1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
5 * This file contains the Generic Target Engine Core.
7 * (c) Copyright 2002-2013 Datera, Inc.
9 * Nicholas A. Bellinger <nab@kernel.org>
11 ******************************************************************************/
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <linux/unaligned.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
43 static struct workqueue_struct
*target_completion_wq
;
44 static struct workqueue_struct
*target_submission_wq
;
45 static struct kmem_cache
*se_sess_cache
;
46 struct kmem_cache
*se_ua_cache
;
47 struct kmem_cache
*t10_pr_reg_cache
;
48 struct kmem_cache
*t10_alua_lu_gp_cache
;
49 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
50 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
51 struct kmem_cache
*t10_alua_lba_map_cache
;
52 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
54 static void transport_complete_task_attr(struct se_cmd
*cmd
);
55 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
);
56 static void transport_handle_queue_full(struct se_cmd
*cmd
,
57 struct se_device
*dev
, int err
, bool write_pending
);
58 static void target_complete_ok_work(struct work_struct
*work
);
60 int init_se_kmem_caches(void)
62 se_sess_cache
= kmem_cache_create("se_sess_cache",
63 sizeof(struct se_session
), __alignof__(struct se_session
),
66 pr_err("kmem_cache_create() for struct se_session"
70 se_ua_cache
= kmem_cache_create("se_ua_cache",
71 sizeof(struct se_ua
), __alignof__(struct se_ua
),
74 pr_err("kmem_cache_create() for struct se_ua failed\n");
75 goto out_free_sess_cache
;
77 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
78 sizeof(struct t10_pr_registration
),
79 __alignof__(struct t10_pr_registration
), 0, NULL
);
80 if (!t10_pr_reg_cache
) {
81 pr_err("kmem_cache_create() for struct t10_pr_registration"
83 goto out_free_ua_cache
;
85 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
86 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
88 if (!t10_alua_lu_gp_cache
) {
89 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
91 goto out_free_pr_reg_cache
;
93 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 sizeof(struct t10_alua_lu_gp_member
),
95 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
96 if (!t10_alua_lu_gp_mem_cache
) {
97 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
99 goto out_free_lu_gp_cache
;
101 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 sizeof(struct t10_alua_tg_pt_gp
),
103 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
104 if (!t10_alua_tg_pt_gp_cache
) {
105 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
107 goto out_free_lu_gp_mem_cache
;
109 t10_alua_lba_map_cache
= kmem_cache_create(
110 "t10_alua_lba_map_cache",
111 sizeof(struct t10_alua_lba_map
),
112 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
113 if (!t10_alua_lba_map_cache
) {
114 pr_err("kmem_cache_create() for t10_alua_lba_map_"
116 goto out_free_tg_pt_gp_cache
;
118 t10_alua_lba_map_mem_cache
= kmem_cache_create(
119 "t10_alua_lba_map_mem_cache",
120 sizeof(struct t10_alua_lba_map_member
),
121 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
122 if (!t10_alua_lba_map_mem_cache
) {
123 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
125 goto out_free_lba_map_cache
;
128 target_completion_wq
= alloc_workqueue("target_completion",
130 if (!target_completion_wq
)
131 goto out_free_lba_map_mem_cache
;
133 target_submission_wq
= alloc_workqueue("target_submission",
135 if (!target_submission_wq
)
136 goto out_free_completion_wq
;
140 out_free_completion_wq
:
141 destroy_workqueue(target_completion_wq
);
142 out_free_lba_map_mem_cache
:
143 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
144 out_free_lba_map_cache
:
145 kmem_cache_destroy(t10_alua_lba_map_cache
);
146 out_free_tg_pt_gp_cache
:
147 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
148 out_free_lu_gp_mem_cache
:
149 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
150 out_free_lu_gp_cache
:
151 kmem_cache_destroy(t10_alua_lu_gp_cache
);
152 out_free_pr_reg_cache
:
153 kmem_cache_destroy(t10_pr_reg_cache
);
155 kmem_cache_destroy(se_ua_cache
);
157 kmem_cache_destroy(se_sess_cache
);
162 void release_se_kmem_caches(void)
164 destroy_workqueue(target_submission_wq
);
165 destroy_workqueue(target_completion_wq
);
166 kmem_cache_destroy(se_sess_cache
);
167 kmem_cache_destroy(se_ua_cache
);
168 kmem_cache_destroy(t10_pr_reg_cache
);
169 kmem_cache_destroy(t10_alua_lu_gp_cache
);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
172 kmem_cache_destroy(t10_alua_lba_map_cache
);
173 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
176 /* This code ensures unique mib indexes are handed out. */
177 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
178 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
181 * Allocate a new row index for the entry type specified
183 u32
scsi_get_new_index(scsi_index_t type
)
187 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
189 spin_lock(&scsi_mib_index_lock
);
190 new_index
= ++scsi_mib_index
[type
];
191 spin_unlock(&scsi_mib_index_lock
);
196 void transport_subsystem_check_init(void)
199 static int sub_api_initialized
;
201 if (sub_api_initialized
)
204 ret
= IS_ENABLED(CONFIG_TCM_IBLOCK
) && request_module("target_core_iblock");
206 pr_err("Unable to load target_core_iblock\n");
208 ret
= IS_ENABLED(CONFIG_TCM_FILEIO
) && request_module("target_core_file");
210 pr_err("Unable to load target_core_file\n");
212 ret
= IS_ENABLED(CONFIG_TCM_PSCSI
) && request_module("target_core_pscsi");
214 pr_err("Unable to load target_core_pscsi\n");
216 ret
= IS_ENABLED(CONFIG_TCM_USER2
) && request_module("target_core_user");
218 pr_err("Unable to load target_core_user\n");
220 sub_api_initialized
= 1;
223 static void target_release_cmd_refcnt(struct percpu_ref
*ref
)
225 struct target_cmd_counter
*cmd_cnt
= container_of(ref
,
228 wake_up(&cmd_cnt
->refcnt_wq
);
231 struct target_cmd_counter
*target_alloc_cmd_counter(void)
233 struct target_cmd_counter
*cmd_cnt
;
236 cmd_cnt
= kzalloc(sizeof(*cmd_cnt
), GFP_KERNEL
);
240 init_completion(&cmd_cnt
->stop_done
);
241 init_waitqueue_head(&cmd_cnt
->refcnt_wq
);
242 atomic_set(&cmd_cnt
->stopped
, 0);
244 rc
= percpu_ref_init(&cmd_cnt
->refcnt
, target_release_cmd_refcnt
, 0,
255 EXPORT_SYMBOL_GPL(target_alloc_cmd_counter
);
257 void target_free_cmd_counter(struct target_cmd_counter
*cmd_cnt
)
260 * Drivers like loop do not call target_stop_session during session
261 * shutdown so we have to drop the ref taken at init time here.
263 if (!atomic_read(&cmd_cnt
->stopped
))
264 percpu_ref_put(&cmd_cnt
->refcnt
);
266 percpu_ref_exit(&cmd_cnt
->refcnt
);
269 EXPORT_SYMBOL_GPL(target_free_cmd_counter
);
272 * transport_init_session - initialize a session object
273 * @se_sess: Session object pointer.
275 * The caller must have zero-initialized @se_sess before calling this function.
277 void transport_init_session(struct se_session
*se_sess
)
279 INIT_LIST_HEAD(&se_sess
->sess_list
);
280 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
281 spin_lock_init(&se_sess
->sess_cmd_lock
);
283 EXPORT_SYMBOL(transport_init_session
);
286 * transport_alloc_session - allocate a session object and initialize it
287 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
289 struct se_session
*transport_alloc_session(enum target_prot_op sup_prot_ops
)
291 struct se_session
*se_sess
;
293 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
295 pr_err("Unable to allocate struct se_session from"
297 return ERR_PTR(-ENOMEM
);
299 transport_init_session(se_sess
);
300 se_sess
->sup_prot_ops
= sup_prot_ops
;
304 EXPORT_SYMBOL(transport_alloc_session
);
307 * transport_alloc_session_tags - allocate target driver private data
308 * @se_sess: Session pointer.
309 * @tag_num: Maximum number of in-flight commands between initiator and target.
310 * @tag_size: Size in bytes of the private data a target driver associates with
313 int transport_alloc_session_tags(struct se_session
*se_sess
,
314 unsigned int tag_num
, unsigned int tag_size
)
318 se_sess
->sess_cmd_map
= kvcalloc(tag_size
, tag_num
,
319 GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
320 if (!se_sess
->sess_cmd_map
) {
321 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
325 rc
= sbitmap_queue_init_node(&se_sess
->sess_tag_pool
, tag_num
, -1,
326 false, GFP_KERNEL
, NUMA_NO_NODE
);
328 pr_err("Unable to init se_sess->sess_tag_pool,"
329 " tag_num: %u\n", tag_num
);
330 kvfree(se_sess
->sess_cmd_map
);
331 se_sess
->sess_cmd_map
= NULL
;
337 EXPORT_SYMBOL(transport_alloc_session_tags
);
340 * transport_init_session_tags - allocate a session and target driver private data
341 * @tag_num: Maximum number of in-flight commands between initiator and target.
342 * @tag_size: Size in bytes of the private data a target driver associates with
344 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
346 static struct se_session
*
347 transport_init_session_tags(unsigned int tag_num
, unsigned int tag_size
,
348 enum target_prot_op sup_prot_ops
)
350 struct se_session
*se_sess
;
353 if (tag_num
!= 0 && !tag_size
) {
354 pr_err("init_session_tags called with percpu-ida tag_num:"
355 " %u, but zero tag_size\n", tag_num
);
356 return ERR_PTR(-EINVAL
);
358 if (!tag_num
&& tag_size
) {
359 pr_err("init_session_tags called with percpu-ida tag_size:"
360 " %u, but zero tag_num\n", tag_size
);
361 return ERR_PTR(-EINVAL
);
364 se_sess
= transport_alloc_session(sup_prot_ops
);
368 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
370 transport_free_session(se_sess
);
371 return ERR_PTR(-ENOMEM
);
378 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
380 void __transport_register_session(
381 struct se_portal_group
*se_tpg
,
382 struct se_node_acl
*se_nacl
,
383 struct se_session
*se_sess
,
384 void *fabric_sess_ptr
)
386 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
387 unsigned char buf
[PR_REG_ISID_LEN
];
390 se_sess
->se_tpg
= se_tpg
;
391 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
393 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
395 * Only set for struct se_session's that will actually be moving I/O.
396 * eg: *NOT* discovery sessions.
401 * Determine if fabric allows for T10-PI feature bits exposed to
402 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
404 * If so, then always save prot_type on a per se_node_acl node
405 * basis and re-instate the previous sess_prot_type to avoid
406 * disabling PI from below any previously initiator side
409 if (se_nacl
->saved_prot_type
)
410 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
411 else if (tfo
->tpg_check_prot_fabric_only
)
412 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
413 tfo
->tpg_check_prot_fabric_only(se_tpg
);
415 * If the fabric module supports an ISID based TransportID,
416 * save this value in binary from the fabric I_T Nexus now.
418 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
419 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
420 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
421 &buf
[0], PR_REG_ISID_LEN
);
422 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
425 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
427 * The se_nacl->nacl_sess pointer will be set to the
428 * last active I_T Nexus for each struct se_node_acl.
430 se_nacl
->nacl_sess
= se_sess
;
432 list_add_tail(&se_sess
->sess_acl_list
,
433 &se_nacl
->acl_sess_list
);
434 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
436 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
438 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
439 se_tpg
->se_tpg_tfo
->fabric_name
, se_sess
->fabric_sess_ptr
);
441 EXPORT_SYMBOL(__transport_register_session
);
443 void transport_register_session(
444 struct se_portal_group
*se_tpg
,
445 struct se_node_acl
*se_nacl
,
446 struct se_session
*se_sess
,
447 void *fabric_sess_ptr
)
451 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
452 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
453 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
455 EXPORT_SYMBOL(transport_register_session
);
458 target_setup_session(struct se_portal_group
*tpg
,
459 unsigned int tag_num
, unsigned int tag_size
,
460 enum target_prot_op prot_op
,
461 const char *initiatorname
, void *private,
462 int (*callback
)(struct se_portal_group
*,
463 struct se_session
*, void *))
465 struct target_cmd_counter
*cmd_cnt
;
466 struct se_session
*sess
;
469 cmd_cnt
= target_alloc_cmd_counter();
471 return ERR_PTR(-ENOMEM
);
473 * If the fabric driver is using percpu-ida based pre allocation
474 * of I/O descriptor tags, go ahead and perform that setup now..
477 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
479 sess
= transport_alloc_session(prot_op
);
485 sess
->cmd_cnt
= cmd_cnt
;
487 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
488 (unsigned char *)initiatorname
);
489 if (!sess
->se_node_acl
) {
494 * Go ahead and perform any remaining fabric setup that is
495 * required before transport_register_session().
497 if (callback
!= NULL
) {
498 rc
= callback(tpg
, sess
, private);
503 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
507 transport_free_session(sess
);
511 target_free_cmd_counter(cmd_cnt
);
514 EXPORT_SYMBOL(target_setup_session
);
516 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
518 struct se_session
*se_sess
;
521 spin_lock_bh(&se_tpg
->session_lock
);
522 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
523 if (!se_sess
->se_node_acl
)
525 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
527 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
530 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
531 se_sess
->se_node_acl
->initiatorname
);
532 len
+= 1; /* Include NULL terminator */
534 spin_unlock_bh(&se_tpg
->session_lock
);
538 EXPORT_SYMBOL(target_show_dynamic_sessions
);
540 static void target_complete_nacl(struct kref
*kref
)
542 struct se_node_acl
*nacl
= container_of(kref
,
543 struct se_node_acl
, acl_kref
);
544 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
546 if (!nacl
->dynamic_stop
) {
547 complete(&nacl
->acl_free_comp
);
551 mutex_lock(&se_tpg
->acl_node_mutex
);
552 list_del_init(&nacl
->acl_list
);
553 mutex_unlock(&se_tpg
->acl_node_mutex
);
555 core_tpg_wait_for_nacl_pr_ref(nacl
);
556 core_free_device_list_for_node(nacl
, se_tpg
);
560 void target_put_nacl(struct se_node_acl
*nacl
)
562 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
564 EXPORT_SYMBOL(target_put_nacl
);
566 void transport_deregister_session_configfs(struct se_session
*se_sess
)
568 struct se_node_acl
*se_nacl
;
571 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
573 se_nacl
= se_sess
->se_node_acl
;
575 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
576 if (!list_empty(&se_sess
->sess_acl_list
))
577 list_del_init(&se_sess
->sess_acl_list
);
579 * If the session list is empty, then clear the pointer.
580 * Otherwise, set the struct se_session pointer from the tail
581 * element of the per struct se_node_acl active session list.
583 if (list_empty(&se_nacl
->acl_sess_list
))
584 se_nacl
->nacl_sess
= NULL
;
586 se_nacl
->nacl_sess
= container_of(
587 se_nacl
->acl_sess_list
.prev
,
588 struct se_session
, sess_acl_list
);
590 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
593 EXPORT_SYMBOL(transport_deregister_session_configfs
);
595 void transport_free_session(struct se_session
*se_sess
)
597 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
600 * Drop the se_node_acl->nacl_kref obtained from within
601 * core_tpg_get_initiator_node_acl().
604 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
605 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
608 se_sess
->se_node_acl
= NULL
;
611 * Also determine if we need to drop the extra ->cmd_kref if
612 * it had been previously dynamically generated, and
613 * the endpoint is not caching dynamic ACLs.
615 mutex_lock(&se_tpg
->acl_node_mutex
);
616 if (se_nacl
->dynamic_node_acl
&&
617 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
618 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
619 if (list_empty(&se_nacl
->acl_sess_list
))
620 se_nacl
->dynamic_stop
= true;
621 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
623 if (se_nacl
->dynamic_stop
)
624 list_del_init(&se_nacl
->acl_list
);
626 mutex_unlock(&se_tpg
->acl_node_mutex
);
628 if (se_nacl
->dynamic_stop
)
629 target_put_nacl(se_nacl
);
631 target_put_nacl(se_nacl
);
633 if (se_sess
->sess_cmd_map
) {
634 sbitmap_queue_free(&se_sess
->sess_tag_pool
);
635 kvfree(se_sess
->sess_cmd_map
);
637 if (se_sess
->cmd_cnt
)
638 target_free_cmd_counter(se_sess
->cmd_cnt
);
639 kmem_cache_free(se_sess_cache
, se_sess
);
641 EXPORT_SYMBOL(transport_free_session
);
643 static int target_release_res(struct se_device
*dev
, void *data
)
645 struct se_session
*sess
= data
;
647 if (dev
->reservation_holder
== sess
)
648 target_release_reservation(dev
);
652 void transport_deregister_session(struct se_session
*se_sess
)
654 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
658 transport_free_session(se_sess
);
662 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
663 list_del(&se_sess
->sess_list
);
664 se_sess
->se_tpg
= NULL
;
665 se_sess
->fabric_sess_ptr
= NULL
;
666 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
669 * Since the session is being removed, release SPC-2
670 * reservations held by the session that is disappearing.
672 target_for_each_device(target_release_res
, se_sess
);
674 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
675 se_tpg
->se_tpg_tfo
->fabric_name
);
677 * If last kref is dropping now for an explicit NodeACL, awake sleeping
678 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
679 * removal context from within transport_free_session() code.
681 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
682 * to release all remaining generate_node_acl=1 created ACL resources.
685 transport_free_session(se_sess
);
687 EXPORT_SYMBOL(transport_deregister_session
);
689 void target_remove_session(struct se_session
*se_sess
)
691 transport_deregister_session_configfs(se_sess
);
692 transport_deregister_session(se_sess
);
694 EXPORT_SYMBOL(target_remove_session
);
696 static void target_remove_from_state_list(struct se_cmd
*cmd
)
698 struct se_device
*dev
= cmd
->se_dev
;
704 spin_lock_irqsave(&dev
->queues
[cmd
->cpuid
].lock
, flags
);
705 if (cmd
->state_active
) {
706 list_del(&cmd
->state_list
);
707 cmd
->state_active
= false;
709 spin_unlock_irqrestore(&dev
->queues
[cmd
->cpuid
].lock
, flags
);
712 static void target_remove_from_tmr_list(struct se_cmd
*cmd
)
714 struct se_device
*dev
= NULL
;
717 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
718 dev
= cmd
->se_tmr_req
->tmr_dev
;
721 spin_lock_irqsave(&dev
->se_tmr_lock
, flags
);
722 if (cmd
->se_tmr_req
->tmr_dev
)
723 list_del_init(&cmd
->se_tmr_req
->tmr_list
);
724 spin_unlock_irqrestore(&dev
->se_tmr_lock
, flags
);
728 * This function is called by the target core after the target core has
729 * finished processing a SCSI command or SCSI TMF. Both the regular command
730 * processing code and the code for aborting commands can call this
731 * function. CMD_T_STOP is set if and only if another thread is waiting
732 * inside transport_wait_for_tasks() for t_transport_stop_comp.
734 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
738 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
740 * Determine if frontend context caller is requesting the stopping of
741 * this command for frontend exceptions.
743 if (cmd
->transport_state
& CMD_T_STOP
) {
744 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
745 __func__
, __LINE__
, cmd
->tag
);
747 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
749 complete_all(&cmd
->t_transport_stop_comp
);
752 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
753 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
756 * Some fabric modules like tcm_loop can release their internally
757 * allocated I/O reference and struct se_cmd now.
759 * Fabric modules are expected to return '1' here if the se_cmd being
760 * passed is released at this point, or zero if not being released.
762 return cmd
->se_tfo
->check_stop_free(cmd
);
765 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
767 struct se_lun
*lun
= cmd
->se_lun
;
772 target_remove_from_state_list(cmd
);
773 target_remove_from_tmr_list(cmd
);
775 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
776 percpu_ref_put(&lun
->lun_ref
);
779 * Clear struct se_cmd->se_lun before the handoff to FE.
784 static void target_complete_failure_work(struct work_struct
*work
)
786 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
788 transport_generic_request_failure(cmd
, cmd
->sense_reason
);
792 * Used when asking transport to copy Sense Data from the underlying
793 * Linux/SCSI struct scsi_cmnd
795 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
797 struct se_device
*dev
= cmd
->se_dev
;
799 WARN_ON(!cmd
->se_lun
);
804 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
807 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
809 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
810 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
811 return cmd
->sense_buffer
;
814 void transport_copy_sense_to_cmd(struct se_cmd
*cmd
, unsigned char *sense
)
816 unsigned char *cmd_sense_buf
;
819 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
820 cmd_sense_buf
= transport_get_sense_buffer(cmd
);
821 if (!cmd_sense_buf
) {
822 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
826 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
827 memcpy(cmd_sense_buf
, sense
, cmd
->scsi_sense_length
);
828 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
830 EXPORT_SYMBOL(transport_copy_sense_to_cmd
);
832 static void target_handle_abort(struct se_cmd
*cmd
)
834 bool tas
= cmd
->transport_state
& CMD_T_TAS
;
835 bool ack_kref
= cmd
->se_cmd_flags
& SCF_ACK_KREF
;
838 pr_debug("tag %#llx: send_abort_response = %d\n", cmd
->tag
, tas
);
841 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
842 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
843 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
844 cmd
->t_task_cdb
[0], cmd
->tag
);
845 trace_target_cmd_complete(cmd
);
846 ret
= cmd
->se_tfo
->queue_status(cmd
);
848 transport_handle_queue_full(cmd
, cmd
->se_dev
,
853 cmd
->se_tmr_req
->response
= TMR_FUNCTION_REJECTED
;
854 cmd
->se_tfo
->queue_tm_rsp(cmd
);
858 * Allow the fabric driver to unmap any resources before
859 * releasing the descriptor via TFO->release_cmd().
861 cmd
->se_tfo
->aborted_task(cmd
);
863 WARN_ON_ONCE(target_put_sess_cmd(cmd
) != 0);
865 * To do: establish a unit attention condition on the I_T
866 * nexus associated with cmd. See also the paragraph "Aborting
871 WARN_ON_ONCE(kref_read(&cmd
->cmd_kref
) == 0);
873 transport_lun_remove_cmd(cmd
);
875 transport_cmd_check_stop_to_fabric(cmd
);
878 static void target_abort_work(struct work_struct
*work
)
880 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
882 target_handle_abort(cmd
);
885 static bool target_cmd_interrupted(struct se_cmd
*cmd
)
889 if (cmd
->transport_state
& CMD_T_ABORTED
) {
890 if (cmd
->transport_complete_callback
)
891 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
892 INIT_WORK(&cmd
->work
, target_abort_work
);
893 queue_work(target_completion_wq
, &cmd
->work
);
895 } else if (cmd
->transport_state
& CMD_T_STOP
) {
896 if (cmd
->transport_complete_callback
)
897 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
898 complete_all(&cmd
->t_transport_stop_comp
);
905 /* May be called from interrupt context so must not sleep. */
906 void target_complete_cmd_with_sense(struct se_cmd
*cmd
, u8 scsi_status
,
907 sense_reason_t sense_reason
)
909 struct se_wwn
*wwn
= cmd
->se_sess
->se_tpg
->se_tpg_wwn
;
913 if (target_cmd_interrupted(cmd
))
916 cmd
->scsi_status
= scsi_status
;
917 cmd
->sense_reason
= sense_reason
;
919 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
920 switch (cmd
->scsi_status
) {
921 case SAM_STAT_CHECK_CONDITION
:
922 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
932 cmd
->t_state
= TRANSPORT_COMPLETE
;
933 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
934 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
936 INIT_WORK(&cmd
->work
, success
? target_complete_ok_work
:
937 target_complete_failure_work
);
939 if (!wwn
|| wwn
->cmd_compl_affinity
== SE_COMPL_AFFINITY_CPUID
)
942 cpu
= wwn
->cmd_compl_affinity
;
944 queue_work_on(cpu
, target_completion_wq
, &cmd
->work
);
946 EXPORT_SYMBOL(target_complete_cmd_with_sense
);
948 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
950 target_complete_cmd_with_sense(cmd
, scsi_status
, scsi_status
?
951 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
954 EXPORT_SYMBOL(target_complete_cmd
);
956 void target_set_cmd_data_length(struct se_cmd
*cmd
, int length
)
958 if (length
< cmd
->data_length
) {
959 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
960 cmd
->residual_count
+= cmd
->data_length
- length
;
962 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
963 cmd
->residual_count
= cmd
->data_length
- length
;
966 cmd
->data_length
= length
;
969 EXPORT_SYMBOL(target_set_cmd_data_length
);
971 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
973 if (scsi_status
== SAM_STAT_GOOD
||
974 cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) {
975 target_set_cmd_data_length(cmd
, length
);
978 target_complete_cmd(cmd
, scsi_status
);
980 EXPORT_SYMBOL(target_complete_cmd_with_length
);
982 static void target_add_to_state_list(struct se_cmd
*cmd
)
984 struct se_device
*dev
= cmd
->se_dev
;
987 spin_lock_irqsave(&dev
->queues
[cmd
->cpuid
].lock
, flags
);
988 if (!cmd
->state_active
) {
989 list_add_tail(&cmd
->state_list
,
990 &dev
->queues
[cmd
->cpuid
].state_list
);
991 cmd
->state_active
= true;
993 spin_unlock_irqrestore(&dev
->queues
[cmd
->cpuid
].lock
, flags
);
997 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
999 static void transport_write_pending_qf(struct se_cmd
*cmd
);
1000 static void transport_complete_qf(struct se_cmd
*cmd
);
1002 void target_qf_do_work(struct work_struct
*work
)
1004 struct se_device
*dev
= container_of(work
, struct se_device
,
1006 LIST_HEAD(qf_cmd_list
);
1007 struct se_cmd
*cmd
, *cmd_tmp
;
1009 spin_lock_irq(&dev
->qf_cmd_lock
);
1010 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
1011 spin_unlock_irq(&dev
->qf_cmd_lock
);
1013 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
1014 list_del(&cmd
->se_qf_node
);
1015 atomic_dec_mb(&dev
->dev_qf_count
);
1017 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
1018 " context: %s\n", cmd
->se_tfo
->fabric_name
, cmd
,
1019 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
1020 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
1023 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
1024 transport_write_pending_qf(cmd
);
1025 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
||
1026 cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
)
1027 transport_complete_qf(cmd
);
1031 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
1033 switch (cmd
->data_direction
) {
1036 case DMA_FROM_DEVICE
:
1040 case DMA_BIDIRECTIONAL
:
1049 void transport_dump_dev_state(
1050 struct se_device
*dev
,
1054 *bl
+= sprintf(b
+ *bl
, "Status: ");
1055 if (dev
->export_count
)
1056 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
1058 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
1060 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
1061 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
1062 dev
->dev_attrib
.block_size
,
1063 dev
->dev_attrib
.hw_max_sectors
);
1064 *bl
+= sprintf(b
+ *bl
, " ");
1067 void transport_dump_vpd_proto_id(
1068 struct t10_vpd
*vpd
,
1069 unsigned char *p_buf
,
1072 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1075 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1076 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1078 switch (vpd
->protocol_identifier
) {
1080 sprintf(buf
+len
, "Fibre Channel\n");
1083 sprintf(buf
+len
, "Parallel SCSI\n");
1086 sprintf(buf
+len
, "SSA\n");
1089 sprintf(buf
+len
, "IEEE 1394\n");
1092 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1096 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1099 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1102 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1106 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1109 sprintf(buf
+len
, "Unknown 0x%02x\n",
1110 vpd
->protocol_identifier
);
1115 strncpy(p_buf
, buf
, p_buf_len
);
1117 pr_debug("%s", buf
);
1121 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1124 * Check if the Protocol Identifier Valid (PIV) bit is set..
1126 * from spc3r23.pdf section 7.5.1
1128 if (page_83
[1] & 0x80) {
1129 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1130 vpd
->protocol_identifier_set
= 1;
1131 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1134 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1136 int transport_dump_vpd_assoc(
1137 struct t10_vpd
*vpd
,
1138 unsigned char *p_buf
,
1141 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1145 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1146 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1148 switch (vpd
->association
) {
1150 sprintf(buf
+len
, "addressed logical unit\n");
1153 sprintf(buf
+len
, "target port\n");
1156 sprintf(buf
+len
, "SCSI target device\n");
1159 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1165 strncpy(p_buf
, buf
, p_buf_len
);
1167 pr_debug("%s", buf
);
1172 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1175 * The VPD identification association..
1177 * from spc3r23.pdf Section 7.6.3.1 Table 297
1179 vpd
->association
= (page_83
[1] & 0x30);
1180 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1182 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1184 int transport_dump_vpd_ident_type(
1185 struct t10_vpd
*vpd
,
1186 unsigned char *p_buf
,
1189 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1193 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1194 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1196 switch (vpd
->device_identifier_type
) {
1198 sprintf(buf
+len
, "Vendor specific\n");
1201 sprintf(buf
+len
, "T10 Vendor ID based\n");
1204 sprintf(buf
+len
, "EUI-64 based\n");
1207 sprintf(buf
+len
, "NAA\n");
1210 sprintf(buf
+len
, "Relative target port identifier\n");
1213 sprintf(buf
+len
, "SCSI name string\n");
1216 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1217 vpd
->device_identifier_type
);
1223 if (p_buf_len
< strlen(buf
)+1)
1225 strncpy(p_buf
, buf
, p_buf_len
);
1227 pr_debug("%s", buf
);
1233 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1236 * The VPD identifier type..
1238 * from spc3r23.pdf Section 7.6.3.1 Table 298
1240 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1241 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1243 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1245 int transport_dump_vpd_ident(
1246 struct t10_vpd
*vpd
,
1247 unsigned char *p_buf
,
1250 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1253 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1255 switch (vpd
->device_identifier_code_set
) {
1256 case 0x01: /* Binary */
1257 snprintf(buf
, sizeof(buf
),
1258 "T10 VPD Binary Device Identifier: %s\n",
1259 &vpd
->device_identifier
[0]);
1261 case 0x02: /* ASCII */
1262 snprintf(buf
, sizeof(buf
),
1263 "T10 VPD ASCII Device Identifier: %s\n",
1264 &vpd
->device_identifier
[0]);
1266 case 0x03: /* UTF-8 */
1267 snprintf(buf
, sizeof(buf
),
1268 "T10 VPD UTF-8 Device Identifier: %s\n",
1269 &vpd
->device_identifier
[0]);
1272 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1273 " 0x%02x", vpd
->device_identifier_code_set
);
1279 strncpy(p_buf
, buf
, p_buf_len
);
1281 pr_debug("%s", buf
);
1287 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1289 static const char hex_str
[] = "0123456789abcdef";
1290 int j
= 0, i
= 4; /* offset to start of the identifier */
1293 * The VPD Code Set (encoding)
1295 * from spc3r23.pdf Section 7.6.3.1 Table 296
1297 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1298 switch (vpd
->device_identifier_code_set
) {
1299 case 0x01: /* Binary */
1300 vpd
->device_identifier
[j
++] =
1301 hex_str
[vpd
->device_identifier_type
];
1302 while (i
< (4 + page_83
[3])) {
1303 vpd
->device_identifier
[j
++] =
1304 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1305 vpd
->device_identifier
[j
++] =
1306 hex_str
[page_83
[i
] & 0x0f];
1310 case 0x02: /* ASCII */
1311 case 0x03: /* UTF-8 */
1312 while (i
< (4 + page_83
[3]))
1313 vpd
->device_identifier
[j
++] = page_83
[i
++];
1319 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1321 EXPORT_SYMBOL(transport_set_vpd_ident
);
1323 static sense_reason_t
1324 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1329 if (!cmd
->se_tfo
->max_data_sg_nents
)
1330 return TCM_NO_SENSE
;
1332 * Check if fabric enforced maximum SGL entries per I/O descriptor
1333 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1334 * residual_count and reduce original cmd->data_length to maximum
1335 * length based on single PAGE_SIZE entry scatter-lists.
1337 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1338 if (cmd
->data_length
> mtl
) {
1340 * If an existing CDB overflow is present, calculate new residual
1341 * based on CDB size minus fabric maximum transfer length.
1343 * If an existing CDB underflow is present, calculate new residual
1344 * based on original cmd->data_length minus fabric maximum transfer
1347 * Otherwise, set the underflow residual based on cmd->data_length
1348 * minus fabric maximum transfer length.
1350 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1351 cmd
->residual_count
= (size
- mtl
);
1352 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1353 u32 orig_dl
= size
+ cmd
->residual_count
;
1354 cmd
->residual_count
= (orig_dl
- mtl
);
1356 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1357 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1359 cmd
->data_length
= mtl
;
1361 * Reset sbc_check_prot() calculated protection payload
1362 * length based upon the new smaller MTL.
1364 if (cmd
->prot_length
) {
1365 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1366 cmd
->prot_length
= dev
->prot_length
* sectors
;
1369 return TCM_NO_SENSE
;
1373 * target_cmd_size_check - Check whether there will be a residual.
1374 * @cmd: SCSI command.
1375 * @size: Data buffer size derived from CDB. The data buffer size provided by
1376 * the SCSI transport driver is available in @cmd->data_length.
1378 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1379 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1381 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1383 * Return: TCM_NO_SENSE
1386 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1388 struct se_device
*dev
= cmd
->se_dev
;
1390 if (cmd
->unknown_data_length
) {
1391 cmd
->data_length
= size
;
1392 } else if (size
!= cmd
->data_length
) {
1393 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1394 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1395 " 0x%02x\n", cmd
->se_tfo
->fabric_name
,
1396 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1398 * For READ command for the overflow case keep the existing
1399 * fabric provided ->data_length. Otherwise for the underflow
1400 * case, reset ->data_length to the smaller SCSI expected data
1403 if (size
> cmd
->data_length
) {
1404 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1405 cmd
->residual_count
= (size
- cmd
->data_length
);
1407 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1408 cmd
->residual_count
= (cmd
->data_length
- size
);
1410 * Do not truncate ->data_length for WRITE command to
1413 if (cmd
->data_direction
== DMA_FROM_DEVICE
) {
1414 cmd
->data_length
= size
;
1418 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1419 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1420 pr_err_ratelimited("Rejecting underflow/overflow"
1421 " for WRITE data CDB\n");
1422 return TCM_INVALID_FIELD_IN_COMMAND_IU
;
1425 * Some fabric drivers like iscsi-target still expect to
1426 * always reject overflow writes. Reject this case until
1427 * full fabric driver level support for overflow writes
1428 * is introduced tree-wide.
1430 if (size
> cmd
->data_length
) {
1431 pr_err_ratelimited("Rejecting overflow for"
1432 " WRITE control CDB\n");
1433 return TCM_INVALID_CDB_FIELD
;
1438 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1443 * Used by fabric modules containing a local struct se_cmd within their
1444 * fabric dependent per I/O descriptor.
1446 * Preserves the value of @cmd->tag.
1448 void __target_init_cmd(struct se_cmd
*cmd
,
1449 const struct target_core_fabric_ops
*tfo
,
1450 struct se_session
*se_sess
, u32 data_length
,
1451 int data_direction
, int task_attr
,
1452 unsigned char *sense_buffer
, u64 unpacked_lun
,
1453 struct target_cmd_counter
*cmd_cnt
)
1455 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1456 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1457 INIT_LIST_HEAD(&cmd
->state_list
);
1458 init_completion(&cmd
->t_transport_stop_comp
);
1459 cmd
->free_compl
= NULL
;
1460 cmd
->abrt_compl
= NULL
;
1461 spin_lock_init(&cmd
->t_state_lock
);
1462 INIT_WORK(&cmd
->work
, NULL
);
1463 kref_init(&cmd
->cmd_kref
);
1465 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1467 cmd
->se_sess
= se_sess
;
1468 cmd
->data_length
= data_length
;
1469 cmd
->data_direction
= data_direction
;
1470 cmd
->sam_task_attr
= task_attr
;
1471 cmd
->sense_buffer
= sense_buffer
;
1472 cmd
->orig_fe_lun
= unpacked_lun
;
1473 cmd
->cmd_cnt
= cmd_cnt
;
1475 if (!(cmd
->se_cmd_flags
& SCF_USE_CPUID
))
1476 cmd
->cpuid
= raw_smp_processor_id();
1478 cmd
->state_active
= false;
1480 EXPORT_SYMBOL(__target_init_cmd
);
1482 static sense_reason_t
1483 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1485 struct se_device
*dev
= cmd
->se_dev
;
1488 * Check if SAM Task Attribute emulation is enabled for this
1489 * struct se_device storage object
1491 if (dev
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1494 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1495 pr_debug("SAM Task Attribute ACA"
1496 " emulation is not supported\n");
1497 return TCM_INVALID_CDB_FIELD
;
1504 target_cmd_init_cdb(struct se_cmd
*cmd
, unsigned char *cdb
, gfp_t gfp
)
1509 * Ensure that the received CDB is less than the max (252 + 8) bytes
1510 * for VARIABLE_LENGTH_CMD
1512 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1513 pr_err("Received SCSI CDB with command_size: %d that"
1514 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1515 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1516 ret
= TCM_INVALID_CDB_FIELD
;
1520 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1521 * allocate the additional extended CDB buffer now.. Otherwise
1522 * setup the pointer from __t_task_cdb to t_task_cdb.
1524 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1525 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
), gfp
);
1526 if (!cmd
->t_task_cdb
) {
1527 pr_err("Unable to allocate cmd->t_task_cdb"
1528 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1529 scsi_command_size(cdb
),
1530 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1531 ret
= TCM_OUT_OF_RESOURCES
;
1536 * Copy the original CDB into cmd->
1538 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1540 trace_target_sequencer_start(cmd
);
1545 * Copy the CDB here to allow trace_target_cmd_complete() to
1546 * print the cdb to the trace buffers.
1548 memcpy(cmd
->t_task_cdb
, cdb
, min(scsi_command_size(cdb
),
1549 (unsigned int)TCM_MAX_COMMAND_SIZE
));
1552 EXPORT_SYMBOL(target_cmd_init_cdb
);
1555 target_cmd_parse_cdb(struct se_cmd
*cmd
)
1557 struct se_device
*dev
= cmd
->se_dev
;
1560 ret
= dev
->transport
->parse_cdb(cmd
);
1561 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1562 pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1563 cmd
->se_tfo
->fabric_name
,
1564 cmd
->se_sess
->se_node_acl
->initiatorname
,
1565 cmd
->t_task_cdb
[0]);
1569 ret
= transport_check_alloc_task_attr(cmd
);
1573 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1574 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1577 EXPORT_SYMBOL(target_cmd_parse_cdb
);
1579 static int __target_submit(struct se_cmd
*cmd
)
1586 * Check if we need to delay processing because of ALUA
1587 * Active/NonOptimized primary access state..
1589 core_alua_check_nonop_delay(cmd
);
1591 if (cmd
->t_data_nents
!= 0) {
1593 * This is primarily a hack for udev and tcm loop which sends
1594 * INQUIRYs with a single page and expects the data to be
1597 if (!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1598 cmd
->data_direction
== DMA_FROM_DEVICE
) {
1599 struct scatterlist
*sgl
= cmd
->t_data_sg
;
1600 unsigned char *buf
= NULL
;
1604 buf
= kmap_local_page(sg_page(sgl
));
1606 memset(buf
+ sgl
->offset
, 0, sgl
->length
);
1614 pr_err("cmd->se_lun is NULL\n");
1619 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1620 * outstanding descriptors are handled correctly during shutdown via
1621 * transport_wait_for_tasks()
1623 * Also, we don't take cmd->t_state_lock here as we only expect
1624 * this to be called for initial descriptor submission.
1626 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1627 cmd
->transport_state
|= CMD_T_ACTIVE
;
1630 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1631 * so follow TRANSPORT_NEW_CMD processing thread context usage
1632 * and call transport_generic_request_failure() if necessary..
1634 ret
= transport_generic_new_cmd(cmd
);
1636 transport_generic_request_failure(cmd
, ret
);
1641 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1642 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1644 if (!sgl
|| !sgl_count
)
1648 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1649 * scatterlists already have been set to follow what the fabric
1650 * passes for the original expected data transfer length.
1652 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1653 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1654 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1655 return TCM_INVALID_CDB_FIELD
;
1658 cmd
->t_data_sg
= sgl
;
1659 cmd
->t_data_nents
= sgl_count
;
1660 cmd
->t_bidi_data_sg
= sgl_bidi
;
1661 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1663 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1668 * target_init_cmd - initialize se_cmd
1669 * @se_cmd: command descriptor to init
1670 * @se_sess: associated se_sess for endpoint
1671 * @sense: pointer to SCSI sense buffer
1672 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1673 * @data_length: fabric expected data transfer length
1674 * @task_attr: SAM task attribute
1675 * @data_dir: DMA data direction
1676 * @flags: flags for command submission from target_sc_flags_tables
1678 * Task tags are supported if the caller has set @se_cmd->tag.
1681 * - less than zero to signal active I/O shutdown failure.
1682 * - zero on success.
1684 * If the fabric driver calls target_stop_session, then it must check the
1685 * return code and handle failures. This will never fail for other drivers,
1686 * and the return code can be ignored.
1688 int target_init_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1689 unsigned char *sense
, u64 unpacked_lun
,
1690 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1692 struct se_portal_group
*se_tpg
;
1694 se_tpg
= se_sess
->se_tpg
;
1696 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1698 if (flags
& TARGET_SCF_USE_CPUID
)
1699 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1701 * Signal bidirectional data payloads to target-core
1703 if (flags
& TARGET_SCF_BIDI_OP
)
1704 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1706 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1707 se_cmd
->unknown_data_length
= 1;
1709 * Initialize se_cmd for target operation. From this point
1710 * exceptions are handled by sending exception status via
1711 * target_core_fabric_ops->queue_status() callback
1713 __target_init_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
, data_length
,
1714 data_dir
, task_attr
, sense
, unpacked_lun
,
1718 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1719 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1720 * kref_put() to happen during fabric packet acknowledgement.
1722 return target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1724 EXPORT_SYMBOL_GPL(target_init_cmd
);
1727 * target_submit_prep - prepare cmd for submission
1728 * @se_cmd: command descriptor to prep
1729 * @cdb: pointer to SCSI CDB
1730 * @sgl: struct scatterlist memory for unidirectional mapping
1731 * @sgl_count: scatterlist count for unidirectional mapping
1732 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1733 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1734 * @sgl_prot: struct scatterlist memory protection information
1735 * @sgl_prot_count: scatterlist count for protection information
1736 * @gfp: gfp allocation type
1739 * - less than zero to signal failure.
1740 * - zero on success.
1742 * If failure is returned, lio will the callers queue_status to complete
1745 int target_submit_prep(struct se_cmd
*se_cmd
, unsigned char *cdb
,
1746 struct scatterlist
*sgl
, u32 sgl_count
,
1747 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1748 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
,
1753 rc
= target_cmd_init_cdb(se_cmd
, cdb
, gfp
);
1755 goto send_cc_direct
;
1758 * Locate se_lun pointer and attach it to struct se_cmd
1760 rc
= transport_lookup_cmd_lun(se_cmd
);
1762 goto send_cc_direct
;
1764 rc
= target_cmd_parse_cdb(se_cmd
);
1769 * Save pointers for SGLs containing protection information,
1772 if (sgl_prot_count
) {
1773 se_cmd
->t_prot_sg
= sgl_prot
;
1774 se_cmd
->t_prot_nents
= sgl_prot_count
;
1775 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1779 * When a non zero sgl_count has been passed perform SGL passthrough
1780 * mapping for pre-allocated fabric memory instead of having target
1781 * core perform an internal SGL allocation..
1783 if (sgl_count
!= 0) {
1786 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1787 sgl_bidi
, sgl_bidi_count
);
1795 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1796 target_put_sess_cmd(se_cmd
);
1800 transport_generic_request_failure(se_cmd
, rc
);
1803 EXPORT_SYMBOL_GPL(target_submit_prep
);
1806 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1808 * @se_cmd: command descriptor to submit
1809 * @se_sess: associated se_sess for endpoint
1810 * @cdb: pointer to SCSI CDB
1811 * @sense: pointer to SCSI sense buffer
1812 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1813 * @data_length: fabric expected data transfer length
1814 * @task_attr: SAM task attribute
1815 * @data_dir: DMA data direction
1816 * @flags: flags for command submission from target_sc_flags_tables
1818 * Task tags are supported if the caller has set @se_cmd->tag.
1820 * This may only be called from process context, and also currently
1821 * assumes internal allocation of fabric payload buffer by target-core.
1823 * It also assumes interal target core SGL memory allocation.
1825 * This function must only be used by drivers that do their own
1826 * sync during shutdown and does not use target_stop_session. If there
1827 * is a failure this function will call into the fabric driver's
1828 * queue_status with a CHECK_CONDITION.
1830 void target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1831 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1832 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1836 rc
= target_init_cmd(se_cmd
, se_sess
, sense
, unpacked_lun
, data_length
,
1837 task_attr
, data_dir
, flags
);
1838 WARN(rc
, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1842 if (target_submit_prep(se_cmd
, cdb
, NULL
, 0, NULL
, 0, NULL
, 0,
1846 target_submit(se_cmd
);
1848 EXPORT_SYMBOL(target_submit_cmd
);
1851 static struct se_dev_plug
*target_plug_device(struct se_device
*se_dev
)
1853 struct se_dev_plug
*se_plug
;
1855 if (!se_dev
->transport
->plug_device
)
1858 se_plug
= se_dev
->transport
->plug_device(se_dev
);
1862 se_plug
->se_dev
= se_dev
;
1864 * We have a ref to the lun at this point, but the cmds could
1865 * complete before we unplug, so grab a ref to the se_device so we
1866 * can call back into the backend.
1868 config_group_get(&se_dev
->dev_group
);
1872 static void target_unplug_device(struct se_dev_plug
*se_plug
)
1874 struct se_device
*se_dev
= se_plug
->se_dev
;
1876 se_dev
->transport
->unplug_device(se_plug
);
1877 config_group_put(&se_dev
->dev_group
);
1880 void target_queued_submit_work(struct work_struct
*work
)
1882 struct se_cmd_queue
*sq
= container_of(work
, struct se_cmd_queue
, work
);
1883 struct se_cmd
*se_cmd
, *next_cmd
;
1884 struct se_dev_plug
*se_plug
= NULL
;
1885 struct se_device
*se_dev
= NULL
;
1886 struct llist_node
*cmd_list
;
1888 cmd_list
= llist_del_all(&sq
->cmd_list
);
1890 /* Previous call took what we were queued to submit */
1893 cmd_list
= llist_reverse_order(cmd_list
);
1894 llist_for_each_entry_safe(se_cmd
, next_cmd
, cmd_list
, se_cmd_list
) {
1896 se_dev
= se_cmd
->se_dev
;
1897 se_plug
= target_plug_device(se_dev
);
1900 __target_submit(se_cmd
);
1904 target_unplug_device(se_plug
);
1908 * target_queue_submission - queue the cmd to run on the LIO workqueue
1909 * @se_cmd: command descriptor to submit
1911 static void target_queue_submission(struct se_cmd
*se_cmd
)
1913 struct se_device
*se_dev
= se_cmd
->se_dev
;
1914 int cpu
= se_cmd
->cpuid
;
1915 struct se_cmd_queue
*sq
;
1917 sq
= &se_dev
->queues
[cpu
].sq
;
1918 llist_add(&se_cmd
->se_cmd_list
, &sq
->cmd_list
);
1919 queue_work_on(cpu
, target_submission_wq
, &sq
->work
);
1923 * target_submit - perform final initialization and submit cmd to LIO core
1924 * @se_cmd: command descriptor to submit
1926 * target_submit_prep or something similar must have been called on the cmd,
1927 * and this must be called from process context.
1929 int target_submit(struct se_cmd
*se_cmd
)
1931 const struct target_core_fabric_ops
*tfo
= se_cmd
->se_sess
->se_tpg
->se_tpg_tfo
;
1932 struct se_dev_attrib
*da
= &se_cmd
->se_dev
->dev_attrib
;
1935 if (da
->submit_type
== TARGET_FABRIC_DEFAULT_SUBMIT
)
1936 submit_type
= tfo
->default_submit_type
;
1937 else if (da
->submit_type
== TARGET_DIRECT_SUBMIT
&&
1938 tfo
->direct_submit_supp
)
1939 submit_type
= TARGET_DIRECT_SUBMIT
;
1941 submit_type
= TARGET_QUEUE_SUBMIT
;
1943 if (submit_type
== TARGET_DIRECT_SUBMIT
)
1944 return __target_submit(se_cmd
);
1946 target_queue_submission(se_cmd
);
1949 EXPORT_SYMBOL_GPL(target_submit
);
1951 static void target_complete_tmr_failure(struct work_struct
*work
)
1953 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1955 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1956 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1958 transport_lun_remove_cmd(se_cmd
);
1959 transport_cmd_check_stop_to_fabric(se_cmd
);
1963 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1966 * @se_cmd: command descriptor to submit
1967 * @se_sess: associated se_sess for endpoint
1968 * @sense: pointer to SCSI sense buffer
1969 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1970 * @fabric_tmr_ptr: fabric context for TMR req
1971 * @tm_type: Type of TM request
1972 * @gfp: gfp type for caller
1973 * @tag: referenced task tag for TMR_ABORT_TASK
1974 * @flags: submit cmd flags
1976 * Callable from all contexts.
1979 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1980 unsigned char *sense
, u64 unpacked_lun
,
1981 void *fabric_tmr_ptr
, unsigned char tm_type
,
1982 gfp_t gfp
, u64 tag
, int flags
)
1984 struct se_portal_group
*se_tpg
;
1987 se_tpg
= se_sess
->se_tpg
;
1990 __target_init_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1991 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
, unpacked_lun
,
1994 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1995 * allocation failure.
1997 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
2001 if (tm_type
== TMR_ABORT_TASK
)
2002 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
2004 /* See target_submit_cmd for commentary */
2005 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
2007 core_tmr_release_req(se_cmd
->se_tmr_req
);
2011 ret
= transport_lookup_tmr_lun(se_cmd
);
2015 transport_generic_handle_tmr(se_cmd
);
2019 * For callback during failure handling, push this work off
2020 * to process context with TMR_LUN_DOES_NOT_EXIST status.
2023 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
2024 schedule_work(&se_cmd
->work
);
2027 EXPORT_SYMBOL(target_submit_tmr
);
2030 * Handle SAM-esque emulation for generic transport request failures.
2032 void transport_generic_request_failure(struct se_cmd
*cmd
,
2033 sense_reason_t sense_reason
)
2035 int ret
= 0, post_ret
;
2037 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2039 target_show_cmd("-----[ ", cmd
);
2042 * For SAM Task Attribute emulation for failed struct se_cmd
2044 transport_complete_task_attr(cmd
);
2046 if (cmd
->transport_complete_callback
)
2047 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
2049 if (cmd
->transport_state
& CMD_T_ABORTED
) {
2050 INIT_WORK(&cmd
->work
, target_abort_work
);
2051 queue_work(target_completion_wq
, &cmd
->work
);
2055 switch (sense_reason
) {
2056 case TCM_NON_EXISTENT_LUN
:
2057 case TCM_UNSUPPORTED_SCSI_OPCODE
:
2058 case TCM_INVALID_CDB_FIELD
:
2059 case TCM_INVALID_PARAMETER_LIST
:
2060 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
2061 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
2062 case TCM_UNKNOWN_MODE_PAGE
:
2063 case TCM_WRITE_PROTECTED
:
2064 case TCM_ADDRESS_OUT_OF_RANGE
:
2065 case TCM_CHECK_CONDITION_ABORT_CMD
:
2066 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
2067 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
2068 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
2069 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
2070 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
2071 case TCM_TOO_MANY_TARGET_DESCS
:
2072 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
2073 case TCM_TOO_MANY_SEGMENT_DESCS
:
2074 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
2075 case TCM_INVALID_FIELD_IN_COMMAND_IU
:
2076 case TCM_ALUA_TG_PT_STANDBY
:
2077 case TCM_ALUA_TG_PT_UNAVAILABLE
:
2078 case TCM_ALUA_STATE_TRANSITION
:
2079 case TCM_ALUA_OFFLINE
:
2081 case TCM_OUT_OF_RESOURCES
:
2082 cmd
->scsi_status
= SAM_STAT_TASK_SET_FULL
;
2085 cmd
->scsi_status
= SAM_STAT_BUSY
;
2087 case TCM_RESERVATION_CONFLICT
:
2089 * No SENSE Data payload for this case, set SCSI Status
2090 * and queue the response to $FABRIC_MOD.
2092 * Uses linux/include/scsi/scsi.h SAM status codes defs
2094 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2096 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2097 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2100 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2103 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
2104 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA
) {
2105 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
2106 cmd
->orig_fe_lun
, 0x2C,
2107 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2112 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2113 cmd
->t_task_cdb
[0], sense_reason
);
2114 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2118 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
2123 transport_lun_remove_cmd(cmd
);
2124 transport_cmd_check_stop_to_fabric(cmd
);
2128 trace_target_cmd_complete(cmd
);
2129 ret
= cmd
->se_tfo
->queue_status(cmd
);
2133 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2135 EXPORT_SYMBOL(transport_generic_request_failure
);
2137 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
2141 if (!cmd
->execute_cmd
) {
2142 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2147 * Check for an existing UNIT ATTENTION condition after
2148 * target_handle_task_attr() has done SAM task attr
2149 * checking, and possibly have already defered execution
2150 * out to target_restart_delayed_cmds() context.
2152 ret
= target_scsi3_ua_check(cmd
);
2156 ret
= target_alua_state_check(cmd
);
2160 ret
= target_check_reservation(cmd
);
2162 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2167 ret
= cmd
->execute_cmd(cmd
);
2171 spin_lock_irq(&cmd
->t_state_lock
);
2172 cmd
->transport_state
&= ~CMD_T_SENT
;
2173 spin_unlock_irq(&cmd
->t_state_lock
);
2175 transport_generic_request_failure(cmd
, ret
);
2178 static int target_write_prot_action(struct se_cmd
*cmd
)
2182 * Perform WRITE_INSERT of PI using software emulation when backend
2183 * device has PI enabled, if the transport has not already generated
2184 * PI using hardware WRITE_INSERT offload.
2186 switch (cmd
->prot_op
) {
2187 case TARGET_PROT_DOUT_INSERT
:
2188 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
2189 sbc_dif_generate(cmd
);
2191 case TARGET_PROT_DOUT_STRIP
:
2192 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
2195 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2196 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2197 sectors
, 0, cmd
->t_prot_sg
, 0);
2198 if (unlikely(cmd
->pi_err
)) {
2199 spin_lock_irq(&cmd
->t_state_lock
);
2200 cmd
->transport_state
&= ~CMD_T_SENT
;
2201 spin_unlock_irq(&cmd
->t_state_lock
);
2202 transport_generic_request_failure(cmd
, cmd
->pi_err
);
2213 static bool target_handle_task_attr(struct se_cmd
*cmd
)
2215 struct se_device
*dev
= cmd
->se_dev
;
2217 if (dev
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2220 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
2223 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2224 * to allow the passed struct se_cmd list of tasks to the front of the list.
2226 switch (cmd
->sam_task_attr
) {
2228 atomic_inc_mb(&dev
->non_ordered
);
2229 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2230 cmd
->t_task_cdb
[0]);
2232 case TCM_ORDERED_TAG
:
2233 atomic_inc_mb(&dev
->delayed_cmd_count
);
2235 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2236 cmd
->t_task_cdb
[0]);
2240 * For SIMPLE and UNTAGGED Task Attribute commands
2242 atomic_inc_mb(&dev
->non_ordered
);
2244 if (atomic_read(&dev
->delayed_cmd_count
) == 0)
2249 if (cmd
->sam_task_attr
!= TCM_ORDERED_TAG
) {
2250 atomic_inc_mb(&dev
->delayed_cmd_count
);
2252 * We will account for this when we dequeue from the delayed
2255 atomic_dec_mb(&dev
->non_ordered
);
2258 spin_lock_irq(&cmd
->t_state_lock
);
2259 cmd
->transport_state
&= ~CMD_T_SENT
;
2260 spin_unlock_irq(&cmd
->t_state_lock
);
2262 spin_lock(&dev
->delayed_cmd_lock
);
2263 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
2264 spin_unlock(&dev
->delayed_cmd_lock
);
2266 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2267 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
2269 * We may have no non ordered cmds when this function started or we
2270 * could have raced with the last simple/head cmd completing, so kick
2271 * the delayed handler here.
2273 schedule_work(&dev
->delayed_cmd_work
);
2277 void target_execute_cmd(struct se_cmd
*cmd
)
2280 * Determine if frontend context caller is requesting the stopping of
2281 * this command for frontend exceptions.
2283 * If the received CDB has already been aborted stop processing it here.
2285 if (target_cmd_interrupted(cmd
))
2288 spin_lock_irq(&cmd
->t_state_lock
);
2289 cmd
->t_state
= TRANSPORT_PROCESSING
;
2290 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
2291 spin_unlock_irq(&cmd
->t_state_lock
);
2293 if (target_write_prot_action(cmd
))
2296 if (target_handle_task_attr(cmd
))
2299 __target_execute_cmd(cmd
, true);
2301 EXPORT_SYMBOL(target_execute_cmd
);
2304 * Process all commands up to the last received ORDERED task attribute which
2305 * requires another blocking boundary
2307 void target_do_delayed_work(struct work_struct
*work
)
2309 struct se_device
*dev
= container_of(work
, struct se_device
,
2312 spin_lock(&dev
->delayed_cmd_lock
);
2313 while (!dev
->ordered_sync_in_progress
) {
2316 if (list_empty(&dev
->delayed_cmd_list
))
2319 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
2320 struct se_cmd
, se_delayed_node
);
2322 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2324 * Check if we started with:
2325 * [ordered] [simple] [ordered]
2326 * and we are now at the last ordered so we have to wait
2327 * for the simple cmd.
2329 if (atomic_read(&dev
->non_ordered
) > 0)
2332 dev
->ordered_sync_in_progress
= true;
2335 list_del(&cmd
->se_delayed_node
);
2336 atomic_dec_mb(&dev
->delayed_cmd_count
);
2337 spin_unlock(&dev
->delayed_cmd_lock
);
2339 if (cmd
->sam_task_attr
!= TCM_ORDERED_TAG
)
2340 atomic_inc_mb(&dev
->non_ordered
);
2342 cmd
->transport_state
|= CMD_T_SENT
;
2344 __target_execute_cmd(cmd
, true);
2346 spin_lock(&dev
->delayed_cmd_lock
);
2348 spin_unlock(&dev
->delayed_cmd_lock
);
2352 * Called from I/O completion to determine which dormant/delayed
2353 * and ordered cmds need to have their tasks added to the execution queue.
2355 static void transport_complete_task_attr(struct se_cmd
*cmd
)
2357 struct se_device
*dev
= cmd
->se_dev
;
2359 if (dev
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2362 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2365 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2366 atomic_dec_mb(&dev
->non_ordered
);
2367 dev
->dev_cur_ordered_id
++;
2368 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2369 atomic_dec_mb(&dev
->non_ordered
);
2370 dev
->dev_cur_ordered_id
++;
2371 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2372 dev
->dev_cur_ordered_id
);
2373 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2374 spin_lock(&dev
->delayed_cmd_lock
);
2375 dev
->ordered_sync_in_progress
= false;
2376 spin_unlock(&dev
->delayed_cmd_lock
);
2378 dev
->dev_cur_ordered_id
++;
2379 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2380 dev
->dev_cur_ordered_id
);
2382 cmd
->se_cmd_flags
&= ~SCF_TASK_ATTR_SET
;
2385 if (atomic_read(&dev
->delayed_cmd_count
) > 0)
2386 schedule_work(&dev
->delayed_cmd_work
);
2389 static void transport_complete_qf(struct se_cmd
*cmd
)
2393 transport_complete_task_attr(cmd
);
2395 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2396 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2397 * the same callbacks should not be retried. Return CHECK_CONDITION
2398 * if a scsi_status is not already set.
2400 * If a fabric driver ->queue_status() has returned non zero, always
2401 * keep retrying no matter what..
2403 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
) {
2404 if (cmd
->scsi_status
)
2407 translate_sense_reason(cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
2412 * Check if we need to send a sense buffer from
2413 * the struct se_cmd in question. We do NOT want
2414 * to take this path of the IO has been marked as
2415 * needing to be treated like a "normal read". This
2416 * is the case if it's a tape read, and either the
2417 * FM, EOM, or ILI bits are set, but there is no
2420 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2421 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
2424 switch (cmd
->data_direction
) {
2425 case DMA_FROM_DEVICE
:
2426 /* queue status if not treating this as a normal read */
2427 if (cmd
->scsi_status
&&
2428 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2431 trace_target_cmd_complete(cmd
);
2432 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2435 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2436 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2442 trace_target_cmd_complete(cmd
);
2443 ret
= cmd
->se_tfo
->queue_status(cmd
);
2450 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2453 transport_lun_remove_cmd(cmd
);
2454 transport_cmd_check_stop_to_fabric(cmd
);
2457 static void transport_handle_queue_full(struct se_cmd
*cmd
, struct se_device
*dev
,
2458 int err
, bool write_pending
)
2461 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2462 * ->queue_data_in() callbacks from new process context.
2464 * Otherwise for other errors, transport_complete_qf() will send
2465 * CHECK_CONDITION via ->queue_status() instead of attempting to
2466 * retry associated fabric driver data-transfer callbacks.
2468 if (err
== -EAGAIN
|| err
== -ENOMEM
) {
2469 cmd
->t_state
= (write_pending
) ? TRANSPORT_COMPLETE_QF_WP
:
2470 TRANSPORT_COMPLETE_QF_OK
;
2472 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err
);
2473 cmd
->t_state
= TRANSPORT_COMPLETE_QF_ERR
;
2476 spin_lock_irq(&dev
->qf_cmd_lock
);
2477 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2478 atomic_inc_mb(&dev
->dev_qf_count
);
2479 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2481 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2484 static bool target_read_prot_action(struct se_cmd
*cmd
)
2486 switch (cmd
->prot_op
) {
2487 case TARGET_PROT_DIN_STRIP
:
2488 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2489 u32 sectors
= cmd
->data_length
>>
2490 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2492 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2493 sectors
, 0, cmd
->t_prot_sg
,
2499 case TARGET_PROT_DIN_INSERT
:
2500 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2503 sbc_dif_generate(cmd
);
2512 static void target_complete_ok_work(struct work_struct
*work
)
2514 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2518 * Check if we need to move delayed/dormant tasks from cmds on the
2519 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2522 transport_complete_task_attr(cmd
);
2525 * Check to schedule QUEUE_FULL work, or execute an existing
2526 * cmd->transport_qf_callback()
2528 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2529 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2532 * Check if we need to send a sense buffer from
2533 * the struct se_cmd in question. We do NOT want
2534 * to take this path of the IO has been marked as
2535 * needing to be treated like a "normal read". This
2536 * is the case if it's a tape read, and either the
2537 * FM, EOM, or ILI bits are set, but there is no
2540 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2541 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2542 WARN_ON(!cmd
->scsi_status
);
2543 ret
= transport_send_check_condition_and_sense(
2548 transport_lun_remove_cmd(cmd
);
2549 transport_cmd_check_stop_to_fabric(cmd
);
2553 * Check for a callback, used by amongst other things
2554 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2556 if (cmd
->transport_complete_callback
) {
2558 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2559 bool zero_dl
= !(cmd
->data_length
);
2562 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2563 if (!rc
&& !post_ret
) {
2569 ret
= transport_send_check_condition_and_sense(cmd
,
2574 transport_lun_remove_cmd(cmd
);
2575 transport_cmd_check_stop_to_fabric(cmd
);
2581 switch (cmd
->data_direction
) {
2582 case DMA_FROM_DEVICE
:
2584 * if this is a READ-type IO, but SCSI status
2585 * is set, then skip returning data and just
2586 * return the status -- unless this IO is marked
2587 * as needing to be treated as a normal read,
2588 * in which case we want to go ahead and return
2589 * the data. This happens, for example, for tape
2590 * reads with the FM, EOM, or ILI bits set, with
2593 if (cmd
->scsi_status
&&
2594 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2597 atomic_long_add(cmd
->data_length
,
2598 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2600 * Perform READ_STRIP of PI using software emulation when
2601 * backend had PI enabled, if the transport will not be
2602 * performing hardware READ_STRIP offload.
2604 if (target_read_prot_action(cmd
)) {
2605 ret
= transport_send_check_condition_and_sense(cmd
,
2610 transport_lun_remove_cmd(cmd
);
2611 transport_cmd_check_stop_to_fabric(cmd
);
2615 trace_target_cmd_complete(cmd
);
2616 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2621 atomic_long_add(cmd
->data_length
,
2622 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2624 * Check if we need to send READ payload for BIDI-COMMAND
2626 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2627 atomic_long_add(cmd
->data_length
,
2628 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2629 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2637 trace_target_cmd_complete(cmd
);
2638 ret
= cmd
->se_tfo
->queue_status(cmd
);
2646 transport_lun_remove_cmd(cmd
);
2647 transport_cmd_check_stop_to_fabric(cmd
);
2651 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2652 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2654 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2657 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2659 sgl_free_n_order(sgl
, nents
, 0);
2661 EXPORT_SYMBOL(target_free_sgl
);
2663 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2666 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2667 * emulation, and free + reset pointers if necessary..
2669 if (!cmd
->t_data_sg_orig
)
2672 kfree(cmd
->t_data_sg
);
2673 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2674 cmd
->t_data_sg_orig
= NULL
;
2675 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2676 cmd
->t_data_nents_orig
= 0;
2679 static inline void transport_free_pages(struct se_cmd
*cmd
)
2681 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2682 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2683 cmd
->t_prot_sg
= NULL
;
2684 cmd
->t_prot_nents
= 0;
2687 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2689 * Release special case READ buffer payload required for
2690 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2692 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2693 target_free_sgl(cmd
->t_bidi_data_sg
,
2694 cmd
->t_bidi_data_nents
);
2695 cmd
->t_bidi_data_sg
= NULL
;
2696 cmd
->t_bidi_data_nents
= 0;
2698 transport_reset_sgl_orig(cmd
);
2701 transport_reset_sgl_orig(cmd
);
2703 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2704 cmd
->t_data_sg
= NULL
;
2705 cmd
->t_data_nents
= 0;
2707 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2708 cmd
->t_bidi_data_sg
= NULL
;
2709 cmd
->t_bidi_data_nents
= 0;
2712 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2714 struct scatterlist
*sg
= cmd
->t_data_sg
;
2715 struct page
**pages
;
2719 * We need to take into account a possible offset here for fabrics like
2720 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2721 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2723 if (!cmd
->t_data_nents
)
2727 if (cmd
->t_data_nents
== 1)
2728 return kmap(sg_page(sg
)) + sg
->offset
;
2730 /* >1 page. use vmap */
2731 pages
= kmalloc_array(cmd
->t_data_nents
, sizeof(*pages
), GFP_KERNEL
);
2735 /* convert sg[] to pages[] */
2736 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2737 pages
[i
] = sg_page(sg
);
2740 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2742 if (!cmd
->t_data_vmap
)
2745 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2747 EXPORT_SYMBOL(transport_kmap_data_sg
);
2749 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2751 if (!cmd
->t_data_nents
) {
2753 } else if (cmd
->t_data_nents
== 1) {
2754 kunmap(sg_page(cmd
->t_data_sg
));
2758 vunmap(cmd
->t_data_vmap
);
2759 cmd
->t_data_vmap
= NULL
;
2761 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2764 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2765 bool zero_page
, bool chainable
)
2767 gfp_t gfp
= GFP_KERNEL
| (zero_page
? __GFP_ZERO
: 0);
2769 *sgl
= sgl_alloc_order(length
, 0, chainable
, gfp
, nents
);
2770 return *sgl
? 0 : -ENOMEM
;
2772 EXPORT_SYMBOL(target_alloc_sgl
);
2775 * Allocate any required resources to execute the command. For writes we
2776 * might not have the payload yet, so notify the fabric via a call to
2777 * ->write_pending instead. Otherwise place it on the execution queue.
2780 transport_generic_new_cmd(struct se_cmd
*cmd
)
2782 unsigned long flags
;
2784 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2786 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2787 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2788 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2789 cmd
->prot_length
, true, false);
2791 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2795 * Determine if the TCM fabric module has already allocated physical
2796 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2799 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2802 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2803 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2806 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2807 bidi_length
= cmd
->t_task_nolb
*
2808 cmd
->se_dev
->dev_attrib
.block_size
;
2810 bidi_length
= cmd
->data_length
;
2812 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2813 &cmd
->t_bidi_data_nents
,
2814 bidi_length
, zero_flag
, false);
2816 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2819 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2820 cmd
->data_length
, zero_flag
, false);
2822 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2823 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2826 * Special case for COMPARE_AND_WRITE with fabrics
2827 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2829 u32 caw_length
= cmd
->t_task_nolb
*
2830 cmd
->se_dev
->dev_attrib
.block_size
;
2832 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2833 &cmd
->t_bidi_data_nents
,
2834 caw_length
, zero_flag
, false);
2836 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2839 * If this command is not a write we can execute it right here,
2840 * for write buffers we need to notify the fabric driver first
2841 * and let it call back once the write buffers are ready.
2843 target_add_to_state_list(cmd
);
2844 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2845 target_execute_cmd(cmd
);
2849 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2850 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2852 * Determine if frontend context caller is requesting the stopping of
2853 * this command for frontend exceptions.
2855 if (cmd
->transport_state
& CMD_T_STOP
&&
2856 !cmd
->se_tfo
->write_pending_must_be_called
) {
2857 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2858 __func__
, __LINE__
, cmd
->tag
);
2860 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2862 complete_all(&cmd
->t_transport_stop_comp
);
2865 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2866 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2868 ret
= cmd
->se_tfo
->write_pending(cmd
);
2875 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2876 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2879 EXPORT_SYMBOL(transport_generic_new_cmd
);
2881 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2883 unsigned long flags
;
2887 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2888 stop
= (cmd
->transport_state
& (CMD_T_STOP
| CMD_T_ABORTED
));
2889 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2892 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2893 __func__
, __LINE__
, cmd
->tag
);
2894 complete_all(&cmd
->t_transport_stop_comp
);
2898 ret
= cmd
->se_tfo
->write_pending(cmd
);
2900 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2902 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2907 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2908 unsigned long *flags
);
2910 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2912 unsigned long flags
;
2914 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2915 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2916 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2920 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2923 void target_put_cmd_and_wait(struct se_cmd
*cmd
)
2925 DECLARE_COMPLETION_ONSTACK(compl);
2927 WARN_ON_ONCE(cmd
->abrt_compl
);
2928 cmd
->abrt_compl
= &compl;
2929 target_put_sess_cmd(cmd
);
2930 wait_for_completion(&compl);
2934 * This function is called by frontend drivers after processing of a command
2937 * The protocol for ensuring that either the regular frontend command
2938 * processing flow or target_handle_abort() code drops one reference is as
2940 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2941 * the frontend driver to call this function synchronously or asynchronously.
2942 * That will cause one reference to be dropped.
2943 * - During regular command processing the target core sets CMD_T_COMPLETE
2944 * before invoking one of the .queue_*() functions.
2945 * - The code that aborts commands skips commands and TMFs for which
2946 * CMD_T_COMPLETE has been set.
2947 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2948 * commands that will be aborted.
2949 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2950 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2951 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2952 * be called and will drop a reference.
2953 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2954 * will be called. target_handle_abort() will drop the final reference.
2956 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2958 DECLARE_COMPLETION_ONSTACK(compl);
2960 bool aborted
= false, tas
= false;
2963 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2965 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) {
2967 * Handle WRITE failure case where transport_generic_new_cmd()
2968 * has already added se_cmd to state_list, but fabric has
2969 * failed command before I/O submission.
2971 if (cmd
->state_active
)
2972 target_remove_from_state_list(cmd
);
2975 transport_lun_remove_cmd(cmd
);
2978 cmd
->free_compl
= &compl;
2979 ret
= target_put_sess_cmd(cmd
);
2981 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2982 wait_for_completion(&compl);
2987 EXPORT_SYMBOL(transport_generic_free_cmd
);
2990 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2991 * @se_cmd: command descriptor to add
2992 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2994 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2999 * Add a second kref if the fabric caller is expecting to handle
3000 * fabric acknowledgement that requires two target_put_sess_cmd()
3001 * invocations before se_cmd descriptor release.
3004 kref_get(&se_cmd
->cmd_kref
);
3005 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
3009 * Users like xcopy do not use counters since they never do a stop
3012 if (se_cmd
->cmd_cnt
) {
3013 if (!percpu_ref_tryget_live(&se_cmd
->cmd_cnt
->refcnt
))
3016 if (ret
&& ack_kref
)
3017 target_put_sess_cmd(se_cmd
);
3021 EXPORT_SYMBOL(target_get_sess_cmd
);
3023 static void target_free_cmd_mem(struct se_cmd
*cmd
)
3025 transport_free_pages(cmd
);
3027 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
3028 core_tmr_release_req(cmd
->se_tmr_req
);
3029 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
3030 kfree(cmd
->t_task_cdb
);
3033 static void target_release_cmd_kref(struct kref
*kref
)
3035 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
3036 struct target_cmd_counter
*cmd_cnt
= se_cmd
->cmd_cnt
;
3037 struct completion
*free_compl
= se_cmd
->free_compl
;
3038 struct completion
*abrt_compl
= se_cmd
->abrt_compl
;
3040 target_free_cmd_mem(se_cmd
);
3041 se_cmd
->se_tfo
->release_cmd(se_cmd
);
3043 complete(free_compl
);
3045 complete(abrt_compl
);
3048 percpu_ref_put(&cmd_cnt
->refcnt
);
3052 * target_put_sess_cmd - decrease the command reference count
3053 * @se_cmd: command to drop a reference from
3055 * Returns 1 if and only if this target_put_sess_cmd() call caused the
3056 * refcount to drop to zero. Returns zero otherwise.
3058 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
3060 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
3062 EXPORT_SYMBOL(target_put_sess_cmd
);
3064 static const char *data_dir_name(enum dma_data_direction d
)
3067 case DMA_BIDIRECTIONAL
: return "BIDI";
3068 case DMA_TO_DEVICE
: return "WRITE";
3069 case DMA_FROM_DEVICE
: return "READ";
3070 case DMA_NONE
: return "NONE";
3076 static const char *cmd_state_name(enum transport_state_table t
)
3079 case TRANSPORT_NO_STATE
: return "NO_STATE";
3080 case TRANSPORT_NEW_CMD
: return "NEW_CMD";
3081 case TRANSPORT_WRITE_PENDING
: return "WRITE_PENDING";
3082 case TRANSPORT_PROCESSING
: return "PROCESSING";
3083 case TRANSPORT_COMPLETE
: return "COMPLETE";
3084 case TRANSPORT_ISTATE_PROCESSING
:
3085 return "ISTATE_PROCESSING";
3086 case TRANSPORT_COMPLETE_QF_WP
: return "COMPLETE_QF_WP";
3087 case TRANSPORT_COMPLETE_QF_OK
: return "COMPLETE_QF_OK";
3088 case TRANSPORT_COMPLETE_QF_ERR
: return "COMPLETE_QF_ERR";
3094 static void target_append_str(char **str
, const char *txt
)
3098 *str
= *str
? kasprintf(GFP_ATOMIC
, "%s,%s", *str
, txt
) :
3099 kstrdup(txt
, GFP_ATOMIC
);
3104 * Convert a transport state bitmask into a string. The caller is
3105 * responsible for freeing the returned pointer.
3107 static char *target_ts_to_str(u32 ts
)
3111 if (ts
& CMD_T_ABORTED
)
3112 target_append_str(&str
, "aborted");
3113 if (ts
& CMD_T_ACTIVE
)
3114 target_append_str(&str
, "active");
3115 if (ts
& CMD_T_COMPLETE
)
3116 target_append_str(&str
, "complete");
3117 if (ts
& CMD_T_SENT
)
3118 target_append_str(&str
, "sent");
3119 if (ts
& CMD_T_STOP
)
3120 target_append_str(&str
, "stop");
3121 if (ts
& CMD_T_FABRIC_STOP
)
3122 target_append_str(&str
, "fabric_stop");
3127 static const char *target_tmf_name(enum tcm_tmreq_table tmf
)
3130 case TMR_ABORT_TASK
: return "ABORT_TASK";
3131 case TMR_ABORT_TASK_SET
: return "ABORT_TASK_SET";
3132 case TMR_CLEAR_ACA
: return "CLEAR_ACA";
3133 case TMR_CLEAR_TASK_SET
: return "CLEAR_TASK_SET";
3134 case TMR_LUN_RESET
: return "LUN_RESET";
3135 case TMR_TARGET_WARM_RESET
: return "TARGET_WARM_RESET";
3136 case TMR_TARGET_COLD_RESET
: return "TARGET_COLD_RESET";
3137 case TMR_LUN_RESET_PRO
: return "LUN_RESET_PRO";
3138 case TMR_UNKNOWN
: break;
3143 void target_show_cmd(const char *pfx
, struct se_cmd
*cmd
)
3145 char *ts_str
= target_ts_to_str(cmd
->transport_state
);
3146 const u8
*cdb
= cmd
->t_task_cdb
;
3147 struct se_tmr_req
*tmf
= cmd
->se_tmr_req
;
3149 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
3150 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3151 pfx
, cdb
[0], cdb
[1], cmd
->tag
,
3152 data_dir_name(cmd
->data_direction
),
3153 cmd
->se_tfo
->get_cmd_state(cmd
),
3154 cmd_state_name(cmd
->t_state
), cmd
->data_length
,
3155 kref_read(&cmd
->cmd_kref
), ts_str
);
3157 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3158 pfx
, target_tmf_name(tmf
->function
), cmd
->tag
,
3159 tmf
->ref_task_tag
, cmd
->se_tfo
->get_cmd_state(cmd
),
3160 cmd_state_name(cmd
->t_state
),
3161 kref_read(&cmd
->cmd_kref
), ts_str
);
3165 EXPORT_SYMBOL(target_show_cmd
);
3167 static void target_stop_cmd_counter_confirm(struct percpu_ref
*ref
)
3169 struct target_cmd_counter
*cmd_cnt
= container_of(ref
,
3170 struct target_cmd_counter
,
3172 complete_all(&cmd_cnt
->stop_done
);
3176 * target_stop_cmd_counter - Stop new IO from being added to the counter.
3177 * @cmd_cnt: counter to stop
3179 void target_stop_cmd_counter(struct target_cmd_counter
*cmd_cnt
)
3181 pr_debug("Stopping command counter.\n");
3182 if (!atomic_cmpxchg(&cmd_cnt
->stopped
, 0, 1))
3183 percpu_ref_kill_and_confirm(&cmd_cnt
->refcnt
,
3184 target_stop_cmd_counter_confirm
);
3186 EXPORT_SYMBOL_GPL(target_stop_cmd_counter
);
3189 * target_stop_session - Stop new IO from being queued on the session.
3190 * @se_sess: session to stop
3192 void target_stop_session(struct se_session
*se_sess
)
3194 target_stop_cmd_counter(se_sess
->cmd_cnt
);
3196 EXPORT_SYMBOL(target_stop_session
);
3199 * target_wait_for_cmds - Wait for outstanding cmds.
3200 * @cmd_cnt: counter to wait for active I/O for.
3202 void target_wait_for_cmds(struct target_cmd_counter
*cmd_cnt
)
3206 WARN_ON_ONCE(!atomic_read(&cmd_cnt
->stopped
));
3209 pr_debug("Waiting for running cmds to complete.\n");
3210 ret
= wait_event_timeout(cmd_cnt
->refcnt_wq
,
3211 percpu_ref_is_zero(&cmd_cnt
->refcnt
),
3215 wait_for_completion(&cmd_cnt
->stop_done
);
3216 pr_debug("Waiting for cmds done.\n");
3218 EXPORT_SYMBOL_GPL(target_wait_for_cmds
);
3221 * target_wait_for_sess_cmds - Wait for outstanding commands
3222 * @se_sess: session to wait for active I/O
3224 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
3226 target_wait_for_cmds(se_sess
->cmd_cnt
);
3228 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
3231 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3232 * all references to the LUN have been released. Called during LUN shutdown.
3234 void transport_clear_lun_ref(struct se_lun
*lun
)
3236 percpu_ref_kill(&lun
->lun_ref
);
3237 wait_for_completion(&lun
->lun_shutdown_comp
);
3241 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
3242 bool *aborted
, bool *tas
, unsigned long *flags
)
3243 __releases(&cmd
->t_state_lock
)
3244 __acquires(&cmd
->t_state_lock
)
3246 lockdep_assert_held(&cmd
->t_state_lock
);
3249 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
3251 if (cmd
->transport_state
& CMD_T_ABORTED
)
3254 if (cmd
->transport_state
& CMD_T_TAS
)
3257 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
3258 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
3261 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
3262 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
3265 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
3268 if (fabric_stop
&& *aborted
)
3271 cmd
->transport_state
|= CMD_T_STOP
;
3273 target_show_cmd("wait_for_tasks: Stopping ", cmd
);
3275 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
3277 while (!wait_for_completion_timeout(&cmd
->t_transport_stop_comp
,
3279 target_show_cmd("wait for tasks: ", cmd
);
3281 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
3282 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
3284 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3285 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
3291 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3292 * @cmd: command to wait on
3294 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
3296 unsigned long flags
;
3297 bool ret
, aborted
= false, tas
= false;
3299 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3300 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
3301 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3305 EXPORT_SYMBOL(transport_wait_for_tasks
);
3307 struct sense_detail
{
3311 bool add_sense_info
;
3314 static const struct sense_detail sense_detail_table
[] = {
3318 [TCM_NON_EXISTENT_LUN
] = {
3319 .key
= ILLEGAL_REQUEST
,
3320 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3322 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
3323 .key
= ILLEGAL_REQUEST
,
3324 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3326 [TCM_SECTOR_COUNT_TOO_MANY
] = {
3327 .key
= ILLEGAL_REQUEST
,
3328 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3330 [TCM_UNKNOWN_MODE_PAGE
] = {
3331 .key
= ILLEGAL_REQUEST
,
3332 .asc
= 0x24, /* INVALID FIELD IN CDB */
3334 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
3335 .key
= ABORTED_COMMAND
,
3336 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3339 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
3340 .key
= ABORTED_COMMAND
,
3341 .asc
= 0x0c, /* WRITE ERROR */
3342 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3344 [TCM_INVALID_CDB_FIELD
] = {
3345 .key
= ILLEGAL_REQUEST
,
3346 .asc
= 0x24, /* INVALID FIELD IN CDB */
3348 [TCM_INVALID_PARAMETER_LIST
] = {
3349 .key
= ILLEGAL_REQUEST
,
3350 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
3352 [TCM_TOO_MANY_TARGET_DESCS
] = {
3353 .key
= ILLEGAL_REQUEST
,
3355 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
3357 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
3358 .key
= ILLEGAL_REQUEST
,
3360 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3362 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
3363 .key
= ILLEGAL_REQUEST
,
3365 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3367 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
3368 .key
= ILLEGAL_REQUEST
,
3370 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3372 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
3373 .key
= ILLEGAL_REQUEST
,
3374 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
3376 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
3377 .key
= ILLEGAL_REQUEST
,
3378 .asc
= 0x0c, /* WRITE ERROR */
3379 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3381 [TCM_SERVICE_CRC_ERROR
] = {
3382 .key
= ABORTED_COMMAND
,
3383 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
3384 .ascq
= 0x05, /* N/A */
3386 [TCM_SNACK_REJECTED
] = {
3387 .key
= ABORTED_COMMAND
,
3388 .asc
= 0x11, /* READ ERROR */
3389 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
3391 [TCM_WRITE_PROTECTED
] = {
3392 .key
= DATA_PROTECT
,
3393 .asc
= 0x27, /* WRITE PROTECTED */
3395 [TCM_ADDRESS_OUT_OF_RANGE
] = {
3396 .key
= ILLEGAL_REQUEST
,
3397 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3399 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
3400 .key
= UNIT_ATTENTION
,
3402 [TCM_MISCOMPARE_VERIFY
] = {
3404 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3406 .add_sense_info
= true,
3408 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
3409 .key
= ABORTED_COMMAND
,
3411 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3412 .add_sense_info
= true,
3414 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
3415 .key
= ABORTED_COMMAND
,
3417 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3418 .add_sense_info
= true,
3420 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
3421 .key
= ABORTED_COMMAND
,
3423 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3424 .add_sense_info
= true,
3426 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
3427 .key
= COPY_ABORTED
,
3429 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3432 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
3434 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3435 * Solaris initiators. Returning NOT READY instead means the
3436 * operations will be retried a finite number of times and we
3437 * can survive intermittent errors.
3440 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3442 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES
] = {
3444 * From spc4r22 section5.7.7,5.7.8
3445 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3446 * or a REGISTER AND IGNORE EXISTING KEY service action or
3447 * REGISTER AND MOVE service actionis attempted,
3448 * but there are insufficient device server resources to complete the
3449 * operation, then the command shall be terminated with CHECK CONDITION
3450 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3451 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3453 .key
= ILLEGAL_REQUEST
,
3455 .ascq
= 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3457 [TCM_INVALID_FIELD_IN_COMMAND_IU
] = {
3458 .key
= ILLEGAL_REQUEST
,
3460 .ascq
= 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3462 [TCM_ALUA_TG_PT_STANDBY
] = {
3465 .ascq
= ASCQ_04H_ALUA_TG_PT_STANDBY
,
3467 [TCM_ALUA_TG_PT_UNAVAILABLE
] = {
3470 .ascq
= ASCQ_04H_ALUA_TG_PT_UNAVAILABLE
,
3472 [TCM_ALUA_STATE_TRANSITION
] = {
3475 .ascq
= ASCQ_04H_ALUA_STATE_TRANSITION
,
3477 [TCM_ALUA_OFFLINE
] = {
3480 .ascq
= ASCQ_04H_ALUA_OFFLINE
,
3485 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3486 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3488 * @reason: LIO sense reason code. If this argument has the value
3489 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3490 * dequeuing a unit attention fails due to multiple commands being processed
3491 * concurrently, set the command status to BUSY.
3493 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3495 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
3497 const struct sense_detail
*sd
;
3498 u8
*buffer
= cmd
->sense_buffer
;
3499 int r
= (__force
int)reason
;
3501 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
3503 if (r
< ARRAY_SIZE(sense_detail_table
) && sense_detail_table
[r
].key
)
3504 sd
= &sense_detail_table
[r
];
3506 sd
= &sense_detail_table
[(__force
int)
3507 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
3510 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
3511 if (!core_scsi3_ua_for_check_condition(cmd
, &key
, &asc
,
3513 cmd
->scsi_status
= SAM_STAT_BUSY
;
3517 WARN_ON_ONCE(sd
->asc
== 0);
3522 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3523 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3524 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3525 scsi_build_sense_buffer(desc_format
, buffer
, key
, asc
, ascq
);
3526 if (sd
->add_sense_info
)
3527 WARN_ON_ONCE(scsi_set_sense_information(buffer
,
3528 cmd
->scsi_sense_length
,
3529 cmd
->sense_info
) < 0);
3533 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3534 sense_reason_t reason
, int from_transport
)
3536 unsigned long flags
;
3538 WARN_ON_ONCE(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
);
3540 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3541 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3542 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3545 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3546 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3548 if (!from_transport
)
3549 translate_sense_reason(cmd
, reason
);
3551 trace_target_cmd_complete(cmd
);
3552 return cmd
->se_tfo
->queue_status(cmd
);
3554 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3557 * target_send_busy - Send SCSI BUSY status back to the initiator
3558 * @cmd: SCSI command for which to send a BUSY reply.
3560 * Note: Only call this function if target_submit_cmd*() failed.
3562 int target_send_busy(struct se_cmd
*cmd
)
3564 WARN_ON_ONCE(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
);
3566 cmd
->scsi_status
= SAM_STAT_BUSY
;
3567 trace_target_cmd_complete(cmd
);
3568 return cmd
->se_tfo
->queue_status(cmd
);
3570 EXPORT_SYMBOL(target_send_busy
);
3572 static void target_tmr_work(struct work_struct
*work
)
3574 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3575 struct se_device
*dev
= cmd
->se_dev
;
3576 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3579 if (cmd
->transport_state
& CMD_T_ABORTED
)
3582 switch (tmr
->function
) {
3583 case TMR_ABORT_TASK
:
3584 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3586 case TMR_ABORT_TASK_SET
:
3588 case TMR_CLEAR_TASK_SET
:
3589 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3592 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3593 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3594 TMR_FUNCTION_REJECTED
;
3595 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3596 target_dev_ua_allocate(dev
, 0x29,
3597 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3600 case TMR_TARGET_WARM_RESET
:
3601 tmr
->response
= TMR_FUNCTION_REJECTED
;
3603 case TMR_TARGET_COLD_RESET
:
3604 tmr
->response
= TMR_FUNCTION_REJECTED
;
3607 pr_err("Unknown TMR function: 0x%02x.\n",
3609 tmr
->response
= TMR_FUNCTION_REJECTED
;
3613 if (cmd
->transport_state
& CMD_T_ABORTED
)
3616 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3618 transport_lun_remove_cmd(cmd
);
3619 transport_cmd_check_stop_to_fabric(cmd
);
3623 target_handle_abort(cmd
);
3626 int transport_generic_handle_tmr(
3629 unsigned long flags
;
3630 bool aborted
= false;
3632 spin_lock_irqsave(&cmd
->se_dev
->se_tmr_lock
, flags
);
3633 list_add_tail(&cmd
->se_tmr_req
->tmr_list
, &cmd
->se_dev
->dev_tmr_list
);
3634 spin_unlock_irqrestore(&cmd
->se_dev
->se_tmr_lock
, flags
);
3636 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3637 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3640 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3641 cmd
->transport_state
|= CMD_T_ACTIVE
;
3643 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3646 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3647 cmd
->se_tmr_req
->function
,
3648 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3649 target_handle_abort(cmd
);
3653 INIT_WORK(&cmd
->work
, target_tmr_work
);
3654 schedule_work(&cmd
->work
);
3657 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3660 target_check_wce(struct se_device
*dev
)
3664 if (dev
->transport
->get_write_cache
)
3665 wce
= dev
->transport
->get_write_cache(dev
);
3666 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3673 target_check_fua(struct se_device
*dev
)
3675 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;