Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / spi / spi-fsl-dspi.c
blob067c954cb6ea03c37ed2ac733b9208823f035acc
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 // Copyright 2020 NXP
5 //
6 // Freescale DSPI driver
7 // This file contains a driver for the Freescale DSPI
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/regmap.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-fsl-dspi.h>
23 #define DRIVER_NAME "fsl-dspi"
25 #define SPI_MCR 0x00
26 #define SPI_MCR_HOST BIT(31)
27 #define SPI_MCR_PCSIS(x) ((x) << 16)
28 #define SPI_MCR_CLR_TXF BIT(11)
29 #define SPI_MCR_CLR_RXF BIT(10)
30 #define SPI_MCR_XSPI BIT(3)
31 #define SPI_MCR_DIS_TXF BIT(13)
32 #define SPI_MCR_DIS_RXF BIT(12)
33 #define SPI_MCR_HALT BIT(0)
35 #define SPI_TCR 0x08
36 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
38 #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
39 #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
40 #define SPI_CTAR_CPOL BIT(26)
41 #define SPI_CTAR_CPHA BIT(25)
42 #define SPI_CTAR_LSBFE BIT(24)
43 #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
44 #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
45 #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
46 #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
47 #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
48 #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
49 #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
50 #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
51 #define SPI_CTAR_SCALE_BITS 0xf
53 #define SPI_CTAR0_SLAVE 0x0c
55 #define SPI_SR 0x2c
56 #define SPI_SR_TCFQF BIT(31)
57 #define SPI_SR_TFUF BIT(27)
58 #define SPI_SR_TFFF BIT(25)
59 #define SPI_SR_CMDTCF BIT(23)
60 #define SPI_SR_SPEF BIT(21)
61 #define SPI_SR_RFOF BIT(19)
62 #define SPI_SR_TFIWF BIT(18)
63 #define SPI_SR_RFDF BIT(17)
64 #define SPI_SR_CMDFFF BIT(16)
65 #define SPI_SR_CLEAR (SPI_SR_TCFQF | \
66 SPI_SR_TFUF | SPI_SR_TFFF | \
67 SPI_SR_CMDTCF | SPI_SR_SPEF | \
68 SPI_SR_RFOF | SPI_SR_TFIWF | \
69 SPI_SR_RFDF | SPI_SR_CMDFFF)
71 #define SPI_RSER_TFFFE BIT(25)
72 #define SPI_RSER_TFFFD BIT(24)
73 #define SPI_RSER_RFDFE BIT(17)
74 #define SPI_RSER_RFDFD BIT(16)
76 #define SPI_RSER 0x30
77 #define SPI_RSER_TCFQE BIT(31)
78 #define SPI_RSER_CMDTCFE BIT(23)
80 #define SPI_PUSHR 0x34
81 #define SPI_PUSHR_CMD_CONT BIT(15)
82 #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
83 #define SPI_PUSHR_CMD_EOQ BIT(11)
84 #define SPI_PUSHR_CMD_CTCNT BIT(10)
85 #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
87 #define SPI_PUSHR_SLAVE 0x34
89 #define SPI_POPR 0x38
91 #define SPI_TXFR0 0x3c
92 #define SPI_TXFR1 0x40
93 #define SPI_TXFR2 0x44
94 #define SPI_TXFR3 0x48
95 #define SPI_RXFR0 0x7c
96 #define SPI_RXFR1 0x80
97 #define SPI_RXFR2 0x84
98 #define SPI_RXFR3 0x88
100 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
101 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
102 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
104 #define SPI_SREX 0x13c
106 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
107 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
109 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
111 struct chip_data {
112 u32 ctar_val;
115 enum dspi_trans_mode {
116 DSPI_XSPI_MODE,
117 DSPI_DMA_MODE,
120 struct fsl_dspi_devtype_data {
121 enum dspi_trans_mode trans_mode;
122 u8 max_clock_factor;
123 int fifo_size;
126 enum {
127 LS1021A,
128 LS1012A,
129 LS1028A,
130 LS1043A,
131 LS1046A,
132 LS2080A,
133 LS2085A,
134 LX2160A,
135 MCF5441X,
136 VF610,
139 static const struct fsl_dspi_devtype_data devtype_data[] = {
140 [VF610] = {
141 .trans_mode = DSPI_DMA_MODE,
142 .max_clock_factor = 2,
143 .fifo_size = 4,
145 [LS1021A] = {
146 /* Has A-011218 DMA erratum */
147 .trans_mode = DSPI_XSPI_MODE,
148 .max_clock_factor = 8,
149 .fifo_size = 4,
151 [LS1012A] = {
152 /* Has A-011218 DMA erratum */
153 .trans_mode = DSPI_XSPI_MODE,
154 .max_clock_factor = 8,
155 .fifo_size = 16,
157 [LS1028A] = {
158 .trans_mode = DSPI_XSPI_MODE,
159 .max_clock_factor = 8,
160 .fifo_size = 4,
162 [LS1043A] = {
163 /* Has A-011218 DMA erratum */
164 .trans_mode = DSPI_XSPI_MODE,
165 .max_clock_factor = 8,
166 .fifo_size = 16,
168 [LS1046A] = {
169 /* Has A-011218 DMA erratum */
170 .trans_mode = DSPI_XSPI_MODE,
171 .max_clock_factor = 8,
172 .fifo_size = 16,
174 [LS2080A] = {
175 .trans_mode = DSPI_XSPI_MODE,
176 .max_clock_factor = 8,
177 .fifo_size = 4,
179 [LS2085A] = {
180 .trans_mode = DSPI_XSPI_MODE,
181 .max_clock_factor = 8,
182 .fifo_size = 4,
184 [LX2160A] = {
185 .trans_mode = DSPI_XSPI_MODE,
186 .max_clock_factor = 8,
187 .fifo_size = 4,
189 [MCF5441X] = {
190 .trans_mode = DSPI_DMA_MODE,
191 .max_clock_factor = 8,
192 .fifo_size = 16,
196 struct fsl_dspi_dma {
197 u32 *tx_dma_buf;
198 struct dma_chan *chan_tx;
199 dma_addr_t tx_dma_phys;
200 struct completion cmd_tx_complete;
201 struct dma_async_tx_descriptor *tx_desc;
203 u32 *rx_dma_buf;
204 struct dma_chan *chan_rx;
205 dma_addr_t rx_dma_phys;
206 struct completion cmd_rx_complete;
207 struct dma_async_tx_descriptor *rx_desc;
210 struct fsl_dspi {
211 struct spi_controller *ctlr;
212 struct platform_device *pdev;
214 struct regmap *regmap;
215 struct regmap *regmap_pushr;
216 int irq;
217 struct clk *clk;
219 struct spi_transfer *cur_transfer;
220 struct spi_message *cur_msg;
221 struct chip_data *cur_chip;
222 size_t progress;
223 size_t len;
224 const void *tx;
225 void *rx;
226 u16 tx_cmd;
227 const struct fsl_dspi_devtype_data *devtype_data;
229 struct completion xfer_done;
231 struct fsl_dspi_dma *dma;
233 int oper_word_size;
234 int oper_bits_per_word;
236 int words_in_flight;
239 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
240 * individually (in XSPI mode)
242 int pushr_cmd;
243 int pushr_tx;
245 void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
246 void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
249 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
251 switch (dspi->oper_word_size) {
252 case 1:
253 *txdata = *(u8 *)dspi->tx;
254 break;
255 case 2:
256 *txdata = *(u16 *)dspi->tx;
257 break;
258 case 4:
259 *txdata = *(u32 *)dspi->tx;
260 break;
262 dspi->tx += dspi->oper_word_size;
265 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
267 switch (dspi->oper_word_size) {
268 case 1:
269 *(u8 *)dspi->rx = rxdata;
270 break;
271 case 2:
272 *(u16 *)dspi->rx = rxdata;
273 break;
274 case 4:
275 *(u32 *)dspi->rx = rxdata;
276 break;
278 dspi->rx += dspi->oper_word_size;
281 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
283 *txdata = (__force u32)cpu_to_be32(*(u32 *)dspi->tx);
284 dspi->tx += sizeof(u32);
287 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
289 *(u32 *)dspi->rx = be32_to_cpu((__force __be32)rxdata);
290 dspi->rx += sizeof(u32);
293 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
295 *txdata = (__force u32)cpu_to_be16(*(u16 *)dspi->tx);
296 dspi->tx += sizeof(u16);
299 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
301 *(u16 *)dspi->rx = be16_to_cpu((__force __be16)rxdata);
302 dspi->rx += sizeof(u16);
305 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
307 u16 hi = *(u16 *)dspi->tx;
308 u16 lo = *(u16 *)(dspi->tx + 2);
310 *txdata = (u32)hi << 16 | lo;
311 dspi->tx += sizeof(u32);
314 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
316 u16 hi = rxdata & 0xffff;
317 u16 lo = rxdata >> 16;
319 *(u16 *)dspi->rx = lo;
320 *(u16 *)(dspi->rx + 2) = hi;
321 dspi->rx += sizeof(u32);
325 * Pop one word from the TX buffer for pushing into the
326 * PUSHR register (TX FIFO)
328 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
330 u32 txdata = 0;
332 if (dspi->tx)
333 dspi->host_to_dev(dspi, &txdata);
334 dspi->len -= dspi->oper_word_size;
335 return txdata;
338 /* Prepare one TX FIFO entry (txdata plus cmd) */
339 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
341 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
343 if (spi_controller_is_target(dspi->ctlr))
344 return data;
346 if (dspi->len > 0)
347 cmd |= SPI_PUSHR_CMD_CONT;
348 return cmd << 16 | data;
351 /* Push one word to the RX buffer from the POPR register (RX FIFO) */
352 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
354 if (!dspi->rx)
355 return;
356 dspi->dev_to_host(dspi, rxdata);
359 static void dspi_tx_dma_callback(void *arg)
361 struct fsl_dspi *dspi = arg;
362 struct fsl_dspi_dma *dma = dspi->dma;
364 complete(&dma->cmd_tx_complete);
367 static void dspi_rx_dma_callback(void *arg)
369 struct fsl_dspi *dspi = arg;
370 struct fsl_dspi_dma *dma = dspi->dma;
371 int i;
373 if (dspi->rx) {
374 for (i = 0; i < dspi->words_in_flight; i++)
375 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
378 complete(&dma->cmd_rx_complete);
381 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
383 struct device *dev = &dspi->pdev->dev;
384 struct fsl_dspi_dma *dma = dspi->dma;
385 int time_left;
386 int i;
388 for (i = 0; i < dspi->words_in_flight; i++)
389 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
391 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
392 dma->tx_dma_phys,
393 dspi->words_in_flight *
394 DMA_SLAVE_BUSWIDTH_4_BYTES,
395 DMA_MEM_TO_DEV,
396 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
397 if (!dma->tx_desc) {
398 dev_err(dev, "Not able to get desc for DMA xfer\n");
399 return -EIO;
402 dma->tx_desc->callback = dspi_tx_dma_callback;
403 dma->tx_desc->callback_param = dspi;
404 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
405 dev_err(dev, "DMA submit failed\n");
406 return -EINVAL;
409 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
410 dma->rx_dma_phys,
411 dspi->words_in_flight *
412 DMA_SLAVE_BUSWIDTH_4_BYTES,
413 DMA_DEV_TO_MEM,
414 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
415 if (!dma->rx_desc) {
416 dev_err(dev, "Not able to get desc for DMA xfer\n");
417 return -EIO;
420 dma->rx_desc->callback = dspi_rx_dma_callback;
421 dma->rx_desc->callback_param = dspi;
422 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
423 dev_err(dev, "DMA submit failed\n");
424 return -EINVAL;
427 reinit_completion(&dspi->dma->cmd_rx_complete);
428 reinit_completion(&dspi->dma->cmd_tx_complete);
430 dma_async_issue_pending(dma->chan_rx);
431 dma_async_issue_pending(dma->chan_tx);
433 if (spi_controller_is_target(dspi->ctlr)) {
434 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
435 return 0;
438 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
439 DMA_COMPLETION_TIMEOUT);
440 if (time_left == 0) {
441 dev_err(dev, "DMA tx timeout\n");
442 dmaengine_terminate_all(dma->chan_tx);
443 dmaengine_terminate_all(dma->chan_rx);
444 return -ETIMEDOUT;
447 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
448 DMA_COMPLETION_TIMEOUT);
449 if (time_left == 0) {
450 dev_err(dev, "DMA rx timeout\n");
451 dmaengine_terminate_all(dma->chan_tx);
452 dmaengine_terminate_all(dma->chan_rx);
453 return -ETIMEDOUT;
456 return 0;
459 static void dspi_setup_accel(struct fsl_dspi *dspi);
461 static int dspi_dma_xfer(struct fsl_dspi *dspi)
463 struct spi_message *message = dspi->cur_msg;
464 struct device *dev = &dspi->pdev->dev;
465 int ret = 0;
468 * dspi->len gets decremented by dspi_pop_tx_pushr in
469 * dspi_next_xfer_dma_submit
471 while (dspi->len) {
472 /* Figure out operational bits-per-word for this chunk */
473 dspi_setup_accel(dspi);
475 dspi->words_in_flight = dspi->len / dspi->oper_word_size;
476 if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
477 dspi->words_in_flight = dspi->devtype_data->fifo_size;
479 message->actual_length += dspi->words_in_flight *
480 dspi->oper_word_size;
482 ret = dspi_next_xfer_dma_submit(dspi);
483 if (ret) {
484 dev_err(dev, "DMA transfer failed\n");
485 break;
489 return ret;
492 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
494 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
495 struct device *dev = &dspi->pdev->dev;
496 struct dma_slave_config cfg;
497 struct fsl_dspi_dma *dma;
498 int ret;
500 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
501 if (!dma)
502 return -ENOMEM;
504 dma->chan_rx = dma_request_chan(dev, "rx");
505 if (IS_ERR(dma->chan_rx))
506 return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n");
508 dma->chan_tx = dma_request_chan(dev, "tx");
509 if (IS_ERR(dma->chan_tx)) {
510 ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n");
511 goto err_tx_channel;
514 dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
515 dma_bufsize, &dma->tx_dma_phys,
516 GFP_KERNEL);
517 if (!dma->tx_dma_buf) {
518 ret = -ENOMEM;
519 goto err_tx_dma_buf;
522 dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
523 dma_bufsize, &dma->rx_dma_phys,
524 GFP_KERNEL);
525 if (!dma->rx_dma_buf) {
526 ret = -ENOMEM;
527 goto err_rx_dma_buf;
530 memset(&cfg, 0, sizeof(cfg));
531 cfg.src_addr = phy_addr + SPI_POPR;
532 cfg.dst_addr = phy_addr + SPI_PUSHR;
533 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
534 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
535 cfg.src_maxburst = 1;
536 cfg.dst_maxburst = 1;
538 cfg.direction = DMA_DEV_TO_MEM;
539 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
540 if (ret) {
541 dev_err_probe(dev, ret, "can't configure rx dma channel\n");
542 goto err_slave_config;
545 cfg.direction = DMA_MEM_TO_DEV;
546 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
547 if (ret) {
548 dev_err_probe(dev, ret, "can't configure tx dma channel\n");
549 goto err_slave_config;
552 dspi->dma = dma;
553 init_completion(&dma->cmd_tx_complete);
554 init_completion(&dma->cmd_rx_complete);
556 return 0;
558 err_slave_config:
559 dma_free_coherent(dma->chan_rx->device->dev,
560 dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
561 err_rx_dma_buf:
562 dma_free_coherent(dma->chan_tx->device->dev,
563 dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
564 err_tx_dma_buf:
565 dma_release_channel(dma->chan_tx);
566 err_tx_channel:
567 dma_release_channel(dma->chan_rx);
569 devm_kfree(dev, dma);
570 dspi->dma = NULL;
572 return ret;
575 static void dspi_release_dma(struct fsl_dspi *dspi)
577 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
578 struct fsl_dspi_dma *dma = dspi->dma;
580 if (!dma)
581 return;
583 if (dma->chan_tx) {
584 dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
585 dma->tx_dma_buf, dma->tx_dma_phys);
586 dma_release_channel(dma->chan_tx);
589 if (dma->chan_rx) {
590 dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
591 dma->rx_dma_buf, dma->rx_dma_phys);
592 dma_release_channel(dma->chan_rx);
596 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
597 unsigned long clkrate)
599 /* Valid baud rate pre-scaler values */
600 int pbr_tbl[4] = {2, 3, 5, 7};
601 int brs[16] = { 2, 4, 6, 8,
602 16, 32, 64, 128,
603 256, 512, 1024, 2048,
604 4096, 8192, 16384, 32768 };
605 int scale_needed, scale, minscale = INT_MAX;
606 int i, j;
608 scale_needed = clkrate / speed_hz;
609 if (clkrate % speed_hz)
610 scale_needed++;
612 for (i = 0; i < ARRAY_SIZE(brs); i++)
613 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
614 scale = brs[i] * pbr_tbl[j];
615 if (scale >= scale_needed) {
616 if (scale < minscale) {
617 minscale = scale;
618 *br = i;
619 *pbr = j;
621 break;
625 if (minscale == INT_MAX) {
626 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
627 speed_hz, clkrate);
628 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
629 *br = ARRAY_SIZE(brs) - 1;
633 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
634 unsigned long clkrate)
636 int scale_needed, scale, minscale = INT_MAX;
637 int pscale_tbl[4] = {1, 3, 5, 7};
638 u32 remainder;
639 int i, j;
641 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
642 &remainder);
643 if (remainder)
644 scale_needed++;
646 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
647 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
648 scale = pscale_tbl[i] * (2 << j);
649 if (scale >= scale_needed) {
650 if (scale < minscale) {
651 minscale = scale;
652 *psc = i;
653 *sc = j;
655 break;
659 if (minscale == INT_MAX) {
660 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
661 delay_ns, clkrate);
662 *psc = ARRAY_SIZE(pscale_tbl) - 1;
663 *sc = SPI_CTAR_SCALE_BITS;
667 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
670 * The only time when the PCS doesn't need continuation after this word
671 * is when it's last. We need to look ahead, because we actually call
672 * dspi_pop_tx (the function that decrements dspi->len) _after_
673 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
674 * word is enough. If there's more to transmit than that,
675 * dspi_xspi_write will know to split the FIFO writes in 2, and
676 * generate a new PUSHR command with the final word that will have PCS
677 * deasserted (not continued) here.
679 if (dspi->len > dspi->oper_word_size)
680 cmd |= SPI_PUSHR_CMD_CONT;
681 regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
684 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
686 regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
689 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
691 int num_bytes = num_words * dspi->oper_word_size;
692 u16 tx_cmd = dspi->tx_cmd;
695 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
696 * and cs_change does not want the PCS to stay on), then we need a new
697 * PUSHR command, since this one (for the body of the buffer)
698 * necessarily has the CONT bit set.
699 * So send one word less during this go, to force a split and a command
700 * with a single word next time, when CONT will be unset.
702 if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
703 tx_cmd |= SPI_PUSHR_CMD_EOQ;
705 /* Update CTARE */
706 regmap_write(dspi->regmap, SPI_CTARE(0),
707 SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
708 SPI_CTARE_DTCP(num_words));
711 * Write the CMD FIFO entry first, and then the two
712 * corresponding TX FIFO entries (or one...).
714 dspi_pushr_cmd_write(dspi, tx_cmd);
716 /* Fill TX FIFO with as many transfers as possible */
717 while (num_words--) {
718 u32 data = dspi_pop_tx(dspi);
720 dspi_pushr_txdata_write(dspi, data & 0xFFFF);
721 if (dspi->oper_bits_per_word > 16)
722 dspi_pushr_txdata_write(dspi, data >> 16);
726 static u32 dspi_popr_read(struct fsl_dspi *dspi)
728 u32 rxdata = 0;
730 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
731 return rxdata;
734 static void dspi_fifo_read(struct fsl_dspi *dspi)
736 int num_fifo_entries = dspi->words_in_flight;
738 /* Read one FIFO entry and push to rx buffer */
739 while (num_fifo_entries--)
740 dspi_push_rx(dspi, dspi_popr_read(dspi));
743 static void dspi_setup_accel(struct fsl_dspi *dspi)
745 struct spi_transfer *xfer = dspi->cur_transfer;
746 bool odd = !!(dspi->len & 1);
748 /* No accel for frames not multiple of 8 bits at the moment */
749 if (xfer->bits_per_word % 8)
750 goto no_accel;
752 if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
753 dspi->oper_bits_per_word = 16;
754 } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
755 dspi->oper_bits_per_word = 8;
756 } else {
757 /* Start off with maximum supported by hardware */
758 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
759 dspi->oper_bits_per_word = 32;
760 else
761 dspi->oper_bits_per_word = 16;
764 * And go down only if the buffer can't be sent with
765 * words this big
767 do {
768 if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
769 break;
771 dspi->oper_bits_per_word /= 2;
772 } while (dspi->oper_bits_per_word > 8);
775 if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
776 dspi->dev_to_host = dspi_8on32_dev_to_host;
777 dspi->host_to_dev = dspi_8on32_host_to_dev;
778 } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
779 dspi->dev_to_host = dspi_8on16_dev_to_host;
780 dspi->host_to_dev = dspi_8on16_host_to_dev;
781 } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
782 dspi->dev_to_host = dspi_16on32_dev_to_host;
783 dspi->host_to_dev = dspi_16on32_host_to_dev;
784 } else {
785 no_accel:
786 dspi->dev_to_host = dspi_native_dev_to_host;
787 dspi->host_to_dev = dspi_native_host_to_dev;
788 dspi->oper_bits_per_word = xfer->bits_per_word;
791 dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
794 * Update CTAR here (code is common for XSPI and DMA modes).
795 * We will update CTARE in the portion specific to XSPI, when we
796 * also know the preload value (DTCP).
798 regmap_write(dspi->regmap, SPI_CTAR(0),
799 dspi->cur_chip->ctar_val |
800 SPI_FRAME_BITS(dspi->oper_bits_per_word));
803 static void dspi_fifo_write(struct fsl_dspi *dspi)
805 int num_fifo_entries = dspi->devtype_data->fifo_size;
806 struct spi_transfer *xfer = dspi->cur_transfer;
807 struct spi_message *msg = dspi->cur_msg;
808 int num_words, num_bytes;
810 dspi_setup_accel(dspi);
812 /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
813 if (dspi->oper_word_size == 4)
814 num_fifo_entries /= 2;
817 * Integer division intentionally trims off odd (or non-multiple of 4)
818 * numbers of bytes at the end of the buffer, which will be sent next
819 * time using a smaller oper_word_size.
821 num_words = dspi->len / dspi->oper_word_size;
822 if (num_words > num_fifo_entries)
823 num_words = num_fifo_entries;
825 /* Update total number of bytes that were transferred */
826 num_bytes = num_words * dspi->oper_word_size;
827 msg->actual_length += num_bytes;
828 dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
831 * Update shared variable for use in the next interrupt (both in
832 * dspi_fifo_read and in dspi_fifo_write).
834 dspi->words_in_flight = num_words;
836 spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
838 dspi_xspi_fifo_write(dspi, num_words);
840 * Everything after this point is in a potential race with the next
841 * interrupt, so we must never use dspi->words_in_flight again since it
842 * might already be modified by the next dspi_fifo_write.
845 spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
846 dspi->progress, !dspi->irq);
849 static int dspi_rxtx(struct fsl_dspi *dspi)
851 dspi_fifo_read(dspi);
853 if (!dspi->len)
854 /* Success! */
855 return 0;
857 dspi_fifo_write(dspi);
859 return -EINPROGRESS;
862 static int dspi_poll(struct fsl_dspi *dspi)
864 int tries = 1000;
865 u32 spi_sr;
867 do {
868 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
869 regmap_write(dspi->regmap, SPI_SR, spi_sr);
871 if (spi_sr & SPI_SR_CMDTCF)
872 break;
873 } while (--tries);
875 if (!tries)
876 return -ETIMEDOUT;
878 return dspi_rxtx(dspi);
881 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
883 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
884 u32 spi_sr;
886 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
887 regmap_write(dspi->regmap, SPI_SR, spi_sr);
889 if (!(spi_sr & SPI_SR_CMDTCF))
890 return IRQ_NONE;
892 if (dspi_rxtx(dspi) == 0)
893 complete(&dspi->xfer_done);
895 return IRQ_HANDLED;
898 static void dspi_assert_cs(struct spi_device *spi, bool *cs)
900 if (!spi_get_csgpiod(spi, 0) || *cs)
901 return;
903 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
904 *cs = true;
907 static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
909 if (!spi_get_csgpiod(spi, 0) || !*cs)
910 return;
912 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
913 *cs = false;
916 static int dspi_transfer_one_message(struct spi_controller *ctlr,
917 struct spi_message *message)
919 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
920 struct spi_device *spi = message->spi;
921 struct spi_transfer *transfer;
922 bool cs = false;
923 int status = 0;
925 message->actual_length = 0;
927 list_for_each_entry(transfer, &message->transfers, transfer_list) {
928 dspi->cur_transfer = transfer;
929 dspi->cur_msg = message;
930 dspi->cur_chip = spi_get_ctldata(spi);
932 dspi_assert_cs(spi, &cs);
934 /* Prepare command word for CMD FIFO */
935 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
936 if (!spi_get_csgpiod(spi, 0))
937 dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0));
939 if (list_is_last(&dspi->cur_transfer->transfer_list,
940 &dspi->cur_msg->transfers)) {
941 /* Leave PCS activated after last transfer when
942 * cs_change is set.
944 if (transfer->cs_change)
945 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
946 } else {
947 /* Keep PCS active between transfers in same message
948 * when cs_change is not set, and de-activate PCS
949 * between transfers in the same message when
950 * cs_change is set.
952 if (!transfer->cs_change)
953 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
956 dspi->tx = transfer->tx_buf;
957 dspi->rx = transfer->rx_buf;
958 dspi->len = transfer->len;
959 dspi->progress = 0;
961 regmap_update_bits(dspi->regmap, SPI_MCR,
962 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
963 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
965 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
966 dspi->progress, !dspi->irq);
968 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
969 status = dspi_dma_xfer(dspi);
970 } else {
971 dspi_fifo_write(dspi);
973 if (dspi->irq) {
974 wait_for_completion(&dspi->xfer_done);
975 reinit_completion(&dspi->xfer_done);
976 } else {
977 do {
978 status = dspi_poll(dspi);
979 } while (status == -EINPROGRESS);
982 if (status)
983 break;
985 spi_transfer_delay_exec(transfer);
987 if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
988 dspi_deassert_cs(spi, &cs);
991 message->status = status;
992 spi_finalize_current_message(ctlr);
994 return status;
997 static int dspi_setup(struct spi_device *spi)
999 struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1000 u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
1001 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1002 u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
1003 u32 cs_sck_delay = 0, sck_cs_delay = 0;
1004 struct fsl_dspi_platform_data *pdata;
1005 unsigned char pasc = 0, asc = 0;
1006 struct gpio_desc *gpio_cs;
1007 struct chip_data *chip;
1008 unsigned long clkrate;
1009 bool cs = true;
1010 int val;
1012 /* Only alloc on first setup */
1013 chip = spi_get_ctldata(spi);
1014 if (chip == NULL) {
1015 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1016 if (!chip)
1017 return -ENOMEM;
1020 pdata = dev_get_platdata(&dspi->pdev->dev);
1022 if (!pdata) {
1023 val = spi_delay_to_ns(&spi->cs_setup, NULL);
1024 cs_sck_delay = val >= 0 ? val : 0;
1025 if (!cs_sck_delay)
1026 of_property_read_u32(spi->dev.of_node,
1027 "fsl,spi-cs-sck-delay",
1028 &cs_sck_delay);
1030 val = spi_delay_to_ns(&spi->cs_hold, NULL);
1031 sck_cs_delay = val >= 0 ? val : 0;
1032 if (!sck_cs_delay)
1033 of_property_read_u32(spi->dev.of_node,
1034 "fsl,spi-sck-cs-delay",
1035 &sck_cs_delay);
1036 } else {
1037 cs_sck_delay = pdata->cs_sck_delay;
1038 sck_cs_delay = pdata->sck_cs_delay;
1041 /* Since tCSC and tASC apply to continuous transfers too, avoid SCK
1042 * glitches of half a cycle by never allowing tCSC + tASC to go below
1043 * half a SCK period.
1045 if (cs_sck_delay < quarter_period_ns)
1046 cs_sck_delay = quarter_period_ns;
1047 if (sck_cs_delay < quarter_period_ns)
1048 sck_cs_delay = quarter_period_ns;
1050 dev_dbg(&spi->dev,
1051 "DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
1052 cs_sck_delay, sck_cs_delay);
1054 clkrate = clk_get_rate(dspi->clk);
1055 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1057 /* Set PCS to SCK delay scale values */
1058 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1060 /* Set After SCK delay scale values */
1061 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1063 chip->ctar_val = 0;
1064 if (spi->mode & SPI_CPOL)
1065 chip->ctar_val |= SPI_CTAR_CPOL;
1066 if (spi->mode & SPI_CPHA)
1067 chip->ctar_val |= SPI_CTAR_CPHA;
1069 if (!spi_controller_is_target(dspi->ctlr)) {
1070 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1071 SPI_CTAR_CSSCK(cssck) |
1072 SPI_CTAR_PASC(pasc) |
1073 SPI_CTAR_ASC(asc) |
1074 SPI_CTAR_PBR(pbr) |
1075 SPI_CTAR_BR(br);
1077 if (spi->mode & SPI_LSB_FIRST)
1078 chip->ctar_val |= SPI_CTAR_LSBFE;
1081 gpio_cs = spi_get_csgpiod(spi, 0);
1082 if (gpio_cs)
1083 gpiod_direction_output(gpio_cs, false);
1085 dspi_deassert_cs(spi, &cs);
1087 spi_set_ctldata(spi, chip);
1089 return 0;
1092 static void dspi_cleanup(struct spi_device *spi)
1094 struct chip_data *chip = spi_get_ctldata(spi);
1096 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1097 spi->controller->bus_num, spi_get_chipselect(spi, 0));
1099 kfree(chip);
1102 static const struct of_device_id fsl_dspi_dt_ids[] = {
1104 .compatible = "fsl,vf610-dspi",
1105 .data = &devtype_data[VF610],
1106 }, {
1107 .compatible = "fsl,ls1021a-v1.0-dspi",
1108 .data = &devtype_data[LS1021A],
1109 }, {
1110 .compatible = "fsl,ls1012a-dspi",
1111 .data = &devtype_data[LS1012A],
1112 }, {
1113 .compatible = "fsl,ls1028a-dspi",
1114 .data = &devtype_data[LS1028A],
1115 }, {
1116 .compatible = "fsl,ls1043a-dspi",
1117 .data = &devtype_data[LS1043A],
1118 }, {
1119 .compatible = "fsl,ls1046a-dspi",
1120 .data = &devtype_data[LS1046A],
1121 }, {
1122 .compatible = "fsl,ls2080a-dspi",
1123 .data = &devtype_data[LS2080A],
1124 }, {
1125 .compatible = "fsl,ls2085a-dspi",
1126 .data = &devtype_data[LS2085A],
1127 }, {
1128 .compatible = "fsl,lx2160a-dspi",
1129 .data = &devtype_data[LX2160A],
1131 { /* sentinel */ }
1133 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1135 #ifdef CONFIG_PM_SLEEP
1136 static int dspi_suspend(struct device *dev)
1138 struct fsl_dspi *dspi = dev_get_drvdata(dev);
1140 if (dspi->irq)
1141 disable_irq(dspi->irq);
1142 spi_controller_suspend(dspi->ctlr);
1143 clk_disable_unprepare(dspi->clk);
1145 pinctrl_pm_select_sleep_state(dev);
1147 return 0;
1150 static int dspi_resume(struct device *dev)
1152 struct fsl_dspi *dspi = dev_get_drvdata(dev);
1153 int ret;
1155 pinctrl_pm_select_default_state(dev);
1157 ret = clk_prepare_enable(dspi->clk);
1158 if (ret)
1159 return ret;
1160 spi_controller_resume(dspi->ctlr);
1161 if (dspi->irq)
1162 enable_irq(dspi->irq);
1164 return 0;
1166 #endif /* CONFIG_PM_SLEEP */
1168 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1170 static const struct regmap_range dspi_volatile_ranges[] = {
1171 regmap_reg_range(SPI_MCR, SPI_TCR),
1172 regmap_reg_range(SPI_SR, SPI_SR),
1173 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1176 static const struct regmap_access_table dspi_volatile_table = {
1177 .yes_ranges = dspi_volatile_ranges,
1178 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
1181 static const struct regmap_config dspi_regmap_config = {
1182 .reg_bits = 32,
1183 .val_bits = 32,
1184 .reg_stride = 4,
1185 .max_register = 0x88,
1186 .volatile_table = &dspi_volatile_table,
1189 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1190 regmap_reg_range(SPI_MCR, SPI_TCR),
1191 regmap_reg_range(SPI_SR, SPI_SR),
1192 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1193 regmap_reg_range(SPI_SREX, SPI_SREX),
1196 static const struct regmap_access_table dspi_xspi_volatile_table = {
1197 .yes_ranges = dspi_xspi_volatile_ranges,
1198 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
1201 static const struct regmap_config dspi_xspi_regmap_config[] = {
1203 .reg_bits = 32,
1204 .val_bits = 32,
1205 .reg_stride = 4,
1206 .max_register = 0x13c,
1207 .volatile_table = &dspi_xspi_volatile_table,
1210 .name = "pushr",
1211 .reg_bits = 16,
1212 .val_bits = 16,
1213 .reg_stride = 2,
1214 .max_register = 0x2,
1218 static int dspi_init(struct fsl_dspi *dspi)
1220 unsigned int mcr;
1222 /* Set idle states for all chip select signals to high */
1223 mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1225 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1226 mcr |= SPI_MCR_XSPI;
1227 if (!spi_controller_is_target(dspi->ctlr))
1228 mcr |= SPI_MCR_HOST;
1230 regmap_write(dspi->regmap, SPI_MCR, mcr);
1231 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1233 switch (dspi->devtype_data->trans_mode) {
1234 case DSPI_XSPI_MODE:
1235 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1236 break;
1237 case DSPI_DMA_MODE:
1238 regmap_write(dspi->regmap, SPI_RSER,
1239 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1240 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1241 break;
1242 default:
1243 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1244 dspi->devtype_data->trans_mode);
1245 return -EINVAL;
1248 return 0;
1251 static int dspi_target_abort(struct spi_controller *host)
1253 struct fsl_dspi *dspi = spi_controller_get_devdata(host);
1256 * Terminate all pending DMA transactions for the SPI working
1257 * in TARGET mode.
1259 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1260 dmaengine_terminate_sync(dspi->dma->chan_rx);
1261 dmaengine_terminate_sync(dspi->dma->chan_tx);
1264 /* Clear the internal DSPI RX and TX FIFO buffers */
1265 regmap_update_bits(dspi->regmap, SPI_MCR,
1266 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1267 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1269 return 0;
1272 static int dspi_probe(struct platform_device *pdev)
1274 struct device_node *np = pdev->dev.of_node;
1275 const struct regmap_config *regmap_config;
1276 struct fsl_dspi_platform_data *pdata;
1277 struct spi_controller *ctlr;
1278 int ret, cs_num, bus_num = -1;
1279 struct fsl_dspi *dspi;
1280 struct resource *res;
1281 void __iomem *base;
1282 bool big_endian;
1284 dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1285 if (!dspi)
1286 return -ENOMEM;
1288 ctlr = spi_alloc_host(&pdev->dev, 0);
1289 if (!ctlr)
1290 return -ENOMEM;
1292 spi_controller_set_devdata(ctlr, dspi);
1293 platform_set_drvdata(pdev, dspi);
1295 dspi->pdev = pdev;
1296 dspi->ctlr = ctlr;
1298 ctlr->setup = dspi_setup;
1299 ctlr->transfer_one_message = dspi_transfer_one_message;
1300 ctlr->dev.of_node = pdev->dev.of_node;
1302 ctlr->cleanup = dspi_cleanup;
1303 ctlr->target_abort = dspi_target_abort;
1304 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1305 ctlr->use_gpio_descriptors = true;
1307 pdata = dev_get_platdata(&pdev->dev);
1308 if (pdata) {
1309 ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1310 ctlr->bus_num = pdata->bus_num;
1312 /* Only Coldfire uses platform data */
1313 dspi->devtype_data = &devtype_data[MCF5441X];
1314 big_endian = true;
1315 } else {
1317 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1318 if (ret < 0) {
1319 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1320 goto out_ctlr_put;
1322 ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1324 of_property_read_u32(np, "bus-num", &bus_num);
1325 ctlr->bus_num = bus_num;
1327 if (of_property_read_bool(np, "spi-slave"))
1328 ctlr->target = true;
1330 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1331 if (!dspi->devtype_data) {
1332 dev_err(&pdev->dev, "can't get devtype_data\n");
1333 ret = -EFAULT;
1334 goto out_ctlr_put;
1337 big_endian = of_device_is_big_endian(np);
1339 if (big_endian) {
1340 dspi->pushr_cmd = 0;
1341 dspi->pushr_tx = 2;
1342 } else {
1343 dspi->pushr_cmd = 2;
1344 dspi->pushr_tx = 0;
1347 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1348 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1349 else
1350 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1352 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1353 if (IS_ERR(base)) {
1354 ret = PTR_ERR(base);
1355 goto out_ctlr_put;
1358 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1359 regmap_config = &dspi_xspi_regmap_config[0];
1360 else
1361 regmap_config = &dspi_regmap_config;
1362 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1363 if (IS_ERR(dspi->regmap)) {
1364 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1365 PTR_ERR(dspi->regmap));
1366 ret = PTR_ERR(dspi->regmap);
1367 goto out_ctlr_put;
1370 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1371 dspi->regmap_pushr = devm_regmap_init_mmio(
1372 &pdev->dev, base + SPI_PUSHR,
1373 &dspi_xspi_regmap_config[1]);
1374 if (IS_ERR(dspi->regmap_pushr)) {
1375 dev_err(&pdev->dev,
1376 "failed to init pushr regmap: %ld\n",
1377 PTR_ERR(dspi->regmap_pushr));
1378 ret = PTR_ERR(dspi->regmap_pushr);
1379 goto out_ctlr_put;
1383 dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi");
1384 if (IS_ERR(dspi->clk)) {
1385 ret = PTR_ERR(dspi->clk);
1386 dev_err(&pdev->dev, "unable to get clock\n");
1387 goto out_ctlr_put;
1390 ret = dspi_init(dspi);
1391 if (ret)
1392 goto out_ctlr_put;
1394 dspi->irq = platform_get_irq(pdev, 0);
1395 if (dspi->irq <= 0) {
1396 dev_info(&pdev->dev,
1397 "can't get platform irq, using poll mode\n");
1398 dspi->irq = 0;
1399 goto poll_mode;
1402 init_completion(&dspi->xfer_done);
1404 ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1405 IRQF_SHARED, pdev->name, dspi);
1406 if (ret < 0) {
1407 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1408 goto out_ctlr_put;
1411 poll_mode:
1413 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1414 ret = dspi_request_dma(dspi, res->start);
1415 if (ret < 0) {
1416 dev_err(&pdev->dev, "can't get dma channels\n");
1417 goto out_free_irq;
1421 ctlr->max_speed_hz =
1422 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1424 if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1425 ctlr->ptp_sts_supported = true;
1427 ret = spi_register_controller(ctlr);
1428 if (ret != 0) {
1429 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1430 goto out_release_dma;
1433 return ret;
1435 out_release_dma:
1436 dspi_release_dma(dspi);
1437 out_free_irq:
1438 if (dspi->irq)
1439 free_irq(dspi->irq, dspi);
1440 out_ctlr_put:
1441 spi_controller_put(ctlr);
1443 return ret;
1446 static void dspi_remove(struct platform_device *pdev)
1448 struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1450 /* Disconnect from the SPI framework */
1451 spi_unregister_controller(dspi->ctlr);
1453 /* Disable RX and TX */
1454 regmap_update_bits(dspi->regmap, SPI_MCR,
1455 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1456 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1458 /* Stop Running */
1459 regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1461 dspi_release_dma(dspi);
1462 if (dspi->irq)
1463 free_irq(dspi->irq, dspi);
1466 static void dspi_shutdown(struct platform_device *pdev)
1468 dspi_remove(pdev);
1471 static struct platform_driver fsl_dspi_driver = {
1472 .driver.name = DRIVER_NAME,
1473 .driver.of_match_table = fsl_dspi_dt_ids,
1474 .driver.pm = &dspi_pm,
1475 .probe = dspi_probe,
1476 .remove = dspi_remove,
1477 .shutdown = dspi_shutdown,
1479 module_platform_driver(fsl_dspi_driver);
1481 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1482 MODULE_LICENSE("GPL");
1483 MODULE_ALIAS("platform:" DRIVER_NAME);