1 // SPDX-License-Identifier: GPL-2.0-only
3 * SPI driver for NVIDIA's Tegra114 SPI Controller.
5 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
9 #include <linux/completion.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
23 #include <linux/reset.h>
24 #include <linux/spi/spi.h>
26 #define SPI_COMMAND1 0x000
27 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
28 #define SPI_PACKED (1 << 5)
29 #define SPI_TX_EN (1 << 11)
30 #define SPI_RX_EN (1 << 12)
31 #define SPI_BOTH_EN_BYTE (1 << 13)
32 #define SPI_BOTH_EN_BIT (1 << 14)
33 #define SPI_LSBYTE_FE (1 << 15)
34 #define SPI_LSBIT_FE (1 << 16)
35 #define SPI_BIDIROE (1 << 17)
36 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
37 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
38 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
39 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
40 #define SPI_IDLE_SDA_MASK (3 << 18)
41 #define SPI_CS_SW_VAL (1 << 20)
42 #define SPI_CS_SW_HW (1 << 21)
43 /* SPI_CS_POL_INACTIVE bits are default high */
45 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
46 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
48 #define SPI_CS_SEL_0 (0 << 26)
49 #define SPI_CS_SEL_1 (1 << 26)
50 #define SPI_CS_SEL_2 (2 << 26)
51 #define SPI_CS_SEL_3 (3 << 26)
52 #define SPI_CS_SEL_MASK (3 << 26)
53 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
54 #define SPI_CONTROL_MODE_0 (0 << 28)
55 #define SPI_CONTROL_MODE_1 (1 << 28)
56 #define SPI_CONTROL_MODE_2 (2 << 28)
57 #define SPI_CONTROL_MODE_3 (3 << 28)
58 #define SPI_CONTROL_MODE_MASK (3 << 28)
59 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
60 #define SPI_M_S (1 << 30)
61 #define SPI_PIO (1 << 31)
63 #define SPI_COMMAND2 0x004
64 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
65 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
67 #define SPI_CS_TIMING1 0x008
68 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
69 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
70 ((((val) & 0xFFu) << ((cs) * 8)) | \
71 ((reg) & ~(0xFFu << ((cs) * 8))))
73 #define SPI_CS_TIMING2 0x00C
74 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
75 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
76 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
77 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
78 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
79 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
80 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
81 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
82 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
83 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
84 ((reg) & ~(1 << ((cs) * 8 + 5))))
85 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
86 (reg = (((val) & 0x1F) << ((cs) * 8)) | \
87 ((reg) & ~(0x1F << ((cs) * 8))))
88 #define MAX_SETUP_HOLD_CYCLES 16
89 #define MAX_INACTIVE_CYCLES 32
91 #define SPI_TRANS_STATUS 0x010
92 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
93 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
94 #define SPI_RDY (1 << 30)
96 #define SPI_FIFO_STATUS 0x014
97 #define SPI_RX_FIFO_EMPTY (1 << 0)
98 #define SPI_RX_FIFO_FULL (1 << 1)
99 #define SPI_TX_FIFO_EMPTY (1 << 2)
100 #define SPI_TX_FIFO_FULL (1 << 3)
101 #define SPI_RX_FIFO_UNF (1 << 4)
102 #define SPI_RX_FIFO_OVF (1 << 5)
103 #define SPI_TX_FIFO_UNF (1 << 6)
104 #define SPI_TX_FIFO_OVF (1 << 7)
105 #define SPI_ERR (1 << 8)
106 #define SPI_TX_FIFO_FLUSH (1 << 14)
107 #define SPI_RX_FIFO_FLUSH (1 << 15)
108 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
109 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
110 #define SPI_FRAME_END (1 << 30)
111 #define SPI_CS_INACTIVE (1 << 31)
113 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
114 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
115 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
117 #define SPI_TX_DATA 0x018
118 #define SPI_RX_DATA 0x01C
120 #define SPI_DMA_CTL 0x020
121 #define SPI_TX_TRIG_1 (0 << 15)
122 #define SPI_TX_TRIG_4 (1 << 15)
123 #define SPI_TX_TRIG_8 (2 << 15)
124 #define SPI_TX_TRIG_16 (3 << 15)
125 #define SPI_TX_TRIG_MASK (3 << 15)
126 #define SPI_RX_TRIG_1 (0 << 19)
127 #define SPI_RX_TRIG_4 (1 << 19)
128 #define SPI_RX_TRIG_8 (2 << 19)
129 #define SPI_RX_TRIG_16 (3 << 19)
130 #define SPI_RX_TRIG_MASK (3 << 19)
131 #define SPI_IE_TX (1 << 28)
132 #define SPI_IE_RX (1 << 29)
133 #define SPI_CONT (1 << 30)
134 #define SPI_DMA (1 << 31)
135 #define SPI_DMA_EN SPI_DMA
137 #define SPI_DMA_BLK 0x024
138 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
140 #define SPI_TX_FIFO 0x108
141 #define SPI_RX_FIFO 0x188
142 #define SPI_INTR_MASK 0x18c
143 #define SPI_INTR_ALL_MASK (0x1fUL << 25)
144 #define MAX_CHIP_SELECT 4
145 #define SPI_FIFO_DEPTH 64
146 #define DATA_DIR_TX (1 << 0)
147 #define DATA_DIR_RX (1 << 1)
149 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
150 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
151 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
152 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
153 #define MAX_HOLD_CYCLES 16
154 #define SPI_DEFAULT_SPEED 25000000
156 struct tegra_spi_soc_data
{
157 bool has_intr_mask_reg
;
160 struct tegra_spi_client_data
{
161 int tx_clk_tap_delay
;
162 int rx_clk_tap_delay
;
165 struct tegra_spi_data
{
167 struct spi_controller
*host
;
171 struct reset_control
*rst
;
177 struct spi_device
*cur_spi
;
178 struct spi_device
*cs_control
;
180 unsigned words_per_32bit
;
181 unsigned bytes_per_word
;
182 unsigned curr_dma_words
;
183 unsigned cur_direction
;
188 unsigned dma_buf_size
;
189 unsigned max_buf_size
;
190 bool is_curr_dma_xfer
;
191 bool use_hw_based_cs
;
193 struct completion rx_dma_complete
;
194 struct completion tx_dma_complete
;
203 u32 def_command1_reg
;
204 u32 def_command2_reg
;
209 struct completion xfer_completion
;
210 struct spi_transfer
*curr_xfer
;
211 struct dma_chan
*rx_dma_chan
;
213 dma_addr_t rx_dma_phys
;
214 struct dma_async_tx_descriptor
*rx_dma_desc
;
216 struct dma_chan
*tx_dma_chan
;
218 dma_addr_t tx_dma_phys
;
219 struct dma_async_tx_descriptor
*tx_dma_desc
;
220 const struct tegra_spi_soc_data
*soc_data
;
223 static int tegra_spi_runtime_suspend(struct device
*dev
);
224 static int tegra_spi_runtime_resume(struct device
*dev
);
226 static inline u32
tegra_spi_readl(struct tegra_spi_data
*tspi
,
229 return readl(tspi
->base
+ reg
);
232 static inline void tegra_spi_writel(struct tegra_spi_data
*tspi
,
233 u32 val
, unsigned long reg
)
235 writel(val
, tspi
->base
+ reg
);
237 /* Read back register to make sure that register writes completed */
238 if (reg
!= SPI_TX_FIFO
)
239 readl(tspi
->base
+ SPI_COMMAND1
);
242 static void tegra_spi_clear_status(struct tegra_spi_data
*tspi
)
246 /* Write 1 to clear status register */
247 val
= tegra_spi_readl(tspi
, SPI_TRANS_STATUS
);
248 tegra_spi_writel(tspi
, val
, SPI_TRANS_STATUS
);
250 /* Clear fifo status error if any */
251 val
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
253 tegra_spi_writel(tspi
, SPI_ERR
| SPI_FIFO_ERROR
,
257 static unsigned tegra_spi_calculate_curr_xfer_param(
258 struct spi_device
*spi
, struct tegra_spi_data
*tspi
,
259 struct spi_transfer
*t
)
261 unsigned remain_len
= t
->len
- tspi
->cur_pos
;
263 unsigned bits_per_word
= t
->bits_per_word
;
265 unsigned total_fifo_words
;
267 tspi
->bytes_per_word
= DIV_ROUND_UP(bits_per_word
, 8);
269 if ((bits_per_word
== 8 || bits_per_word
== 16 ||
270 bits_per_word
== 32) && t
->len
> 3) {
271 tspi
->is_packed
= true;
272 tspi
->words_per_32bit
= 32/bits_per_word
;
274 tspi
->is_packed
= false;
275 tspi
->words_per_32bit
= 1;
278 if (tspi
->is_packed
) {
279 max_len
= min(remain_len
, tspi
->max_buf_size
);
280 tspi
->curr_dma_words
= max_len
/tspi
->bytes_per_word
;
281 total_fifo_words
= (max_len
+ 3) / 4;
283 max_word
= (remain_len
- 1) / tspi
->bytes_per_word
+ 1;
284 max_word
= min(max_word
, tspi
->max_buf_size
/4);
285 tspi
->curr_dma_words
= max_word
;
286 total_fifo_words
= max_word
;
288 return total_fifo_words
;
291 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
292 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
295 unsigned tx_empty_count
;
297 unsigned max_n_32bit
;
299 unsigned int written_words
;
300 unsigned fifo_words_left
;
301 u8
*tx_buf
= (u8
*)t
->tx_buf
+ tspi
->cur_tx_pos
;
303 fifo_status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
304 tx_empty_count
= SPI_TX_FIFO_EMPTY_COUNT(fifo_status
);
306 if (tspi
->is_packed
) {
307 fifo_words_left
= tx_empty_count
* tspi
->words_per_32bit
;
308 written_words
= min(fifo_words_left
, tspi
->curr_dma_words
);
309 nbytes
= written_words
* tspi
->bytes_per_word
;
310 max_n_32bit
= DIV_ROUND_UP(nbytes
, 4);
311 for (count
= 0; count
< max_n_32bit
; count
++) {
314 for (i
= 0; (i
< 4) && nbytes
; i
++, nbytes
--)
315 x
|= (u32
)(*tx_buf
++) << (i
* 8);
316 tegra_spi_writel(tspi
, x
, SPI_TX_FIFO
);
319 tspi
->cur_tx_pos
+= written_words
* tspi
->bytes_per_word
;
321 unsigned int write_bytes
;
322 max_n_32bit
= min(tspi
->curr_dma_words
, tx_empty_count
);
323 written_words
= max_n_32bit
;
324 nbytes
= written_words
* tspi
->bytes_per_word
;
325 if (nbytes
> t
->len
- tspi
->cur_pos
)
326 nbytes
= t
->len
- tspi
->cur_pos
;
327 write_bytes
= nbytes
;
328 for (count
= 0; count
< max_n_32bit
; count
++) {
331 for (i
= 0; nbytes
&& (i
< tspi
->bytes_per_word
);
333 x
|= (u32
)(*tx_buf
++) << (i
* 8);
334 tegra_spi_writel(tspi
, x
, SPI_TX_FIFO
);
337 tspi
->cur_tx_pos
+= write_bytes
;
340 return written_words
;
343 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
344 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
346 unsigned rx_full_count
;
349 unsigned int read_words
= 0;
351 u8
*rx_buf
= (u8
*)t
->rx_buf
+ tspi
->cur_rx_pos
;
353 fifo_status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
354 rx_full_count
= SPI_RX_FIFO_FULL_COUNT(fifo_status
);
355 if (tspi
->is_packed
) {
356 len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
357 for (count
= 0; count
< rx_full_count
; count
++) {
358 u32 x
= tegra_spi_readl(tspi
, SPI_RX_FIFO
);
360 for (i
= 0; len
&& (i
< 4); i
++, len
--)
361 *rx_buf
++ = (x
>> i
*8) & 0xFF;
363 read_words
+= tspi
->curr_dma_words
;
364 tspi
->cur_rx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
366 u32 rx_mask
= ((u32
)1 << t
->bits_per_word
) - 1;
367 u8 bytes_per_word
= tspi
->bytes_per_word
;
368 unsigned int read_bytes
;
370 len
= rx_full_count
* bytes_per_word
;
371 if (len
> t
->len
- tspi
->cur_pos
)
372 len
= t
->len
- tspi
->cur_pos
;
374 for (count
= 0; count
< rx_full_count
; count
++) {
375 u32 x
= tegra_spi_readl(tspi
, SPI_RX_FIFO
) & rx_mask
;
377 for (i
= 0; len
&& (i
< bytes_per_word
); i
++, len
--)
378 *rx_buf
++ = (x
>> (i
*8)) & 0xFF;
380 read_words
+= rx_full_count
;
381 tspi
->cur_rx_pos
+= read_bytes
;
387 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
388 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
390 /* Make the dma buffer to read by cpu */
391 dma_sync_single_for_cpu(tspi
->dev
, tspi
->tx_dma_phys
,
392 tspi
->dma_buf_size
, DMA_TO_DEVICE
);
394 if (tspi
->is_packed
) {
395 unsigned len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
397 memcpy(tspi
->tx_dma_buf
, t
->tx_buf
+ tspi
->cur_pos
, len
);
398 tspi
->cur_tx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
402 u8
*tx_buf
= (u8
*)t
->tx_buf
+ tspi
->cur_tx_pos
;
403 unsigned consume
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
404 unsigned int write_bytes
;
406 if (consume
> t
->len
- tspi
->cur_pos
)
407 consume
= t
->len
- tspi
->cur_pos
;
408 write_bytes
= consume
;
409 for (count
= 0; count
< tspi
->curr_dma_words
; count
++) {
412 for (i
= 0; consume
&& (i
< tspi
->bytes_per_word
);
414 x
|= (u32
)(*tx_buf
++) << (i
* 8);
415 tspi
->tx_dma_buf
[count
] = x
;
418 tspi
->cur_tx_pos
+= write_bytes
;
421 /* Make the dma buffer to read by dma */
422 dma_sync_single_for_device(tspi
->dev
, tspi
->tx_dma_phys
,
423 tspi
->dma_buf_size
, DMA_TO_DEVICE
);
426 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
427 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
429 /* Make the dma buffer to read by cpu */
430 dma_sync_single_for_cpu(tspi
->dev
, tspi
->rx_dma_phys
,
431 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
433 if (tspi
->is_packed
) {
434 unsigned len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
436 memcpy(t
->rx_buf
+ tspi
->cur_rx_pos
, tspi
->rx_dma_buf
, len
);
437 tspi
->cur_rx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
441 unsigned char *rx_buf
= t
->rx_buf
+ tspi
->cur_rx_pos
;
442 u32 rx_mask
= ((u32
)1 << t
->bits_per_word
) - 1;
443 unsigned consume
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
444 unsigned int read_bytes
;
446 if (consume
> t
->len
- tspi
->cur_pos
)
447 consume
= t
->len
- tspi
->cur_pos
;
448 read_bytes
= consume
;
449 for (count
= 0; count
< tspi
->curr_dma_words
; count
++) {
450 u32 x
= tspi
->rx_dma_buf
[count
] & rx_mask
;
452 for (i
= 0; consume
&& (i
< tspi
->bytes_per_word
);
454 *rx_buf
++ = (x
>> (i
*8)) & 0xFF;
457 tspi
->cur_rx_pos
+= read_bytes
;
460 /* Make the dma buffer to read by dma */
461 dma_sync_single_for_device(tspi
->dev
, tspi
->rx_dma_phys
,
462 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
465 static void tegra_spi_dma_complete(void *args
)
467 struct completion
*dma_complete
= args
;
469 complete(dma_complete
);
472 static int tegra_spi_start_tx_dma(struct tegra_spi_data
*tspi
, int len
)
474 reinit_completion(&tspi
->tx_dma_complete
);
475 tspi
->tx_dma_desc
= dmaengine_prep_slave_single(tspi
->tx_dma_chan
,
476 tspi
->tx_dma_phys
, len
, DMA_MEM_TO_DEV
,
477 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
478 if (!tspi
->tx_dma_desc
) {
479 dev_err(tspi
->dev
, "Not able to get desc for Tx\n");
483 tspi
->tx_dma_desc
->callback
= tegra_spi_dma_complete
;
484 tspi
->tx_dma_desc
->callback_param
= &tspi
->tx_dma_complete
;
486 dmaengine_submit(tspi
->tx_dma_desc
);
487 dma_async_issue_pending(tspi
->tx_dma_chan
);
491 static int tegra_spi_start_rx_dma(struct tegra_spi_data
*tspi
, int len
)
493 reinit_completion(&tspi
->rx_dma_complete
);
494 tspi
->rx_dma_desc
= dmaengine_prep_slave_single(tspi
->rx_dma_chan
,
495 tspi
->rx_dma_phys
, len
, DMA_DEV_TO_MEM
,
496 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
497 if (!tspi
->rx_dma_desc
) {
498 dev_err(tspi
->dev
, "Not able to get desc for Rx\n");
502 tspi
->rx_dma_desc
->callback
= tegra_spi_dma_complete
;
503 tspi
->rx_dma_desc
->callback_param
= &tspi
->rx_dma_complete
;
505 dmaengine_submit(tspi
->rx_dma_desc
);
506 dma_async_issue_pending(tspi
->rx_dma_chan
);
510 static int tegra_spi_flush_fifos(struct tegra_spi_data
*tspi
)
512 unsigned long timeout
= jiffies
+ HZ
;
515 status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
516 if ((status
& SPI_FIFO_EMPTY
) != SPI_FIFO_EMPTY
) {
517 status
|= SPI_RX_FIFO_FLUSH
| SPI_TX_FIFO_FLUSH
;
518 tegra_spi_writel(tspi
, status
, SPI_FIFO_STATUS
);
519 while ((status
& SPI_FIFO_EMPTY
) != SPI_FIFO_EMPTY
) {
520 status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
521 if (time_after(jiffies
, timeout
)) {
523 "timeout waiting for fifo flush\n");
534 static int tegra_spi_start_dma_based_transfer(
535 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
541 struct dma_slave_config dma_sconfig
= {0};
543 val
= SPI_DMA_BLK_SET(tspi
->curr_dma_words
- 1);
544 tegra_spi_writel(tspi
, val
, SPI_DMA_BLK
);
547 len
= DIV_ROUND_UP(tspi
->curr_dma_words
* tspi
->bytes_per_word
,
550 len
= tspi
->curr_dma_words
* 4;
552 /* Set attention level based on length of transfer */
554 val
|= SPI_TX_TRIG_1
| SPI_RX_TRIG_1
;
556 } else if (((len
) >> 4) & 0x1) {
557 val
|= SPI_TX_TRIG_4
| SPI_RX_TRIG_4
;
560 val
|= SPI_TX_TRIG_8
| SPI_RX_TRIG_8
;
564 if (!tspi
->soc_data
->has_intr_mask_reg
) {
565 if (tspi
->cur_direction
& DATA_DIR_TX
)
568 if (tspi
->cur_direction
& DATA_DIR_RX
)
572 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
573 tspi
->dma_control_reg
= val
;
575 dma_sconfig
.device_fc
= true;
576 if (tspi
->cur_direction
& DATA_DIR_TX
) {
577 dma_sconfig
.dst_addr
= tspi
->phys
+ SPI_TX_FIFO
;
578 dma_sconfig
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
579 dma_sconfig
.dst_maxburst
= dma_burst
;
580 ret
= dmaengine_slave_config(tspi
->tx_dma_chan
, &dma_sconfig
);
583 "DMA slave config failed: %d\n", ret
);
587 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi
, t
);
588 ret
= tegra_spi_start_tx_dma(tspi
, len
);
591 "Starting tx dma failed, err %d\n", ret
);
596 if (tspi
->cur_direction
& DATA_DIR_RX
) {
597 dma_sconfig
.src_addr
= tspi
->phys
+ SPI_RX_FIFO
;
598 dma_sconfig
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
599 dma_sconfig
.src_maxburst
= dma_burst
;
600 ret
= dmaengine_slave_config(tspi
->rx_dma_chan
, &dma_sconfig
);
603 "DMA slave config failed: %d\n", ret
);
607 /* Make the dma buffer to read by dma */
608 dma_sync_single_for_device(tspi
->dev
, tspi
->rx_dma_phys
,
609 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
611 ret
= tegra_spi_start_rx_dma(tspi
, len
);
614 "Starting rx dma failed, err %d\n", ret
);
615 if (tspi
->cur_direction
& DATA_DIR_TX
)
616 dmaengine_terminate_all(tspi
->tx_dma_chan
);
620 tspi
->is_curr_dma_xfer
= true;
621 tspi
->dma_control_reg
= val
;
624 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
628 static int tegra_spi_start_cpu_based_transfer(
629 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
634 if (tspi
->cur_direction
& DATA_DIR_TX
)
635 cur_words
= tegra_spi_fill_tx_fifo_from_client_txbuf(tspi
, t
);
637 cur_words
= tspi
->curr_dma_words
;
639 val
= SPI_DMA_BLK_SET(cur_words
- 1);
640 tegra_spi_writel(tspi
, val
, SPI_DMA_BLK
);
643 if (tspi
->cur_direction
& DATA_DIR_TX
)
646 if (tspi
->cur_direction
& DATA_DIR_RX
)
649 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
650 tspi
->dma_control_reg
= val
;
652 tspi
->is_curr_dma_xfer
= false;
654 val
= tspi
->command1_reg
;
656 tegra_spi_writel(tspi
, val
, SPI_COMMAND1
);
660 static int tegra_spi_init_dma_param(struct tegra_spi_data
*tspi
,
663 struct dma_chan
*dma_chan
;
667 dma_chan
= dma_request_chan(tspi
->dev
, dma_to_memory
? "rx" : "tx");
668 if (IS_ERR(dma_chan
))
669 return dev_err_probe(tspi
->dev
, PTR_ERR(dma_chan
),
670 "Dma channel is not available\n");
672 dma_buf
= dma_alloc_coherent(tspi
->dev
, tspi
->dma_buf_size
,
673 &dma_phys
, GFP_KERNEL
);
675 dev_err(tspi
->dev
, " Not able to allocate the dma buffer\n");
676 dma_release_channel(dma_chan
);
681 tspi
->rx_dma_chan
= dma_chan
;
682 tspi
->rx_dma_buf
= dma_buf
;
683 tspi
->rx_dma_phys
= dma_phys
;
685 tspi
->tx_dma_chan
= dma_chan
;
686 tspi
->tx_dma_buf
= dma_buf
;
687 tspi
->tx_dma_phys
= dma_phys
;
692 static void tegra_spi_deinit_dma_param(struct tegra_spi_data
*tspi
,
697 struct dma_chan
*dma_chan
;
700 dma_buf
= tspi
->rx_dma_buf
;
701 dma_chan
= tspi
->rx_dma_chan
;
702 dma_phys
= tspi
->rx_dma_phys
;
703 tspi
->rx_dma_chan
= NULL
;
704 tspi
->rx_dma_buf
= NULL
;
706 dma_buf
= tspi
->tx_dma_buf
;
707 dma_chan
= tspi
->tx_dma_chan
;
708 dma_phys
= tspi
->tx_dma_phys
;
709 tspi
->tx_dma_buf
= NULL
;
710 tspi
->tx_dma_chan
= NULL
;
715 dma_free_coherent(tspi
->dev
, tspi
->dma_buf_size
, dma_buf
, dma_phys
);
716 dma_release_channel(dma_chan
);
719 static int tegra_spi_set_hw_cs_timing(struct spi_device
*spi
)
721 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(spi
->controller
);
722 struct spi_delay
*setup
= &spi
->cs_setup
;
723 struct spi_delay
*hold
= &spi
->cs_hold
;
724 struct spi_delay
*inactive
= &spi
->cs_inactive
;
725 u8 setup_dly
, hold_dly
;
731 if (setup
->unit
!= SPI_DELAY_UNIT_SCK
||
732 hold
->unit
!= SPI_DELAY_UNIT_SCK
||
733 inactive
->unit
!= SPI_DELAY_UNIT_SCK
) {
735 "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
740 setup_dly
= min_t(u8
, setup
->value
, MAX_SETUP_HOLD_CYCLES
);
741 hold_dly
= min_t(u8
, hold
->value
, MAX_SETUP_HOLD_CYCLES
);
742 if (setup_dly
&& hold_dly
) {
743 setup_hold
= SPI_SETUP_HOLD(setup_dly
- 1, hold_dly
- 1);
744 spi_cs_timing
= SPI_CS_SETUP_HOLD(tspi
->spi_cs_timing1
,
745 spi_get_chipselect(spi
, 0),
747 if (tspi
->spi_cs_timing1
!= spi_cs_timing
) {
748 tspi
->spi_cs_timing1
= spi_cs_timing
;
749 tegra_spi_writel(tspi
, spi_cs_timing
, SPI_CS_TIMING1
);
753 inactive_cycles
= min_t(u8
, inactive
->value
, MAX_INACTIVE_CYCLES
);
756 cs_state
= inactive_cycles
? 0 : 1;
757 spi_cs_timing
= tspi
->spi_cs_timing2
;
758 SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing
, spi_get_chipselect(spi
, 0),
760 SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing
, spi_get_chipselect(spi
, 0),
762 if (tspi
->spi_cs_timing2
!= spi_cs_timing
) {
763 tspi
->spi_cs_timing2
= spi_cs_timing
;
764 tegra_spi_writel(tspi
, spi_cs_timing
, SPI_CS_TIMING2
);
770 static u32
tegra_spi_setup_transfer_one(struct spi_device
*spi
,
771 struct spi_transfer
*t
,
772 bool is_first_of_msg
,
775 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(spi
->controller
);
776 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
777 u32 speed
= t
->speed_hz
;
778 u8 bits_per_word
= t
->bits_per_word
;
779 u32 command1
, command2
;
781 u32 tx_tap
= 0, rx_tap
= 0;
783 if (speed
!= tspi
->cur_speed
) {
784 clk_set_rate(tspi
->clk
, speed
);
785 tspi
->cur_speed
= speed
;
790 tspi
->cur_rx_pos
= 0;
791 tspi
->cur_tx_pos
= 0;
794 if (is_first_of_msg
) {
795 tegra_spi_clear_status(tspi
);
797 command1
= tspi
->def_command1_reg
;
798 command1
|= SPI_BIT_LENGTH(bits_per_word
- 1);
800 command1
&= ~SPI_CONTROL_MODE_MASK
;
801 req_mode
= spi
->mode
& 0x3;
802 if (req_mode
== SPI_MODE_0
)
803 command1
|= SPI_CONTROL_MODE_0
;
804 else if (req_mode
== SPI_MODE_1
)
805 command1
|= SPI_CONTROL_MODE_1
;
806 else if (req_mode
== SPI_MODE_2
)
807 command1
|= SPI_CONTROL_MODE_2
;
808 else if (req_mode
== SPI_MODE_3
)
809 command1
|= SPI_CONTROL_MODE_3
;
811 if (spi
->mode
& SPI_LSB_FIRST
)
812 command1
|= SPI_LSBIT_FE
;
814 command1
&= ~SPI_LSBIT_FE
;
816 if (spi
->mode
& SPI_3WIRE
)
817 command1
|= SPI_BIDIROE
;
819 command1
&= ~SPI_BIDIROE
;
821 if (tspi
->cs_control
) {
822 if (tspi
->cs_control
!= spi
)
823 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
824 tspi
->cs_control
= NULL
;
826 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
828 /* GPIO based chip select control */
829 if (spi_get_csgpiod(spi
, 0))
830 gpiod_set_value(spi_get_csgpiod(spi
, 0), 1);
832 if (is_single_xfer
&& !(t
->cs_change
)) {
833 tspi
->use_hw_based_cs
= true;
834 command1
&= ~(SPI_CS_SW_HW
| SPI_CS_SW_VAL
);
836 tspi
->use_hw_based_cs
= false;
837 command1
|= SPI_CS_SW_HW
;
838 if (spi
->mode
& SPI_CS_HIGH
)
839 command1
|= SPI_CS_SW_VAL
;
841 command1
&= ~SPI_CS_SW_VAL
;
844 if (tspi
->last_used_cs
!= spi_get_chipselect(spi
, 0)) {
845 if (cdata
&& cdata
->tx_clk_tap_delay
)
846 tx_tap
= cdata
->tx_clk_tap_delay
;
847 if (cdata
&& cdata
->rx_clk_tap_delay
)
848 rx_tap
= cdata
->rx_clk_tap_delay
;
849 command2
= SPI_TX_TAP_DELAY(tx_tap
) |
850 SPI_RX_TAP_DELAY(rx_tap
);
851 if (command2
!= tspi
->def_command2_reg
)
852 tegra_spi_writel(tspi
, command2
, SPI_COMMAND2
);
853 tspi
->last_used_cs
= spi_get_chipselect(spi
, 0);
857 command1
= tspi
->command1_reg
;
858 command1
&= ~SPI_BIT_LENGTH(~0);
859 command1
|= SPI_BIT_LENGTH(bits_per_word
- 1);
865 static int tegra_spi_start_transfer_one(struct spi_device
*spi
,
866 struct spi_transfer
*t
, u32 command1
)
868 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(spi
->controller
);
869 unsigned total_fifo_words
;
872 total_fifo_words
= tegra_spi_calculate_curr_xfer_param(spi
, tspi
, t
);
874 if (t
->rx_nbits
== SPI_NBITS_DUAL
|| t
->tx_nbits
== SPI_NBITS_DUAL
)
875 command1
|= SPI_BOTH_EN_BIT
;
877 command1
&= ~SPI_BOTH_EN_BIT
;
880 command1
|= SPI_PACKED
;
882 command1
&= ~SPI_PACKED
;
884 command1
&= ~(SPI_CS_SEL_MASK
| SPI_TX_EN
| SPI_RX_EN
);
885 tspi
->cur_direction
= 0;
887 command1
|= SPI_RX_EN
;
888 tspi
->cur_direction
|= DATA_DIR_RX
;
891 command1
|= SPI_TX_EN
;
892 tspi
->cur_direction
|= DATA_DIR_TX
;
894 command1
|= SPI_CS_SEL(spi_get_chipselect(spi
, 0));
895 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
896 tspi
->command1_reg
= command1
;
898 dev_dbg(tspi
->dev
, "The def 0x%x and written 0x%x\n",
899 tspi
->def_command1_reg
, (unsigned)command1
);
901 ret
= tegra_spi_flush_fifos(tspi
);
904 if (total_fifo_words
> SPI_FIFO_DEPTH
)
905 ret
= tegra_spi_start_dma_based_transfer(tspi
, t
);
907 ret
= tegra_spi_start_cpu_based_transfer(tspi
, t
);
911 static struct tegra_spi_client_data
912 *tegra_spi_parse_cdata_dt(struct spi_device
*spi
)
914 struct tegra_spi_client_data
*cdata
;
915 struct device_node
*target_np
;
917 target_np
= spi
->dev
.of_node
;
919 dev_dbg(&spi
->dev
, "device node not found\n");
923 cdata
= kzalloc(sizeof(*cdata
), GFP_KERNEL
);
927 of_property_read_u32(target_np
, "nvidia,tx-clk-tap-delay",
928 &cdata
->tx_clk_tap_delay
);
929 of_property_read_u32(target_np
, "nvidia,rx-clk-tap-delay",
930 &cdata
->rx_clk_tap_delay
);
934 static void tegra_spi_cleanup(struct spi_device
*spi
)
936 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
938 spi
->controller_data
= NULL
;
939 if (spi
->dev
.of_node
)
943 static int tegra_spi_setup(struct spi_device
*spi
)
945 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(spi
->controller
);
946 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
951 dev_dbg(&spi
->dev
, "setup %d bpw, %scpol, %scpha, %dHz\n",
953 spi
->mode
& SPI_CPOL
? "" : "~",
954 spi
->mode
& SPI_CPHA
? "" : "~",
958 cdata
= tegra_spi_parse_cdata_dt(spi
);
959 spi
->controller_data
= cdata
;
962 ret
= pm_runtime_resume_and_get(tspi
->dev
);
964 dev_err(tspi
->dev
, "pm runtime failed, e = %d\n", ret
);
966 tegra_spi_cleanup(spi
);
970 if (tspi
->soc_data
->has_intr_mask_reg
) {
971 val
= tegra_spi_readl(tspi
, SPI_INTR_MASK
);
972 val
&= ~SPI_INTR_ALL_MASK
;
973 tegra_spi_writel(tspi
, val
, SPI_INTR_MASK
);
976 spin_lock_irqsave(&tspi
->lock
, flags
);
977 /* GPIO based chip select control */
978 if (spi_get_csgpiod(spi
, 0))
979 gpiod_set_value(spi_get_csgpiod(spi
, 0), 0);
981 val
= tspi
->def_command1_reg
;
982 if (spi
->mode
& SPI_CS_HIGH
)
983 val
&= ~SPI_CS_POL_INACTIVE(spi_get_chipselect(spi
, 0));
985 val
|= SPI_CS_POL_INACTIVE(spi_get_chipselect(spi
, 0));
986 tspi
->def_command1_reg
= val
;
987 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
988 spin_unlock_irqrestore(&tspi
->lock
, flags
);
990 pm_runtime_put(tspi
->dev
);
994 static void tegra_spi_transfer_end(struct spi_device
*spi
)
996 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(spi
->controller
);
997 int cs_val
= (spi
->mode
& SPI_CS_HIGH
) ? 0 : 1;
999 /* GPIO based chip select control */
1000 if (spi_get_csgpiod(spi
, 0))
1001 gpiod_set_value(spi_get_csgpiod(spi
, 0), 0);
1003 if (!tspi
->use_hw_based_cs
) {
1005 tspi
->command1_reg
|= SPI_CS_SW_VAL
;
1007 tspi
->command1_reg
&= ~SPI_CS_SW_VAL
;
1008 tegra_spi_writel(tspi
, tspi
->command1_reg
, SPI_COMMAND1
);
1011 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
1014 static void tegra_spi_dump_regs(struct tegra_spi_data
*tspi
)
1016 dev_dbg(tspi
->dev
, "============ SPI REGISTER DUMP ============\n");
1017 dev_dbg(tspi
->dev
, "Command1: 0x%08x | Command2: 0x%08x\n",
1018 tegra_spi_readl(tspi
, SPI_COMMAND1
),
1019 tegra_spi_readl(tspi
, SPI_COMMAND2
));
1020 dev_dbg(tspi
->dev
, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
1021 tegra_spi_readl(tspi
, SPI_DMA_CTL
),
1022 tegra_spi_readl(tspi
, SPI_DMA_BLK
));
1023 dev_dbg(tspi
->dev
, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
1024 tegra_spi_readl(tspi
, SPI_TRANS_STATUS
),
1025 tegra_spi_readl(tspi
, SPI_FIFO_STATUS
));
1028 static int tegra_spi_transfer_one_message(struct spi_controller
*host
,
1029 struct spi_message
*msg
)
1031 bool is_first_msg
= true;
1032 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(host
);
1033 struct spi_transfer
*xfer
;
1034 struct spi_device
*spi
= msg
->spi
;
1040 msg
->actual_length
= 0;
1042 single_xfer
= list_is_singular(&msg
->transfers
);
1043 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1046 reinit_completion(&tspi
->xfer_completion
);
1048 cmd1
= tegra_spi_setup_transfer_one(spi
, xfer
, is_first_msg
,
1057 ret
= tegra_spi_start_transfer_one(spi
, xfer
, cmd1
);
1060 "spi can not start transfer, err %d\n", ret
);
1064 is_first_msg
= false;
1065 ret
= wait_for_completion_timeout(&tspi
->xfer_completion
,
1067 if (WARN_ON(ret
== 0)) {
1068 dev_err(tspi
->dev
, "spi transfer timeout\n");
1069 if (tspi
->is_curr_dma_xfer
&&
1070 (tspi
->cur_direction
& DATA_DIR_TX
))
1071 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1072 if (tspi
->is_curr_dma_xfer
&&
1073 (tspi
->cur_direction
& DATA_DIR_RX
))
1074 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1076 tegra_spi_dump_regs(tspi
);
1077 tegra_spi_flush_fifos(tspi
);
1078 reset_control_assert(tspi
->rst
);
1080 reset_control_deassert(tspi
->rst
);
1081 tspi
->last_used_cs
= host
->num_chipselect
+ 1;
1085 if (tspi
->tx_status
|| tspi
->rx_status
) {
1086 dev_err(tspi
->dev
, "Error in Transfer\n");
1088 tegra_spi_dump_regs(tspi
);
1091 msg
->actual_length
+= xfer
->len
;
1094 if (ret
< 0 || skip
) {
1095 tegra_spi_transfer_end(spi
);
1096 spi_transfer_delay_exec(xfer
);
1098 } else if (list_is_last(&xfer
->transfer_list
,
1100 if (xfer
->cs_change
)
1101 tspi
->cs_control
= spi
;
1103 tegra_spi_transfer_end(spi
);
1104 spi_transfer_delay_exec(xfer
);
1106 } else if (xfer
->cs_change
) {
1107 tegra_spi_transfer_end(spi
);
1108 spi_transfer_delay_exec(xfer
);
1115 spi_finalize_current_message(host
);
1119 static irqreturn_t
handle_cpu_based_xfer(struct tegra_spi_data
*tspi
)
1121 struct spi_transfer
*t
= tspi
->curr_xfer
;
1122 unsigned long flags
;
1124 spin_lock_irqsave(&tspi
->lock
, flags
);
1125 if (tspi
->tx_status
|| tspi
->rx_status
) {
1126 dev_err(tspi
->dev
, "CpuXfer ERROR bit set 0x%x\n",
1128 dev_err(tspi
->dev
, "CpuXfer 0x%08x:0x%08x\n",
1129 tspi
->command1_reg
, tspi
->dma_control_reg
);
1130 tegra_spi_dump_regs(tspi
);
1131 tegra_spi_flush_fifos(tspi
);
1132 complete(&tspi
->xfer_completion
);
1133 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1134 reset_control_assert(tspi
->rst
);
1136 reset_control_deassert(tspi
->rst
);
1140 if (tspi
->cur_direction
& DATA_DIR_RX
)
1141 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi
, t
);
1143 if (tspi
->cur_direction
& DATA_DIR_TX
)
1144 tspi
->cur_pos
= tspi
->cur_tx_pos
;
1146 tspi
->cur_pos
= tspi
->cur_rx_pos
;
1148 if (tspi
->cur_pos
== t
->len
) {
1149 complete(&tspi
->xfer_completion
);
1153 tegra_spi_calculate_curr_xfer_param(tspi
->cur_spi
, tspi
, t
);
1154 tegra_spi_start_cpu_based_transfer(tspi
, t
);
1156 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1160 static irqreturn_t
handle_dma_based_xfer(struct tegra_spi_data
*tspi
)
1162 struct spi_transfer
*t
= tspi
->curr_xfer
;
1165 unsigned total_fifo_words
;
1166 unsigned long flags
;
1168 /* Abort dmas if any error */
1169 if (tspi
->cur_direction
& DATA_DIR_TX
) {
1170 if (tspi
->tx_status
) {
1171 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1174 wait_status
= wait_for_completion_interruptible_timeout(
1175 &tspi
->tx_dma_complete
, SPI_DMA_TIMEOUT
);
1176 if (wait_status
<= 0) {
1177 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1178 dev_err(tspi
->dev
, "TxDma Xfer failed\n");
1184 if (tspi
->cur_direction
& DATA_DIR_RX
) {
1185 if (tspi
->rx_status
) {
1186 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1189 wait_status
= wait_for_completion_interruptible_timeout(
1190 &tspi
->rx_dma_complete
, SPI_DMA_TIMEOUT
);
1191 if (wait_status
<= 0) {
1192 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1193 dev_err(tspi
->dev
, "RxDma Xfer failed\n");
1199 spin_lock_irqsave(&tspi
->lock
, flags
);
1201 dev_err(tspi
->dev
, "DmaXfer: ERROR bit set 0x%x\n",
1203 dev_err(tspi
->dev
, "DmaXfer 0x%08x:0x%08x\n",
1204 tspi
->command1_reg
, tspi
->dma_control_reg
);
1205 tegra_spi_dump_regs(tspi
);
1206 tegra_spi_flush_fifos(tspi
);
1207 complete(&tspi
->xfer_completion
);
1208 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1209 reset_control_assert(tspi
->rst
);
1211 reset_control_deassert(tspi
->rst
);
1215 if (tspi
->cur_direction
& DATA_DIR_RX
)
1216 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi
, t
);
1218 if (tspi
->cur_direction
& DATA_DIR_TX
)
1219 tspi
->cur_pos
= tspi
->cur_tx_pos
;
1221 tspi
->cur_pos
= tspi
->cur_rx_pos
;
1223 if (tspi
->cur_pos
== t
->len
) {
1224 complete(&tspi
->xfer_completion
);
1228 /* Continue transfer in current message */
1229 total_fifo_words
= tegra_spi_calculate_curr_xfer_param(tspi
->cur_spi
,
1231 if (total_fifo_words
> SPI_FIFO_DEPTH
)
1232 err
= tegra_spi_start_dma_based_transfer(tspi
, t
);
1234 err
= tegra_spi_start_cpu_based_transfer(tspi
, t
);
1237 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1241 static irqreturn_t
tegra_spi_isr_thread(int irq
, void *context_data
)
1243 struct tegra_spi_data
*tspi
= context_data
;
1245 if (!tspi
->is_curr_dma_xfer
)
1246 return handle_cpu_based_xfer(tspi
);
1247 return handle_dma_based_xfer(tspi
);
1250 static irqreturn_t
tegra_spi_isr(int irq
, void *context_data
)
1252 struct tegra_spi_data
*tspi
= context_data
;
1254 tspi
->status_reg
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
1255 if (tspi
->cur_direction
& DATA_DIR_TX
)
1256 tspi
->tx_status
= tspi
->status_reg
&
1257 (SPI_TX_FIFO_UNF
| SPI_TX_FIFO_OVF
);
1259 if (tspi
->cur_direction
& DATA_DIR_RX
)
1260 tspi
->rx_status
= tspi
->status_reg
&
1261 (SPI_RX_FIFO_OVF
| SPI_RX_FIFO_UNF
);
1262 tegra_spi_clear_status(tspi
);
1264 return IRQ_WAKE_THREAD
;
1267 static struct tegra_spi_soc_data tegra114_spi_soc_data
= {
1268 .has_intr_mask_reg
= false,
1271 static struct tegra_spi_soc_data tegra124_spi_soc_data
= {
1272 .has_intr_mask_reg
= false,
1275 static struct tegra_spi_soc_data tegra210_spi_soc_data
= {
1276 .has_intr_mask_reg
= true,
1279 static const struct of_device_id tegra_spi_of_match
[] = {
1281 .compatible
= "nvidia,tegra114-spi",
1282 .data
= &tegra114_spi_soc_data
,
1284 .compatible
= "nvidia,tegra124-spi",
1285 .data
= &tegra124_spi_soc_data
,
1287 .compatible
= "nvidia,tegra210-spi",
1288 .data
= &tegra210_spi_soc_data
,
1292 MODULE_DEVICE_TABLE(of
, tegra_spi_of_match
);
1294 static int tegra_spi_probe(struct platform_device
*pdev
)
1296 struct spi_controller
*host
;
1297 struct tegra_spi_data
*tspi
;
1302 host
= spi_alloc_host(&pdev
->dev
, sizeof(*tspi
));
1304 dev_err(&pdev
->dev
, "host allocation failed\n");
1307 platform_set_drvdata(pdev
, host
);
1308 tspi
= spi_controller_get_devdata(host
);
1310 if (of_property_read_u32(pdev
->dev
.of_node
, "spi-max-frequency",
1311 &host
->max_speed_hz
))
1312 host
->max_speed_hz
= 25000000; /* 25MHz */
1314 /* the spi->mode bits understood by this driver: */
1315 host
->use_gpio_descriptors
= true;
1316 host
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
|
1317 SPI_TX_DUAL
| SPI_RX_DUAL
| SPI_3WIRE
;
1318 host
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1319 host
->setup
= tegra_spi_setup
;
1320 host
->cleanup
= tegra_spi_cleanup
;
1321 host
->transfer_one_message
= tegra_spi_transfer_one_message
;
1322 host
->set_cs_timing
= tegra_spi_set_hw_cs_timing
;
1323 host
->num_chipselect
= MAX_CHIP_SELECT
;
1324 host
->auto_runtime_pm
= true;
1325 bus_num
= of_alias_get_id(pdev
->dev
.of_node
, "spi");
1327 host
->bus_num
= bus_num
;
1330 tspi
->dev
= &pdev
->dev
;
1331 spin_lock_init(&tspi
->lock
);
1333 tspi
->soc_data
= of_device_get_match_data(&pdev
->dev
);
1334 if (!tspi
->soc_data
) {
1335 dev_err(&pdev
->dev
, "unsupported tegra\n");
1337 goto exit_free_host
;
1340 tspi
->base
= devm_platform_get_and_ioremap_resource(pdev
, 0, &r
);
1341 if (IS_ERR(tspi
->base
)) {
1342 ret
= PTR_ERR(tspi
->base
);
1343 goto exit_free_host
;
1345 tspi
->phys
= r
->start
;
1347 spi_irq
= platform_get_irq(pdev
, 0);
1350 goto exit_free_host
;
1352 tspi
->irq
= spi_irq
;
1354 tspi
->clk
= devm_clk_get(&pdev
->dev
, "spi");
1355 if (IS_ERR(tspi
->clk
)) {
1356 dev_err(&pdev
->dev
, "can not get clock\n");
1357 ret
= PTR_ERR(tspi
->clk
);
1358 goto exit_free_host
;
1361 tspi
->rst
= devm_reset_control_get_exclusive(&pdev
->dev
, "spi");
1362 if (IS_ERR(tspi
->rst
)) {
1363 dev_err(&pdev
->dev
, "can not get reset\n");
1364 ret
= PTR_ERR(tspi
->rst
);
1365 goto exit_free_host
;
1368 tspi
->max_buf_size
= SPI_FIFO_DEPTH
<< 2;
1369 tspi
->dma_buf_size
= DEFAULT_SPI_DMA_BUF_LEN
;
1371 ret
= tegra_spi_init_dma_param(tspi
, true);
1373 goto exit_free_host
;
1374 ret
= tegra_spi_init_dma_param(tspi
, false);
1376 goto exit_rx_dma_free
;
1377 tspi
->max_buf_size
= tspi
->dma_buf_size
;
1378 init_completion(&tspi
->tx_dma_complete
);
1379 init_completion(&tspi
->rx_dma_complete
);
1381 init_completion(&tspi
->xfer_completion
);
1383 pm_runtime_enable(&pdev
->dev
);
1384 if (!pm_runtime_enabled(&pdev
->dev
)) {
1385 ret
= tegra_spi_runtime_resume(&pdev
->dev
);
1387 goto exit_pm_disable
;
1390 ret
= pm_runtime_resume_and_get(&pdev
->dev
);
1392 dev_err(&pdev
->dev
, "pm runtime get failed, e = %d\n", ret
);
1393 goto exit_pm_disable
;
1396 reset_control_assert(tspi
->rst
);
1398 reset_control_deassert(tspi
->rst
);
1399 tspi
->def_command1_reg
= SPI_M_S
;
1400 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
1401 tspi
->spi_cs_timing1
= tegra_spi_readl(tspi
, SPI_CS_TIMING1
);
1402 tspi
->spi_cs_timing2
= tegra_spi_readl(tspi
, SPI_CS_TIMING2
);
1403 tspi
->def_command2_reg
= tegra_spi_readl(tspi
, SPI_COMMAND2
);
1404 tspi
->last_used_cs
= host
->num_chipselect
+ 1;
1405 pm_runtime_put(&pdev
->dev
);
1406 ret
= request_threaded_irq(tspi
->irq
, tegra_spi_isr
,
1407 tegra_spi_isr_thread
, IRQF_ONESHOT
,
1408 dev_name(&pdev
->dev
), tspi
);
1410 dev_err(&pdev
->dev
, "Failed to register ISR for IRQ %d\n",
1412 goto exit_pm_disable
;
1415 host
->dev
.of_node
= pdev
->dev
.of_node
;
1416 ret
= devm_spi_register_controller(&pdev
->dev
, host
);
1418 dev_err(&pdev
->dev
, "can not register to host err %d\n", ret
);
1424 free_irq(spi_irq
, tspi
);
1426 pm_runtime_disable(&pdev
->dev
);
1427 if (!pm_runtime_status_suspended(&pdev
->dev
))
1428 tegra_spi_runtime_suspend(&pdev
->dev
);
1429 tegra_spi_deinit_dma_param(tspi
, false);
1431 tegra_spi_deinit_dma_param(tspi
, true);
1433 spi_controller_put(host
);
1437 static void tegra_spi_remove(struct platform_device
*pdev
)
1439 struct spi_controller
*host
= platform_get_drvdata(pdev
);
1440 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(host
);
1442 free_irq(tspi
->irq
, tspi
);
1444 if (tspi
->tx_dma_chan
)
1445 tegra_spi_deinit_dma_param(tspi
, false);
1447 if (tspi
->rx_dma_chan
)
1448 tegra_spi_deinit_dma_param(tspi
, true);
1450 pm_runtime_disable(&pdev
->dev
);
1451 if (!pm_runtime_status_suspended(&pdev
->dev
))
1452 tegra_spi_runtime_suspend(&pdev
->dev
);
1455 #ifdef CONFIG_PM_SLEEP
1456 static int tegra_spi_suspend(struct device
*dev
)
1458 struct spi_controller
*host
= dev_get_drvdata(dev
);
1460 return spi_controller_suspend(host
);
1463 static int tegra_spi_resume(struct device
*dev
)
1465 struct spi_controller
*host
= dev_get_drvdata(dev
);
1466 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(host
);
1469 ret
= pm_runtime_resume_and_get(dev
);
1471 dev_err(dev
, "pm runtime failed, e = %d\n", ret
);
1474 tegra_spi_writel(tspi
, tspi
->command1_reg
, SPI_COMMAND1
);
1475 tegra_spi_writel(tspi
, tspi
->def_command2_reg
, SPI_COMMAND2
);
1476 tspi
->last_used_cs
= host
->num_chipselect
+ 1;
1477 pm_runtime_put(dev
);
1479 return spi_controller_resume(host
);
1483 static int tegra_spi_runtime_suspend(struct device
*dev
)
1485 struct spi_controller
*host
= dev_get_drvdata(dev
);
1486 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(host
);
1488 /* Flush all write which are in PPSB queue by reading back */
1489 tegra_spi_readl(tspi
, SPI_COMMAND1
);
1491 clk_disable_unprepare(tspi
->clk
);
1495 static int tegra_spi_runtime_resume(struct device
*dev
)
1497 struct spi_controller
*host
= dev_get_drvdata(dev
);
1498 struct tegra_spi_data
*tspi
= spi_controller_get_devdata(host
);
1501 ret
= clk_prepare_enable(tspi
->clk
);
1503 dev_err(tspi
->dev
, "clk_prepare failed: %d\n", ret
);
1509 static const struct dev_pm_ops tegra_spi_pm_ops
= {
1510 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend
,
1511 tegra_spi_runtime_resume
, NULL
)
1512 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend
, tegra_spi_resume
)
1514 static struct platform_driver tegra_spi_driver
= {
1516 .name
= "spi-tegra114",
1517 .pm
= &tegra_spi_pm_ops
,
1518 .of_match_table
= tegra_spi_of_match
,
1520 .probe
= tegra_spi_probe
,
1521 .remove
= tegra_spi_remove
,
1523 module_platform_driver(tegra_spi_driver
);
1525 MODULE_ALIAS("platform:spi-tegra114");
1526 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1527 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1528 MODULE_LICENSE("GPL v2");