1 // SPDX-License-Identifier: GPL-2.0
3 * A power allocator to manage temperature
5 * Copyright (C) 2014 ARM Ltd.
9 #define pr_fmt(fmt) "Power allocator: " fmt
11 #include <linux/slab.h>
12 #include <linux/thermal.h>
14 #define CREATE_TRACE_POINTS
15 #include "thermal_trace_ipa.h"
17 #include "thermal_core.h"
20 #define int_to_frac(x) ((x) << FRAC_BITS)
21 #define frac_to_int(x) ((x) >> FRAC_BITS)
24 * mul_frac() - multiply two fixed-point numbers
25 * @x: first multiplicand
26 * @y: second multiplicand
28 * Return: the result of multiplying two fixed-point numbers. The
29 * result is also a fixed-point number.
31 static inline s64
mul_frac(s64 x
, s64 y
)
33 return (x
* y
) >> FRAC_BITS
;
37 * div_frac() - divide two fixed-point numbers
41 * Return: the result of dividing two fixed-point numbers. The
42 * result is also a fixed-point number.
44 static inline s64
div_frac(s64 x
, s64 y
)
46 return div_s64(x
<< FRAC_BITS
, y
);
50 * struct power_actor - internal power information for power actor
51 * @req_power: requested power value (not weighted)
52 * @max_power: max allocatable power for this actor
53 * @granted_power: granted power for this actor
54 * @extra_actor_power: extra power that this actor can receive
55 * @weighted_req_power: weighted requested power as input to IPA
61 u32 extra_actor_power
;
62 u32 weighted_req_power
;
66 * struct power_allocator_params - parameters for the power allocator governor
67 * @allocated_tzp: whether we have allocated tzp for this thermal zone and
68 * it needs to be freed on unbind
69 * @update_cdevs: whether or not update cdevs on the next run
70 * @err_integral: accumulated error in the PID controller.
71 * @prev_err: error in the previous iteration of the PID controller.
72 * Used to calculate the derivative term.
73 * @sustainable_power: Sustainable power (heat) that this thermal zone can
75 * @trip_switch_on: first passive trip point of the thermal zone. The
76 * governor switches on when this trip point is crossed.
77 * If the thermal zone only has one passive trip point,
78 * @trip_switch_on should be NULL.
79 * @trip_max: last passive trip point of the thermal zone. The
80 * temperature we are controlling for.
81 * @total_weight: Sum of all thermal instances weights
82 * @num_actors: number of cooling devices supporting IPA callbacks
83 * @buffer_size: internal buffer size, to avoid runtime re-calculation
84 * @power: buffer for all power actors internal power information
86 struct power_allocator_params
{
91 u32 sustainable_power
;
92 const struct thermal_trip
*trip_switch_on
;
93 const struct thermal_trip
*trip_max
;
95 unsigned int num_actors
;
96 unsigned int buffer_size
;
97 struct power_actor
*power
;
100 static bool power_actor_is_valid(struct thermal_instance
*instance
)
102 return cdev_is_power_actor(instance
->cdev
);
106 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
107 * @tz: thermal zone we are operating in
109 * For thermal zones that don't provide a sustainable_power in their
110 * thermal_zone_params, estimate one. Calculate it using the minimum
111 * power of all the cooling devices as that gives a valid value that
112 * can give some degree of functionality. For optimal performance of
113 * this governor, provide a sustainable_power in the thermal zone's
114 * thermal_zone_params.
116 static u32
estimate_sustainable_power(struct thermal_zone_device
*tz
)
118 struct power_allocator_params
*params
= tz
->governor_data
;
119 const struct thermal_trip_desc
*td
= trip_to_trip_desc(params
->trip_max
);
120 struct thermal_cooling_device
*cdev
;
121 struct thermal_instance
*instance
;
122 u32 sustainable_power
= 0;
125 list_for_each_entry(instance
, &td
->thermal_instances
, trip_node
) {
126 if (!power_actor_is_valid(instance
))
129 cdev
= instance
->cdev
;
130 if (cdev
->ops
->state2power(cdev
, instance
->upper
, &min_power
))
133 sustainable_power
+= min_power
;
136 return sustainable_power
;
140 * estimate_pid_constants() - Estimate the constants for the PID controller
141 * @tz: thermal zone for which to estimate the constants
142 * @sustainable_power: sustainable power for the thermal zone
143 * @trip_switch_on: trip point for the switch on temperature
144 * @control_temp: target temperature for the power allocator governor
146 * This function is used to update the estimation of the PID
147 * controller constants in struct thermal_zone_parameters.
149 static void estimate_pid_constants(struct thermal_zone_device
*tz
,
150 u32 sustainable_power
,
151 const struct thermal_trip
*trip_switch_on
,
154 u32 temperature_threshold
= control_temp
;
158 temperature_threshold
-= trip_switch_on
->temperature
;
161 * estimate_pid_constants() tries to find appropriate default
162 * values for thermal zones that don't provide them. If a
163 * system integrator has configured a thermal zone with two
164 * passive trip points at the same temperature, that person
165 * hasn't put any effort to set up the thermal zone properly
168 if (!temperature_threshold
)
171 tz
->tzp
->k_po
= int_to_frac(sustainable_power
) /
172 temperature_threshold
;
174 tz
->tzp
->k_pu
= int_to_frac(2 * sustainable_power
) /
175 temperature_threshold
;
177 k_i
= tz
->tzp
->k_pu
/ 10;
178 tz
->tzp
->k_i
= k_i
> 0 ? k_i
: 1;
181 * The default for k_d and integral_cutoff is 0, so we can
182 * leave them as they are.
187 * get_sustainable_power() - Get the right sustainable power
188 * @tz: thermal zone for which to estimate the constants
189 * @params: parameters for the power allocator governor
190 * @control_temp: target temperature for the power allocator governor
192 * This function is used for getting the proper sustainable power value based
193 * on variables which might be updated by the user sysfs interface. If that
194 * happen the new value is going to be estimated and updated. It is also used
195 * after thermal zone binding, where the initial values where set to 0.
197 static u32
get_sustainable_power(struct thermal_zone_device
*tz
,
198 struct power_allocator_params
*params
,
201 u32 sustainable_power
;
203 if (!tz
->tzp
->sustainable_power
)
204 sustainable_power
= estimate_sustainable_power(tz
);
206 sustainable_power
= tz
->tzp
->sustainable_power
;
208 /* Check if it's init value 0 or there was update via sysfs */
209 if (sustainable_power
!= params
->sustainable_power
) {
210 estimate_pid_constants(tz
, sustainable_power
,
211 params
->trip_switch_on
, control_temp
);
213 /* Do the estimation only once and make available in sysfs */
214 tz
->tzp
->sustainable_power
= sustainable_power
;
215 params
->sustainable_power
= sustainable_power
;
218 return sustainable_power
;
222 * pid_controller() - PID controller
223 * @tz: thermal zone we are operating in
224 * @control_temp: the target temperature in millicelsius
225 * @max_allocatable_power: maximum allocatable power for this thermal zone
227 * This PID controller increases the available power budget so that the
228 * temperature of the thermal zone gets as close as possible to
229 * @control_temp and limits the power if it exceeds it. k_po is the
230 * proportional term when we are overshooting, k_pu is the
231 * proportional term when we are undershooting. integral_cutoff is a
232 * threshold below which we stop accumulating the error. The
233 * accumulated error is only valid if the requested power will make
234 * the system warmer. If the system is mostly idle, there's no point
235 * in accumulating positive error.
237 * Return: The power budget for the next period.
239 static u32
pid_controller(struct thermal_zone_device
*tz
,
241 u32 max_allocatable_power
)
243 struct power_allocator_params
*params
= tz
->governor_data
;
244 s64 p
, i
, d
, power_range
;
245 s32 err
, max_power_frac
;
246 u32 sustainable_power
;
248 max_power_frac
= int_to_frac(max_allocatable_power
);
250 sustainable_power
= get_sustainable_power(tz
, params
, control_temp
);
252 err
= control_temp
- tz
->temperature
;
253 err
= int_to_frac(err
);
255 /* Calculate the proportional term */
256 p
= mul_frac(err
< 0 ? tz
->tzp
->k_po
: tz
->tzp
->k_pu
, err
);
259 * Calculate the integral term
261 * if the error is less than cut off allow integration (but
262 * the integral is limited to max power)
264 i
= mul_frac(tz
->tzp
->k_i
, params
->err_integral
);
266 if (err
< int_to_frac(tz
->tzp
->integral_cutoff
)) {
267 s64 i_next
= i
+ mul_frac(tz
->tzp
->k_i
, err
);
269 if (abs(i_next
) < max_power_frac
) {
271 params
->err_integral
+= err
;
276 * Calculate the derivative term
278 * We do err - prev_err, so with a positive k_d, a decreasing
279 * error (i.e. driving closer to the line) results in less
280 * power being applied, slowing down the controller)
282 d
= mul_frac(tz
->tzp
->k_d
, err
- params
->prev_err
);
283 d
= div_frac(d
, jiffies_to_msecs(tz
->passive_delay_jiffies
));
284 params
->prev_err
= err
;
286 power_range
= p
+ i
+ d
;
288 /* feed-forward the known sustainable dissipatable power */
289 power_range
= sustainable_power
+ frac_to_int(power_range
);
291 power_range
= clamp(power_range
, (s64
)0, (s64
)max_allocatable_power
);
293 trace_thermal_power_allocator_pid(tz
, frac_to_int(err
),
294 frac_to_int(params
->err_integral
),
295 frac_to_int(p
), frac_to_int(i
),
296 frac_to_int(d
), power_range
);
302 * power_actor_set_power() - limit the maximum power a cooling device consumes
303 * @cdev: pointer to &thermal_cooling_device
304 * @instance: thermal instance to update
305 * @power: the power in milliwatts
307 * Set the cooling device to consume at most @power milliwatts. The limit is
308 * expected to be a cap at the maximum power consumption.
310 * Return: 0 on success, -EINVAL if the cooling device does not
311 * implement the power actor API or -E* for other failures.
314 power_actor_set_power(struct thermal_cooling_device
*cdev
,
315 struct thermal_instance
*instance
, u32 power
)
320 ret
= cdev
->ops
->power2state(cdev
, power
, &state
);
324 instance
->target
= clamp_val(state
, instance
->lower
, instance
->upper
);
326 thermal_cdev_update_nocheck(cdev
);
332 * divvy_up_power() - divvy the allocated power between the actors
333 * @power: buffer for all power actors internal power information
334 * @num_actors: number of power actors in this thermal zone
335 * @total_req_power: sum of all weighted requested power for all actors
336 * @power_range: total allocated power
338 * This function divides the total allocated power (@power_range)
339 * fairly between the actors. It first tries to give each actor a
340 * share of the @power_range according to how much power it requested
341 * compared to the rest of the actors. For example, if only one actor
342 * requests power, then it receives all the @power_range. If
343 * three actors each requests 1mW, each receives a third of the
346 * If any actor received more than their maximum power, then that
347 * surplus is re-divvied among the actors based on how far they are
348 * from their respective maximums.
350 static void divvy_up_power(struct power_actor
*power
, int num_actors
,
351 u32 total_req_power
, u32 power_range
)
353 u32 capped_extra_power
= 0;
357 if (!total_req_power
) {
359 * Nobody requested anything, just give everybody
362 for (i
= 0; i
< num_actors
; i
++) {
363 struct power_actor
*pa
= &power
[i
];
365 pa
->granted_power
= pa
->max_power
;
371 for (i
= 0; i
< num_actors
; i
++) {
372 struct power_actor
*pa
= &power
[i
];
373 u64 req_range
= (u64
)pa
->req_power
* power_range
;
375 pa
->granted_power
= DIV_ROUND_CLOSEST_ULL(req_range
,
378 if (pa
->granted_power
> pa
->max_power
) {
379 extra_power
+= pa
->granted_power
- pa
->max_power
;
380 pa
->granted_power
= pa
->max_power
;
383 pa
->extra_actor_power
= pa
->max_power
- pa
->granted_power
;
384 capped_extra_power
+= pa
->extra_actor_power
;
387 if (!extra_power
|| !capped_extra_power
)
391 * Re-divvy the reclaimed extra among actors based on
392 * how far they are from the max
394 extra_power
= min(extra_power
, capped_extra_power
);
396 for (i
= 0; i
< num_actors
; i
++) {
397 struct power_actor
*pa
= &power
[i
];
398 u64 extra_range
= pa
->extra_actor_power
;
400 extra_range
*= extra_power
;
401 pa
->granted_power
+= DIV_ROUND_CLOSEST_ULL(extra_range
,
406 static void allocate_power(struct thermal_zone_device
*tz
, int control_temp
)
408 struct power_allocator_params
*params
= tz
->governor_data
;
409 const struct thermal_trip_desc
*td
= trip_to_trip_desc(params
->trip_max
);
410 unsigned int num_actors
= params
->num_actors
;
411 struct power_actor
*power
= params
->power
;
412 struct thermal_cooling_device
*cdev
;
413 struct thermal_instance
*instance
;
414 u32 total_weighted_req_power
= 0;
415 u32 max_allocatable_power
= 0;
416 u32 total_granted_power
= 0;
417 u32 total_req_power
= 0;
418 u32 power_range
, weight
;
424 /* Clean all buffers for new power estimations */
425 memset(power
, 0, params
->buffer_size
);
427 list_for_each_entry(instance
, &td
->thermal_instances
, trip_node
) {
428 struct power_actor
*pa
= &power
[i
];
430 if (!power_actor_is_valid(instance
))
433 cdev
= instance
->cdev
;
435 ret
= cdev
->ops
->get_requested_power(cdev
, &pa
->req_power
);
439 if (!params
->total_weight
)
440 weight
= 1 << FRAC_BITS
;
442 weight
= instance
->weight
;
444 pa
->weighted_req_power
= frac_to_int(weight
* pa
->req_power
);
446 ret
= cdev
->ops
->state2power(cdev
, instance
->lower
,
451 total_req_power
+= pa
->req_power
;
452 max_allocatable_power
+= pa
->max_power
;
453 total_weighted_req_power
+= pa
->weighted_req_power
;
458 power_range
= pid_controller(tz
, control_temp
, max_allocatable_power
);
460 divvy_up_power(power
, num_actors
, total_weighted_req_power
,
464 list_for_each_entry(instance
, &td
->thermal_instances
, trip_node
) {
465 struct power_actor
*pa
= &power
[i
];
467 if (!power_actor_is_valid(instance
))
470 power_actor_set_power(instance
->cdev
, instance
,
472 total_granted_power
+= pa
->granted_power
;
474 trace_thermal_power_actor(tz
, i
, pa
->req_power
,
479 trace_thermal_power_allocator(tz
, total_req_power
, total_granted_power
,
480 num_actors
, power_range
,
481 max_allocatable_power
, tz
->temperature
,
482 control_temp
- tz
->temperature
);
486 * get_governor_trips() - get the two trip points that are key for this governor
487 * @tz: thermal zone to operate on
488 * @params: pointer to private data for this governor
490 * The power allocator governor works optimally with two trips points:
491 * a "switch on" trip point and a "maximum desired temperature". These
492 * are defined as the first and last passive trip points.
494 * If there is only one trip point, then that's considered to be the
495 * "maximum desired temperature" trip point and the governor is always
496 * on. If there are no passive or active trip points, then the
497 * governor won't do anything. In fact, its throttle function
498 * won't be called at all.
500 static void get_governor_trips(struct thermal_zone_device
*tz
,
501 struct power_allocator_params
*params
)
503 const struct thermal_trip
*first_passive
= NULL
;
504 const struct thermal_trip
*last_passive
= NULL
;
505 const struct thermal_trip
*last_active
= NULL
;
506 const struct thermal_trip_desc
*td
;
508 for_each_trip_desc(tz
, td
) {
509 const struct thermal_trip
*trip
= &td
->trip
;
511 switch (trip
->type
) {
512 case THERMAL_TRIP_PASSIVE
:
513 if (!first_passive
) {
514 first_passive
= trip
;
519 case THERMAL_TRIP_ACTIVE
:
528 params
->trip_switch_on
= first_passive
;
529 params
->trip_max
= last_passive
;
530 } else if (first_passive
) {
531 params
->trip_switch_on
= NULL
;
532 params
->trip_max
= first_passive
;
534 params
->trip_switch_on
= NULL
;
535 params
->trip_max
= last_active
;
539 static void reset_pid_controller(struct power_allocator_params
*params
)
541 params
->err_integral
= 0;
542 params
->prev_err
= 0;
545 static void allow_maximum_power(struct thermal_zone_device
*tz
)
547 struct power_allocator_params
*params
= tz
->governor_data
;
548 const struct thermal_trip_desc
*td
= trip_to_trip_desc(params
->trip_max
);
549 struct thermal_cooling_device
*cdev
;
550 struct thermal_instance
*instance
;
553 list_for_each_entry(instance
, &td
->thermal_instances
, trip_node
) {
554 if (!power_actor_is_valid(instance
))
557 cdev
= instance
->cdev
;
559 instance
->target
= 0;
560 scoped_guard(cooling_dev
, cdev
) {
562 * Call for updating the cooling devices local stats and
563 * avoid periods of dozen of seconds when those have not
566 cdev
->ops
->get_requested_power(cdev
, &req_power
);
568 if (params
->update_cdevs
)
569 __thermal_cdev_update(cdev
);
575 * check_power_actors() - Check all cooling devices and warn when they are
577 * @tz: thermal zone to operate on
578 * @params: power allocator private data
580 * Check all cooling devices in the @tz and warn every time they are missing
581 * power actor API. The warning should help to investigate the issue, which
582 * could be e.g. lack of Energy Model for a given device.
584 * If all of the cooling devices currently attached to @tz implement the power
585 * actor API, return the number of them (which may be 0, because some cooling
586 * devices may be attached later). Otherwise, return -EINVAL.
588 static int check_power_actors(struct thermal_zone_device
*tz
,
589 struct power_allocator_params
*params
)
591 const struct thermal_trip_desc
*td
;
592 struct thermal_instance
*instance
;
595 if (!params
->trip_max
)
598 td
= trip_to_trip_desc(params
->trip_max
);
600 list_for_each_entry(instance
, &td
->thermal_instances
, trip_node
) {
601 if (!cdev_is_power_actor(instance
->cdev
)) {
602 dev_warn(&tz
->device
, "power_allocator: %s is not a power actor\n",
603 instance
->cdev
->type
);
612 static int allocate_actors_buffer(struct power_allocator_params
*params
,
617 kfree(params
->power
);
619 /* There might be no cooling devices yet. */
625 params
->power
= kcalloc(num_actors
, sizeof(struct power_actor
),
627 if (!params
->power
) {
632 params
->num_actors
= num_actors
;
633 params
->buffer_size
= num_actors
* sizeof(struct power_actor
);
638 params
->num_actors
= 0;
639 params
->buffer_size
= 0;
640 params
->power
= NULL
;
644 static void power_allocator_update_tz(struct thermal_zone_device
*tz
,
645 enum thermal_notify_event reason
)
647 struct power_allocator_params
*params
= tz
->governor_data
;
648 const struct thermal_trip_desc
*td
= trip_to_trip_desc(params
->trip_max
);
649 struct thermal_instance
*instance
;
653 case THERMAL_TZ_BIND_CDEV
:
654 case THERMAL_TZ_UNBIND_CDEV
:
655 list_for_each_entry(instance
, &td
->thermal_instances
, trip_node
)
656 if (power_actor_is_valid(instance
))
659 if (num_actors
== params
->num_actors
)
662 allocate_actors_buffer(params
, num_actors
);
664 case THERMAL_INSTANCE_WEIGHT_CHANGED
:
665 params
->total_weight
= 0;
666 list_for_each_entry(instance
, &td
->thermal_instances
, trip_node
)
667 if (power_actor_is_valid(instance
))
668 params
->total_weight
+= instance
->weight
;
676 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
677 * @tz: thermal zone to bind it to
679 * Initialize the PID controller parameters and bind it to the thermal
682 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
683 * when there are unsupported cooling devices in the @tz.
685 static int power_allocator_bind(struct thermal_zone_device
*tz
)
687 struct power_allocator_params
*params
;
690 params
= kzalloc(sizeof(*params
), GFP_KERNEL
);
694 get_governor_trips(tz
, params
);
696 ret
= check_power_actors(tz
, params
);
698 dev_warn(&tz
->device
, "power_allocator: binding failed\n");
703 ret
= allocate_actors_buffer(params
, ret
);
705 dev_warn(&tz
->device
, "power_allocator: allocation failed\n");
711 tz
->tzp
= kzalloc(sizeof(*tz
->tzp
), GFP_KERNEL
);
717 params
->allocated_tzp
= true;
720 if (!tz
->tzp
->sustainable_power
)
721 dev_warn(&tz
->device
, "power_allocator: sustainable_power will be estimated\n");
723 params
->sustainable_power
= tz
->tzp
->sustainable_power
;
725 if (params
->trip_max
)
726 estimate_pid_constants(tz
, tz
->tzp
->sustainable_power
,
727 params
->trip_switch_on
,
728 params
->trip_max
->temperature
);
730 reset_pid_controller(params
);
732 tz
->governor_data
= params
;
737 kfree(params
->power
);
743 static void power_allocator_unbind(struct thermal_zone_device
*tz
)
745 struct power_allocator_params
*params
= tz
->governor_data
;
747 dev_dbg(&tz
->device
, "Unbinding from thermal zone %d\n", tz
->id
);
749 if (params
->allocated_tzp
) {
754 kfree(params
->power
);
755 kfree(tz
->governor_data
);
756 tz
->governor_data
= NULL
;
759 static void power_allocator_manage(struct thermal_zone_device
*tz
)
761 struct power_allocator_params
*params
= tz
->governor_data
;
762 const struct thermal_trip
*trip
= params
->trip_switch_on
;
764 lockdep_assert_held(&tz
->lock
);
766 if (trip
&& tz
->temperature
< trip
->temperature
) {
767 reset_pid_controller(params
);
768 allow_maximum_power(tz
);
769 params
->update_cdevs
= false;
773 if (!params
->trip_max
)
776 allocate_power(tz
, params
->trip_max
->temperature
);
777 params
->update_cdevs
= true;
780 static struct thermal_governor thermal_gov_power_allocator
= {
781 .name
= "power_allocator",
782 .bind_to_tz
= power_allocator_bind
,
783 .unbind_from_tz
= power_allocator_unbind
,
784 .manage
= power_allocator_manage
,
785 .update_tz
= power_allocator_update_tz
,
787 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator
);