Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / spi / spi-nxp-fspi.c
blob1161b9e5a4dce633718e22022410b5e7435bb51c
1 // SPDX-License-Identifier: GPL-2.0+
3 /*
4 * NXP FlexSPI(FSPI) controller driver.
6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12 * data lines).
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
22 * Software triggered Flash read/write access by IP Bus.
24 * Memory mapped read access by AHB Bus.
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
28 * Author:
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30 * Boris Brezillon <bbrezillon@kernel.org>
31 * Frieder Schrempf <frieder.schrempf@kontron.de>
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
43 #include <linux/io.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/of.h>
50 #include <linux/platform_device.h>
51 #include <linux/pm_qos.h>
52 #include <linux/regmap.h>
53 #include <linux/sizes.h>
54 #include <linux/sys_soc.h>
56 #include <linux/mfd/syscon.h>
57 #include <linux/spi/spi.h>
58 #include <linux/spi/spi-mem.h>
60 /* Registers used by the driver */
61 #define FSPI_MCR0 0x00
62 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
63 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
64 #define FSPI_MCR0_LEARN_EN BIT(15)
65 #define FSPI_MCR0_SCRFRUN_EN BIT(14)
66 #define FSPI_MCR0_OCTCOMB_EN BIT(13)
67 #define FSPI_MCR0_DOZE_EN BIT(12)
68 #define FSPI_MCR0_HSEN BIT(11)
69 #define FSPI_MCR0_SERCLKDIV BIT(8)
70 #define FSPI_MCR0_ATDF_EN BIT(7)
71 #define FSPI_MCR0_ARDF_EN BIT(6)
72 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
73 #define FSPI_MCR0_END_CFG(x) ((x) << 2)
74 #define FSPI_MCR0_MDIS BIT(1)
75 #define FSPI_MCR0_SWRST BIT(0)
77 #define FSPI_MCR1 0x04
78 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
79 #define FSPI_MCR1_AHB_TIMEOUT(x) (x)
81 #define FSPI_MCR2 0x08
82 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
83 #define FSPI_MCR2_SAMEDEVICEEN BIT(15)
84 #define FSPI_MCR2_CLRLRPHS BIT(14)
85 #define FSPI_MCR2_ABRDATSZ BIT(8)
86 #define FSPI_MCR2_ABRLEARN BIT(7)
87 #define FSPI_MCR2_ABR_READ BIT(6)
88 #define FSPI_MCR2_ABRWRITE BIT(5)
89 #define FSPI_MCR2_ABRDUMMY BIT(4)
90 #define FSPI_MCR2_ABR_MODE BIT(3)
91 #define FSPI_MCR2_ABRCADDR BIT(2)
92 #define FSPI_MCR2_ABRRADDR BIT(1)
93 #define FSPI_MCR2_ABR_CMD BIT(0)
95 #define FSPI_AHBCR 0x0c
96 #define FSPI_AHBCR_RDADDROPT BIT(6)
97 #define FSPI_AHBCR_PREF_EN BIT(5)
98 #define FSPI_AHBCR_BUFF_EN BIT(4)
99 #define FSPI_AHBCR_CACH_EN BIT(3)
100 #define FSPI_AHBCR_CLRTXBUF BIT(2)
101 #define FSPI_AHBCR_CLRRXBUF BIT(1)
102 #define FSPI_AHBCR_PAR_EN BIT(0)
104 #define FSPI_INTEN 0x10
105 #define FSPI_INTEN_SCLKSBWR BIT(9)
106 #define FSPI_INTEN_SCLKSBRD BIT(8)
107 #define FSPI_INTEN_DATALRNFL BIT(7)
108 #define FSPI_INTEN_IPTXWE BIT(6)
109 #define FSPI_INTEN_IPRXWA BIT(5)
110 #define FSPI_INTEN_AHBCMDERR BIT(4)
111 #define FSPI_INTEN_IPCMDERR BIT(3)
112 #define FSPI_INTEN_AHBCMDGE BIT(2)
113 #define FSPI_INTEN_IPCMDGE BIT(1)
114 #define FSPI_INTEN_IPCMDDONE BIT(0)
116 #define FSPI_INTR 0x14
117 #define FSPI_INTR_SCLKSBWR BIT(9)
118 #define FSPI_INTR_SCLKSBRD BIT(8)
119 #define FSPI_INTR_DATALRNFL BIT(7)
120 #define FSPI_INTR_IPTXWE BIT(6)
121 #define FSPI_INTR_IPRXWA BIT(5)
122 #define FSPI_INTR_AHBCMDERR BIT(4)
123 #define FSPI_INTR_IPCMDERR BIT(3)
124 #define FSPI_INTR_AHBCMDGE BIT(2)
125 #define FSPI_INTR_IPCMDGE BIT(1)
126 #define FSPI_INTR_IPCMDDONE BIT(0)
128 #define FSPI_LUTKEY 0x18
129 #define FSPI_LUTKEY_VALUE 0x5AF05AF0
131 #define FSPI_LCKCR 0x1C
133 #define FSPI_LCKER_LOCK 0x1
134 #define FSPI_LCKER_UNLOCK 0x2
136 #define FSPI_BUFXCR_INVALID_MSTRID 0xE
137 #define FSPI_AHBRX_BUF0CR0 0x20
138 #define FSPI_AHBRX_BUF1CR0 0x24
139 #define FSPI_AHBRX_BUF2CR0 0x28
140 #define FSPI_AHBRX_BUF3CR0 0x2C
141 #define FSPI_AHBRX_BUF4CR0 0x30
142 #define FSPI_AHBRX_BUF5CR0 0x34
143 #define FSPI_AHBRX_BUF6CR0 0x38
144 #define FSPI_AHBRX_BUF7CR0 0x3C
145 #define FSPI_AHBRXBUF0CR7_PREF BIT(31)
147 #define FSPI_AHBRX_BUF0CR1 0x40
148 #define FSPI_AHBRX_BUF1CR1 0x44
149 #define FSPI_AHBRX_BUF2CR1 0x48
150 #define FSPI_AHBRX_BUF3CR1 0x4C
151 #define FSPI_AHBRX_BUF4CR1 0x50
152 #define FSPI_AHBRX_BUF5CR1 0x54
153 #define FSPI_AHBRX_BUF6CR1 0x58
154 #define FSPI_AHBRX_BUF7CR1 0x5C
156 #define FSPI_FLSHA1CR0 0x60
157 #define FSPI_FLSHA2CR0 0x64
158 #define FSPI_FLSHB1CR0 0x68
159 #define FSPI_FLSHB2CR0 0x6C
160 #define FSPI_FLSHXCR0_SZ_KB 10
161 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
163 #define FSPI_FLSHA1CR1 0x70
164 #define FSPI_FLSHA2CR1 0x74
165 #define FSPI_FLSHB1CR1 0x78
166 #define FSPI_FLSHB2CR1 0x7C
167 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
168 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
169 #define FSPI_FLSHXCR1_WA BIT(10)
170 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
171 #define FSPI_FLSHXCR1_TCSS(x) (x)
173 #define FSPI_FLSHA1CR2 0x80
174 #define FSPI_FLSHA2CR2 0x84
175 #define FSPI_FLSHB1CR2 0x88
176 #define FSPI_FLSHB2CR2 0x8C
177 #define FSPI_FLSHXCR2_CLRINSP BIT(24)
178 #define FSPI_FLSHXCR2_AWRWAIT BIT(16)
179 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
180 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
181 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
182 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
184 #define FSPI_IPCR0 0xA0
186 #define FSPI_IPCR1 0xA4
187 #define FSPI_IPCR1_IPAREN BIT(31)
188 #define FSPI_IPCR1_SEQNUM_SHIFT 24
189 #define FSPI_IPCR1_SEQID_SHIFT 16
190 #define FSPI_IPCR1_IDATSZ(x) (x)
192 #define FSPI_IPCMD 0xB0
193 #define FSPI_IPCMD_TRG BIT(0)
195 #define FSPI_DLPR 0xB4
197 #define FSPI_IPRXFCR 0xB8
198 #define FSPI_IPRXFCR_CLR BIT(0)
199 #define FSPI_IPRXFCR_DMA_EN BIT(1)
200 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
202 #define FSPI_IPTXFCR 0xBC
203 #define FSPI_IPTXFCR_CLR BIT(0)
204 #define FSPI_IPTXFCR_DMA_EN BIT(1)
205 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
207 #define FSPI_DLLACR 0xC0
208 #define FSPI_DLLACR_OVRDEN BIT(8)
209 #define FSPI_DLLACR_SLVDLY(x) ((x) << 3)
210 #define FSPI_DLLACR_DLLRESET BIT(1)
211 #define FSPI_DLLACR_DLLEN BIT(0)
213 #define FSPI_DLLBCR 0xC4
214 #define FSPI_DLLBCR_OVRDEN BIT(8)
215 #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3)
216 #define FSPI_DLLBCR_DLLRESET BIT(1)
217 #define FSPI_DLLBCR_DLLEN BIT(0)
219 #define FSPI_STS0 0xE0
220 #define FSPI_STS0_DLPHB(x) ((x) << 8)
221 #define FSPI_STS0_DLPHA(x) ((x) << 4)
222 #define FSPI_STS0_CMD_SRC(x) ((x) << 2)
223 #define FSPI_STS0_ARB_IDLE BIT(1)
224 #define FSPI_STS0_SEQ_IDLE BIT(0)
226 #define FSPI_STS1 0xE4
227 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
228 #define FSPI_STS1_IP_ERRID(x) ((x) << 16)
229 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
230 #define FSPI_STS1_AHB_ERRID(x) (x)
232 #define FSPI_STS2 0xE8
233 #define FSPI_STS2_BREFLOCK BIT(17)
234 #define FSPI_STS2_BSLVLOCK BIT(16)
235 #define FSPI_STS2_AREFLOCK BIT(1)
236 #define FSPI_STS2_ASLVLOCK BIT(0)
237 #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \
238 FSPI_STS2_BSLVLOCK | \
239 FSPI_STS2_AREFLOCK | \
240 FSPI_STS2_ASLVLOCK)
242 #define FSPI_AHBSPNST 0xEC
243 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
244 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
245 #define FSPI_AHBSPNST_ACTIVE BIT(0)
247 #define FSPI_IPRXFSTS 0xF0
248 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
249 #define FSPI_IPRXFSTS_FILL(x) (x)
251 #define FSPI_IPTXFSTS 0xF4
252 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
253 #define FSPI_IPTXFSTS_FILL(x) (x)
255 #define FSPI_RFDR 0x100
256 #define FSPI_TFDR 0x180
258 #define FSPI_LUT_BASE 0x200
260 /* register map end */
262 /* Instruction set for the LUT register. */
263 #define LUT_STOP 0x00
264 #define LUT_CMD 0x01
265 #define LUT_ADDR 0x02
266 #define LUT_CADDR_SDR 0x03
267 #define LUT_MODE 0x04
268 #define LUT_MODE2 0x05
269 #define LUT_MODE4 0x06
270 #define LUT_MODE8 0x07
271 #define LUT_NXP_WRITE 0x08
272 #define LUT_NXP_READ 0x09
273 #define LUT_LEARN_SDR 0x0A
274 #define LUT_DATSZ_SDR 0x0B
275 #define LUT_DUMMY 0x0C
276 #define LUT_DUMMY_RWDS_SDR 0x0D
277 #define LUT_JMP_ON_CS 0x1F
278 #define LUT_CMD_DDR 0x21
279 #define LUT_ADDR_DDR 0x22
280 #define LUT_CADDR_DDR 0x23
281 #define LUT_MODE_DDR 0x24
282 #define LUT_MODE2_DDR 0x25
283 #define LUT_MODE4_DDR 0x26
284 #define LUT_MODE8_DDR 0x27
285 #define LUT_WRITE_DDR 0x28
286 #define LUT_READ_DDR 0x29
287 #define LUT_LEARN_DDR 0x2A
288 #define LUT_DATSZ_DDR 0x2B
289 #define LUT_DUMMY_DDR 0x2C
290 #define LUT_DUMMY_RWDS_DDR 0x2D
293 * Calculate number of required PAD bits for LUT register.
295 * The pad stands for the number of IO lines [0:7].
296 * For example, the octal read needs eight IO lines,
297 * so you should use LUT_PAD(8). This macro
298 * returns 3 i.e. use eight (2^3) IP lines for read.
300 #define LUT_PAD(x) (fls(x) - 1)
303 * Macro for constructing the LUT entries with the following
304 * register layout:
306 * ---------------------------------------------------
307 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
308 * ---------------------------------------------------
310 #define PAD_SHIFT 8
311 #define INSTR_SHIFT 10
312 #define OPRND_SHIFT 16
314 /* Macros for constructing the LUT register. */
315 #define LUT_DEF(idx, ins, pad, opr) \
316 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
317 (opr)) << (((idx) % 2) * OPRND_SHIFT))
319 #define POLL_TOUT 5000
320 #define NXP_FSPI_MAX_CHIPSELECT 4
321 #define NXP_FSPI_MIN_IOMAP SZ_4M
323 #define DCFG_RCWSR1 0x100
324 #define SYS_PLL_RAT GENMASK(6, 2)
326 /* Access flash memory using IP bus only */
327 #define FSPI_QUIRK_USE_IP_ONLY BIT(0)
329 struct nxp_fspi_devtype_data {
330 unsigned int rxfifo;
331 unsigned int txfifo;
332 unsigned int ahb_buf_size;
333 unsigned int quirks;
334 unsigned int lut_num;
335 bool little_endian;
338 static struct nxp_fspi_devtype_data lx2160a_data = {
339 .rxfifo = SZ_512, /* (64 * 64 bits) */
340 .txfifo = SZ_1K, /* (128 * 64 bits) */
341 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
342 .quirks = 0,
343 .lut_num = 32,
344 .little_endian = true, /* little-endian */
347 static struct nxp_fspi_devtype_data imx8mm_data = {
348 .rxfifo = SZ_512, /* (64 * 64 bits) */
349 .txfifo = SZ_1K, /* (128 * 64 bits) */
350 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
351 .quirks = 0,
352 .lut_num = 32,
353 .little_endian = true, /* little-endian */
356 static struct nxp_fspi_devtype_data imx8qxp_data = {
357 .rxfifo = SZ_512, /* (64 * 64 bits) */
358 .txfifo = SZ_1K, /* (128 * 64 bits) */
359 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
360 .quirks = 0,
361 .lut_num = 32,
362 .little_endian = true, /* little-endian */
365 static struct nxp_fspi_devtype_data imx8dxl_data = {
366 .rxfifo = SZ_512, /* (64 * 64 bits) */
367 .txfifo = SZ_1K, /* (128 * 64 bits) */
368 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
369 .quirks = FSPI_QUIRK_USE_IP_ONLY,
370 .lut_num = 32,
371 .little_endian = true, /* little-endian */
374 static struct nxp_fspi_devtype_data imx8ulp_data = {
375 .rxfifo = SZ_512, /* (64 * 64 bits) */
376 .txfifo = SZ_1K, /* (128 * 64 bits) */
377 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
378 .quirks = 0,
379 .lut_num = 16,
380 .little_endian = true, /* little-endian */
383 struct nxp_fspi {
384 void __iomem *iobase;
385 void __iomem *ahb_addr;
386 u32 memmap_phy;
387 u32 memmap_phy_size;
388 u32 memmap_start;
389 u32 memmap_len;
390 struct clk *clk, *clk_en;
391 struct device *dev;
392 struct completion c;
393 struct nxp_fspi_devtype_data *devtype_data;
394 struct mutex lock;
395 struct pm_qos_request pm_qos_req;
396 int selected;
399 static inline int needs_ip_only(struct nxp_fspi *f)
401 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
405 * R/W functions for big- or little-endian registers:
406 * The FSPI controller's endianness is independent of
407 * the CPU core's endianness. So far, although the CPU
408 * core is little-endian the FSPI controller can use
409 * big-endian or little-endian.
411 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
413 if (f->devtype_data->little_endian)
414 iowrite32(val, addr);
415 else
416 iowrite32be(val, addr);
419 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
421 if (f->devtype_data->little_endian)
422 return ioread32(addr);
423 else
424 return ioread32be(addr);
427 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
429 struct nxp_fspi *f = dev_id;
430 u32 reg;
432 /* clear interrupt */
433 reg = fspi_readl(f, f->iobase + FSPI_INTR);
434 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
436 if (reg & FSPI_INTR_IPCMDDONE)
437 complete(&f->c);
439 return IRQ_HANDLED;
442 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
444 switch (width) {
445 case 1:
446 case 2:
447 case 4:
448 case 8:
449 return 0;
452 return -ENOTSUPP;
455 static bool nxp_fspi_supports_op(struct spi_mem *mem,
456 const struct spi_mem_op *op)
458 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
459 int ret;
461 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
463 if (op->addr.nbytes)
464 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
466 if (op->dummy.nbytes)
467 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
469 if (op->data.nbytes)
470 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
472 if (ret)
473 return false;
476 * The number of address bytes should be equal to or less than 4 bytes.
478 if (op->addr.nbytes > 4)
479 return false;
482 * If requested address value is greater than controller assigned
483 * memory mapped space, return error as it didn't fit in the range
484 * of assigned address space.
486 if (op->addr.val >= f->memmap_phy_size)
487 return false;
489 /* Max 64 dummy clock cycles supported */
490 if (op->dummy.buswidth &&
491 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
492 return false;
494 /* Max data length, check controller limits and alignment */
495 if (op->data.dir == SPI_MEM_DATA_IN &&
496 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
497 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
498 !IS_ALIGNED(op->data.nbytes, 8))))
499 return false;
501 if (op->data.dir == SPI_MEM_DATA_OUT &&
502 op->data.nbytes > f->devtype_data->txfifo)
503 return false;
505 return spi_mem_default_supports_op(mem, op);
508 /* Instead of busy looping invoke readl_poll_timeout functionality. */
509 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
510 u32 mask, u32 delay_us,
511 u32 timeout_us, bool c)
513 u32 reg;
515 if (!f->devtype_data->little_endian)
516 mask = (u32)cpu_to_be32(mask);
518 if (c)
519 return readl_poll_timeout(base, reg, (reg & mask),
520 delay_us, timeout_us);
521 else
522 return readl_poll_timeout(base, reg, !(reg & mask),
523 delay_us, timeout_us);
527 * If the target device content being changed by Write/Erase, need to
528 * invalidate the AHB buffer. This can be achieved by doing the reset
529 * of controller after setting MCR0[SWRESET] bit.
531 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
533 u32 reg;
534 int ret;
536 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
537 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
539 /* w1c register, wait unit clear */
540 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
541 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
542 WARN_ON(ret);
545 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
546 const struct spi_mem_op *op)
548 void __iomem *base = f->iobase;
549 u32 lutval[4] = {};
550 int lutidx = 1, i;
551 u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4;
552 u32 target_lut_reg;
554 /* cmd */
555 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
556 op->cmd.opcode);
558 /* addr bytes */
559 if (op->addr.nbytes) {
560 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
561 LUT_PAD(op->addr.buswidth),
562 op->addr.nbytes * 8);
563 lutidx++;
566 /* dummy bytes, if needed */
567 if (op->dummy.nbytes) {
568 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
570 * Due to FlexSPI controller limitation number of PAD for dummy
571 * buswidth needs to be programmed as equal to data buswidth.
573 LUT_PAD(op->data.buswidth),
574 op->dummy.nbytes * 8 /
575 op->dummy.buswidth);
576 lutidx++;
579 /* read/write data bytes */
580 if (op->data.nbytes) {
581 lutval[lutidx / 2] |= LUT_DEF(lutidx,
582 op->data.dir == SPI_MEM_DATA_IN ?
583 LUT_NXP_READ : LUT_NXP_WRITE,
584 LUT_PAD(op->data.buswidth),
586 lutidx++;
589 /* stop condition. */
590 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
592 /* unlock LUT */
593 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
594 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
596 /* fill LUT */
597 for (i = 0; i < ARRAY_SIZE(lutval); i++) {
598 target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4;
599 fspi_writel(f, lutval[i], base + target_lut_reg);
602 dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
603 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
605 /* lock LUT */
606 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
607 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
610 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
612 int ret;
614 if (is_acpi_node(dev_fwnode(f->dev)))
615 return 0;
617 ret = clk_prepare_enable(f->clk_en);
618 if (ret)
619 return ret;
621 ret = clk_prepare_enable(f->clk);
622 if (ret) {
623 clk_disable_unprepare(f->clk_en);
624 return ret;
627 return 0;
630 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
632 if (is_acpi_node(dev_fwnode(f->dev)))
633 return 0;
635 clk_disable_unprepare(f->clk);
636 clk_disable_unprepare(f->clk_en);
638 return 0;
641 static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
643 int ret;
645 /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
646 fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
647 fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
648 fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
649 fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
652 * Enable the DLL calibration mode.
653 * The delay target for slave delay line is:
654 * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
655 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
656 * means half of clock cycle of reference clock.
658 fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
659 f->iobase + FSPI_DLLACR);
660 fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
661 f->iobase + FSPI_DLLBCR);
663 /* Wait to get REF/SLV lock */
664 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
665 0, POLL_TOUT, true);
666 if (ret)
667 dev_warn(f->dev, "DLL lock failed, please fix it!\n");
671 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
672 * register and start base address of the target device.
674 * (Higher address)
675 * -------- <-- FLSHB2CR0
676 * | B2 |
677 * | |
678 * B2 start address --> -------- <-- FLSHB1CR0
679 * | B1 |
680 * | |
681 * B1 start address --> -------- <-- FLSHA2CR0
682 * | A2 |
683 * | |
684 * A2 start address --> -------- <-- FLSHA1CR0
685 * | A1 |
686 * | |
687 * A1 start address --> -------- (Lower address)
690 * Start base address defines the starting address range for given CS and
691 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
693 * But, different targets are having different combinations of number of CS,
694 * some targets only have single CS or two CS covering controller's full
695 * memory mapped space area.
696 * Thus, implementation is being done as independent of the size and number
697 * of the connected target device.
698 * Assign controller memory mapped space size as the size to the connected
699 * target device.
700 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
701 * chip-select Flash configuration register.
703 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
704 * memory mapped size of the controller.
705 * Value for rest of the CS FLSHxxCR0 register would be zero.
708 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
710 unsigned long rate = spi->max_speed_hz;
711 int ret;
712 uint64_t size_kb;
715 * Return, if previously selected target device is same as current
716 * requested target device.
718 if (f->selected == spi_get_chipselect(spi, 0))
719 return;
721 /* Reset FLSHxxCR0 registers */
722 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
723 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
724 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
725 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
727 /* Assign controller memory mapped space as size, KBytes, of flash. */
728 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
730 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
731 4 * spi_get_chipselect(spi, 0));
733 dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
735 nxp_fspi_clk_disable_unprep(f);
737 ret = clk_set_rate(f->clk, rate);
738 if (ret)
739 return;
741 ret = nxp_fspi_clk_prep_enable(f);
742 if (ret)
743 return;
746 * If clock rate > 100MHz, then switch from DLL override mode to
747 * DLL calibration mode.
749 if (rate > 100000000)
750 nxp_fspi_dll_calibration(f);
752 f->selected = spi_get_chipselect(spi, 0);
755 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
757 u32 start = op->addr.val;
758 u32 len = op->data.nbytes;
760 /* if necessary, ioremap before AHB read */
761 if ((!f->ahb_addr) || start < f->memmap_start ||
762 start + len > f->memmap_start + f->memmap_len) {
763 if (f->ahb_addr)
764 iounmap(f->ahb_addr);
766 f->memmap_start = start;
767 f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP);
769 f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
770 f->memmap_len);
772 if (!f->ahb_addr) {
773 dev_err(f->dev, "failed to alloc memory\n");
774 return -ENOMEM;
778 /* Read out the data directly from the AHB buffer. */
779 memcpy_fromio(op->data.buf.in,
780 f->ahb_addr + start - f->memmap_start, len);
782 return 0;
785 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
786 const struct spi_mem_op *op)
788 void __iomem *base = f->iobase;
789 int i, ret;
790 u8 *buf = (u8 *) op->data.buf.out;
792 /* clear the TX FIFO. */
793 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
796 * Default value of water mark level is 8 bytes, hence in single
797 * write request controller can write max 8 bytes of data.
800 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
801 /* Wait for TXFIFO empty */
802 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
803 FSPI_INTR_IPTXWE, 0,
804 POLL_TOUT, true);
805 WARN_ON(ret);
807 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
808 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
809 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
812 if (i < op->data.nbytes) {
813 u32 data = 0;
814 int j;
815 int remaining = op->data.nbytes - i;
816 /* Wait for TXFIFO empty */
817 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
818 FSPI_INTR_IPTXWE, 0,
819 POLL_TOUT, true);
820 WARN_ON(ret);
822 for (j = 0; j < ALIGN(remaining, 4); j += 4) {
823 memcpy(&data, buf + i + j, min_t(int, 4, remaining - j));
824 fspi_writel(f, data, base + FSPI_TFDR + j);
826 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
830 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
831 const struct spi_mem_op *op)
833 void __iomem *base = f->iobase;
834 int i, ret;
835 int len = op->data.nbytes;
836 u8 *buf = (u8 *) op->data.buf.in;
839 * Default value of water mark level is 8 bytes, hence in single
840 * read request controller can read max 8 bytes of data.
842 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
843 /* Wait for RXFIFO available */
844 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
845 FSPI_INTR_IPRXWA, 0,
846 POLL_TOUT, true);
847 WARN_ON(ret);
849 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
850 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
851 /* move the FIFO pointer */
852 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
855 if (i < len) {
856 u32 tmp;
857 int size, j;
859 buf = op->data.buf.in + i;
860 /* Wait for RXFIFO available */
861 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
862 FSPI_INTR_IPRXWA, 0,
863 POLL_TOUT, true);
864 WARN_ON(ret);
866 len = op->data.nbytes - i;
867 for (j = 0; j < op->data.nbytes - i; j += 4) {
868 tmp = fspi_readl(f, base + FSPI_RFDR + j);
869 size = min(len, 4);
870 memcpy(buf + j, &tmp, size);
871 len -= size;
875 /* invalid the RXFIFO */
876 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
877 /* move the FIFO pointer */
878 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
881 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
883 void __iomem *base = f->iobase;
884 int seqnum = 0;
885 int err = 0;
886 u32 reg, seqid_lut;
888 reg = fspi_readl(f, base + FSPI_IPRXFCR);
889 /* invalid RXFIFO first */
890 reg &= ~FSPI_IPRXFCR_DMA_EN;
891 reg = reg | FSPI_IPRXFCR_CLR;
892 fspi_writel(f, reg, base + FSPI_IPRXFCR);
894 init_completion(&f->c);
896 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
898 * Always start the sequence at the same index since we update
899 * the LUT at each exec_op() call. And also specify the DATA
900 * length, since it's has not been specified in the LUT.
902 seqid_lut = f->devtype_data->lut_num - 1;
903 fspi_writel(f, op->data.nbytes |
904 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) |
905 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
906 base + FSPI_IPCR1);
908 /* Trigger the LUT now. */
909 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
911 /* Wait for the interrupt. */
912 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
913 err = -ETIMEDOUT;
915 /* Invoke IP data read, if request is of data read. */
916 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
917 nxp_fspi_read_rxfifo(f, op);
919 return err;
922 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
924 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
925 int err = 0;
927 mutex_lock(&f->lock);
929 /* Wait for controller being ready. */
930 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
931 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
932 WARN_ON(err);
934 nxp_fspi_select_mem(f, mem->spi);
936 nxp_fspi_prepare_lut(f, op);
938 * If we have large chunks of data, we read them through the AHB bus by
939 * accessing the mapped memory. In all other cases we use IP commands
940 * to access the flash. Read via AHB bus may be corrupted due to
941 * existence of an errata and therefore discard AHB read in such cases.
943 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
944 op->data.dir == SPI_MEM_DATA_IN &&
945 !needs_ip_only(f)) {
946 err = nxp_fspi_read_ahb(f, op);
947 } else {
948 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
949 nxp_fspi_fill_txfifo(f, op);
951 err = nxp_fspi_do_op(f, op);
954 /* Invalidate the data in the AHB buffer. */
955 nxp_fspi_invalid(f);
957 mutex_unlock(&f->lock);
959 return err;
962 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
964 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
966 if (op->data.dir == SPI_MEM_DATA_OUT) {
967 if (op->data.nbytes > f->devtype_data->txfifo)
968 op->data.nbytes = f->devtype_data->txfifo;
969 } else {
970 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
971 op->data.nbytes = f->devtype_data->ahb_buf_size;
972 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
973 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
976 /* Limit data bytes to RX FIFO in case of IP read only */
977 if (op->data.dir == SPI_MEM_DATA_IN &&
978 needs_ip_only(f) &&
979 op->data.nbytes > f->devtype_data->rxfifo)
980 op->data.nbytes = f->devtype_data->rxfifo;
982 return 0;
985 static void erratum_err050568(struct nxp_fspi *f)
987 static const struct soc_device_attribute ls1028a_soc_attr[] = {
988 { .family = "QorIQ LS1028A" },
989 { /* sentinel */ }
991 struct regmap *map;
992 u32 val, sys_pll_ratio;
993 int ret;
995 /* Check for LS1028A family */
996 if (!soc_device_match(ls1028a_soc_attr)) {
997 dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
998 return;
1001 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
1002 if (IS_ERR(map)) {
1003 dev_err(f->dev, "No syscon regmap\n");
1004 goto err;
1007 ret = regmap_read(map, DCFG_RCWSR1, &val);
1008 if (ret < 0)
1009 goto err;
1011 sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1012 dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1014 /* Use IP bus only if platform clock is 300MHz */
1015 if (sys_pll_ratio == 3)
1016 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1018 return;
1020 err:
1021 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1024 static int nxp_fspi_default_setup(struct nxp_fspi *f)
1026 void __iomem *base = f->iobase;
1027 int ret, i;
1028 u32 reg, seqid_lut;
1030 /* disable and unprepare clock to avoid glitch pass to controller */
1031 nxp_fspi_clk_disable_unprep(f);
1033 /* the default frequency, we will change it later if necessary. */
1034 ret = clk_set_rate(f->clk, 20000000);
1035 if (ret)
1036 return ret;
1038 ret = nxp_fspi_clk_prep_enable(f);
1039 if (ret)
1040 return ret;
1043 * ERR050568: Flash access by FlexSPI AHB command may not work with
1044 * platform frequency equal to 300 MHz on LS1028A.
1045 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1046 * Layerscape LS1028A platform.
1048 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1049 erratum_err050568(f);
1051 /* Reset the module */
1052 /* w1c register, wait unit clear */
1053 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1054 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1055 WARN_ON(ret);
1057 /* Disable the module */
1058 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1061 * Config the DLL register to default value, enable the target clock delay
1062 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1063 * chain, this is the suggested setting when clock rate < 100MHz.
1065 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1066 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1068 /* enable module */
1069 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1070 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1071 base + FSPI_MCR0);
1074 * Disable same device enable bit and configure all target devices
1075 * independently.
1077 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1078 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1079 fspi_writel(f, reg, base + FSPI_MCR2);
1081 /* AHB configuration for access buffer 0~7. */
1082 for (i = 0; i < 7; i++)
1083 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1086 * Set ADATSZ with the maximum AHB buffer size to improve the read
1087 * performance.
1089 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1090 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1092 /* prefetch and no start address alignment limitation */
1093 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1094 base + FSPI_AHBCR);
1096 /* Reset the FLSHxCR1 registers. */
1097 reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1098 fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1099 fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1100 fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1101 fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1104 * The driver only uses one single LUT entry, that is updated on
1105 * each call of exec_op(). Index 0 is preset at boot with a basic
1106 * read operation, so let's use the last entry.
1108 seqid_lut = f->devtype_data->lut_num - 1;
1109 /* AHB Read - Set lut sequence ID for all CS. */
1110 fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2);
1111 fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2);
1112 fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2);
1113 fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2);
1115 f->selected = -1;
1117 /* enable the interrupt */
1118 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1120 return 0;
1123 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1125 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1126 struct device *dev = &mem->spi->dev;
1127 const char *name;
1129 // Set custom name derived from the platform_device of the controller.
1130 if (of_get_available_child_count(f->dev->of_node) == 1)
1131 return dev_name(f->dev);
1133 name = devm_kasprintf(dev, GFP_KERNEL,
1134 "%s-%d", dev_name(f->dev),
1135 spi_get_chipselect(mem->spi, 0));
1137 if (!name) {
1138 dev_err(dev, "failed to get memory for custom flash name\n");
1139 return ERR_PTR(-ENOMEM);
1142 return name;
1145 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1146 .adjust_op_size = nxp_fspi_adjust_op_size,
1147 .supports_op = nxp_fspi_supports_op,
1148 .exec_op = nxp_fspi_exec_op,
1149 .get_name = nxp_fspi_get_name,
1152 static int nxp_fspi_probe(struct platform_device *pdev)
1154 struct spi_controller *ctlr;
1155 struct device *dev = &pdev->dev;
1156 struct device_node *np = dev->of_node;
1157 struct resource *res;
1158 struct nxp_fspi *f;
1159 int ret;
1160 u32 reg;
1162 ctlr = spi_alloc_host(&pdev->dev, sizeof(*f));
1163 if (!ctlr)
1164 return -ENOMEM;
1166 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1167 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1169 f = spi_controller_get_devdata(ctlr);
1170 f->dev = dev;
1171 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1172 if (!f->devtype_data) {
1173 ret = -ENODEV;
1174 goto err_put_ctrl;
1177 platform_set_drvdata(pdev, f);
1179 /* find the resources - configuration register address space */
1180 if (is_acpi_node(dev_fwnode(f->dev)))
1181 f->iobase = devm_platform_ioremap_resource(pdev, 0);
1182 else
1183 f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1185 if (IS_ERR(f->iobase)) {
1186 ret = PTR_ERR(f->iobase);
1187 goto err_put_ctrl;
1190 /* find the resources - controller memory mapped space */
1191 if (is_acpi_node(dev_fwnode(f->dev)))
1192 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1193 else
1194 res = platform_get_resource_byname(pdev,
1195 IORESOURCE_MEM, "fspi_mmap");
1197 if (!res) {
1198 ret = -ENODEV;
1199 goto err_put_ctrl;
1202 /* assign memory mapped starting address and mapped size. */
1203 f->memmap_phy = res->start;
1204 f->memmap_phy_size = resource_size(res);
1206 /* find the clocks */
1207 if (dev_of_node(&pdev->dev)) {
1208 f->clk_en = devm_clk_get(dev, "fspi_en");
1209 if (IS_ERR(f->clk_en)) {
1210 ret = PTR_ERR(f->clk_en);
1211 goto err_put_ctrl;
1214 f->clk = devm_clk_get(dev, "fspi");
1215 if (IS_ERR(f->clk)) {
1216 ret = PTR_ERR(f->clk);
1217 goto err_put_ctrl;
1220 ret = nxp_fspi_clk_prep_enable(f);
1221 if (ret) {
1222 dev_err(dev, "can not enable the clock\n");
1223 goto err_put_ctrl;
1227 /* Clear potential interrupts */
1228 reg = fspi_readl(f, f->iobase + FSPI_INTR);
1229 if (reg)
1230 fspi_writel(f, reg, f->iobase + FSPI_INTR);
1232 /* find the irq */
1233 ret = platform_get_irq(pdev, 0);
1234 if (ret < 0)
1235 goto err_disable_clk;
1237 ret = devm_request_irq(dev, ret,
1238 nxp_fspi_irq_handler, 0, pdev->name, f);
1239 if (ret) {
1240 dev_err(dev, "failed to request irq: %d\n", ret);
1241 goto err_disable_clk;
1244 mutex_init(&f->lock);
1246 ctlr->bus_num = -1;
1247 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1248 ctlr->mem_ops = &nxp_fspi_mem_ops;
1250 nxp_fspi_default_setup(f);
1252 ctlr->dev.of_node = np;
1254 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1255 if (ret)
1256 goto err_destroy_mutex;
1258 return 0;
1260 err_destroy_mutex:
1261 mutex_destroy(&f->lock);
1263 err_disable_clk:
1264 nxp_fspi_clk_disable_unprep(f);
1266 err_put_ctrl:
1267 spi_controller_put(ctlr);
1269 dev_err(dev, "NXP FSPI probe failed\n");
1270 return ret;
1273 static void nxp_fspi_remove(struct platform_device *pdev)
1275 struct nxp_fspi *f = platform_get_drvdata(pdev);
1277 /* disable the hardware */
1278 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1280 nxp_fspi_clk_disable_unprep(f);
1282 mutex_destroy(&f->lock);
1284 if (f->ahb_addr)
1285 iounmap(f->ahb_addr);
1288 static int nxp_fspi_suspend(struct device *dev)
1290 return 0;
1293 static int nxp_fspi_resume(struct device *dev)
1295 struct nxp_fspi *f = dev_get_drvdata(dev);
1297 nxp_fspi_default_setup(f);
1299 return 0;
1302 static const struct of_device_id nxp_fspi_dt_ids[] = {
1303 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1304 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1305 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1306 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1307 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1308 { .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, },
1309 { /* sentinel */ }
1311 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1313 #ifdef CONFIG_ACPI
1314 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1315 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1318 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1319 #endif
1321 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1322 .suspend = nxp_fspi_suspend,
1323 .resume = nxp_fspi_resume,
1326 static struct platform_driver nxp_fspi_driver = {
1327 .driver = {
1328 .name = "nxp-fspi",
1329 .of_match_table = nxp_fspi_dt_ids,
1330 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1331 .pm = &nxp_fspi_pm_ops,
1333 .probe = nxp_fspi_probe,
1334 .remove = nxp_fspi_remove,
1336 module_platform_driver(nxp_fspi_driver);
1338 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1339 MODULE_AUTHOR("NXP Semiconductor");
1340 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1341 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1342 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1343 MODULE_LICENSE("GPL v2");