN_3BYTES 3
71 #define BSPI_ADDRLEN_4BYTES 4
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
75 #define BSPI_RAF_CTRL_START_MASK BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
78 #define BSPI_BPP_MODE_SELECT_MASK BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
81 #define BSPI_READ_LENGTH 256
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB 0x000
85 #define MSPI_SPCR0_MSB 0x004
86 #define MSPI_SPCR0_MSB_CPHA BIT(0)
87 #define MSPI_SPCR0_MSB_CPOL BIT(1)
88 #define MSPI_SPCR0_MSB_BITS_SHIFT 0x2
89 #define MSPI_SPCR1_LSB 0x008
90 #define MSPI_SPCR1_MSB 0x00c
91 #define MSPI_NEWQP 0x010
92 #define MSPI_ENDQP 0x014
93 #define MSPI_SPCR2 0x018
94 #define MSPI_MSPI_STATUS 0x020
95 #define MSPI_CPTQP 0x024
96 #define MSPI_SPCR3 0x028
97 #define MSPI_REV 0x02c
98 #define MSPI_TXRAM 0x040
99 #define MSPI_RXRAM 0x0c0
100 #define MSPI_CDRAM 0x140
101 #define MSPI_WRITE_LOCK 0x180
103 #define MSPI_MASTER_BIT BIT(7)
105 #define MSPI_NUM_CDRAM 16
106 #define MSPI_CDRAM_OUTP BIT(8)
107 #define MSPI_CDRAM_CONT_BIT BIT(7)
108 #define MSPI_CDRAM_BITSE_BIT BIT(6)
109 #define MSPI_CDRAM_DT_BIT BIT(5)
110 #define MSPI_CDRAM_PCS 0xf
112 #define MSPI_SPCR2_SPE BIT(6)
113 #define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
115 #define MSPI_SPCR3_FASTBR BIT(0)
116 #define MSPI_SPCR3_FASTDT BIT(1)
117 #define MSPI_SPCR3_SYSCLKSEL_MASK GENMASK(11, 10)
118 #define MSPI_SPCR3_SYSCLKSEL_27 (MSPI_SPCR3_SYSCLKSEL_MASK & \
119 ~(BIT(10) | BIT(11)))
120 #define MSPI_SPCR3_SYSCLKSEL_108 (MSPI_SPCR3_SYSCLKSEL_MASK & \
122 #define MSPI_SPCR3_TXRXDAM_MASK GENMASK(4, 2)
123 #define MSPI_SPCR3_DAM_8BYTE 0
124 #define MSPI_SPCR3_DAM_16BYTE (BIT(2) | BIT(4))
125 #define MSPI_SPCR3_DAM_32BYTE (BIT(3) | BIT(5))
126 #define MSPI_SPCR3_HALFDUPLEX BIT(6)
127 #define MSPI_SPCR3_HDOUTTYPE BIT(7)
128 #define MSPI_SPCR3_DATA_REG_SZ BIT(8)
129 #define MSPI_SPCR3_CPHARX BIT(9)
131 #define MSPI_MSPI_STATUS_SPIF BIT(0)
133 #define INTR_BASE_BIT_SHIFT 0x02
134 #define INTR_COUNT 0x07
136 #define NUM_CHIPSELECT 4
137 #define QSPI_SPBR_MAX 255U
138 #define MSPI_BASE_FREQ 27000000UL
140 #define OPCODE_DIOR 0xBB
141 #define OPCODE_QIOR 0xEB
142 #define OPCODE_DIOR_4B 0xBC
143 #define OPCODE_QIOR_4B 0xEC
145 #define MAX_CMD_SIZE 6
147 #define ADDR_4MB_MASK GENMASK(22, 0)
149 /* stop at end of transfer, no other reason */
150 #define TRANS_STATUS_BREAK_NONE 0
151 /* stop at end of spi_message */
152 #define TRANS_STATUS_BREAK_EOM 1
153 /* stop at end of spi_transfer if delay */
154 #define TRANS_STATUS_BREAK_DELAY 2
155 /* stop at end of spi_transfer if cs_change */
156 #define TRANS_STATUS_BREAK_CS_CHANGE 4
157 /* stop if we run out of bytes */
158 #define TRANS_STATUS_BREAK_NO_BYTES 8
160 /* events that make us stop filling TX slots */
161 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
162 TRANS_STATUS_BREAK_DELAY | \
163 TRANS_STATUS_BREAK_CS_CHANGE)
165 /* events that make us deassert CS */
166 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
167 TRANS_STATUS_BREAK_CS_CHANGE)
170 * Used for writing and reading data in the right order
171 * to TXRAM and RXRAM when used as 32-bit registers respectively
173 #define swap4bytes(__val) \
174 ((((__val) >> 24) & 0x000000FF) | (((__val) >> 8) & 0x0000FF00) | \
175 (((__val) << 8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
177 struct bcm_qspi_parms
{
183 struct bcm_xfer_mode
{
186 unsigned int addrlen
;
202 struct bcm_qspi_irq
{
203 const char *irq_name
;
204 const irq_handler_t irq_handler
;
209 struct bcm_qspi_dev_id
{
210 const struct bcm_qspi_irq
*irqp
;
216 struct spi_transfer
*trans
;
218 bool mspi_last_trans
;
222 struct platform_device
*pdev
;
223 struct spi_controller
*host
;
227 void __iomem
*base
[BASEMAX
];
229 /* Some SoCs provide custom interrupt status register(s) */
230 struct bcm_qspi_soc_intc
*soc_intc
;
232 struct bcm_qspi_parms last_parms
;
233 struct qspi_trans trans_pos
;
238 const struct spi_mem_op
*bspi_rf_op
;
241 u32 bspi_rf_op_status
;
242 struct bcm_xfer_mode xfer_mode
;
243 u32 s3_strap_override_ctrl
;
247 struct bcm_qspi_dev_id
*dev_ids
;
248 struct completion mspi_done
;
249 struct completion bspi_done
;
252 bool mspi_spcr3_sysclk
;
255 static inline bool has_bspi(struct bcm_qspi
*qspi
)
257 return qspi
->bspi_mode
;
260 /* hardware supports spcr3 and fast baud-rate */
261 static inline bool bcm_qspi_has_fastbr(struct bcm_qspi
*qspi
)
263 if (!has_bspi(qspi
) &&
264 ((qspi
->mspi_maj_rev
>= 1) &&
265 (qspi
->mspi_min_rev
>= 5)))
271 /* hardware supports sys clk 108Mhz */
272 static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi
*qspi
)
274 if (!has_bspi(qspi
) && (qspi
->mspi_spcr3_sysclk
||
275 ((qspi
->mspi_maj_rev
>= 1) &&
276 (qspi
->mspi_min_rev
>= 6))))
282 static inline int bcm_qspi_spbr_min(struct bcm_qspi
*qspi
)
284 if (bcm_qspi_has_fastbr(qspi
))
285 return (bcm_qspi_has_sysclk_108(qspi
) ? 4 : 1);
290 static u32
bcm_qspi_calc_spbr(u32 clk_speed_hz
,
291 const struct bcm_qspi_parms
*xp
)
295 /* SPBR = System Clock/(2 * SCK Baud Rate) */
297 spbr
= clk_speed_hz
/ (xp
->speed_hz
* 2);
302 /* Read qspi controller register*/
303 static inline u32
bcm_qspi_read(struct bcm_qspi
*qspi
, enum base_type type
,
306 return bcm_qspi_readl(qspi
->big_endian
, qspi
->base
[type
] + offset
);
309 /* Write qspi controller register*/
310 static inline void bcm_qspi_write(struct bcm_qspi
*qspi
, enum base_type type
,
311 unsigned int offset
, unsigned int data
)
313 bcm_qspi_writel(qspi
->big_endian
, data
, qspi
->base
[type
] + offset
);
317 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi
*qspi
)
321 /* this should normally finish within 10us */
322 for (i
= 0; i
< 1000; i
++) {
323 if (!(bcm_qspi_read(qspi
, BSPI
, BSPI_BUSY_STATUS
) & 1))
327 dev_warn(&qspi
->pdev
->dev
, "timeout waiting for !busy_status\n");
331 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi
*qspi
)
333 if (qspi
->bspi_maj_rev
< 4)
338 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi
*qspi
)
340 bcm_qspi_bspi_busy_poll(qspi
);
341 /* Force rising edge for the b0/b1 'flush' field */
342 bcm_qspi_write(qspi
, BSPI
, BSPI_B0_CTRL
, 1);
343 bcm_qspi_write(qspi
, BSPI
, BSPI_B1_CTRL
, 1);
344 bcm_qspi_write(qspi
, BSPI
, BSPI_B0_CTRL
, 0);
345 bcm_qspi_write(qspi
, BSPI
, BSPI_B1_CTRL
, 0);
348 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi
*qspi
)
350 return (bcm_qspi_read(qspi
, BSPI
, BSPI_RAF_STATUS
) &
351 BSPI_RAF_STATUS_FIFO_EMPTY_MASK
);
354 static inline u32
bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi
*qspi
)
356 u32 data
= bcm_qspi_read(qspi
, BSPI
, BSPI_RAF_READ_DATA
);
358 /* BSPI v3 LR is LE only, convert data to host endianness */
359 if (bcm_qspi_bspi_ver_three(qspi
))
360 data
= le32_to_cpu(data
);
365 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi
*qspi
)
367 bcm_qspi_bspi_busy_poll(qspi
);
368 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_CTRL
,
369 BSPI_RAF_CTRL_START_MASK
);
372 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi
*qspi
)
374 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_CTRL
,
375 BSPI_RAF_CTRL_CLEAR_MASK
);
376 bcm_qspi_bspi_flush_prefetch_buffers(qspi
);
379 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi
*qspi
)
381 u32
*buf
= (u32
*)qspi
->bspi_rf_op
->data
.buf
.in
;
384 dev_dbg(&qspi
->pdev
->dev
, "xfer %p rx %p rxlen %d\n", qspi
->bspi_rf_op
,
385 qspi
->bspi_rf_op
->data
.buf
.in
, qspi
->bspi_rf_op_len
);
386 while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi
)) {
387 data
= bcm_qspi_bspi_lr_read_fifo(qspi
);
388 if (likely(qspi
->bspi_rf_op_len
>= 4) &&
389 IS_ALIGNED((uintptr_t)buf
, 4)) {
390 buf
[qspi
->bspi_rf_op_idx
++] = data
;
391 qspi
->bspi_rf_op_len
-= 4;
393 /* Read out remaining bytes, make sure*/
394 u8
*cbuf
= (u8
*)&buf
[qspi
->bspi_rf_op_idx
];
396 data
= cpu_to_le32(data
);
397 while (qspi
->bspi_rf_op_len
) {
400 qspi
->bspi_rf_op_len
--;
406 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi
*qspi
, u8 cmd_byte
,
407 int bpp
, int bpc
, int flex_mode
)
409 bcm_qspi_write(qspi
, BSPI
, BSPI_FLEX_MODE_ENABLE
, 0);
410 bcm_qspi_write(qspi
, BSPI
, BSPI_BITS_PER_CYCLE
, bpc
);
411 bcm_qspi_write(qspi
, BSPI
, BSPI_BITS_PER_PHASE
, bpp
);
412 bcm_qspi_write(qspi
, BSPI
, BSPI_CMD_AND_MODE_BYTE
, cmd_byte
);
413 bcm_qspi_write(qspi
, BSPI
, BSPI_FLEX_MODE_ENABLE
, flex_mode
);
416 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi
*qspi
,
417 const struct spi_mem_op
*op
, int hp
)
419 int bpc
= 0, bpp
= 0;
420 u8 command
= op
->cmd
.opcode
;
421 int width
= op
->data
.buswidth
? op
->data
.buswidth
: SPI_NBITS_SINGLE
;
422 int addrlen
= op
->addr
.nbytes
;
425 dev_dbg(&qspi
->pdev
->dev
, "set flex mode w %x addrlen %x hp %d\n",
428 if (addrlen
== BSPI_ADDRLEN_4BYTES
)
429 bpp
= BSPI_BPP_ADDR_SELECT_MASK
;
431 if (op
->dummy
.nbytes
)
432 bpp
|= (op
->dummy
.nbytes
* 8) / op
->dummy
.buswidth
;
435 case SPI_NBITS_SINGLE
:
436 if (addrlen
== BSPI_ADDRLEN_3BYTES
)
437 /* default mode, does not need flex_cmd */
443 bpc
|= 0x00010100; /* address and mode are 2-bit */
444 bpp
= BSPI_BPP_MODE_SELECT_MASK
;
450 bpc
|= 0x00020200; /* address and mode are 4-bit */
451 bpp
|= BSPI_BPP_MODE_SELECT_MASK
;
458 bcm_qspi_bspi_set_xfer_params(qspi
, command
, bpp
, bpc
, flex_mode
);
463 static int bcm_qspi_bspi_set_override(struct bcm_qspi
*qspi
,
464 const struct spi_mem_op
*op
, int hp
)
466 int width
= op
->data
.buswidth
? op
->data
.buswidth
: SPI_NBITS_SINGLE
;
467 int addrlen
= op
->addr
.nbytes
;
468 u32 data
= bcm_qspi_read(qspi
, BSPI
, BSPI_STRAP_OVERRIDE_CTRL
);
470 dev_dbg(&qspi
->pdev
->dev
, "set override mode w %x addrlen %x hp %d\n",
474 case SPI_NBITS_SINGLE
:
475 /* clear quad/dual mode */
476 data
&= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD
|
477 BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL
);
480 /* clear dual mode and set quad mode */
481 data
&= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL
;
482 data
|= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD
;
485 /* clear quad mode set dual mode */
486 data
&= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD
;
487 data
|= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL
;
493 if (addrlen
== BSPI_ADDRLEN_4BYTES
)
495 data
|= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE
;
497 /* clear 4 byte mode */
498 data
&= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE
;
500 /* set the override mode */
501 data
|= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE
;
502 bcm_qspi_write(qspi
, BSPI
, BSPI_STRAP_OVERRIDE_CTRL
, data
);
503 bcm_qspi_bspi_set_xfer_params(qspi
, op
->cmd
.opcode
, 0, 0, 0);
508 static int bcm_qspi_bspi_set_mode(struct bcm_qspi
*qspi
,
509 const struct spi_mem_op
*op
, int hp
)
512 int width
= op
->data
.buswidth
? op
->data
.buswidth
: SPI_NBITS_SINGLE
;
513 int addrlen
= op
->addr
.nbytes
;
516 qspi
->xfer_mode
.flex_mode
= true;
518 if (!bcm_qspi_bspi_ver_three(qspi
)) {
521 val
= bcm_qspi_read(qspi
, BSPI
, BSPI_STRAP_OVERRIDE_CTRL
);
522 mask
= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE
;
523 if (val
& mask
|| qspi
->s3_strap_override_ctrl
& mask
) {
524 qspi
->xfer_mode
.flex_mode
= false;
525 bcm_qspi_write(qspi
, BSPI
, BSPI_FLEX_MODE_ENABLE
, 0);
526 error
= bcm_qspi_bspi_set_override(qspi
, op
, hp
);
530 if (qspi
->xfer_mode
.flex_mode
)
531 error
= bcm_qspi_bspi_set_flex_mode(qspi
, op
, hp
);
534 dev_warn(&qspi
->pdev
->dev
,
535 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
537 } else if (qspi
->xfer_mode
.width
!= width
||
538 qspi
->xfer_mode
.addrlen
!= addrlen
||
539 qspi
->xfer_mode
.hp
!= hp
) {
540 qspi
->xfer_mode
.width
= width
;
541 qspi
->xfer_mode
.addrlen
= addrlen
;
542 qspi
->xfer_mode
.hp
= hp
;
543 dev_dbg(&qspi
->pdev
->dev
,
544 "cs:%d %d-lane output, %d-byte address%s\n",
546 qspi
->xfer_mode
.width
,
547 qspi
->xfer_mode
.addrlen
,
548 qspi
->xfer_mode
.hp
!= -1 ? ", hp mode" : "");
554 static void bcm_qspi_enable_bspi(struct bcm_qspi
*qspi
)
559 qspi
->bspi_enabled
= 1;
560 if ((bcm_qspi_read(qspi
, BSPI
, BSPI_MAST_N_BOOT_CTRL
) & 1) == 0)
563 bcm_qspi_bspi_flush_prefetch_buffers(qspi
);
565 bcm_qspi_write(qspi
, BSPI
, BSPI_MAST_N_BOOT_CTRL
, 0);
569 static void bcm_qspi_disable_bspi(struct bcm_qspi
*qspi
)
574 qspi
->bspi_enabled
= 0;
575 if ((bcm_qspi_read(qspi
, BSPI
, BSPI_MAST_N_BOOT_CTRL
) & 1))
578 bcm_qspi_bspi_busy_poll(qspi
);
579 bcm_qspi_write(qspi
, BSPI
, BSPI_MAST_N_BOOT_CTRL
, 1);
583 static void bcm_qspi_chip_select(struct bcm_qspi
*qspi
, int cs
)
588 if (cs
>= 0 && qspi
->base
[CHIP_SELECT
]) {
589 rd
= bcm_qspi_read(qspi
, CHIP_SELECT
, 0);
590 wr
= (rd
& ~0xff) | (1 << cs
);
593 bcm_qspi_write(qspi
, CHIP_SELECT
, 0, wr
);
594 usleep_range(10, 20);
597 dev_dbg(&qspi
->pdev
->dev
, "using cs:%d\n", cs
);
601 static bool bcmspi_parms_did_change(const struct bcm_qspi_parms
* const cur
,
602 const struct bcm_qspi_parms
* const prev
)
604 return (cur
->speed_hz
!= prev
->speed_hz
) ||
605 (cur
->mode
!= prev
->mode
) ||
606 (cur
->bits_per_word
!= prev
->bits_per_word
);
611 static void bcm_qspi_hw_set_parms(struct bcm_qspi
*qspi
,
612 const struct bcm_qspi_parms
*xp
)
616 if (!bcmspi_parms_did_change(xp
, &qspi
->last_parms
))
619 if (!qspi
->mspi_maj_rev
)
620 /* legacy controller */
621 spcr
= MSPI_MASTER_BIT
;
626 * Bits per transfer. BITS determines the number of data bits
627 * transferred if the command control bit (BITSE of a
628 * CDRAM Register) is equal to 1.
629 * If CDRAM BITSE is equal to 0, 8 data bits are transferred
632 if (xp
->bits_per_word
!= 16 && xp
->bits_per_word
!= 64)
633 spcr
|= xp
->bits_per_word
<< MSPI_SPCR0_MSB_BITS_SHIFT
;
635 spcr
|= xp
->mode
& (MSPI_SPCR0_MSB_CPHA
| MSPI_SPCR0_MSB_CPOL
);
636 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR0_MSB
, spcr
);
638 if (bcm_qspi_has_fastbr(qspi
)) {
642 spcr
|= MSPI_SPCR3_FASTBR
;
644 if (xp
->mode
& SPI_3WIRE
)
645 spcr
|= MSPI_SPCR3_HALFDUPLEX
| MSPI_SPCR3_HDOUTTYPE
;
647 if (bcm_qspi_has_sysclk_108(qspi
)) {
648 /* check requested baud rate before moving to 108Mhz */
649 spbr
= bcm_qspi_calc_spbr(MSPI_BASE_FREQ
* 4, xp
);
650 if (spbr
> QSPI_SPBR_MAX
) {
651 /* use SYSCLK_27Mhz for slower baud rates */
652 spcr
&= ~MSPI_SPCR3_SYSCLKSEL_MASK
;
653 qspi
->base_clk
= MSPI_BASE_FREQ
;
656 spcr
|= MSPI_SPCR3_SYSCLKSEL_108
;
657 qspi
->base_clk
= MSPI_BASE_FREQ
* 4;
661 if (xp
->bits_per_word
> 16) {
662 /* data_reg_size 1 (64bit) */
663 spcr
|= MSPI_SPCR3_DATA_REG_SZ
;
664 /* TxRx RAM data access mode 2 for 32B and set fastdt */
665 spcr
|= MSPI_SPCR3_DAM_32BYTE
| MSPI_SPCR3_FASTDT
;
667 * Set length of delay after transfer
668 * DTL from 0(256) to 1
670 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR1_LSB
, 1);
672 /* data_reg_size[8] = 0 */
673 spcr
&= ~(MSPI_SPCR3_DATA_REG_SZ
);
676 * TxRx RAM access mode 8B
679 spcr
&= ~(MSPI_SPCR3_DAM_32BYTE
);
681 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR3
, spcr
);
684 /* SCK Baud Rate = System Clock/(2 * SPBR) */
685 qspi
->max_speed_hz
= qspi
->base_clk
/ (bcm_qspi_spbr_min(qspi
) * 2);
686 spbr
= bcm_qspi_calc_spbr(qspi
->base_clk
, xp
);
687 spbr
= clamp_val(spbr
, bcm_qspi_spbr_min(qspi
), QSPI_SPBR_MAX
);
688 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR0_LSB
, spbr
);
690 qspi
->last_parms
= *xp
;
693 static void bcm_qspi_update_parms(struct bcm_qspi
*qspi
,
694 struct spi_device
*spi
,
695 struct spi_transfer
*trans
)
697 struct bcm_qspi_parms xp
;
699 xp
.speed_hz
= trans
->speed_hz
;
700 xp
.bits_per_word
= trans
->bits_per_word
;
703 bcm_qspi_hw_set_parms(qspi
, &xp
);
706 static int bcm_qspi_setup(struct spi_device
*spi
)
708 struct bcm_qspi_parms
*xp
;
710 if (spi
->bits_per_word
> 64)
713 xp
= spi_get_ctldata(spi
);
715 xp
= kzalloc(sizeof(*xp
), GFP_KERNEL
);
718 spi_set_ctldata(spi
, xp
);
720 xp
->speed_hz
= spi
->max_speed_hz
;
721 xp
->mode
= spi
->mode
;
723 if (spi
->bits_per_word
)
724 xp
->bits_per_word
= spi
->bits_per_word
;
726 xp
->bits_per_word
= 8;
731 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi
*qspi
,
732 struct qspi_trans
*qt
)
734 if (qt
->mspi_last_trans
&&
735 spi_transfer_is_last(qspi
->host
, qt
->trans
))
741 static int update_qspi_trans_byte_count(struct bcm_qspi
*qspi
,
742 struct qspi_trans
*qt
, int flags
)
744 int ret
= TRANS_STATUS_BREAK_NONE
;
746 /* count the last transferred bytes */
747 if (qt
->trans
->bits_per_word
<= 8)
749 else if (qt
->trans
->bits_per_word
<= 16)
751 else if (qt
->trans
->bits_per_word
<= 32)
753 else if (qt
->trans
->bits_per_word
<= 64)
756 if (qt
->byte
>= qt
->trans
->len
) {
757 /* we're at the end of the spi_transfer */
758 /* in TX mode, need to pause for a delay or CS change */
759 if (qt
->trans
->delay
.value
&&
760 (flags
& TRANS_STATUS_BREAK_DELAY
))
761 ret
|= TRANS_STATUS_BREAK_DELAY
;
762 if (qt
->trans
->cs_change
&&
763 (flags
& TRANS_STATUS_BREAK_CS_CHANGE
))
764 ret
|= TRANS_STATUS_BREAK_CS_CHANGE
;
766 if (bcm_qspi_mspi_transfer_is_last(qspi
, qt
))
767 ret
|= TRANS_STATUS_BREAK_EOM
;
769 ret
|= TRANS_STATUS_BREAK_NO_BYTES
;
774 dev_dbg(&qspi
->pdev
->dev
, "trans %p len %d byte %d ret %x\n",
775 qt
->trans
, qt
->trans
? qt
->trans
->len
: 0, qt
->byte
, ret
);
779 static inline u8
read_rxram_slot_u8(struct bcm_qspi
*qspi
, int slot
)
781 u32 slot_offset
= MSPI_RXRAM
+ (slot
<< 3) + 0x4;
783 /* mask out reserved bits */
784 return bcm_qspi_read(qspi
, MSPI
, slot_offset
) & 0xff;
787 static inline u16
read_rxram_slot_u16(struct bcm_qspi
*qspi
, int slot
)
789 u32 reg_offset
= MSPI_RXRAM
;
790 u32 lsb_offset
= reg_offset
+ (slot
<< 3) + 0x4;
791 u32 msb_offset
= reg_offset
+ (slot
<< 3);
793 return (bcm_qspi_read(qspi
, MSPI
, lsb_offset
) & 0xff) |
794 ((bcm_qspi_read(qspi
, MSPI
, msb_offset
) & 0xff) << 8);
797 static inline u32
read_rxram_slot_u32(struct bcm_qspi
*qspi
, int slot
)
799 u32 reg_offset
= MSPI_RXRAM
;
800 u32 offset
= reg_offset
+ (slot
<< 3);
803 val
= bcm_qspi_read(qspi
, MSPI
, offset
);
804 val
= swap4bytes(val
);
809 static inline u64
read_rxram_slot_u64(struct bcm_qspi
*qspi
, int slot
)
811 u32 reg_offset
= MSPI_RXRAM
;
812 u32 lsb_offset
= reg_offset
+ (slot
<< 3) + 0x4;
813 u32 msb_offset
= reg_offset
+ (slot
<< 3);
816 msb
= bcm_qspi_read(qspi
, MSPI
, msb_offset
);
817 msb
= swap4bytes(msb
);
818 lsb
= bcm_qspi_read(qspi
, MSPI
, lsb_offset
);
819 lsb
= swap4bytes(lsb
);
821 return ((u64
)msb
<< 32 | lsb
);
824 static void read_from_hw(struct bcm_qspi
*qspi
, int slots
)
826 struct qspi_trans tp
;
829 bcm_qspi_disable_bspi(qspi
);
831 if (slots
> MSPI_NUM_CDRAM
) {
832 /* should never happen */
833 dev_err(&qspi
->pdev
->dev
, "%s: too many slots!\n", __func__
);
837 tp
= qspi
->trans_pos
;
839 for (slot
= 0; slot
< slots
; slot
++) {
840 if (tp
.trans
->bits_per_word
<= 8) {
841 u8
*buf
= tp
.trans
->rx_buf
;
844 buf
[tp
.byte
] = read_rxram_slot_u8(qspi
, slot
);
845 dev_dbg(&qspi
->pdev
->dev
, "RD %02x\n",
846 buf
? buf
[tp
.byte
] : 0x0);
847 } else if (tp
.trans
->bits_per_word
<= 16) {
848 u16
*buf
= tp
.trans
->rx_buf
;
851 buf
[tp
.byte
/ 2] = read_rxram_slot_u16(qspi
,
853 dev_dbg(&qspi
->pdev
->dev
, "RD %04x\n",
854 buf
? buf
[tp
.byte
/ 2] : 0x0);
855 } else if (tp
.trans
->bits_per_word
<= 32) {
856 u32
*buf
= tp
.trans
->rx_buf
;
859 buf
[tp
.byte
/ 4] = read_rxram_slot_u32(qspi
,
861 dev_dbg(&qspi
->pdev
->dev
, "RD %08x\n",
862 buf
? buf
[tp
.byte
/ 4] : 0x0);
864 } else if (tp
.trans
->bits_per_word
<= 64) {
865 u64
*buf
= tp
.trans
->rx_buf
;
868 buf
[tp
.byte
/ 8] = read_rxram_slot_u64(qspi
,
870 dev_dbg(&qspi
->pdev
->dev
, "RD %llx\n",
871 buf
? buf
[tp
.byte
/ 8] : 0x0);
876 update_qspi_trans_byte_count(qspi
, &tp
,
877 TRANS_STATUS_BREAK_NONE
);
880 qspi
->trans_pos
= tp
;
883 static inline void write_txram_slot_u8(struct bcm_qspi
*qspi
, int slot
,
886 u32 reg_offset
= MSPI_TXRAM
+ (slot
<< 3);
888 /* mask out reserved bits */
889 bcm_qspi_write(qspi
, MSPI
, reg_offset
, val
);
892 static inline void write_txram_slot_u16(struct bcm_qspi
*qspi
, int slot
,
895 u32 reg_offset
= MSPI_TXRAM
;
896 u32 msb_offset
= reg_offset
+ (slot
<< 3);
897 u32 lsb_offset
= reg_offset
+ (slot
<< 3) + 0x4;
899 bcm_qspi_write(qspi
, MSPI
, msb_offset
, (val
>> 8));
900 bcm_qspi_write(qspi
, MSPI
, lsb_offset
, (val
& 0xff));
903 static inline void write_txram_slot_u32(struct bcm_qspi
*qspi
, int slot
,
906 u32 reg_offset
= MSPI_TXRAM
;
907 u32 msb_offset
= reg_offset
+ (slot
<< 3);
909 bcm_qspi_write(qspi
, MSPI
, msb_offset
, swap4bytes(val
));
912 static inline void write_txram_slot_u64(struct bcm_qspi
*qspi
, int slot
,
915 u32 reg_offset
= MSPI_TXRAM
;
916 u32 msb_offset
= reg_offset
+ (slot
<< 3);
917 u32 lsb_offset
= reg_offset
+ (slot
<< 3) + 0x4;
918 u32 msb
= upper_32_bits(val
);
919 u32 lsb
= lower_32_bits(val
);
921 bcm_qspi_write(qspi
, MSPI
, msb_offset
, swap4bytes(msb
));
922 bcm_qspi_write(qspi
, MSPI
, lsb_offset
, swap4bytes(lsb
));
925 static inline u32
read_cdram_slot(struct bcm_qspi
*qspi
, int slot
)
927 return bcm_qspi_read(qspi
, MSPI
, MSPI_CDRAM
+ (slot
<< 2));
930 static inline void write_cdram_slot(struct bcm_qspi
*qspi
, int slot
, u32 val
)
932 bcm_qspi_write(qspi
, MSPI
, (MSPI_CDRAM
+ (slot
<< 2)), val
);
935 /* Return number of slots written */
936 static int write_to_hw(struct bcm_qspi
*qspi
, struct spi_device
*spi
)
938 struct qspi_trans tp
;
939 int slot
= 0, tstatus
= 0;
942 bcm_qspi_disable_bspi(qspi
);
943 tp
= qspi
->trans_pos
;
944 bcm_qspi_update_parms(qspi
, spi
, tp
.trans
);
946 /* Run until end of transfer or reached the max data */
947 while (!tstatus
&& slot
< MSPI_NUM_CDRAM
) {
948 mspi_cdram
= MSPI_CDRAM_CONT_BIT
;
949 if (tp
.trans
->bits_per_word
<= 8) {
950 const u8
*buf
= tp
.trans
->tx_buf
;
951 u8 val
= buf
? buf
[tp
.byte
] : 0x00;
953 write_txram_slot_u8(qspi
, slot
, val
);
954 dev_dbg(&qspi
->pdev
->dev
, "WR %02x\n", val
);
955 } else if (tp
.trans
->bits_per_word
<= 16) {
956 const u16
*buf
= tp
.trans
->tx_buf
;
957 u16 val
= buf
? buf
[tp
.byte
/ 2] : 0x0000;
959 write_txram_slot_u16(qspi
, slot
, val
);
960 dev_dbg(&qspi
->pdev
->dev
, "WR %04x\n", val
);
961 } else if (tp
.trans
->bits_per_word
<= 32) {
962 const u32
*buf
= tp
.trans
->tx_buf
;
963 u32 val
= buf
? buf
[tp
.byte
/4] : 0x0;
965 write_txram_slot_u32(qspi
, slot
, val
);
966 dev_dbg(&qspi
->pdev
->dev
, "WR %08x\n", val
);
967 } else if (tp
.trans
->bits_per_word
<= 64) {
968 const u64
*buf
= tp
.trans
->tx_buf
;
969 u64 val
= (buf
? buf
[tp
.byte
/8] : 0x0);
971 /* use the length of delay from SPCR1_LSB */
972 if (bcm_qspi_has_fastbr(qspi
))
973 mspi_cdram
|= MSPI_CDRAM_DT_BIT
;
975 write_txram_slot_u64(qspi
, slot
, val
);
976 dev_dbg(&qspi
->pdev
->dev
, "WR %llx\n", val
);
979 mspi_cdram
|= ((tp
.trans
->bits_per_word
<= 8) ? 0 :
980 MSPI_CDRAM_BITSE_BIT
);
982 /* set 3wrire halfduplex mode data from host to target */
983 if ((spi
->mode
& SPI_3WIRE
) && tp
.trans
->tx_buf
)
984 mspi_cdram
|= MSPI_CDRAM_OUTP
;
989 mspi_cdram
|= (~(1 << spi_get_chipselect(spi
, 0)) &
992 write_cdram_slot(qspi
, slot
, mspi_cdram
);
994 tstatus
= update_qspi_trans_byte_count(qspi
, &tp
,
995 TRANS_STATUS_BREAK_TX
);
1000 dev_err(&qspi
->pdev
->dev
, "%s: no data to send?", __func__
);
1004 dev_dbg(&qspi
->pdev
->dev
, "submitting %d slots\n", slot
);
1005 bcm_qspi_write(qspi
, MSPI
, MSPI_NEWQP
, 0);
1006 bcm_qspi_write(qspi
, MSPI
, MSPI_ENDQP
, slot
- 1);
1009 * case 1) EOM =1, cs_change =0: SSb inactive
1010 * case 2) EOM =1, cs_change =1: SSb stay active
1011 * case 3) EOM =0, cs_change =0: SSb stay active
1012 * case 4) EOM =0, cs_change =1: SSb inactive
1014 if (((tstatus
& TRANS_STATUS_BREAK_DESELECT
)
1015 == TRANS_STATUS_BREAK_CS_CHANGE
) ||
1016 ((tstatus
& TRANS_STATUS_BREAK_DESELECT
)
1017 == TRANS_STATUS_BREAK_EOM
)) {
1018 mspi_cdram
= read_cdram_slot(qspi
, slot
- 1) &
1019 ~MSPI_CDRAM_CONT_BIT
;
1020 write_cdram_slot(qspi
, slot
- 1, mspi_cdram
);
1024 bcm_qspi_write(qspi
, MSPI
, MSPI_WRITE_LOCK
, 1);
1026 /* Must flush previous writes before starting MSPI operation */
1028 /* Set cont | spe | spifie */
1029 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR2
, 0xe0);
1035 static int bcm_qspi_bspi_exec_mem_op(struct spi_device
*spi
,
1036 const struct spi_mem_op
*op
)
1038 struct bcm_qspi
*qspi
= spi_controller_get_devdata(spi
->controller
);
1039 u32 addr
= 0, len
, rdlen
, len_words
, from
= 0;
1041 unsigned long timeo
= msecs_to_jiffies(100);
1042 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
1044 if (bcm_qspi_bspi_ver_three(qspi
))
1045 if (op
->addr
.nbytes
== BSPI_ADDRLEN_4BYTES
)
1048 from
= op
->addr
.val
;
1049 if (!spi_get_csgpiod(spi
, 0))
1050 bcm_qspi_chip_select(qspi
, spi_get_chipselect(spi
, 0));
1051 bcm_qspi_write(qspi
, MSPI
, MSPI_WRITE_LOCK
, 0);
1054 * when using flex mode we need to send
1055 * the upper address byte to bspi
1057 if (!bcm_qspi_bspi_ver_three(qspi
)) {
1058 addr
= from
& 0xff000000;
1059 bcm_qspi_write(qspi
, BSPI
,
1060 BSPI_BSPI_FLASH_UPPER_ADDR_BYTE
, addr
);
1063 if (!qspi
->xfer_mode
.flex_mode
)
1066 addr
= from
& 0x00ffffff;
1068 if (bcm_qspi_bspi_ver_three(qspi
) == true)
1069 addr
= (addr
+ 0xc00000) & 0xffffff;
1072 * read into the entire buffer by breaking the reads
1073 * into RAF buffer read lengths
1075 len
= op
->data
.nbytes
;
1076 qspi
->bspi_rf_op_idx
= 0;
1079 if (len
> BSPI_READ_LENGTH
)
1080 rdlen
= BSPI_READ_LENGTH
;
1084 reinit_completion(&qspi
->bspi_done
);
1085 bcm_qspi_enable_bspi(qspi
);
1086 len_words
= (rdlen
+ 3) >> 2;
1087 qspi
->bspi_rf_op
= op
;
1088 qspi
->bspi_rf_op_status
= 0;
1089 qspi
->bspi_rf_op_len
= rdlen
;
1090 dev_dbg(&qspi
->pdev
->dev
,
1091 "bspi xfr addr 0x%x len 0x%x", addr
, rdlen
);
1092 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_START_ADDR
, addr
);
1093 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_NUM_WORDS
, len_words
);
1094 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_WATERMARK
, 0);
1095 if (qspi
->soc_intc
) {
1097 * clear soc MSPI and BSPI interrupts and enable
1100 soc_intc
->bcm_qspi_int_ack(soc_intc
, MSPI_BSPI_DONE
);
1101 soc_intc
->bcm_qspi_int_set(soc_intc
, BSPI_DONE
, true);
1104 /* Must flush previous writes before starting BSPI operation */
1106 bcm_qspi_bspi_lr_start(qspi
);
1107 if (!wait_for_completion_timeout(&qspi
->bspi_done
, timeo
)) {
1108 dev_err(&qspi
->pdev
->dev
, "timeout waiting for BSPI\n");
1113 /* set msg return length */
1121 static int bcm_qspi_transfer_one(struct spi_controller
*host
,
1122 struct spi_device
*spi
,
1123 struct spi_transfer
*trans
)
1125 struct bcm_qspi
*qspi
= spi_controller_get_devdata(host
);
1127 unsigned long timeo
= msecs_to_jiffies(100);
1129 if (!spi_get_csgpiod(spi
, 0))
1130 bcm_qspi_chip_select(qspi
, spi_get_chipselect(spi
, 0));
1131 qspi
->trans_pos
.trans
= trans
;
1132 qspi
->trans_pos
.byte
= 0;
1134 while (qspi
->trans_pos
.byte
< trans
->len
) {
1135 reinit_completion(&qspi
->mspi_done
);
1137 slots
= write_to_hw(qspi
, spi
);
1138 if (!wait_for_completion_timeout(&qspi
->mspi_done
, timeo
)) {
1139 dev_err(&qspi
->pdev
->dev
, "timeout waiting for MSPI\n");
1143 read_from_hw(qspi
, slots
);
1145 bcm_qspi_enable_bspi(qspi
);
1150 static int bcm_qspi_mspi_exec_mem_op(struct spi_device
*spi
,
1151 const struct spi_mem_op
*op
)
1153 struct spi_controller
*host
= spi
->controller
;
1154 struct bcm_qspi
*qspi
= spi_controller_get_devdata(host
);
1155 struct spi_transfer t
[2];
1159 memset(cmd
, 0, sizeof(cmd
));
1160 memset(t
, 0, sizeof(t
));
1163 /* opcode is in cmd[0] */
1164 cmd
[0] = op
->cmd
.opcode
;
1165 for (i
= 0; i
< op
->addr
.nbytes
; i
++)
1166 cmd
[1 + i
] = op
->addr
.val
>> (8 * (op
->addr
.nbytes
- i
- 1));
1169 t
[0].len
= op
->addr
.nbytes
+ op
->dummy
.nbytes
+ 1;
1170 t
[0].bits_per_word
= spi
->bits_per_word
;
1171 t
[0].tx_nbits
= op
->cmd
.buswidth
;
1172 /* lets mspi know that this is not last transfer */
1173 qspi
->trans_pos
.mspi_last_trans
= false;
1174 ret
= bcm_qspi_transfer_one(host
, spi
, &t
[0]);
1177 qspi
->trans_pos
.mspi_last_trans
= true;
1180 t
[1].rx_buf
= op
->data
.buf
.in
;
1181 t
[1].len
= op
->data
.nbytes
;
1182 t
[1].rx_nbits
= op
->data
.buswidth
;
1183 t
[1].bits_per_word
= spi
->bits_per_word
;
1184 ret
= bcm_qspi_transfer_one(host
, spi
, &t
[1]);
1190 static int bcm_qspi_exec_mem_op(struct spi_mem
*mem
,
1191 const struct spi_mem_op
*op
)
1193 struct spi_device
*spi
= mem
->spi
;
1194 struct bcm_qspi
*qspi
= spi_controller_get_devdata(spi
->controller
);
1196 bool mspi_read
= false;
1200 if (!op
->data
.nbytes
|| !op
->addr
.nbytes
|| op
->addr
.nbytes
> 4 ||
1201 op
->data
.dir
!= SPI_MEM_DATA_IN
)
1204 buf
= op
->data
.buf
.in
;
1205 addr
= op
->addr
.val
;
1206 len
= op
->data
.nbytes
;
1208 if (has_bspi(qspi
) && bcm_qspi_bspi_ver_three(qspi
) == true) {
1210 * The address coming into this function is a raw flash offset.
1211 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1212 * address. If it crosses a 4MB boundary, just revert back to
1215 addr
= (addr
+ 0xc00000) & 0xffffff;
1217 if ((~ADDR_4MB_MASK
& addr
) ^
1218 (~ADDR_4MB_MASK
& (addr
+ len
- 1)))
1222 /* non-aligned and very short transfers are handled by MSPI */
1223 if (!IS_ALIGNED((uintptr_t)addr
, 4) || !IS_ALIGNED((uintptr_t)buf
, 4) ||
1224 len
< 4 || op
->cmd
.opcode
== SPINOR_OP_RDSFDP
)
1227 if (!has_bspi(qspi
) || mspi_read
)
1228 return bcm_qspi_mspi_exec_mem_op(spi
, op
);
1230 ret
= bcm_qspi_bspi_set_mode(qspi
, op
, 0);
1233 ret
= bcm_qspi_bspi_exec_mem_op(spi
, op
);
1238 static void bcm_qspi_cleanup(struct spi_device
*spi
)
1240 struct bcm_qspi_parms
*xp
= spi_get_ctldata(spi
);
1245 static irqreturn_t
bcm_qspi_mspi_l2_isr(int irq
, void *dev_id
)
1247 struct bcm_qspi_dev_id
*qspi_dev_id
= dev_id
;
1248 struct bcm_qspi
*qspi
= qspi_dev_id
->dev
;
1249 u32 status
= bcm_qspi_read(qspi
, MSPI
, MSPI_MSPI_STATUS
);
1251 if (status
& MSPI_MSPI_STATUS_SPIF
) {
1252 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
1253 /* clear interrupt */
1254 status
&= ~MSPI_MSPI_STATUS_SPIF
;
1255 bcm_qspi_write(qspi
, MSPI
, MSPI_MSPI_STATUS
, status
);
1257 soc_intc
->bcm_qspi_int_ack(soc_intc
, MSPI_DONE
);
1258 complete(&qspi
->mspi_done
);
1265 static irqreturn_t
bcm_qspi_bspi_lr_l2_isr(int irq
, void *dev_id
)
1267 struct bcm_qspi_dev_id
*qspi_dev_id
= dev_id
;
1268 struct bcm_qspi
*qspi
= qspi_dev_id
->dev
;
1269 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
1270 u32 status
= qspi_dev_id
->irqp
->mask
;
1272 if (qspi
->bspi_enabled
&& qspi
->bspi_rf_op
) {
1273 bcm_qspi_bspi_lr_data_read(qspi
);
1274 if (qspi
->bspi_rf_op_len
== 0) {
1275 qspi
->bspi_rf_op
= NULL
;
1276 if (qspi
->soc_intc
) {
1277 /* disable soc BSPI interrupt */
1278 soc_intc
->bcm_qspi_int_set(soc_intc
, BSPI_DONE
,
1281 status
= INTR_BSPI_LR_SESSION_DONE_MASK
;
1284 if (qspi
->bspi_rf_op_status
)
1285 bcm_qspi_bspi_lr_clear(qspi
);
1287 bcm_qspi_bspi_flush_prefetch_buffers(qspi
);
1291 /* clear soc BSPI interrupt */
1292 soc_intc
->bcm_qspi_int_ack(soc_intc
, BSPI_DONE
);
1295 status
&= INTR_BSPI_LR_SESSION_DONE_MASK
;
1296 if (qspi
->bspi_enabled
&& status
&& qspi
->bspi_rf_op_len
== 0)
1297 complete(&qspi
->bspi_done
);
1302 static irqreturn_t
bcm_qspi_bspi_lr_err_l2_isr(int irq
, void *dev_id
)
1304 struct bcm_qspi_dev_id
*qspi_dev_id
= dev_id
;
1305 struct bcm_qspi
*qspi
= qspi_dev_id
->dev
;
1306 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
1308 dev_err(&qspi
->pdev
->dev
, "BSPI INT error\n");
1309 qspi
->bspi_rf_op_status
= -EIO
;
1311 /* clear soc interrupt */
1312 soc_intc
->bcm_qspi_int_ack(soc_intc
, BSPI_ERR
);
1314 complete(&qspi
->bspi_done
);
1318 static irqreturn_t
bcm_qspi_l1_isr(int irq
, void *dev_id
)
1320 struct bcm_qspi_dev_id
*qspi_dev_id
= dev_id
;
1321 struct bcm_qspi
*qspi
= qspi_dev_id
->dev
;
1322 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
1323 irqreturn_t ret
= IRQ_NONE
;
1326 u32 status
= soc_intc
->bcm_qspi_get_int_status(soc_intc
);
1328 if (status
& MSPI_DONE
)
1329 ret
= bcm_qspi_mspi_l2_isr(irq
, dev_id
);
1330 else if (status
& BSPI_DONE
)
1331 ret
= bcm_qspi_bspi_lr_l2_isr(irq
, dev_id
);
1332 else if (status
& BSPI_ERR
)
1333 ret
= bcm_qspi_bspi_lr_err_l2_isr(irq
, dev_id
);
1339 static const struct bcm_qspi_irq qspi_irq_tab
[] = {
1341 .irq_name
= "spi_lr_fullness_reached",
1342 .irq_handler
= bcm_qspi_bspi_lr_l2_isr
,
1343 .mask
= INTR_BSPI_LR_FULLNESS_REACHED_MASK
,
1346 .irq_name
= "spi_lr_session_aborted",
1347 .irq_handler
= bcm_qspi_bspi_lr_err_l2_isr
,
1348 .mask
= INTR_BSPI_LR_SESSION_ABORTED_MASK
,
1351 .irq_name
= "spi_lr_impatient",
1352 .irq_handler
= bcm_qspi_bspi_lr_err_l2_isr
,
1353 .mask
= INTR_BSPI_LR_IMPATIENT_MASK
,
1356 .irq_name
= "spi_lr_session_done",
1357 .irq_handler
= bcm_qspi_bspi_lr_l2_isr
,
1358 .mask
= INTR_BSPI_LR_SESSION_DONE_MASK
,
1360 #ifdef QSPI_INT_DEBUG
1361 /* this interrupt is for debug purposes only, dont request irq */
1363 .irq_name
= "spi_lr_overread",
1364 .irq_handler
= bcm_qspi_bspi_lr_err_l2_isr
,
1365 .mask
= INTR_BSPI_LR_OVERREAD_MASK
,
1369 .irq_name
= "mspi_done",
1370 .irq_handler
= bcm_qspi_mspi_l2_isr
,
1371 .mask
= INTR_MSPI_DONE_MASK
,
1374 .irq_name
= "mspi_halted",
1375 .irq_handler
= bcm_qspi_mspi_l2_isr
,
1376 .mask
= INTR_MSPI_HALTED_MASK
,
1379 /* single muxed L1 interrupt source */
1380 .irq_name
= "spi_l1_intr",
1381 .irq_handler
= bcm_qspi_l1_isr
,
1382 .irq_source
= MUXED_L1
,
1383 .mask
= QSPI_INTERRUPTS_ALL
,
1387 static void bcm_qspi_bspi_init(struct bcm_qspi
*qspi
)
1391 val
= bcm_qspi_read(qspi
, BSPI
, BSPI_REVISION_ID
);
1392 qspi
->bspi_maj_rev
= (val
>> 8) & 0xff;
1393 qspi
->bspi_min_rev
= val
& 0xff;
1394 if (!(bcm_qspi_bspi_ver_three(qspi
))) {
1395 /* Force mapping of BSPI address -> flash offset */
1396 bcm_qspi_write(qspi
, BSPI
, BSPI_BSPI_XOR_VALUE
, 0);
1397 bcm_qspi_write(qspi
, BSPI
, BSPI_BSPI_XOR_ENABLE
, 1);
1399 qspi
->bspi_enabled
= 1;
1400 bcm_qspi_disable_bspi(qspi
);
1401 bcm_qspi_write(qspi
, BSPI
, BSPI_B0_CTRL
, 0);
1402 bcm_qspi_write(qspi
, BSPI
, BSPI_B1_CTRL
, 0);
1405 static void bcm_qspi_hw_init(struct bcm_qspi
*qspi
)
1407 struct bcm_qspi_parms parms
;
1409 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR1_LSB
, 0);
1410 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR1_MSB
, 0);
1411 bcm_qspi_write(qspi
, MSPI
, MSPI_NEWQP
, 0);
1412 bcm_qspi_write(qspi
, MSPI
, MSPI_ENDQP
, 0);
1413 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR2
, 0x20);
1415 parms
.mode
= SPI_MODE_3
;
1416 parms
.bits_per_word
= 8;
1417 parms
.speed_hz
= qspi
->max_speed_hz
;
1418 bcm_qspi_hw_set_parms(qspi
, &parms
);
1421 bcm_qspi_bspi_init(qspi
);
1424 static void bcm_qspi_hw_uninit(struct bcm_qspi
*qspi
)
1426 u32 status
= bcm_qspi_read(qspi
, MSPI
, MSPI_MSPI_STATUS
);
1428 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR2
, 0);
1430 bcm_qspi_write(qspi
, MSPI
, MSPI_WRITE_LOCK
, 0);
1432 /* clear interrupt */
1433 bcm_qspi_write(qspi
, MSPI
, MSPI_MSPI_STATUS
, status
& ~1);
1436 static const struct spi_controller_mem_ops bcm_qspi_mem_ops
= {
1437 .exec_op
= bcm_qspi_exec_mem_op
,
1440 struct bcm_qspi_data
{
1442 bool has_spcr3_sysclk
;
1445 static const struct bcm_qspi_data bcm_qspi_no_rev_data
= {
1446 .has_mspi_rev
= false,
1447 .has_spcr3_sysclk
= false,
1450 static const struct bcm_qspi_data bcm_qspi_rev_data
= {
1451 .has_mspi_rev
= true,
1452 .has_spcr3_sysclk
= false,
1455 static const struct bcm_qspi_data bcm_qspi_spcr3_data
= {
1456 .has_mspi_rev
= true,
1457 .has_spcr3_sysclk
= true,
1460 static const struct of_device_id bcm_qspi_of_match
[] __maybe_unused
= {
1462 .compatible
= "brcm,spi-bcm7445-qspi",
1463 .data
= &bcm_qspi_rev_data
,
1467 .compatible
= "brcm,spi-bcm-qspi",
1468 .data
= &bcm_qspi_no_rev_data
,
1471 .compatible
= "brcm,spi-bcm7216-qspi",
1472 .data
= &bcm_qspi_spcr3_data
,
1475 .compatible
= "brcm,spi-bcm7278-qspi",
1476 .data
= &bcm_qspi_spcr3_data
,
1480 MODULE_DEVICE_TABLE(of
, bcm_qspi_of_match
);
1482 int bcm_qspi_probe(struct platform_device
*pdev
,
1483 struct bcm_qspi_soc_intc
*soc_intc
)
1485 const struct of_device_id
*of_id
= NULL
;
1486 const struct bcm_qspi_data
*data
;
1487 struct device
*dev
= &pdev
->dev
;
1488 struct bcm_qspi
*qspi
;
1489 struct spi_controller
*host
;
1490 struct resource
*res
;
1491 int irq
, ret
= 0, num_ints
= 0;
1494 const char *name
= NULL
;
1495 int num_irqs
= ARRAY_SIZE(qspi_irq_tab
);
1497 /* We only support device-tree instantiation */
1501 of_id
= of_match_node(bcm_qspi_of_match
, dev
->of_node
);
1507 host
= devm_spi_alloc_host(dev
, sizeof(struct bcm_qspi
));
1509 dev_err(dev
, "error allocating spi_controller\n");
1513 qspi
= spi_controller_get_devdata(host
);
1515 qspi
->clk
= devm_clk_get_optional(&pdev
->dev
, NULL
);
1516 if (IS_ERR(qspi
->clk
))
1517 return PTR_ERR(qspi
->clk
);
1520 qspi
->trans_pos
.trans
= NULL
;
1521 qspi
->trans_pos
.byte
= 0;
1522 qspi
->trans_pos
.mspi_last_trans
= true;
1526 host
->mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_RX_DUAL
| SPI_RX_QUAD
|
1528 host
->setup
= bcm_qspi_setup
;
1529 host
->transfer_one
= bcm_qspi_transfer_one
;
1530 host
->mem_ops
= &bcm_qspi_mem_ops
;
1531 host
->cleanup
= bcm_qspi_cleanup
;
1532 host
->dev
.of_node
= dev
->of_node
;
1533 host
->num_chipselect
= NUM_CHIPSELECT
;
1534 host
->use_gpio_descriptors
= true;
1536 qspi
->big_endian
= of_device_is_big_endian(dev
->of_node
);
1538 if (!of_property_read_u32(dev
->of_node
, "num-cs", &val
))
1539 host
->num_chipselect
= val
;
1541 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "hif_mspi");
1543 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1546 qspi
->base
[MSPI
] = devm_ioremap_resource(dev
, res
);
1547 if (IS_ERR(qspi
->base
[MSPI
]))
1548 return PTR_ERR(qspi
->base
[MSPI
]);
1550 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "bspi");
1552 qspi
->base
[BSPI
] = devm_ioremap_resource(dev
, res
);
1553 if (IS_ERR(qspi
->base
[BSPI
]))
1554 return PTR_ERR(qspi
->base
[BSPI
]);
1555 qspi
->bspi_mode
= true;
1557 qspi
->bspi_mode
= false;
1560 dev_info(dev
, "using %smspi mode\n", qspi
->bspi_mode
? "bspi-" : "");
1562 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "cs_reg");
1564 qspi
->base
[CHIP_SELECT
] = devm_ioremap_resource(dev
, res
);
1565 if (IS_ERR(qspi
->base
[CHIP_SELECT
]))
1566 return PTR_ERR(qspi
->base
[CHIP_SELECT
]);
1569 qspi
->dev_ids
= kcalloc(num_irqs
, sizeof(struct bcm_qspi_dev_id
),
1575 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1579 qspi
->soc_intc
= soc_intc
;
1580 soc_intc
->bcm_qspi_int_set(soc_intc
, MSPI_DONE
, true);
1582 qspi
->soc_intc
= NULL
;
1586 ret
= clk_prepare_enable(qspi
->clk
);
1588 dev_err(dev
, "failed to prepare clock\n");
1589 goto qspi_probe_err
;
1591 qspi
->base_clk
= clk_get_rate(qspi
->clk
);
1593 qspi
->base_clk
= MSPI_BASE_FREQ
;
1596 if (data
->has_mspi_rev
) {
1597 rev
= bcm_qspi_read(qspi
, MSPI
, MSPI_REV
);
1598 /* some older revs do not have a MSPI_REV register */
1599 if ((rev
& 0xff) == 0xff)
1603 qspi
->mspi_maj_rev
= (rev
>> 4) & 0xf;
1604 qspi
->mspi_min_rev
= rev
& 0xf;
1605 qspi
->mspi_spcr3_sysclk
= data
->has_spcr3_sysclk
;
1607 qspi
->max_speed_hz
= qspi
->base_clk
/ (bcm_qspi_spbr_min(qspi
) * 2);
1610 * On SW resets it is possible to have the mask still enabled
1611 * Need to disable the mask and clear the status while we init
1613 bcm_qspi_hw_uninit(qspi
);
1615 for (val
= 0; val
< num_irqs
; val
++) {
1617 name
= qspi_irq_tab
[val
].irq_name
;
1618 if (qspi_irq_tab
[val
].irq_source
== SINGLE_L2
) {
1619 /* get the l2 interrupts */
1620 irq
= platform_get_irq_byname_optional(pdev
, name
);
1621 } else if (!num_ints
&& soc_intc
) {
1622 /* all mspi, bspi intrs muxed to one L1 intr */
1623 irq
= platform_get_irq(pdev
, 0);
1627 ret
= devm_request_irq(&pdev
->dev
, irq
,
1628 qspi_irq_tab
[val
].irq_handler
, 0,
1630 &qspi
->dev_ids
[val
]);
1632 dev_err(&pdev
->dev
, "IRQ %s not found\n", name
);
1633 goto qspi_unprepare_err
;
1636 qspi
->dev_ids
[val
].dev
= qspi
;
1637 qspi
->dev_ids
[val
].irqp
= &qspi_irq_tab
[val
];
1639 dev_dbg(&pdev
->dev
, "registered IRQ %s %d\n",
1640 qspi_irq_tab
[val
].irq_name
,
1646 dev_err(&pdev
->dev
, "no IRQs registered, cannot init driver\n");
1648 goto qspi_unprepare_err
;
1651 bcm_qspi_hw_init(qspi
);
1652 init_completion(&qspi
->mspi_done
);
1653 init_completion(&qspi
->bspi_done
);
1656 platform_set_drvdata(pdev
, qspi
);
1658 qspi
->xfer_mode
.width
= -1;
1659 qspi
->xfer_mode
.addrlen
= -1;
1660 qspi
->xfer_mode
.hp
= -1;
1662 ret
= spi_register_controller(host
);
1664 dev_err(dev
, "can't register host\n");
1671 bcm_qspi_hw_uninit(qspi
);
1673 clk_disable_unprepare(qspi
->clk
);
1675 kfree(qspi
->dev_ids
);
1678 /* probe function to be called by SoC specific platform driver probe */
1679 EXPORT_SYMBOL_GPL(bcm_qspi_probe
);
1681 void bcm_qspi_remove(struct platform_device
*pdev
)
1683 struct bcm_qspi
*qspi
= platform_get_drvdata(pdev
);
1685 spi_unregister_controller(qspi
->host
);
1686 bcm_qspi_hw_uninit(qspi
);
1687 clk_disable_unprepare(qspi
->clk
);
1688 kfree(qspi
->dev_ids
);
1691 /* function to be called by SoC specific platform driver remove() */
1692 EXPORT_SYMBOL_GPL(bcm_qspi_remove
);
1694 static int __maybe_unused
bcm_qspi_suspend(struct device
*dev
)
1696 struct bcm_qspi
*qspi
= dev_get_drvdata(dev
);
1698 /* store the override strap value */
1699 if (!bcm_qspi_bspi_ver_three(qspi
))
1700 qspi
->s3_strap_override_ctrl
=
1701 bcm_qspi_read(qspi
, BSPI
, BSPI_STRAP_OVERRIDE_CTRL
);
1703 spi_controller_suspend(qspi
->host
);
1704 clk_disable_unprepare(qspi
->clk
);
1705 bcm_qspi_hw_uninit(qspi
);
1710 static int __maybe_unused
bcm_qspi_resume(struct device
*dev
)
1712 struct bcm_qspi
*qspi
= dev_get_drvdata(dev
);
1715 bcm_qspi_hw_init(qspi
);
1716 bcm_qspi_chip_select(qspi
, qspi
->curr_cs
);
1718 /* enable MSPI interrupt */
1719 qspi
->soc_intc
->bcm_qspi_int_set(qspi
->soc_intc
, MSPI_DONE
,
1722 ret
= clk_prepare_enable(qspi
->clk
);
1724 spi_controller_resume(qspi
->host
);
1729 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops
, bcm_qspi_suspend
, bcm_qspi_resume
);
1731 /* pm_ops to be called by SoC specific platform driver */
1732 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops
);
1734 MODULE_AUTHOR("Kamal Dasu");
1735 MODULE_DESCRIPTION("Broadcom QSPI driver");
1736 MODULE_LICENSE("GPL v2");
1737 MODULE_ALIAS("platform:" DRIVER_NAME
);