1 // SPDX-License-Identifier: GPL-2.0+
4 * NXP FlexSPI(FSPI) controller driver.
6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
22 * Software triggered Flash read/write access by IP Bus.
24 * Memory mapped read access by AHB Bus.
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30 * Boris Brezillon <bbrezillon@kernel.org>
31 * Frieder Schrempf <frieder.schrempf@kontron.de>
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
50 #include <linux/platform_device.h>
51 #include <linux/pm_qos.h>
52 #include <linux/regmap.h>
53 #include <linux/sizes.h>
54 #include <linux/sys_soc.h>
56 #include <linux/mfd/syscon.h>
57 #include <linux/spi/spi.h>
58 #include <linux/spi/spi-mem.h>
60 /* Registers used by the driver */
61 #define FSPI_MCR0 0x00
62 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
63 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
64 #define FSPI_MCR0_LEARN_EN BIT(15)
65 #define FSPI_MCR0_SCRFRUN_EN BIT(14)
66 #define FSPI_MCR0_OCTCOMB_EN BIT(13)
67 #define FSPI_MCR0_DOZE_EN BIT(12)
68 #define FSPI_MCR0_HSEN BIT(11)
69 #define FSPI_MCR0_SERCLKDIV BIT(8)
70 #define FSPI_MCR0_ATDF_EN BIT(7)
71 #define FSPI_MCR0_ARDF_EN BIT(6)
72 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
73 #define FSPI_MCR0_END_CFG(x) ((x) << 2)
74 #define FSPI_MCR0_MDIS BIT(1)
75 #define FSPI_MCR0_SWRST BIT(0)
77 #define FSPI_MCR1 0x04
78 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
79 #define FSPI_MCR1_AHB_TIMEOUT(x) (x)
81 #define FSPI_MCR2 0x08
82 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
83 #define FSPI_MCR2_SAMEDEVICEEN BIT(15)
84 #define FSPI_MCR2_CLRLRPHS BIT(14)
85 #define FSPI_MCR2_ABRDATSZ BIT(8)
86 #define FSPI_MCR2_ABRLEARN BIT(7)
87 #define FSPI_MCR2_ABR_READ BIT(6)
88 #define FSPI_MCR2_ABRWRITE BIT(5)
89 #define FSPI_MCR2_ABRDUMMY BIT(4)
90 #define FSPI_MCR2_ABR_MODE BIT(3)
91 #define FSPI_MCR2_ABRCADDR BIT(2)
92 #define FSPI_MCR2_ABRRADDR BIT(1)
93 #define FSPI_MCR2_ABR_CMD BIT(0)
95 #define FSPI_AHBCR 0x0c
96 #define FSPI_AHBCR_RDADDROPT BIT(6)
97 #define FSPI_AHBCR_PREF_EN BIT(5)
98 #define FSPI_AHBCR_BUFF_EN BIT(4)
99 #define FSPI_AHBCR_CACH_EN BIT(3)
100 #define FSPI_AHBCR_CLRTXBUF BIT(2)
101 #define FSPI_AHBCR_CLRRXBUF BIT(1)
102 #define FSPI_AHBCR_PAR_EN BIT(0)
104 #define FSPI_INTEN 0x10
105 #define FSPI_INTEN_SCLKSBWR BIT(9)
106 #define FSPI_INTEN_SCLKSBRD BIT(8)
107 #define FSPI_INTEN_DATALRNFL BIT(7)
108 #define FSPI_INTEN_IPTXWE BIT(6)
109 #define FSPI_INTEN_IPRXWA BIT(5)
110 #define FSPI_INTEN_AHBCMDERR BIT(4)
111 #define FSPI_INTEN_IPCMDERR BIT(3)
112 #define FSPI_INTEN_AHBCMDGE BIT(2)
113 #define FSPI_INTEN_IPCMDGE BIT(1)
114 #define FSPI_INTEN_IPCMDDONE BIT(0)
116 #define FSPI_INTR 0x14
117 #define FSPI_INTR_SCLKSBWR BIT(9)
118 #define FSPI_INTR_SCLKSBRD BIT(8)
119 #define FSPI_INTR_DATALRNFL BIT(7)
120 #define FSPI_INTR_IPTXWE BIT(6)
121 #define FSPI_INTR_IPRXWA BIT(5)
122 #define FSPI_INTR_AHBCMDERR BIT(4)
123 #define FSPI_INTR_IPCMDERR BIT(3)
124 #define FSPI_INTR_AHBCMDGE BIT(2)
125 #define FSPI_INTR_IPCMDGE BIT(1)
126 #define FSPI_INTR_IPCMDDONE BIT(0)
128 #define FSPI_LUTKEY 0x18
129 #define FSPI_LUTKEY_VALUE 0x5AF05AF0
131 #define FSPI_LCKCR 0x1C
133 #define FSPI_LCKER_LOCK 0x1
134 #define FSPI_LCKER_UNLOCK 0x2
136 #define FSPI_BUFXCR_INVALID_MSTRID 0xE
137 #define FSPI_AHBRX_BUF0CR0 0x20
138 #define FSPI_AHBRX_BUF1CR0 0x24
139 #define FSPI_AHBRX_BUF2CR0 0x28
140 #define FSPI_AHBRX_BUF3CR0 0x2C
141 #define FSPI_AHBRX_BUF4CR0 0x30
142 #define FSPI_AHBRX_BUF5CR0 0x34
143 #define FSPI_AHBRX_BUF6CR0 0x38
144 #define FSPI_AHBRX_BUF7CR0 0x3C
145 #define FSPI_AHBRXBUF0CR7_PREF BIT(31)
147 #define FSPI_AHBRX_BUF0CR1 0x40
148 #define FSPI_AHBRX_BUF1CR1 0x44
149 #define FSPI_AHBRX_BUF2CR1 0x48
150 #define FSPI_AHBRX_BUF3CR1 0x4C
151 #define FSPI_AHBRX_BUF4CR1 0x50
152 #define FSPI_AHBRX_BUF5CR1 0x54
153 #define FSPI_AHBRX_BUF6CR1 0x58
154 #define FSPI_AHBRX_BUF7CR1 0x5C
156 #define FSPI_FLSHA1CR0 0x60
157 #define FSPI_FLSHA2CR0 0x64
158 #define FSPI_FLSHB1CR0 0x68
159 #define FSPI_FLSHB2CR0 0x6C
160 #define FSPI_FLSHXCR0_SZ_KB 10
161 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
163 #define FSPI_FLSHA1CR1 0x70
164 #define FSPI_FLSHA2CR1 0x74
165 #define FSPI_FLSHB1CR1 0x78
166 #define FSPI_FLSHB2CR1 0x7C
167 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
168 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
169 #define FSPI_FLSHXCR1_WA BIT(10)
170 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
171 #define FSPI_FLSHXCR1_TCSS(x) (x)
173 #define FSPI_FLSHA1CR2 0x80
174 #define FSPI_FLSHA2CR2 0x84
175 #define FSPI_FLSHB1CR2 0x88
176 #define FSPI_FLSHB2CR2 0x8C
177 #define FSPI_FLSHXCR2_CLRINSP BIT(24)
178 #define FSPI_FLSHXCR2_AWRWAIT BIT(16)
179 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
180 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
181 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
182 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
184 #define FSPI_IPCR0 0xA0
186 #define FSPI_IPCR1 0xA4
187 #define FSPI_IPCR1_IPAREN BIT(31)
188 #define FSPI_IPCR1_SEQNUM_SHIFT 24
189 #define FSPI_IPCR1_SEQID_SHIFT 16
190 #define FSPI_IPCR1_IDATSZ(x) (x)
192 #define FSPI_IPCMD 0xB0
193 #define FSPI_IPCMD_TRG BIT(0)
195 #define FSPI_DLPR 0xB4
197 #define FSPI_IPRXFCR 0xB8
198 #define FSPI_IPRXFCR_CLR BIT(0)
199 #define FSPI_IPRXFCR_DMA_EN BIT(1)
200 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
202 #define FSPI_IPTXFCR 0xBC
203 #define FSPI_IPTXFCR_CLR BIT(0)
204 #define FSPI_IPTXFCR_DMA_EN BIT(1)
205 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
207 #define FSPI_DLLACR 0xC0
208 #define FSPI_DLLACR_OVRDEN BIT(8)
209 #define FSPI_DLLACR_SLVDLY(x) ((x) << 3)
210 #define FSPI_DLLACR_DLLRESET BIT(1)
211 #define FSPI_DLLACR_DLLEN BIT(0)
213 #define FSPI_DLLBCR 0xC4
214 #define FSPI_DLLBCR_OVRDEN BIT(8)
215 #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3)
216 #define FSPI_DLLBCR_DLLRESET BIT(1)
217 #define FSPI_DLLBCR_DLLEN BIT(0)
219 #define FSPI_STS0 0xE0
220 #define FSPI_STS0_DLPHB(x) ((x) << 8)
221 #define FSPI_STS0_DLPHA(x) ((x) << 4)
222 #define FSPI_STS0_CMD_SRC(x) ((x) << 2)
223 #define FSPI_STS0_ARB_IDLE BIT(1)
224 #define FSPI_STS0_SEQ_IDLE BIT(0)
226 #define FSPI_STS1 0xE4
227 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
228 #define FSPI_STS1_IP_ERRID(x) ((x) << 16)
229 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
230 #define FSPI_STS1_AHB_ERRID(x) (x)
232 #define FSPI_STS2 0xE8
233 #define FSPI_STS2_BREFLOCK BIT(17)
234 #define FSPI_STS2_BSLVLOCK BIT(16)
235 #define FSPI_STS2_AREFLOCK BIT(1)
236 #define FSPI_STS2_ASLVLOCK BIT(0)
237 #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \
238 FSPI_STS2_BSLVLOCK | \
239 FSPI_STS2_AREFLOCK | \
242 #define FSPI_AHBSPNST 0xEC
243 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
244 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
245 #define FSPI_AHBSPNST_ACTIVE BIT(0)
247 #define FSPI_IPRXFSTS 0xF0
248 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
249 #define FSPI_IPRXFSTS_FILL(x) (x)
251 #define FSPI_IPTXFSTS 0xF4
252 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
253 #define FSPI_IPTXFSTS_FILL(x) (x)
255 #define FSPI_RFDR 0x100
256 #define FSPI_TFDR 0x180
258 #define FSPI_LUT_BASE 0x200
260 /* register map end */
262 /* Instruction set for the LUT register. */
263 #define LUT_STOP 0x00
265 #define LUT_ADDR 0x02
266 #define LUT_CADDR_SDR 0x03
267 #define LUT_MODE 0x04
268 #define LUT_MODE2 0x05
269 #define LUT_MODE4 0x06
270 #define LUT_MODE8 0x07
271 #define LUT_NXP_WRITE 0x08
272 #define LUT_NXP_READ 0x09
273 #define LUT_LEARN_SDR 0x0A
274 #define LUT_DATSZ_SDR 0x0B
275 #define LUT_DUMMY 0x0C
276 #define LUT_DUMMY_RWDS_SDR 0x0D
277 #define LUT_JMP_ON_CS 0x1F
278 #define LUT_CMD_DDR 0x21
279 #define LUT_ADDR_DDR 0x22
280 #define LUT_CADDR_DDR 0x23
281 #define LUT_MODE_DDR 0x24
282 #define LUT_MODE2_DDR 0x25
283 #define LUT_MODE4_DDR 0x26
284 #define LUT_MODE8_DDR 0x27
285 #define LUT_WRITE_DDR 0x28
286 #define LUT_READ_DDR 0x29
287 #define LUT_LEARN_DDR 0x2A
288 #define LUT_DATSZ_DDR 0x2B
289 #define LUT_DUMMY_DDR 0x2C
290 #define LUT_DUMMY_RWDS_DDR 0x2D
293 * Calculate number of required PAD bits for LUT register.
295 * The pad stands for the number of IO lines [0:7].
296 * For example, the octal read needs eight IO lines,
297 * so you should use LUT_PAD(8). This macro
298 * returns 3 i.e. use eight (2^3) IP lines for read.
300 #define LUT_PAD(x) (fls(x) - 1)
303 * Macro for constructing the LUT entries with the following
306 * ---------------------------------------------------
307 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
308 * ---------------------------------------------------
311 #define INSTR_SHIFT 10
312 #define OPRND_SHIFT 16
314 /* Macros for constructing the LUT register. */
315 #define LUT_DEF(idx, ins, pad, opr) \
316 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
317 (opr)) << (((idx) % 2) * OPRND_SHIFT))
319 #define POLL_TOUT 5000
320 #define NXP_FSPI_MAX_CHIPSELECT 4
321 #define NXP_FSPI_MIN_IOMAP SZ_4M
323 #define DCFG_RCWSR1 0x100
324 #define SYS_PLL_RAT GENMASK(6, 2)
326 /* Access flash memory using IP bus only */
327 #define FSPI_QUIRK_USE_IP_ONLY BIT(0)
329 struct nxp_fspi_devtype_data
{
332 unsigned int ahb_buf_size
;
334 unsigned int lut_num
;
338 static struct nxp_fspi_devtype_data lx2160a_data
= {
339 .rxfifo
= SZ_512
, /* (64 * 64 bits) */
340 .txfifo
= SZ_1K
, /* (128 * 64 bits) */
341 .ahb_buf_size
= SZ_2K
, /* (256 * 64 bits) */
344 .little_endian
= true, /* little-endian */
347 static struct nxp_fspi_devtype_data imx8mm_data
= {
348 .rxfifo
= SZ_512
, /* (64 * 64 bits) */
349 .txfifo
= SZ_1K
, /* (128 * 64 bits) */
350 .ahb_buf_size
= SZ_2K
, /* (256 * 64 bits) */
353 .little_endian
= true, /* little-endian */
356 static struct nxp_fspi_devtype_data imx8qxp_data
= {
357 .rxfifo
= SZ_512
, /* (64 * 64 bits) */
358 .txfifo
= SZ_1K
, /* (128 * 64 bits) */
359 .ahb_buf_size
= SZ_2K
, /* (256 * 64 bits) */
362 .little_endian
= true, /* little-endian */
365 static struct nxp_fspi_devtype_data imx8dxl_data
= {
366 .rxfifo
= SZ_512
, /* (64 * 64 bits) */
367 .txfifo
= SZ_1K
, /* (128 * 64 bits) */
368 .ahb_buf_size
= SZ_2K
, /* (256 * 64 bits) */
369 .quirks
= FSPI_QUIRK_USE_IP_ONLY
,
371 .little_endian
= true, /* little-endian */
374 static struct nxp_fspi_devtype_data imx8ulp_data
= {
375 .rxfifo
= SZ_512
, /* (64 * 64 bits) */
376 .txfifo
= SZ_1K
, /* (128 * 64 bits) */
377 .ahb_buf_size
= SZ_2K
, /* (256 * 64 bits) */
380 .little_endian
= true, /* little-endian */
384 void __iomem
*iobase
;
385 void __iomem
*ahb_addr
;
390 struct clk
*clk
, *clk_en
;
393 struct nxp_fspi_devtype_data
*devtype_data
;
395 struct pm_qos_request pm_qos_req
;
399 static inline int needs_ip_only(struct nxp_fspi
*f
)
401 return f
->devtype_data
->quirks
& FSPI_QUIRK_USE_IP_ONLY
;
405 * R/W functions for big- or little-endian registers:
406 * The FSPI controller's endianness is independent of
407 * the CPU core's endianness. So far, although the CPU
408 * core is little-endian the FSPI controller can use
409 * big-endian or little-endian.
411 static void fspi_writel(struct nxp_fspi
*f
, u32 val
, void __iomem
*addr
)
413 if (f
->devtype_data
->little_endian
)
414 iowrite32(val
, addr
);
416 iowrite32be(val
, addr
);
419 static u32
fspi_readl(struct nxp_fspi
*f
, void __iomem
*addr
)
421 if (f
->devtype_data
->little_endian
)
422 return ioread32(addr
);
424 return ioread32be(addr
);
427 static irqreturn_t
nxp_fspi_irq_handler(int irq
, void *dev_id
)
429 struct nxp_fspi
*f
= dev_id
;
432 /* clear interrupt */
433 reg
= fspi_readl(f
, f
->iobase
+ FSPI_INTR
);
434 fspi_writel(f
, FSPI_INTR_IPCMDDONE
, f
->iobase
+ FSPI_INTR
);
436 if (reg
& FSPI_INTR_IPCMDDONE
)
442 static int nxp_fspi_check_buswidth(struct nxp_fspi
*f
, u8 width
)
455 static bool nxp_fspi_supports_op(struct spi_mem
*mem
,
456 const struct spi_mem_op
*op
)
458 struct nxp_fspi
*f
= spi_controller_get_devdata(mem
->spi
->controller
);
461 ret
= nxp_fspi_check_buswidth(f
, op
->cmd
.buswidth
);
464 ret
|= nxp_fspi_check_buswidth(f
, op
->addr
.buswidth
);
466 if (op
->dummy
.nbytes
)
467 ret
|= nxp_fspi_check_buswidth(f
, op
->dummy
.buswidth
);
470 ret
|= nxp_fspi_check_buswidth(f
, op
->data
.buswidth
);
476 * The number of address bytes should be equal to or less than 4 bytes.
478 if (op
->addr
.nbytes
> 4)
482 * If requested address value is greater than controller assigned
483 * memory mapped space, return error as it didn't fit in the range
484 * of assigned address space.
486 if (op
->addr
.val
>= f
->memmap_phy_size
)
489 /* Max 64 dummy clock cycles supported */
490 if (op
->dummy
.buswidth
&&
491 (op
->dummy
.nbytes
* 8 / op
->dummy
.buswidth
> 64))
494 /* Max data length, check controller limits and alignment */
495 if (op
->data
.dir
== SPI_MEM_DATA_IN
&&
496 (op
->data
.nbytes
> f
->devtype_data
->ahb_buf_size
||
497 (op
->data
.nbytes
> f
->devtype_data
->rxfifo
- 4 &&
498 !IS_ALIGNED(op
->data
.nbytes
, 8))))
501 if (op
->data
.dir
== SPI_MEM_DATA_OUT
&&
502 op
->data
.nbytes
> f
->devtype_data
->txfifo
)
505 return spi_mem_default_supports_op(mem
, op
);
508 /* Instead of busy looping invoke readl_poll_timeout functionality. */
509 static int fspi_readl_poll_tout(struct nxp_fspi
*f
, void __iomem
*base
,
510 u32 mask
, u32 delay_us
,
511 u32 timeout_us
, bool c
)
515 if (!f
->devtype_data
->little_endian
)
516 mask
= (u32
)cpu_to_be32(mask
);
519 return readl_poll_timeout(base
, reg
, (reg
& mask
),
520 delay_us
, timeout_us
);
522 return readl_poll_timeout(base
, reg
, !(reg
& mask
),
523 delay_us
, timeout_us
);
527 * If the target device content being changed by Write/Erase, need to
528 * invalidate the AHB buffer. This can be achieved by doing the reset
529 * of controller after setting MCR0[SWRESET] bit.
531 static inline void nxp_fspi_invalid(struct nxp_fspi
*f
)
536 reg
= fspi_readl(f
, f
->iobase
+ FSPI_MCR0
);
537 fspi_writel(f
, reg
| FSPI_MCR0_SWRST
, f
->iobase
+ FSPI_MCR0
);
539 /* w1c register, wait unit clear */
540 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_MCR0
,
541 FSPI_MCR0_SWRST
, 0, POLL_TOUT
, false);
545 static void nxp_fspi_prepare_lut(struct nxp_fspi
*f
,
546 const struct spi_mem_op
*op
)
548 void __iomem
*base
= f
->iobase
;
551 u32 lut_offset
= (f
->devtype_data
->lut_num
- 1) * 4 * 4;
555 lutval
[0] |= LUT_DEF(0, LUT_CMD
, LUT_PAD(op
->cmd
.buswidth
),
559 if (op
->addr
.nbytes
) {
560 lutval
[lutidx
/ 2] |= LUT_DEF(lutidx
, LUT_ADDR
,
561 LUT_PAD(op
->addr
.buswidth
),
562 op
->addr
.nbytes
* 8);
566 /* dummy bytes, if needed */
567 if (op
->dummy
.nbytes
) {
568 lutval
[lutidx
/ 2] |= LUT_DEF(lutidx
, LUT_DUMMY
,
570 * Due to FlexSPI controller limitation number of PAD for dummy
571 * buswidth needs to be programmed as equal to data buswidth.
573 LUT_PAD(op
->data
.buswidth
),
574 op
->dummy
.nbytes
* 8 /
579 /* read/write data bytes */
580 if (op
->data
.nbytes
) {
581 lutval
[lutidx
/ 2] |= LUT_DEF(lutidx
,
582 op
->data
.dir
== SPI_MEM_DATA_IN
?
583 LUT_NXP_READ
: LUT_NXP_WRITE
,
584 LUT_PAD(op
->data
.buswidth
),
589 /* stop condition. */
590 lutval
[lutidx
/ 2] |= LUT_DEF(lutidx
, LUT_STOP
, 0, 0);
593 fspi_writel(f
, FSPI_LUTKEY_VALUE
, f
->iobase
+ FSPI_LUTKEY
);
594 fspi_writel(f
, FSPI_LCKER_UNLOCK
, f
->iobase
+ FSPI_LCKCR
);
597 for (i
= 0; i
< ARRAY_SIZE(lutval
); i
++) {
598 target_lut_reg
= FSPI_LUT_BASE
+ lut_offset
+ i
* 4;
599 fspi_writel(f
, lutval
[i
], base
+ target_lut_reg
);
602 dev_dbg(f
->dev
, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
603 op
->cmd
.opcode
, lutval
[0], lutval
[1], lutval
[2], lutval
[3], op
->data
.nbytes
);
606 fspi_writel(f
, FSPI_LUTKEY_VALUE
, f
->iobase
+ FSPI_LUTKEY
);
607 fspi_writel(f
, FSPI_LCKER_LOCK
, f
->iobase
+ FSPI_LCKCR
);
610 static int nxp_fspi_clk_prep_enable(struct nxp_fspi
*f
)
614 if (is_acpi_node(dev_fwnode(f
->dev
)))
617 ret
= clk_prepare_enable(f
->clk_en
);
621 ret
= clk_prepare_enable(f
->clk
);
623 clk_disable_unprepare(f
->clk_en
);
630 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi
*f
)
632 if (is_acpi_node(dev_fwnode(f
->dev
)))
635 clk_disable_unprepare(f
->clk
);
636 clk_disable_unprepare(f
->clk_en
);
641 static void nxp_fspi_dll_calibration(struct nxp_fspi
*f
)
645 /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
646 fspi_writel(f
, FSPI_DLLACR_DLLRESET
, f
->iobase
+ FSPI_DLLACR
);
647 fspi_writel(f
, FSPI_DLLBCR_DLLRESET
, f
->iobase
+ FSPI_DLLBCR
);
648 fspi_writel(f
, 0, f
->iobase
+ FSPI_DLLACR
);
649 fspi_writel(f
, 0, f
->iobase
+ FSPI_DLLBCR
);
652 * Enable the DLL calibration mode.
653 * The delay target for slave delay line is:
654 * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
655 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
656 * means half of clock cycle of reference clock.
658 fspi_writel(f
, FSPI_DLLACR_DLLEN
| FSPI_DLLACR_SLVDLY(0xF),
659 f
->iobase
+ FSPI_DLLACR
);
660 fspi_writel(f
, FSPI_DLLBCR_DLLEN
| FSPI_DLLBCR_SLVDLY(0xF),
661 f
->iobase
+ FSPI_DLLBCR
);
663 /* Wait to get REF/SLV lock */
664 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_STS2
, FSPI_STS2_AB_LOCK
,
667 dev_warn(f
->dev
, "DLL lock failed, please fix it!\n");
671 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
672 * register and start base address of the target device.
675 * -------- <-- FLSHB2CR0
678 * B2 start address --> -------- <-- FLSHB1CR0
681 * B1 start address --> -------- <-- FLSHA2CR0
684 * A2 start address --> -------- <-- FLSHA1CR0
687 * A1 start address --> -------- (Lower address)
690 * Start base address defines the starting address range for given CS and
691 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
693 * But, different targets are having different combinations of number of CS,
694 * some targets only have single CS or two CS covering controller's full
695 * memory mapped space area.
696 * Thus, implementation is being done as independent of the size and number
697 * of the connected target device.
698 * Assign controller memory mapped space size as the size to the connected
700 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
701 * chip-select Flash configuration register.
703 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
704 * memory mapped size of the controller.
705 * Value for rest of the CS FLSHxxCR0 register would be zero.
708 static void nxp_fspi_select_mem(struct nxp_fspi
*f
, struct spi_device
*spi
)
710 unsigned long rate
= spi
->max_speed_hz
;
715 * Return, if previously selected target device is same as current
716 * requested target device.
718 if (f
->selected
== spi_get_chipselect(spi
, 0))
721 /* Reset FLSHxxCR0 registers */
722 fspi_writel(f
, 0, f
->iobase
+ FSPI_FLSHA1CR0
);
723 fspi_writel(f
, 0, f
->iobase
+ FSPI_FLSHA2CR0
);
724 fspi_writel(f
, 0, f
->iobase
+ FSPI_FLSHB1CR0
);
725 fspi_writel(f
, 0, f
->iobase
+ FSPI_FLSHB2CR0
);
727 /* Assign controller memory mapped space as size, KBytes, of flash. */
728 size_kb
= FSPI_FLSHXCR0_SZ(f
->memmap_phy_size
);
730 fspi_writel(f
, size_kb
, f
->iobase
+ FSPI_FLSHA1CR0
+
731 4 * spi_get_chipselect(spi
, 0));
733 dev_dbg(f
->dev
, "Target device [CS:%x] selected\n", spi_get_chipselect(spi
, 0));
735 nxp_fspi_clk_disable_unprep(f
);
737 ret
= clk_set_rate(f
->clk
, rate
);
741 ret
= nxp_fspi_clk_prep_enable(f
);
746 * If clock rate > 100MHz, then switch from DLL override mode to
747 * DLL calibration mode.
749 if (rate
> 100000000)
750 nxp_fspi_dll_calibration(f
);
752 f
->selected
= spi_get_chipselect(spi
, 0);
755 static int nxp_fspi_read_ahb(struct nxp_fspi
*f
, const struct spi_mem_op
*op
)
757 u32 start
= op
->addr
.val
;
758 u32 len
= op
->data
.nbytes
;
760 /* if necessary, ioremap before AHB read */
761 if ((!f
->ahb_addr
) || start
< f
->memmap_start
||
762 start
+ len
> f
->memmap_start
+ f
->memmap_len
) {
764 iounmap(f
->ahb_addr
);
766 f
->memmap_start
= start
;
767 f
->memmap_len
= max_t(u32
, len
, NXP_FSPI_MIN_IOMAP
);
769 f
->ahb_addr
= ioremap(f
->memmap_phy
+ f
->memmap_start
,
773 dev_err(f
->dev
, "failed to alloc memory\n");
778 /* Read out the data directly from the AHB buffer. */
779 memcpy_fromio(op
->data
.buf
.in
,
780 f
->ahb_addr
+ start
- f
->memmap_start
, len
);
785 static void nxp_fspi_fill_txfifo(struct nxp_fspi
*f
,
786 const struct spi_mem_op
*op
)
788 void __iomem
*base
= f
->iobase
;
790 u8
*buf
= (u8
*) op
->data
.buf
.out
;
792 /* clear the TX FIFO. */
793 fspi_writel(f
, FSPI_IPTXFCR_CLR
, base
+ FSPI_IPTXFCR
);
796 * Default value of water mark level is 8 bytes, hence in single
797 * write request controller can write max 8 bytes of data.
800 for (i
= 0; i
< ALIGN_DOWN(op
->data
.nbytes
, 8); i
+= 8) {
801 /* Wait for TXFIFO empty */
802 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_INTR
,
807 fspi_writel(f
, *(u32
*) (buf
+ i
), base
+ FSPI_TFDR
);
808 fspi_writel(f
, *(u32
*) (buf
+ i
+ 4), base
+ FSPI_TFDR
+ 4);
809 fspi_writel(f
, FSPI_INTR_IPTXWE
, base
+ FSPI_INTR
);
812 if (i
< op
->data
.nbytes
) {
815 int remaining
= op
->data
.nbytes
- i
;
816 /* Wait for TXFIFO empty */
817 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_INTR
,
822 for (j
= 0; j
< ALIGN(remaining
, 4); j
+= 4) {
823 memcpy(&data
, buf
+ i
+ j
, min_t(int, 4, remaining
- j
));
824 fspi_writel(f
, data
, base
+ FSPI_TFDR
+ j
);
826 fspi_writel(f
, FSPI_INTR_IPTXWE
, base
+ FSPI_INTR
);
830 static void nxp_fspi_read_rxfifo(struct nxp_fspi
*f
,
831 const struct spi_mem_op
*op
)
833 void __iomem
*base
= f
->iobase
;
835 int len
= op
->data
.nbytes
;
836 u8
*buf
= (u8
*) op
->data
.buf
.in
;
839 * Default value of water mark level is 8 bytes, hence in single
840 * read request controller can read max 8 bytes of data.
842 for (i
= 0; i
< ALIGN_DOWN(len
, 8); i
+= 8) {
843 /* Wait for RXFIFO available */
844 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_INTR
,
849 *(u32
*)(buf
+ i
) = fspi_readl(f
, base
+ FSPI_RFDR
);
850 *(u32
*)(buf
+ i
+ 4) = fspi_readl(f
, base
+ FSPI_RFDR
+ 4);
851 /* move the FIFO pointer */
852 fspi_writel(f
, FSPI_INTR_IPRXWA
, base
+ FSPI_INTR
);
859 buf
= op
->data
.buf
.in
+ i
;
860 /* Wait for RXFIFO available */
861 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_INTR
,
866 len
= op
->data
.nbytes
- i
;
867 for (j
= 0; j
< op
->data
.nbytes
- i
; j
+= 4) {
868 tmp
= fspi_readl(f
, base
+ FSPI_RFDR
+ j
);
870 memcpy(buf
+ j
, &tmp
, size
);
875 /* invalid the RXFIFO */
876 fspi_writel(f
, FSPI_IPRXFCR_CLR
, base
+ FSPI_IPRXFCR
);
877 /* move the FIFO pointer */
878 fspi_writel(f
, FSPI_INTR_IPRXWA
, base
+ FSPI_INTR
);
881 static int nxp_fspi_do_op(struct nxp_fspi
*f
, const struct spi_mem_op
*op
)
883 void __iomem
*base
= f
->iobase
;
888 reg
= fspi_readl(f
, base
+ FSPI_IPRXFCR
);
889 /* invalid RXFIFO first */
890 reg
&= ~FSPI_IPRXFCR_DMA_EN
;
891 reg
= reg
| FSPI_IPRXFCR_CLR
;
892 fspi_writel(f
, reg
, base
+ FSPI_IPRXFCR
);
894 init_completion(&f
->c
);
896 fspi_writel(f
, op
->addr
.val
, base
+ FSPI_IPCR0
);
898 * Always start the sequence at the same index since we update
899 * the LUT at each exec_op() call. And also specify the DATA
900 * length, since it's has not been specified in the LUT.
902 seqid_lut
= f
->devtype_data
->lut_num
- 1;
903 fspi_writel(f
, op
->data
.nbytes
|
904 (seqid_lut
<< FSPI_IPCR1_SEQID_SHIFT
) |
905 (seqnum
<< FSPI_IPCR1_SEQNUM_SHIFT
),
908 /* Trigger the LUT now. */
909 fspi_writel(f
, FSPI_IPCMD_TRG
, base
+ FSPI_IPCMD
);
911 /* Wait for the interrupt. */
912 if (!wait_for_completion_timeout(&f
->c
, msecs_to_jiffies(1000)))
915 /* Invoke IP data read, if request is of data read. */
916 if (!err
&& op
->data
.nbytes
&& op
->data
.dir
== SPI_MEM_DATA_IN
)
917 nxp_fspi_read_rxfifo(f
, op
);
922 static int nxp_fspi_exec_op(struct spi_mem
*mem
, const struct spi_mem_op
*op
)
924 struct nxp_fspi
*f
= spi_controller_get_devdata(mem
->spi
->controller
);
927 mutex_lock(&f
->lock
);
929 /* Wait for controller being ready. */
930 err
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_STS0
,
931 FSPI_STS0_ARB_IDLE
, 1, POLL_TOUT
, true);
934 nxp_fspi_select_mem(f
, mem
->spi
);
936 nxp_fspi_prepare_lut(f
, op
);
938 * If we have large chunks of data, we read them through the AHB bus by
939 * accessing the mapped memory. In all other cases we use IP commands
940 * to access the flash. Read via AHB bus may be corrupted due to
941 * existence of an errata and therefore discard AHB read in such cases.
943 if (op
->data
.nbytes
> (f
->devtype_data
->rxfifo
- 4) &&
944 op
->data
.dir
== SPI_MEM_DATA_IN
&&
946 err
= nxp_fspi_read_ahb(f
, op
);
948 if (op
->data
.nbytes
&& op
->data
.dir
== SPI_MEM_DATA_OUT
)
949 nxp_fspi_fill_txfifo(f
, op
);
951 err
= nxp_fspi_do_op(f
, op
);
954 /* Invalidate the data in the AHB buffer. */
957 mutex_unlock(&f
->lock
);
962 static int nxp_fspi_adjust_op_size(struct spi_mem
*mem
, struct spi_mem_op
*op
)
964 struct nxp_fspi
*f
= spi_controller_get_devdata(mem
->spi
->controller
);
966 if (op
->data
.dir
== SPI_MEM_DATA_OUT
) {
967 if (op
->data
.nbytes
> f
->devtype_data
->txfifo
)
968 op
->data
.nbytes
= f
->devtype_data
->txfifo
;
970 if (op
->data
.nbytes
> f
->devtype_data
->ahb_buf_size
)
971 op
->data
.nbytes
= f
->devtype_data
->ahb_buf_size
;
972 else if (op
->data
.nbytes
> (f
->devtype_data
->rxfifo
- 4))
973 op
->data
.nbytes
= ALIGN_DOWN(op
->data
.nbytes
, 8);
976 /* Limit data bytes to RX FIFO in case of IP read only */
977 if (op
->data
.dir
== SPI_MEM_DATA_IN
&&
979 op
->data
.nbytes
> f
->devtype_data
->rxfifo
)
980 op
->data
.nbytes
= f
->devtype_data
->rxfifo
;
985 static void erratum_err050568(struct nxp_fspi
*f
)
987 static const struct soc_device_attribute ls1028a_soc_attr
[] = {
988 { .family
= "QorIQ LS1028A" },
992 u32 val
, sys_pll_ratio
;
995 /* Check for LS1028A family */
996 if (!soc_device_match(ls1028a_soc_attr
)) {
997 dev_dbg(f
->dev
, "Errata applicable only for LS1028A\n");
1001 map
= syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
1003 dev_err(f
->dev
, "No syscon regmap\n");
1007 ret
= regmap_read(map
, DCFG_RCWSR1
, &val
);
1011 sys_pll_ratio
= FIELD_GET(SYS_PLL_RAT
, val
);
1012 dev_dbg(f
->dev
, "val: 0x%08x, sys_pll_ratio: %d\n", val
, sys_pll_ratio
);
1014 /* Use IP bus only if platform clock is 300MHz */
1015 if (sys_pll_ratio
== 3)
1016 f
->devtype_data
->quirks
|= FSPI_QUIRK_USE_IP_ONLY
;
1021 dev_err(f
->dev
, "Errata cannot be executed. Read via IP bus may not work\n");
1024 static int nxp_fspi_default_setup(struct nxp_fspi
*f
)
1026 void __iomem
*base
= f
->iobase
;
1030 /* disable and unprepare clock to avoid glitch pass to controller */
1031 nxp_fspi_clk_disable_unprep(f
);
1033 /* the default frequency, we will change it later if necessary. */
1034 ret
= clk_set_rate(f
->clk
, 20000000);
1038 ret
= nxp_fspi_clk_prep_enable(f
);
1043 * ERR050568: Flash access by FlexSPI AHB command may not work with
1044 * platform frequency equal to 300 MHz on LS1028A.
1045 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1046 * Layerscape LS1028A platform.
1048 if (of_device_is_compatible(f
->dev
->of_node
, "nxp,lx2160a-fspi"))
1049 erratum_err050568(f
);
1051 /* Reset the module */
1052 /* w1c register, wait unit clear */
1053 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_MCR0
,
1054 FSPI_MCR0_SWRST
, 0, POLL_TOUT
, false);
1057 /* Disable the module */
1058 fspi_writel(f
, FSPI_MCR0_MDIS
, base
+ FSPI_MCR0
);
1061 * Config the DLL register to default value, enable the target clock delay
1062 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1063 * chain, this is the suggested setting when clock rate < 100MHz.
1065 fspi_writel(f
, FSPI_DLLACR_OVRDEN
, base
+ FSPI_DLLACR
);
1066 fspi_writel(f
, FSPI_DLLBCR_OVRDEN
, base
+ FSPI_DLLBCR
);
1069 fspi_writel(f
, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1070 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32
) FSPI_MCR0_OCTCOMB_EN
,
1074 * Disable same device enable bit and configure all target devices
1077 reg
= fspi_readl(f
, f
->iobase
+ FSPI_MCR2
);
1078 reg
= reg
& ~(FSPI_MCR2_SAMEDEVICEEN
);
1079 fspi_writel(f
, reg
, base
+ FSPI_MCR2
);
1081 /* AHB configuration for access buffer 0~7. */
1082 for (i
= 0; i
< 7; i
++)
1083 fspi_writel(f
, 0, base
+ FSPI_AHBRX_BUF0CR0
+ 4 * i
);
1086 * Set ADATSZ with the maximum AHB buffer size to improve the read
1089 fspi_writel(f
, (f
->devtype_data
->ahb_buf_size
/ 8 |
1090 FSPI_AHBRXBUF0CR7_PREF
), base
+ FSPI_AHBRX_BUF7CR0
);
1092 /* prefetch and no start address alignment limitation */
1093 fspi_writel(f
, FSPI_AHBCR_PREF_EN
| FSPI_AHBCR_RDADDROPT
,
1096 /* Reset the FLSHxCR1 registers. */
1097 reg
= FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1098 fspi_writel(f
, reg
, base
+ FSPI_FLSHA1CR1
);
1099 fspi_writel(f
, reg
, base
+ FSPI_FLSHA2CR1
);
1100 fspi_writel(f
, reg
, base
+ FSPI_FLSHB1CR1
);
1101 fspi_writel(f
, reg
, base
+ FSPI_FLSHB2CR1
);
1104 * The driver only uses one single LUT entry, that is updated on
1105 * each call of exec_op(). Index 0 is preset at boot with a basic
1106 * read operation, so let's use the last entry.
1108 seqid_lut
= f
->devtype_data
->lut_num
- 1;
1109 /* AHB Read - Set lut sequence ID for all CS. */
1110 fspi_writel(f
, seqid_lut
, base
+ FSPI_FLSHA1CR2
);
1111 fspi_writel(f
, seqid_lut
, base
+ FSPI_FLSHA2CR2
);
1112 fspi_writel(f
, seqid_lut
, base
+ FSPI_FLSHB1CR2
);
1113 fspi_writel(f
, seqid_lut
, base
+ FSPI_FLSHB2CR2
);
1117 /* enable the interrupt */
1118 fspi_writel(f
, FSPI_INTEN_IPCMDDONE
, base
+ FSPI_INTEN
);
1123 static const char *nxp_fspi_get_name(struct spi_mem
*mem
)
1125 struct nxp_fspi
*f
= spi_controller_get_devdata(mem
->spi
->controller
);
1126 struct device
*dev
= &mem
->spi
->dev
;
1129 // Set custom name derived from the platform_device of the controller.
1130 if (of_get_available_child_count(f
->dev
->of_node
) == 1)
1131 return dev_name(f
->dev
);
1133 name
= devm_kasprintf(dev
, GFP_KERNEL
,
1134 "%s-%d", dev_name(f
->dev
),
1135 spi_get_chipselect(mem
->spi
, 0));
1138 dev_err(dev
, "failed to get memory for custom flash name\n");
1139 return ERR_PTR(-ENOMEM
);
1145 static const struct spi_controller_mem_ops nxp_fspi_mem_ops
= {
1146 .adjust_op_size
= nxp_fspi_adjust_op_size
,
1147 .supports_op
= nxp_fspi_supports_op
,
1148 .exec_op
= nxp_fspi_exec_op
,
1149 .get_name
= nxp_fspi_get_name
,
1152 static int nxp_fspi_probe(struct platform_device
*pdev
)
1154 struct spi_controller
*ctlr
;
1155 struct device
*dev
= &pdev
->dev
;
1156 struct device_node
*np
= dev
->of_node
;
1157 struct resource
*res
;
1162 ctlr
= spi_alloc_host(&pdev
->dev
, sizeof(*f
));
1166 ctlr
->mode_bits
= SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
|
1167 SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
;
1169 f
= spi_controller_get_devdata(ctlr
);
1171 f
->devtype_data
= (struct nxp_fspi_devtype_data
*)device_get_match_data(dev
);
1172 if (!f
->devtype_data
) {
1177 platform_set_drvdata(pdev
, f
);
1179 /* find the resources - configuration register address space */
1180 if (is_acpi_node(dev_fwnode(f
->dev
)))
1181 f
->iobase
= devm_platform_ioremap_resource(pdev
, 0);
1183 f
->iobase
= devm_platform_ioremap_resource_byname(pdev
, "fspi_base");
1185 if (IS_ERR(f
->iobase
)) {
1186 ret
= PTR_ERR(f
->iobase
);
1190 /* find the resources - controller memory mapped space */
1191 if (is_acpi_node(dev_fwnode(f
->dev
)))
1192 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1194 res
= platform_get_resource_byname(pdev
,
1195 IORESOURCE_MEM
, "fspi_mmap");
1202 /* assign memory mapped starting address and mapped size. */
1203 f
->memmap_phy
= res
->start
;
1204 f
->memmap_phy_size
= resource_size(res
);
1206 /* find the clocks */
1207 if (dev_of_node(&pdev
->dev
)) {
1208 f
->clk_en
= devm_clk_get(dev
, "fspi_en");
1209 if (IS_ERR(f
->clk_en
)) {
1210 ret
= PTR_ERR(f
->clk_en
);
1214 f
->clk
= devm_clk_get(dev
, "fspi");
1215 if (IS_ERR(f
->clk
)) {
1216 ret
= PTR_ERR(f
->clk
);
1220 ret
= nxp_fspi_clk_prep_enable(f
);
1222 dev_err(dev
, "can not enable the clock\n");
1227 /* Clear potential interrupts */
1228 reg
= fspi_readl(f
, f
->iobase
+ FSPI_INTR
);
1230 fspi_writel(f
, reg
, f
->iobase
+ FSPI_INTR
);
1233 ret
= platform_get_irq(pdev
, 0);
1235 goto err_disable_clk
;
1237 ret
= devm_request_irq(dev
, ret
,
1238 nxp_fspi_irq_handler
, 0, pdev
->name
, f
);
1240 dev_err(dev
, "failed to request irq: %d\n", ret
);
1241 goto err_disable_clk
;
1244 mutex_init(&f
->lock
);
1247 ctlr
->num_chipselect
= NXP_FSPI_MAX_CHIPSELECT
;
1248 ctlr
->mem_ops
= &nxp_fspi_mem_ops
;
1250 nxp_fspi_default_setup(f
);
1252 ctlr
->dev
.of_node
= np
;
1254 ret
= devm_spi_register_controller(&pdev
->dev
, ctlr
);
1256 goto err_destroy_mutex
;
1261 mutex_destroy(&f
->lock
);
1264 nxp_fspi_clk_disable_unprep(f
);
1267 spi_controller_put(ctlr
);
1269 dev_err(dev
, "NXP FSPI probe failed\n");
1273 static void nxp_fspi_remove(struct platform_device
*pdev
)
1275 struct nxp_fspi
*f
= platform_get_drvdata(pdev
);
1277 /* disable the hardware */
1278 fspi_writel(f
, FSPI_MCR0_MDIS
, f
->iobase
+ FSPI_MCR0
);
1280 nxp_fspi_clk_disable_unprep(f
);
1282 mutex_destroy(&f
->lock
);
1285 iounmap(f
->ahb_addr
);
1288 static int nxp_fspi_suspend(struct device
*dev
)
1293 static int nxp_fspi_resume(struct device
*dev
)
1295 struct nxp_fspi
*f
= dev_get_drvdata(dev
);
1297 nxp_fspi_default_setup(f
);
1302 static const struct of_device_id nxp_fspi_dt_ids
[] = {
1303 { .compatible
= "nxp,lx2160a-fspi", .data
= (void *)&lx2160a_data
, },
1304 { .compatible
= "nxp,imx8mm-fspi", .data
= (void *)&imx8mm_data
, },
1305 { .compatible
= "nxp,imx8mp-fspi", .data
= (void *)&imx8mm_data
, },
1306 { .compatible
= "nxp,imx8qxp-fspi", .data
= (void *)&imx8qxp_data
, },
1307 { .compatible
= "nxp,imx8dxl-fspi", .data
= (void *)&imx8dxl_data
, },
1308 { .compatible
= "nxp,imx8ulp-fspi", .data
= (void *)&imx8ulp_data
, },
1311 MODULE_DEVICE_TABLE(of
, nxp_fspi_dt_ids
);
1314 static const struct acpi_device_id nxp_fspi_acpi_ids
[] = {
1315 { "NXP0009", .driver_data
= (kernel_ulong_t
)&lx2160a_data
, },
1318 MODULE_DEVICE_TABLE(acpi
, nxp_fspi_acpi_ids
);
1321 static const struct dev_pm_ops nxp_fspi_pm_ops
= {
1322 .suspend
= nxp_fspi_suspend
,
1323 .resume
= nxp_fspi_resume
,
1326 static struct platform_driver nxp_fspi_driver
= {
1329 .of_match_table
= nxp_fspi_dt_ids
,
1330 .acpi_match_table
= ACPI_PTR(nxp_fspi_acpi_ids
),
1331 .pm
= &nxp_fspi_pm_ops
,
1333 .probe
= nxp_fspi_probe
,
1334 .remove
= nxp_fspi_remove
,
1336 module_platform_driver(nxp_fspi_driver
);
1338 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1339 MODULE_AUTHOR("NXP Semiconductor");
1340 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1341 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1342 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1343 MODULE_LICENSE("GPL v2");