1 // SPDX-License-Identifier: GPL-2.0-only
3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
5 * Copyright (c) 2009, Intel Corporation.
8 #include <linux/bitfield.h>
9 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/preempt.h>
14 #include <linux/highmem.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 #include <linux/string.h>
22 #include "internals.h"
25 #ifdef CONFIG_DEBUG_FS
26 #include <linux/debugfs.h>
29 /* Slave spi_device related */
30 struct dw_spi_chip_data
{
32 u32 rx_sample_dly
; /* RX sample delay */
35 #ifdef CONFIG_DEBUG_FS
37 #define DW_SPI_DBGFS_REG(_name, _off) \
43 static const struct debugfs_reg32 dw_spi_dbgfs_regs
[] = {
44 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0
),
45 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1
),
46 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR
),
47 DW_SPI_DBGFS_REG("SER", DW_SPI_SER
),
48 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR
),
49 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR
),
50 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR
),
51 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR
),
52 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR
),
53 DW_SPI_DBGFS_REG("SR", DW_SPI_SR
),
54 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR
),
55 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR
),
56 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR
),
57 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR
),
58 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR
),
59 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY
),
62 static void dw_spi_debugfs_init(struct dw_spi
*dws
)
66 snprintf(name
, 32, "dw_spi%d", dws
->host
->bus_num
);
67 dws
->debugfs
= debugfs_create_dir(name
, NULL
);
69 dws
->regset
.regs
= dw_spi_dbgfs_regs
;
70 dws
->regset
.nregs
= ARRAY_SIZE(dw_spi_dbgfs_regs
);
71 dws
->regset
.base
= dws
->regs
;
72 debugfs_create_regset32("registers", 0400, dws
->debugfs
, &dws
->regset
);
75 static void dw_spi_debugfs_remove(struct dw_spi
*dws
)
77 debugfs_remove_recursive(dws
->debugfs
);
81 static inline void dw_spi_debugfs_init(struct dw_spi
*dws
)
85 static inline void dw_spi_debugfs_remove(struct dw_spi
*dws
)
88 #endif /* CONFIG_DEBUG_FS */
90 void dw_spi_set_cs(struct spi_device
*spi
, bool enable
)
92 struct dw_spi
*dws
= spi_controller_get_devdata(spi
->controller
);
93 bool cs_high
= !!(spi
->mode
& SPI_CS_HIGH
);
96 * DW SPI controller demands any native CS being set in order to
97 * proceed with data transfer. So in order to activate the SPI
98 * communications we must set a corresponding bit in the Slave
99 * Enable register no matter whether the SPI core is configured to
100 * support active-high or active-low CS level.
102 if (cs_high
== enable
)
103 dw_writel(dws
, DW_SPI_SER
, BIT(spi_get_chipselect(spi
, 0)));
105 dw_writel(dws
, DW_SPI_SER
, 0);
107 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs
, SPI_DW_CORE
);
109 /* Return the max entries we can fill into tx fifo */
110 static inline u32
dw_spi_tx_max(struct dw_spi
*dws
)
112 u32 tx_room
, rxtx_gap
;
114 tx_room
= dws
->fifo_len
- dw_readl(dws
, DW_SPI_TXFLR
);
117 * Another concern is about the tx/rx mismatch, we
118 * though to use (dws->fifo_len - rxflr - txflr) as
119 * one maximum value for tx, but it doesn't cover the
120 * data which is out of tx/rx fifo and inside the
121 * shift registers. So a control from sw point of
124 rxtx_gap
= dws
->fifo_len
- (dws
->rx_len
- dws
->tx_len
);
126 return min3((u32
)dws
->tx_len
, tx_room
, rxtx_gap
);
129 /* Return the max entries we should read out of rx fifo */
130 static inline u32
dw_spi_rx_max(struct dw_spi
*dws
)
132 return min_t(u32
, dws
->rx_len
, dw_readl(dws
, DW_SPI_RXFLR
));
135 static void dw_writer(struct dw_spi
*dws
)
137 u32 max
= dw_spi_tx_max(dws
);
142 if (dws
->n_bytes
== 1)
143 txw
= *(u8
*)(dws
->tx
);
144 else if (dws
->n_bytes
== 2)
145 txw
= *(u16
*)(dws
->tx
);
147 txw
= *(u32
*)(dws
->tx
);
149 dws
->tx
+= dws
->n_bytes
;
151 dw_write_io_reg(dws
, DW_SPI_DR
, txw
);
156 static void dw_reader(struct dw_spi
*dws
)
158 u32 max
= dw_spi_rx_max(dws
);
162 rxw
= dw_read_io_reg(dws
, DW_SPI_DR
);
164 if (dws
->n_bytes
== 1)
165 *(u8
*)(dws
->rx
) = rxw
;
166 else if (dws
->n_bytes
== 2)
167 *(u16
*)(dws
->rx
) = rxw
;
169 *(u32
*)(dws
->rx
) = rxw
;
171 dws
->rx
+= dws
->n_bytes
;
177 int dw_spi_check_status(struct dw_spi
*dws
, bool raw
)
183 irq_status
= dw_readl(dws
, DW_SPI_RISR
);
185 irq_status
= dw_readl(dws
, DW_SPI_ISR
);
187 if (irq_status
& DW_SPI_INT_RXOI
) {
188 dev_err(&dws
->host
->dev
, "RX FIFO overflow detected\n");
192 if (irq_status
& DW_SPI_INT_RXUI
) {
193 dev_err(&dws
->host
->dev
, "RX FIFO underflow detected\n");
197 if (irq_status
& DW_SPI_INT_TXOI
) {
198 dev_err(&dws
->host
->dev
, "TX FIFO overflow detected\n");
202 /* Generically handle the erroneous situation */
204 dw_spi_reset_chip(dws
);
205 if (dws
->host
->cur_msg
)
206 dws
->host
->cur_msg
->status
= ret
;
211 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status
, SPI_DW_CORE
);
213 static irqreturn_t
dw_spi_transfer_handler(struct dw_spi
*dws
)
215 u16 irq_status
= dw_readl(dws
, DW_SPI_ISR
);
217 if (dw_spi_check_status(dws
, false)) {
218 spi_finalize_current_transfer(dws
->host
);
223 * Read data from the Rx FIFO every time we've got a chance executing
224 * this method. If there is nothing left to receive, terminate the
225 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
226 * final stage of the transfer. By doing so we'll get the next IRQ
227 * right when the leftover incoming data is received.
231 dw_spi_mask_intr(dws
, 0xff);
232 spi_finalize_current_transfer(dws
->host
);
233 } else if (dws
->rx_len
<= dw_readl(dws
, DW_SPI_RXFTLR
)) {
234 dw_writel(dws
, DW_SPI_RXFTLR
, dws
->rx_len
- 1);
238 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
239 * disabled after the data transmission is finished so not to
240 * have the TXE IRQ flood at the final stage of the transfer.
242 if (irq_status
& DW_SPI_INT_TXEI
) {
245 dw_spi_mask_intr(dws
, DW_SPI_INT_TXEI
);
251 static irqreturn_t
dw_spi_irq(int irq
, void *dev_id
)
253 struct spi_controller
*host
= dev_id
;
254 struct dw_spi
*dws
= spi_controller_get_devdata(host
);
255 u16 irq_status
= dw_readl(dws
, DW_SPI_ISR
) & DW_SPI_INT_MASK
;
260 if (!host
->cur_msg
) {
261 dw_spi_mask_intr(dws
, 0xff);
265 return dws
->transfer_handler(dws
);
268 static u32
dw_spi_prepare_cr0(struct dw_spi
*dws
, struct spi_device
*spi
)
272 if (dw_spi_ip_is(dws
, PSSI
)) {
273 /* CTRLR0[ 5: 4] Frame Format */
274 cr0
|= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK
, DW_SPI_CTRLR0_FRF_MOTO_SPI
);
277 * SPI mode (SCPOL|SCPH)
278 * CTRLR0[ 6] Serial Clock Phase
279 * CTRLR0[ 7] Serial Clock Polarity
281 if (spi
->mode
& SPI_CPOL
)
282 cr0
|= DW_PSSI_CTRLR0_SCPOL
;
283 if (spi
->mode
& SPI_CPHA
)
284 cr0
|= DW_PSSI_CTRLR0_SCPHA
;
286 /* CTRLR0[11] Shift Register Loop */
287 if (spi
->mode
& SPI_LOOP
)
288 cr0
|= DW_PSSI_CTRLR0_SRL
;
290 /* CTRLR0[ 7: 6] Frame Format */
291 cr0
|= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK
, DW_SPI_CTRLR0_FRF_MOTO_SPI
);
294 * SPI mode (SCPOL|SCPH)
295 * CTRLR0[ 8] Serial Clock Phase
296 * CTRLR0[ 9] Serial Clock Polarity
298 if (spi
->mode
& SPI_CPOL
)
299 cr0
|= DW_HSSI_CTRLR0_SCPOL
;
300 if (spi
->mode
& SPI_CPHA
)
301 cr0
|= DW_HSSI_CTRLR0_SCPHA
;
303 /* CTRLR0[13] Shift Register Loop */
304 if (spi
->mode
& SPI_LOOP
)
305 cr0
|= DW_HSSI_CTRLR0_SRL
;
308 if (dw_spi_ver_is_ge(dws
, HSSI
, 102A
))
309 cr0
|= DW_HSSI_CTRLR0_MST
;
315 void dw_spi_update_config(struct dw_spi
*dws
, struct spi_device
*spi
,
316 struct dw_spi_cfg
*cfg
)
318 struct dw_spi_chip_data
*chip
= spi_get_ctldata(spi
);
323 /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
324 cr0
|= (cfg
->dfs
- 1) << dws
->dfs_offset
;
326 if (dw_spi_ip_is(dws
, PSSI
))
327 /* CTRLR0[ 9:8] Transfer Mode */
328 cr0
|= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK
, cfg
->tmode
);
330 /* CTRLR0[11:10] Transfer Mode */
331 cr0
|= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK
, cfg
->tmode
);
333 dw_writel(dws
, DW_SPI_CTRLR0
, cr0
);
335 if (cfg
->tmode
== DW_SPI_CTRLR0_TMOD_EPROMREAD
||
336 cfg
->tmode
== DW_SPI_CTRLR0_TMOD_RO
)
337 dw_writel(dws
, DW_SPI_CTRLR1
, cfg
->ndf
? cfg
->ndf
- 1 : 0);
339 /* Note DW APB SSI clock divider doesn't support odd numbers */
340 clk_div
= (DIV_ROUND_UP(dws
->max_freq
, cfg
->freq
) + 1) & 0xfffe;
341 speed_hz
= dws
->max_freq
/ clk_div
;
343 if (dws
->current_freq
!= speed_hz
) {
344 dw_spi_set_clk(dws
, clk_div
);
345 dws
->current_freq
= speed_hz
;
348 /* Update RX sample delay if required */
349 if (dws
->cur_rx_sample_dly
!= chip
->rx_sample_dly
) {
350 dw_writel(dws
, DW_SPI_RX_SAMPLE_DLY
, chip
->rx_sample_dly
);
351 dws
->cur_rx_sample_dly
= chip
->rx_sample_dly
;
354 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config
, SPI_DW_CORE
);
356 static void dw_spi_irq_setup(struct dw_spi
*dws
)
362 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
363 * will be adjusted at the final stage of the IRQ-based SPI transfer
364 * execution so not to lose the leftover of the incoming data.
366 level
= min_t(unsigned int, dws
->fifo_len
/ 2, dws
->tx_len
);
367 dw_writel(dws
, DW_SPI_TXFTLR
, level
);
368 dw_writel(dws
, DW_SPI_RXFTLR
, level
- 1);
370 dws
->transfer_handler
= dw_spi_transfer_handler
;
372 imask
= DW_SPI_INT_TXEI
| DW_SPI_INT_TXOI
|
373 DW_SPI_INT_RXUI
| DW_SPI_INT_RXOI
| DW_SPI_INT_RXFI
;
374 dw_spi_umask_intr(dws
, imask
);
378 * The iterative procedure of the poll-based transfer is simple: write as much
379 * as possible to the Tx FIFO, wait until the pending to receive data is ready
380 * to be read, read it from the Rx FIFO and check whether the performed
381 * procedure has been successful.
383 * Note this method the same way as the IRQ-based transfer won't work well for
384 * the SPI devices connected to the controller with native CS due to the
385 * automatic CS assertion/de-assertion.
387 static int dw_spi_poll_transfer(struct dw_spi
*dws
,
388 struct spi_transfer
*transfer
)
390 struct spi_delay delay
;
394 delay
.unit
= SPI_DELAY_UNIT_SCK
;
395 nbits
= dws
->n_bytes
* BITS_PER_BYTE
;
400 delay
.value
= nbits
* (dws
->rx_len
- dws
->tx_len
);
401 spi_delay_exec(&delay
, transfer
);
405 ret
= dw_spi_check_status(dws
, true);
408 } while (dws
->rx_len
);
413 static int dw_spi_transfer_one(struct spi_controller
*host
,
414 struct spi_device
*spi
,
415 struct spi_transfer
*transfer
)
417 struct dw_spi
*dws
= spi_controller_get_devdata(host
);
418 struct dw_spi_cfg cfg
= {
419 .tmode
= DW_SPI_CTRLR0_TMOD_TR
,
420 .dfs
= transfer
->bits_per_word
,
421 .freq
= transfer
->speed_hz
,
426 dws
->n_bytes
= roundup_pow_of_two(BITS_TO_BYTES(transfer
->bits_per_word
));
427 dws
->tx
= (void *)transfer
->tx_buf
;
428 dws
->tx_len
= transfer
->len
/ dws
->n_bytes
;
429 dws
->rx
= transfer
->rx_buf
;
430 dws
->rx_len
= dws
->tx_len
;
432 /* Ensure the data above is visible for all CPUs */
435 dw_spi_enable_chip(dws
, 0);
437 dw_spi_update_config(dws
, spi
, &cfg
);
439 transfer
->effective_speed_hz
= dws
->current_freq
;
441 /* Check if current transfer is a DMA transaction */
442 dws
->dma_mapped
= spi_xfer_is_dma_mapped(host
, spi
, transfer
);
444 /* For poll mode just disable all interrupts */
445 dw_spi_mask_intr(dws
, 0xff);
447 if (dws
->dma_mapped
) {
448 ret
= dws
->dma_ops
->dma_setup(dws
, transfer
);
453 dw_spi_enable_chip(dws
, 1);
456 return dws
->dma_ops
->dma_transfer(dws
, transfer
);
457 else if (dws
->irq
== IRQ_NOTCONNECTED
)
458 return dw_spi_poll_transfer(dws
, transfer
);
460 dw_spi_irq_setup(dws
);
465 static void dw_spi_handle_err(struct spi_controller
*host
,
466 struct spi_message
*msg
)
468 struct dw_spi
*dws
= spi_controller_get_devdata(host
);
471 dws
->dma_ops
->dma_stop(dws
);
473 dw_spi_reset_chip(dws
);
476 static int dw_spi_adjust_mem_op_size(struct spi_mem
*mem
, struct spi_mem_op
*op
)
478 if (op
->data
.dir
== SPI_MEM_DATA_IN
)
479 op
->data
.nbytes
= clamp_val(op
->data
.nbytes
, 0, DW_SPI_NDF_MASK
+ 1);
484 static bool dw_spi_supports_mem_op(struct spi_mem
*mem
,
485 const struct spi_mem_op
*op
)
487 if (op
->data
.buswidth
> 1 || op
->addr
.buswidth
> 1 ||
488 op
->dummy
.buswidth
> 1 || op
->cmd
.buswidth
> 1)
491 return spi_mem_default_supports_op(mem
, op
);
494 static int dw_spi_init_mem_buf(struct dw_spi
*dws
, const struct spi_mem_op
*op
)
496 unsigned int i
, j
, len
;
500 * Calculate the total length of the EEPROM command transfer and
501 * either use the pre-allocated buffer or create a temporary one.
503 len
= op
->cmd
.nbytes
+ op
->addr
.nbytes
+ op
->dummy
.nbytes
;
504 if (op
->data
.dir
== SPI_MEM_DATA_OUT
)
505 len
+= op
->data
.nbytes
;
507 if (len
<= DW_SPI_BUF_SIZE
) {
510 out
= kzalloc(len
, GFP_KERNEL
);
516 * Collect the operation code, address and dummy bytes into the single
517 * buffer. If it's a transfer with data to be sent, also copy it into the
518 * single buffer in order to speed the data transmission up.
520 for (i
= 0; i
< op
->cmd
.nbytes
; ++i
)
521 out
[i
] = DW_SPI_GET_BYTE(op
->cmd
.opcode
, op
->cmd
.nbytes
- i
- 1);
522 for (j
= 0; j
< op
->addr
.nbytes
; ++i
, ++j
)
523 out
[i
] = DW_SPI_GET_BYTE(op
->addr
.val
, op
->addr
.nbytes
- j
- 1);
524 for (j
= 0; j
< op
->dummy
.nbytes
; ++i
, ++j
)
527 if (op
->data
.dir
== SPI_MEM_DATA_OUT
)
528 memcpy(&out
[i
], op
->data
.buf
.out
, op
->data
.nbytes
);
533 if (op
->data
.dir
== SPI_MEM_DATA_IN
) {
534 dws
->rx
= op
->data
.buf
.in
;
535 dws
->rx_len
= op
->data
.nbytes
;
544 static void dw_spi_free_mem_buf(struct dw_spi
*dws
)
546 if (dws
->tx
!= dws
->buf
)
550 static int dw_spi_write_then_read(struct dw_spi
*dws
, struct spi_device
*spi
)
552 u32 room
, entries
, sts
;
557 * At initial stage we just pre-fill the Tx FIFO in with no rush,
558 * since native CS hasn't been enabled yet and the automatic data
559 * transmission won't start til we do that.
561 len
= min(dws
->fifo_len
, dws
->tx_len
);
564 dw_write_io_reg(dws
, DW_SPI_DR
, *buf
++);
567 * After setting any bit in the SER register the transmission will
568 * start automatically. We have to keep up with that procedure
569 * otherwise the CS de-assertion will happen whereupon the memory
570 * operation will be pre-terminated.
572 len
= dws
->tx_len
- ((void *)buf
- dws
->tx
);
573 dw_spi_set_cs(spi
, false);
575 entries
= readl_relaxed(dws
->regs
+ DW_SPI_TXFLR
);
577 dev_err(&dws
->host
->dev
, "CS de-assertion on Tx\n");
580 room
= min(dws
->fifo_len
- entries
, len
);
581 for (; room
; --room
, --len
)
582 dw_write_io_reg(dws
, DW_SPI_DR
, *buf
++);
586 * Data fetching will start automatically if the EEPROM-read mode is
587 * activated. We have to keep up with the incoming data pace to
588 * prevent the Rx FIFO overflow causing the inbound data loss.
593 entries
= readl_relaxed(dws
->regs
+ DW_SPI_RXFLR
);
595 sts
= readl_relaxed(dws
->regs
+ DW_SPI_RISR
);
596 if (sts
& DW_SPI_INT_RXOI
) {
597 dev_err(&dws
->host
->dev
, "FIFO overflow on Rx\n");
602 entries
= min(entries
, len
);
603 for (; entries
; --entries
, --len
)
604 *buf
++ = dw_read_io_reg(dws
, DW_SPI_DR
);
610 static inline bool dw_spi_ctlr_busy(struct dw_spi
*dws
)
612 return dw_readl(dws
, DW_SPI_SR
) & DW_SPI_SR_BUSY
;
615 static int dw_spi_wait_mem_op_done(struct dw_spi
*dws
)
617 int retry
= DW_SPI_WAIT_RETRIES
;
618 struct spi_delay delay
;
619 unsigned long ns
, us
;
622 nents
= dw_readl(dws
, DW_SPI_TXFLR
);
623 ns
= NSEC_PER_SEC
/ dws
->current_freq
* nents
;
624 ns
*= dws
->n_bytes
* BITS_PER_BYTE
;
625 if (ns
<= NSEC_PER_USEC
) {
626 delay
.unit
= SPI_DELAY_UNIT_NSECS
;
629 us
= DIV_ROUND_UP(ns
, NSEC_PER_USEC
);
630 delay
.unit
= SPI_DELAY_UNIT_USECS
;
631 delay
.value
= clamp_val(us
, 0, USHRT_MAX
);
634 while (dw_spi_ctlr_busy(dws
) && retry
--)
635 spi_delay_exec(&delay
, NULL
);
638 dev_err(&dws
->host
->dev
, "Mem op hanged up\n");
645 static void dw_spi_stop_mem_op(struct dw_spi
*dws
, struct spi_device
*spi
)
647 dw_spi_enable_chip(dws
, 0);
648 dw_spi_set_cs(spi
, true);
649 dw_spi_enable_chip(dws
, 1);
653 * The SPI memory operation implementation below is the best choice for the
654 * devices, which are selected by the native chip-select lane. It's
655 * specifically developed to workaround the problem with automatic chip-select
656 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
657 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
660 static int dw_spi_exec_mem_op(struct spi_mem
*mem
, const struct spi_mem_op
*op
)
662 struct dw_spi
*dws
= spi_controller_get_devdata(mem
->spi
->controller
);
663 struct dw_spi_cfg cfg
;
668 * Collect the outbound data into a single buffer to speed the
669 * transmission up at least on the initial stage.
671 ret
= dw_spi_init_mem_buf(dws
, op
);
676 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
677 * operation. Transmit-only mode is suitable for the rest of them.
680 cfg
.freq
= clamp(mem
->spi
->max_speed_hz
, 0U, dws
->max_mem_freq
);
681 if (op
->data
.dir
== SPI_MEM_DATA_IN
) {
682 cfg
.tmode
= DW_SPI_CTRLR0_TMOD_EPROMREAD
;
683 cfg
.ndf
= op
->data
.nbytes
;
685 cfg
.tmode
= DW_SPI_CTRLR0_TMOD_TO
;
688 dw_spi_enable_chip(dws
, 0);
690 dw_spi_update_config(dws
, mem
->spi
, &cfg
);
692 dw_spi_mask_intr(dws
, 0xff);
694 dw_spi_enable_chip(dws
, 1);
697 * DW APB SSI controller has very nasty peculiarities. First originally
698 * (without any vendor-specific modifications) it doesn't provide a
699 * direct way to set and clear the native chip-select signal. Instead
700 * the controller asserts the CS lane if Tx FIFO isn't empty and a
701 * transmission is going on, and automatically de-asserts it back to
702 * the high level if the Tx FIFO doesn't have anything to be pushed
703 * out. Due to that a multi-tasking or heavy IRQs activity might be
704 * fatal, since the transfer procedure preemption may cause the Tx FIFO
705 * getting empty and sudden CS de-assertion, which in the middle of the
706 * transfer will most likely cause the data loss. Secondly the
707 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
708 * data being automatically pulled in into the Rx FIFO. So if the
709 * driver software is late in fetching the data from the FIFO before
710 * it's overflown, new incoming data will be lost. In order to make
711 * sure the executed memory operations are CS-atomic and to prevent the
712 * Rx FIFO overflow we have to disable the local interrupts so to block
713 * any preemption during the subsequent IO operations.
715 * Note. At some circumstances disabling IRQs may not help to prevent
716 * the problems described above. The CS de-assertion and Rx FIFO
717 * overflow may still happen due to the relatively slow system bus or
718 * CPU not working fast enough, so the write-then-read algo implemented
719 * here just won't keep up with the SPI bus data transfer. Such
720 * situation is highly platform specific and is supposed to be fixed by
721 * manually restricting the SPI bus frequency using the
722 * dws->max_mem_freq parameter.
724 local_irq_save(flags
);
727 ret
= dw_spi_write_then_read(dws
, mem
->spi
);
729 local_irq_restore(flags
);
733 * Wait for the operation being finished and check the controller
734 * status only if there hasn't been any run-time error detected. In the
735 * former case it's just pointless. In the later one to prevent an
736 * additional error message printing since any hw error flag being set
737 * would be due to an error detected on the data transfer.
740 ret
= dw_spi_wait_mem_op_done(dws
);
742 ret
= dw_spi_check_status(dws
, true);
745 dw_spi_stop_mem_op(dws
, mem
->spi
);
747 dw_spi_free_mem_buf(dws
);
753 * Initialize the default memory operations if a glue layer hasn't specified
754 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
755 * controller doesn't have an embedded dirmap interface. Note the memory
756 * operations implemented in this driver is the best choice only for the DW APB
757 * SSI controller with standard native CS functionality. If a hardware vendor
758 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
759 * be safer to use the normal SPI-messages-based transfers implementation.
761 static void dw_spi_init_mem_ops(struct dw_spi
*dws
)
763 if (!dws
->mem_ops
.exec_op
&& !(dws
->caps
& DW_SPI_CAP_CS_OVERRIDE
) &&
765 dws
->mem_ops
.adjust_op_size
= dw_spi_adjust_mem_op_size
;
766 dws
->mem_ops
.supports_op
= dw_spi_supports_mem_op
;
767 dws
->mem_ops
.exec_op
= dw_spi_exec_mem_op
;
768 if (!dws
->max_mem_freq
)
769 dws
->max_mem_freq
= dws
->max_freq
;
773 /* This may be called twice for each spi dev */
774 static int dw_spi_setup(struct spi_device
*spi
)
776 struct dw_spi
*dws
= spi_controller_get_devdata(spi
->controller
);
777 struct dw_spi_chip_data
*chip
;
779 /* Only alloc on first setup */
780 chip
= spi_get_ctldata(spi
);
782 struct dw_spi
*dws
= spi_controller_get_devdata(spi
->controller
);
783 u32 rx_sample_dly_ns
;
785 chip
= kzalloc(sizeof(*chip
), GFP_KERNEL
);
788 spi_set_ctldata(spi
, chip
);
789 /* Get specific / default rx-sample-delay */
790 if (device_property_read_u32(&spi
->dev
,
791 "rx-sample-delay-ns",
792 &rx_sample_dly_ns
) != 0)
793 /* Use default controller value */
794 rx_sample_dly_ns
= dws
->def_rx_sample_dly_ns
;
795 chip
->rx_sample_dly
= DIV_ROUND_CLOSEST(rx_sample_dly_ns
,
801 * Update CR0 data each time the setup callback is invoked since
802 * the device parameters could have been changed, for instance, by
803 * the MMC SPI driver or something else.
805 chip
->cr0
= dw_spi_prepare_cr0(dws
, spi
);
810 static void dw_spi_cleanup(struct spi_device
*spi
)
812 struct dw_spi_chip_data
*chip
= spi_get_ctldata(spi
);
815 spi_set_ctldata(spi
, NULL
);
818 /* Restart the controller, disable all interrupts, clean rx fifo */
819 static void dw_spi_hw_init(struct device
*dev
, struct dw_spi
*dws
)
821 dw_spi_reset_chip(dws
);
824 * Retrieve the Synopsys component version if it hasn't been specified
825 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
826 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
829 dws
->ver
= dw_readl(dws
, DW_SPI_VERSION
);
831 dev_dbg(dev
, "Synopsys DWC%sSSI v%c.%c%c\n",
832 dw_spi_ip_is(dws
, PSSI
) ? " APB " : " ",
833 DW_SPI_GET_BYTE(dws
->ver
, 3), DW_SPI_GET_BYTE(dws
->ver
, 2),
834 DW_SPI_GET_BYTE(dws
->ver
, 1));
838 * Try to detect the number of native chip-selects if the platform
839 * driver didn't set it up. There can be up to 16 lines configured.
844 dw_writel(dws
, DW_SPI_SER
, 0xffff);
845 ser
= dw_readl(dws
, DW_SPI_SER
);
846 dw_writel(dws
, DW_SPI_SER
, 0);
848 dws
->num_cs
= hweight16(ser
);
852 * Try to detect the FIFO depth if not set by interface driver,
853 * the depth could be from 2 to 256 from HW spec
855 if (!dws
->fifo_len
) {
858 for (fifo
= 1; fifo
< 256; fifo
++) {
859 dw_writel(dws
, DW_SPI_TXFTLR
, fifo
);
860 if (fifo
!= dw_readl(dws
, DW_SPI_TXFTLR
))
863 dw_writel(dws
, DW_SPI_TXFTLR
, 0);
865 dws
->fifo_len
= (fifo
== 1) ? 0 : fifo
;
866 dev_dbg(dev
, "Detected FIFO size: %u bytes\n", dws
->fifo_len
);
870 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
871 * writability. Note DWC SSI controller also has the extended DFS, but
874 if (dw_spi_ip_is(dws
, PSSI
)) {
875 u32 cr0
, tmp
= dw_readl(dws
, DW_SPI_CTRLR0
);
877 dw_spi_enable_chip(dws
, 0);
878 dw_writel(dws
, DW_SPI_CTRLR0
, 0xffffffff);
879 cr0
= dw_readl(dws
, DW_SPI_CTRLR0
);
880 dw_writel(dws
, DW_SPI_CTRLR0
, tmp
);
881 dw_spi_enable_chip(dws
, 1);
883 if (!(cr0
& DW_PSSI_CTRLR0_DFS_MASK
)) {
884 dws
->caps
|= DW_SPI_CAP_DFS32
;
885 dws
->dfs_offset
= __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK
);
886 dev_dbg(dev
, "Detected 32-bits max data frame size\n");
889 dws
->caps
|= DW_SPI_CAP_DFS32
;
892 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
893 if (dws
->caps
& DW_SPI_CAP_CS_OVERRIDE
)
894 dw_writel(dws
, DW_SPI_CS_OVERRIDE
, 0xF);
897 int dw_spi_add_host(struct device
*dev
, struct dw_spi
*dws
)
899 struct spi_controller
*host
;
905 host
= spi_alloc_host(dev
, 0);
909 device_set_node(&host
->dev
, dev_fwnode(dev
));
912 dws
->dma_addr
= (dma_addr_t
)(dws
->paddr
+ DW_SPI_DR
);
914 spi_controller_set_devdata(host
, dws
);
917 dw_spi_hw_init(dev
, dws
);
919 ret
= request_irq(dws
->irq
, dw_spi_irq
, IRQF_SHARED
, dev_name(dev
),
921 if (ret
< 0 && ret
!= -ENOTCONN
) {
922 dev_err(dev
, "can not get IRQ\n");
926 dw_spi_init_mem_ops(dws
);
928 host
->use_gpio_descriptors
= true;
929 host
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_LOOP
;
930 if (dws
->caps
& DW_SPI_CAP_DFS32
)
931 host
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
933 host
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
934 host
->bus_num
= dws
->bus_num
;
935 host
->num_chipselect
= dws
->num_cs
;
936 host
->setup
= dw_spi_setup
;
937 host
->cleanup
= dw_spi_cleanup
;
939 host
->set_cs
= dws
->set_cs
;
941 host
->set_cs
= dw_spi_set_cs
;
942 host
->transfer_one
= dw_spi_transfer_one
;
943 host
->handle_err
= dw_spi_handle_err
;
944 if (dws
->mem_ops
.exec_op
)
945 host
->mem_ops
= &dws
->mem_ops
;
946 host
->max_speed_hz
= dws
->max_freq
;
947 host
->flags
= SPI_CONTROLLER_GPIO_SS
;
948 host
->auto_runtime_pm
= true;
950 /* Get default rx sample delay */
951 device_property_read_u32(dev
, "rx-sample-delay-ns",
952 &dws
->def_rx_sample_dly_ns
);
954 if (dws
->dma_ops
&& dws
->dma_ops
->dma_init
) {
955 ret
= dws
->dma_ops
->dma_init(dev
, dws
);
956 if (ret
== -EPROBE_DEFER
) {
959 dev_warn(dev
, "DMA init failed\n");
961 host
->can_dma
= dws
->dma_ops
->can_dma
;
962 host
->flags
|= SPI_CONTROLLER_MUST_TX
;
966 ret
= spi_register_controller(host
);
968 dev_err_probe(dev
, ret
, "problem registering spi host\n");
972 dw_spi_debugfs_init(dws
);
976 if (dws
->dma_ops
&& dws
->dma_ops
->dma_exit
)
977 dws
->dma_ops
->dma_exit(dws
);
978 dw_spi_enable_chip(dws
, 0);
980 free_irq(dws
->irq
, host
);
982 spi_controller_put(host
);
985 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host
, SPI_DW_CORE
);
987 void dw_spi_remove_host(struct dw_spi
*dws
)
989 dw_spi_debugfs_remove(dws
);
991 spi_unregister_controller(dws
->host
);
993 if (dws
->dma_ops
&& dws
->dma_ops
->dma_exit
)
994 dws
->dma_ops
->dma_exit(dws
);
996 dw_spi_shutdown_chip(dws
);
998 free_irq(dws
->irq
, dws
->host
);
1000 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host
, SPI_DW_CORE
);
1002 int dw_spi_suspend_host(struct dw_spi
*dws
)
1006 ret
= spi_controller_suspend(dws
->host
);
1010 dw_spi_shutdown_chip(dws
);
1013 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host
, SPI_DW_CORE
);
1015 int dw_spi_resume_host(struct dw_spi
*dws
)
1017 dw_spi_hw_init(&dws
->host
->dev
, dws
);
1018 return spi_controller_resume(dws
->host
);
1020 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host
, SPI_DW_CORE
);
1022 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
1023 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1024 MODULE_LICENSE("GPL v2");