1 // SPDX-License-Identifier: GPL-2.0
3 * Thunderbolt driver - switch/port utility functions
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
21 /* Switch NVM support */
23 struct nvm_auth_status
{
24 struct list_head list
;
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
34 static LIST_HEAD(nvm_auth_status_cache
);
35 static DEFINE_MUTEX(nvm_auth_status_lock
);
37 static struct nvm_auth_status
*__nvm_get_auth_status(const struct tb_switch
*sw
)
39 struct nvm_auth_status
*st
;
41 list_for_each_entry(st
, &nvm_auth_status_cache
, list
) {
42 if (uuid_equal(&st
->uuid
, sw
->uuid
))
49 static void nvm_get_auth_status(const struct tb_switch
*sw
, u32
*status
)
51 struct nvm_auth_status
*st
;
53 mutex_lock(&nvm_auth_status_lock
);
54 st
= __nvm_get_auth_status(sw
);
55 mutex_unlock(&nvm_auth_status_lock
);
57 *status
= st
? st
->status
: 0;
60 static void nvm_set_auth_status(const struct tb_switch
*sw
, u32 status
)
62 struct nvm_auth_status
*st
;
64 if (WARN_ON(!sw
->uuid
))
67 mutex_lock(&nvm_auth_status_lock
);
68 st
= __nvm_get_auth_status(sw
);
71 st
= kzalloc(sizeof(*st
), GFP_KERNEL
);
75 memcpy(&st
->uuid
, sw
->uuid
, sizeof(st
->uuid
));
76 INIT_LIST_HEAD(&st
->list
);
77 list_add_tail(&st
->list
, &nvm_auth_status_cache
);
82 mutex_unlock(&nvm_auth_status_lock
);
85 static void nvm_clear_auth_status(const struct tb_switch
*sw
)
87 struct nvm_auth_status
*st
;
89 mutex_lock(&nvm_auth_status_lock
);
90 st
= __nvm_get_auth_status(sw
);
95 mutex_unlock(&nvm_auth_status_lock
);
98 static int nvm_validate_and_write(struct tb_switch
*sw
)
100 unsigned int image_size
;
104 ret
= tb_nvm_validate(sw
->nvm
);
108 ret
= tb_nvm_write_headers(sw
->nvm
);
112 buf
= sw
->nvm
->buf_data_start
;
113 image_size
= sw
->nvm
->buf_data_size
;
115 if (tb_switch_is_usb4(sw
))
116 ret
= usb4_switch_nvm_write(sw
, 0, buf
, image_size
);
118 ret
= dma_port_flash_write(sw
->dma_port
, 0, buf
, image_size
);
122 sw
->nvm
->flushed
= true;
126 static int nvm_authenticate_host_dma_port(struct tb_switch
*sw
)
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
135 if (!sw
->safe_mode
) {
138 ret
= tb_domain_disconnect_all_paths(sw
->tb
);
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
145 ret
= dma_port_flash_update_auth(sw
->dma_port
);
146 if (!ret
|| ret
== -ETIMEDOUT
)
150 * Any error from update auth operation requires power
151 * cycling of the host router.
153 tb_sw_warn(sw
, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw
->dma_port
, &status
) > 0)
155 nvm_set_auth_status(sw
, status
);
159 * From safe mode we can get out by just power cycling the
162 dma_port_power_cycle(sw
->dma_port
);
166 static int nvm_authenticate_device_dma_port(struct tb_switch
*sw
)
168 int ret
, retries
= 10;
170 ret
= dma_port_flash_update_auth(sw
->dma_port
);
176 /* Power cycle is required */
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
191 ret
= dma_port_flash_update_auth_status(sw
->dma_port
, &status
);
192 if (ret
< 0 && ret
!= -ETIMEDOUT
)
196 tb_sw_warn(sw
, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw
, status
);
200 tb_sw_info(sw
, "power cycling the switch now\n");
201 dma_port_power_cycle(sw
->dma_port
);
211 static void nvm_authenticate_start_dma_port(struct tb_switch
*sw
)
213 struct pci_dev
*root_port
;
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
221 root_port
= pcie_find_root_port(sw
->tb
->nhi
->pdev
);
223 pm_runtime_get_noresume(&root_port
->dev
);
226 static void nvm_authenticate_complete_dma_port(struct tb_switch
*sw
)
228 struct pci_dev
*root_port
;
230 root_port
= pcie_find_root_port(sw
->tb
->nhi
->pdev
);
232 pm_runtime_put(&root_port
->dev
);
235 static inline bool nvm_readable(struct tb_switch
*sw
)
237 if (tb_switch_is_usb4(sw
)) {
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
244 return usb4_switch_nvm_sector_size(sw
) > 0;
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw
->dma_port
;
251 static inline bool nvm_upgradeable(struct tb_switch
*sw
)
253 if (sw
->no_nvm_upgrade
)
255 return nvm_readable(sw
);
258 static int nvm_authenticate(struct tb_switch
*sw
, bool auth_only
)
262 if (tb_switch_is_usb4(sw
)) {
264 ret
= usb4_switch_nvm_set_offset(sw
, 0);
268 sw
->nvm
->authenticating
= true;
269 return usb4_switch_nvm_authenticate(sw
);
274 sw
->nvm
->authenticating
= true;
276 nvm_authenticate_start_dma_port(sw
);
277 ret
= nvm_authenticate_host_dma_port(sw
);
279 ret
= nvm_authenticate_device_dma_port(sw
);
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
296 int tb_switch_nvm_read(struct tb_switch
*sw
, unsigned int address
, void *buf
,
299 if (tb_switch_is_usb4(sw
))
300 return usb4_switch_nvm_read(sw
, address
, buf
, size
);
301 return dma_port_flash_read(sw
->dma_port
, address
, buf
, size
);
304 static int nvm_read(void *priv
, unsigned int offset
, void *val
, size_t bytes
)
306 struct tb_nvm
*nvm
= priv
;
307 struct tb_switch
*sw
= tb_to_switch(nvm
->dev
);
310 pm_runtime_get_sync(&sw
->dev
);
312 if (!mutex_trylock(&sw
->tb
->lock
)) {
313 ret
= restart_syscall();
317 ret
= tb_switch_nvm_read(sw
, offset
, val
, bytes
);
318 mutex_unlock(&sw
->tb
->lock
);
321 pm_runtime_mark_last_busy(&sw
->dev
);
322 pm_runtime_put_autosuspend(&sw
->dev
);
327 static int nvm_write(void *priv
, unsigned int offset
, void *val
, size_t bytes
)
329 struct tb_nvm
*nvm
= priv
;
330 struct tb_switch
*sw
= tb_to_switch(nvm
->dev
);
333 if (!mutex_trylock(&sw
->tb
->lock
))
334 return restart_syscall();
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
342 ret
= tb_nvm_write_buf(nvm
, offset
, val
, bytes
);
343 mutex_unlock(&sw
->tb
->lock
);
348 static int tb_switch_nvm_add(struct tb_switch
*sw
)
353 if (!nvm_readable(sw
))
356 nvm
= tb_nvm_alloc(&sw
->dev
);
358 ret
= PTR_ERR(nvm
) == -EOPNOTSUPP
? 0 : PTR_ERR(nvm
);
362 ret
= tb_nvm_read_version(nvm
);
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
371 if (!sw
->safe_mode
) {
372 ret
= tb_nvm_add_active(nvm
, nvm_read
);
375 tb_sw_dbg(sw
, "NVM version %x.%x\n", nvm
->major
, nvm
->minor
);
378 if (!sw
->no_nvm_upgrade
) {
379 ret
= tb_nvm_add_non_active(nvm
, nvm_write
);
388 tb_sw_dbg(sw
, "NVM upgrade disabled\n");
389 sw
->no_nvm_upgrade
= true;
396 static void tb_switch_nvm_remove(struct tb_switch
*sw
)
406 /* Remove authentication status in case the switch is unplugged */
407 if (!nvm
->authenticating
)
408 nvm_clear_auth_status(sw
);
413 /* port utility functions */
415 static const char *tb_port_type(const struct tb_regs_port_header
*port
)
417 switch (port
->type
>> 16) {
419 switch ((u8
) port
->type
) {
444 static void tb_dump_port(struct tb
*tb
, const struct tb_port
*port
)
446 const struct tb_regs_port_header
*regs
= &port
->config
;
449 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 regs
->port_number
, regs
->vendor_id
, regs
->device_id
,
451 regs
->revision
, regs
->thunderbolt_version
, tb_port_type(regs
),
453 tb_dbg(tb
, " Max hop id (in/out): %d/%d\n",
454 regs
->max_in_hop_id
, regs
->max_out_hop_id
);
455 tb_dbg(tb
, " Max counters: %d\n", regs
->max_counters
);
456 tb_dbg(tb
, " NFC Credits: %#x\n", regs
->nfc_credits
);
457 tb_dbg(tb
, " Credits (total/control): %u/%u\n", port
->total_credits
,
462 * tb_port_state() - get connectedness state of a port
463 * @port: the port to check
465 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
467 * Return: Returns an enum tb_port_state on success or an error code on failure.
469 int tb_port_state(struct tb_port
*port
)
471 struct tb_cap_phy phy
;
473 if (port
->cap_phy
== 0) {
474 tb_port_WARN(port
, "does not have a PHY\n");
477 res
= tb_port_read(port
, &phy
, TB_CFG_PORT
, port
->cap_phy
, 2);
484 * tb_wait_for_port() - wait for a port to become ready
485 * @port: Port to wait
486 * @wait_if_unplugged: Wait also when port is unplugged
488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489 * wait_if_unplugged is set then we also wait if the port is in state
490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491 * switch resume). Otherwise we only wait if a device is registered but the link
492 * has not yet been established.
494 * Return: Returns an error code on failure. Returns 0 if the port is not
495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496 * if the port is connected and in state TB_PORT_UP.
498 int tb_wait_for_port(struct tb_port
*port
, bool wait_if_unplugged
)
502 if (!port
->cap_phy
) {
503 tb_port_WARN(port
, "does not have PHY\n");
506 if (tb_is_upstream_port(port
)) {
507 tb_port_WARN(port
, "is the upstream port\n");
512 state
= tb_port_state(port
);
514 case TB_PORT_DISABLED
:
515 tb_port_dbg(port
, "is disabled (state: 0)\n");
518 case TB_PORT_UNPLUGGED
:
519 if (wait_if_unplugged
) {
520 /* used during resume */
522 "is unplugged (state: 7), retrying...\n");
526 tb_port_dbg(port
, "is unplugged (state: 7)\n");
530 case TB_PORT_TX_CL0S
:
531 case TB_PORT_RX_CL0S
:
534 tb_port_dbg(port
, "is connected, link is up (state: %d)\n", state
);
542 * After plug-in the state is TB_PORT_CONNECTING. Give it some
546 "is connected, link is not up (state: %d), retrying...\n",
553 "failed to reach state TB_PORT_UP. Ignoring port...\n");
558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559 * @port: Port to add/remove NFC credits
560 * @credits: Credits to add/remove
562 * Change the number of NFC credits allocated to @port by @credits. To remove
563 * NFC credits pass a negative amount of credits.
565 * Return: Returns 0 on success or an error code on failure.
567 int tb_port_add_nfc_credits(struct tb_port
*port
, int credits
)
571 if (credits
== 0 || port
->sw
->is_unplugged
)
575 * USB4 restricts programming NFC buffers to lane adapters only
576 * so skip other ports.
578 if (tb_switch_is_usb4(port
->sw
) && !tb_port_is_null(port
))
581 nfc_credits
= port
->config
.nfc_credits
& ADP_CS_4_NFC_BUFFERS_MASK
;
583 credits
= max_t(int, -nfc_credits
, credits
);
585 nfc_credits
+= credits
;
587 tb_port_dbg(port
, "adding %d NFC credits to %lu", credits
,
588 port
->config
.nfc_credits
& ADP_CS_4_NFC_BUFFERS_MASK
);
590 port
->config
.nfc_credits
&= ~ADP_CS_4_NFC_BUFFERS_MASK
;
591 port
->config
.nfc_credits
|= nfc_credits
;
593 return tb_port_write(port
, &port
->config
.nfc_credits
,
594 TB_CFG_PORT
, ADP_CS_4
, 1);
598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599 * @port: Port whose counters to clear
600 * @counter: Counter index to clear
602 * Return: Returns 0 on success or an error code on failure.
604 int tb_port_clear_counter(struct tb_port
*port
, int counter
)
606 u32 zero
[3] = { 0, 0, 0 };
607 tb_port_dbg(port
, "clearing counter %d\n", counter
);
608 return tb_port_write(port
, zero
, TB_CFG_COUNTERS
, 3 * counter
, 3);
612 * tb_port_unlock() - Unlock downstream port
613 * @port: Port to unlock
615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616 * downstream router accessible for CM.
618 int tb_port_unlock(struct tb_port
*port
)
620 if (tb_switch_is_icm(port
->sw
))
622 if (!tb_port_is_null(port
))
624 if (tb_switch_is_usb4(port
->sw
))
625 return usb4_port_unlock(port
);
629 static int __tb_port_enable(struct tb_port
*port
, bool enable
)
634 if (!tb_port_is_null(port
))
637 ret
= tb_port_read(port
, &phy
, TB_CFG_PORT
,
638 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
643 phy
&= ~LANE_ADP_CS_1_LD
;
645 phy
|= LANE_ADP_CS_1_LD
;
648 ret
= tb_port_write(port
, &phy
, TB_CFG_PORT
,
649 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
653 tb_port_dbg(port
, "lane %s\n", str_enabled_disabled(enable
));
658 * tb_port_enable() - Enable lane adapter
659 * @port: Port to enable (can be %NULL)
661 * This is used for lane 0 and 1 adapters to enable it.
663 int tb_port_enable(struct tb_port
*port
)
665 return __tb_port_enable(port
, true);
669 * tb_port_disable() - Disable lane adapter
670 * @port: Port to disable (can be %NULL)
672 * This is used for lane 0 and 1 adapters to disable it.
674 int tb_port_disable(struct tb_port
*port
)
676 return __tb_port_enable(port
, false);
679 static int tb_port_reset(struct tb_port
*port
)
681 if (tb_switch_is_usb4(port
->sw
))
682 return port
->cap_usb4
? usb4_port_reset(port
) : 0;
683 return tb_lc_reset_port(port
);
687 * tb_init_port() - initialize a port
689 * This is a helper method for tb_switch_alloc. Does not check or initialize
690 * any downstream switches.
692 * Return: Returns 0 on success or an error code on failure.
694 static int tb_init_port(struct tb_port
*port
)
699 INIT_LIST_HEAD(&port
->list
);
701 /* Control adapter does not have configuration space */
705 res
= tb_port_read(port
, &port
->config
, TB_CFG_PORT
, 0, 8);
707 if (res
== -ENODEV
) {
708 tb_dbg(port
->sw
->tb
, " Port %d: not implemented\n",
710 port
->disabled
= true;
716 /* Port 0 is the switch itself and has no PHY. */
717 if (port
->config
.type
== TB_TYPE_PORT
) {
718 cap
= tb_port_find_cap(port
, TB_PORT_CAP_PHY
);
723 tb_port_WARN(port
, "non switch port without a PHY\n");
725 cap
= tb_port_find_cap(port
, TB_PORT_CAP_USB4
);
727 port
->cap_usb4
= cap
;
730 * USB4 ports the buffers allocated for the control path
731 * can be read from the path config space. Legacy
732 * devices we use hard-coded value.
734 if (port
->cap_usb4
) {
735 struct tb_regs_hop hop
;
737 if (!tb_port_read(port
, &hop
, TB_CFG_HOPS
, 0, 2))
738 port
->ctl_credits
= hop
.initial_credits
;
740 if (!port
->ctl_credits
)
741 port
->ctl_credits
= 2;
744 cap
= tb_port_find_cap(port
, TB_PORT_CAP_ADAP
);
746 port
->cap_adap
= cap
;
749 port
->total_credits
=
750 (port
->config
.nfc_credits
& ADP_CS_4_TOTAL_BUFFERS_MASK
) >>
751 ADP_CS_4_TOTAL_BUFFERS_SHIFT
;
753 tb_dump_port(port
->sw
->tb
, port
);
757 static int tb_port_alloc_hopid(struct tb_port
*port
, bool in
, int min_hopid
,
764 port_max_hopid
= port
->config
.max_in_hop_id
;
765 ida
= &port
->in_hopids
;
767 port_max_hopid
= port
->config
.max_out_hop_id
;
768 ida
= &port
->out_hopids
;
772 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
775 if (!tb_port_is_nhi(port
) && min_hopid
< TB_PATH_MIN_HOPID
)
776 min_hopid
= TB_PATH_MIN_HOPID
;
778 if (max_hopid
< 0 || max_hopid
> port_max_hopid
)
779 max_hopid
= port_max_hopid
;
781 return ida_alloc_range(ida
, min_hopid
, max_hopid
, GFP_KERNEL
);
785 * tb_port_alloc_in_hopid() - Allocate input HopID from port
786 * @port: Port to allocate HopID for
787 * @min_hopid: Minimum acceptable input HopID
788 * @max_hopid: Maximum acceptable input HopID
790 * Return: HopID between @min_hopid and @max_hopid or negative errno in
793 int tb_port_alloc_in_hopid(struct tb_port
*port
, int min_hopid
, int max_hopid
)
795 return tb_port_alloc_hopid(port
, true, min_hopid
, max_hopid
);
799 * tb_port_alloc_out_hopid() - Allocate output HopID from port
800 * @port: Port to allocate HopID for
801 * @min_hopid: Minimum acceptable output HopID
802 * @max_hopid: Maximum acceptable output HopID
804 * Return: HopID between @min_hopid and @max_hopid or negative errno in
807 int tb_port_alloc_out_hopid(struct tb_port
*port
, int min_hopid
, int max_hopid
)
809 return tb_port_alloc_hopid(port
, false, min_hopid
, max_hopid
);
813 * tb_port_release_in_hopid() - Release allocated input HopID from port
814 * @port: Port whose HopID to release
815 * @hopid: HopID to release
817 void tb_port_release_in_hopid(struct tb_port
*port
, int hopid
)
819 ida_free(&port
->in_hopids
, hopid
);
823 * tb_port_release_out_hopid() - Release allocated output HopID from port
824 * @port: Port whose HopID to release
825 * @hopid: HopID to release
827 void tb_port_release_out_hopid(struct tb_port
*port
, int hopid
)
829 ida_free(&port
->out_hopids
, hopid
);
832 static inline bool tb_switch_is_reachable(const struct tb_switch
*parent
,
833 const struct tb_switch
*sw
)
835 u64 mask
= (1ULL << parent
->config
.depth
* 8) - 1;
836 return (tb_route(parent
) & mask
) == (tb_route(sw
) & mask
);
840 * tb_next_port_on_path() - Return next port for given port on a path
841 * @start: Start port of the walk
842 * @end: End port of the walk
843 * @prev: Previous port (%NULL if this is the first)
845 * This function can be used to walk from one port to another if they
846 * are connected through zero or more switches. If the @prev is dual
847 * link port, the function follows that link and returns another end on
850 * If the @end port has been reached, return %NULL.
852 * Domain tb->lock must be held when this function is called.
854 struct tb_port
*tb_next_port_on_path(struct tb_port
*start
, struct tb_port
*end
,
855 struct tb_port
*prev
)
857 struct tb_port
*next
;
862 if (prev
->sw
== end
->sw
) {
868 if (tb_switch_is_reachable(prev
->sw
, end
->sw
)) {
869 next
= tb_port_at(tb_route(end
->sw
), prev
->sw
);
870 /* Walk down the topology if next == prev */
872 (next
== prev
|| next
->dual_link_port
== prev
))
875 if (tb_is_upstream_port(prev
)) {
878 next
= tb_upstream_port(prev
->sw
);
880 * Keep the same link if prev and next are both
883 if (next
->dual_link_port
&&
884 next
->link_nr
!= prev
->link_nr
) {
885 next
= next
->dual_link_port
;
890 return next
!= prev
? next
: NULL
;
894 * tb_port_get_link_speed() - Get current link speed
895 * @port: Port to check (USB4 or CIO)
897 * Returns link speed in Gb/s or negative errno in case of failure.
899 int tb_port_get_link_speed(struct tb_port
*port
)
907 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
908 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
912 speed
= (val
& LANE_ADP_CS_1_CURRENT_SPEED_MASK
) >>
913 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT
;
916 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4
:
918 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3
:
926 * tb_port_get_link_generation() - Returns link generation
927 * @port: Lane adapter
929 * Returns link generation as number or negative errno in case of
930 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
931 * links so for those always returns 2.
933 int tb_port_get_link_generation(struct tb_port
*port
)
937 ret
= tb_port_get_link_speed(port
);
952 * tb_port_get_link_width() - Get current link width
953 * @port: Port to check (USB4 or CIO)
955 * Returns link width. Return the link width as encoded in &enum
956 * tb_link_width or negative errno in case of failure.
958 int tb_port_get_link_width(struct tb_port
*port
)
966 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
967 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
971 /* Matches the values in enum tb_link_width */
972 return (val
& LANE_ADP_CS_1_CURRENT_WIDTH_MASK
) >>
973 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT
;
977 * tb_port_width_supported() - Is the given link width supported
978 * @port: Port to check
979 * @width: Widths to check (bitmask)
981 * Can be called to any lane adapter. Checks if given @width is
982 * supported by the hardware and returns %true if it is.
984 bool tb_port_width_supported(struct tb_port
*port
, unsigned int width
)
992 if (width
& (TB_LINK_WIDTH_ASYM_TX
| TB_LINK_WIDTH_ASYM_RX
)) {
993 if (tb_port_get_link_generation(port
) < 4 ||
994 !usb4_port_asym_supported(port
))
998 ret
= tb_port_read(port
, &phy
, TB_CFG_PORT
,
999 port
->cap_phy
+ LANE_ADP_CS_0
, 1);
1004 * The field encoding is the same as &enum tb_link_width (which is
1005 * passed to @width).
1007 widths
= FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK
, phy
);
1008 return widths
& width
;
1012 * tb_port_set_link_width() - Set target link width of the lane adapter
1013 * @port: Lane adapter
1014 * @width: Target link width
1016 * Sets the target link width of the lane adapter to @width. Does not
1017 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1019 * Return: %0 in case of success and negative errno in case of error
1021 int tb_port_set_link_width(struct tb_port
*port
, enum tb_link_width width
)
1029 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
1030 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
1034 val
&= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK
;
1036 case TB_LINK_WIDTH_SINGLE
:
1037 /* Gen 4 link cannot be single */
1038 if (tb_port_get_link_generation(port
) >= 4)
1040 val
|= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE
<<
1041 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT
;
1044 case TB_LINK_WIDTH_DUAL
:
1045 if (tb_port_get_link_generation(port
) >= 4)
1046 return usb4_port_asym_set_link_width(port
, width
);
1047 val
|= LANE_ADP_CS_1_TARGET_WIDTH_DUAL
<<
1048 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT
;
1051 case TB_LINK_WIDTH_ASYM_TX
:
1052 case TB_LINK_WIDTH_ASYM_RX
:
1053 return usb4_port_asym_set_link_width(port
, width
);
1059 return tb_port_write(port
, &val
, TB_CFG_PORT
,
1060 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
1064 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1065 * @port: Lane adapter
1066 * @bonding: enable/disable bonding
1068 * Enables or disables lane bonding. This should be called after target
1069 * link width has been set (tb_port_set_link_width()). Note in most
1070 * cases one should use tb_port_lane_bonding_enable() instead to enable
1073 * Return: %0 in case of success and negative errno in case of error
1075 static int tb_port_set_lane_bonding(struct tb_port
*port
, bool bonding
)
1083 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
1084 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
1089 val
|= LANE_ADP_CS_1_LB
;
1091 val
&= ~LANE_ADP_CS_1_LB
;
1093 return tb_port_write(port
, &val
, TB_CFG_PORT
,
1094 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
1098 * tb_port_lane_bonding_enable() - Enable bonding on port
1099 * @port: port to enable
1101 * Enable bonding by setting the link width of the port and the other
1102 * port in case of dual link port. Does not wait for the link to
1103 * actually reach the bonded state so caller needs to call
1104 * tb_port_wait_for_link_width() before enabling any paths through the
1105 * link to make sure the link is in expected state.
1107 * Return: %0 in case of success and negative errno in case of error
1109 int tb_port_lane_bonding_enable(struct tb_port
*port
)
1111 enum tb_link_width width
;
1115 * Enable lane bonding for both links if not already enabled by
1116 * for example the boot firmware.
1118 width
= tb_port_get_link_width(port
);
1119 if (width
== TB_LINK_WIDTH_SINGLE
) {
1120 ret
= tb_port_set_link_width(port
, TB_LINK_WIDTH_DUAL
);
1125 width
= tb_port_get_link_width(port
->dual_link_port
);
1126 if (width
== TB_LINK_WIDTH_SINGLE
) {
1127 ret
= tb_port_set_link_width(port
->dual_link_port
,
1128 TB_LINK_WIDTH_DUAL
);
1134 * Only set bonding if the link was not already bonded. This
1135 * avoids the lane adapter to re-enter bonding state.
1137 if (width
== TB_LINK_WIDTH_SINGLE
&& !tb_is_upstream_port(port
)) {
1138 ret
= tb_port_set_lane_bonding(port
, true);
1144 * When lane 0 bonding is set it will affect lane 1 too so
1147 port
->bonded
= true;
1148 port
->dual_link_port
->bonded
= true;
1153 tb_port_set_link_width(port
->dual_link_port
, TB_LINK_WIDTH_SINGLE
);
1155 tb_port_set_link_width(port
, TB_LINK_WIDTH_SINGLE
);
1161 * tb_port_lane_bonding_disable() - Disable bonding on port
1162 * @port: port to disable
1164 * Disable bonding by setting the link width of the port and the
1165 * other port in case of dual link port.
1167 void tb_port_lane_bonding_disable(struct tb_port
*port
)
1169 tb_port_set_lane_bonding(port
, false);
1170 tb_port_set_link_width(port
->dual_link_port
, TB_LINK_WIDTH_SINGLE
);
1171 tb_port_set_link_width(port
, TB_LINK_WIDTH_SINGLE
);
1172 port
->dual_link_port
->bonded
= false;
1173 port
->bonded
= false;
1177 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1178 * @port: Port to wait for
1179 * @width: Expected link width (bitmask)
1180 * @timeout_msec: Timeout in ms how long to wait
1182 * Should be used after both ends of the link have been bonded (or
1183 * bonding has been disabled) to wait until the link actually reaches
1184 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1185 * within the given timeout, %0 if it did. Can be passed a mask of
1186 * expected widths and succeeds if any of the widths is reached.
1188 int tb_port_wait_for_link_width(struct tb_port
*port
, unsigned int width
,
1191 ktime_t timeout
= ktime_add_ms(ktime_get(), timeout_msec
);
1194 /* Gen 4 link does not support single lane */
1195 if ((width
& TB_LINK_WIDTH_SINGLE
) &&
1196 tb_port_get_link_generation(port
) >= 4)
1200 ret
= tb_port_get_link_width(port
);
1203 * Sometimes we get port locked error when
1204 * polling the lanes so we can ignore it and
1209 } else if (ret
& width
) {
1213 usleep_range(1000, 2000);
1214 } while (ktime_before(ktime_get(), timeout
));
1219 static int tb_port_do_update_credits(struct tb_port
*port
)
1224 ret
= tb_port_read(port
, &nfc_credits
, TB_CFG_PORT
, ADP_CS_4
, 1);
1228 if (nfc_credits
!= port
->config
.nfc_credits
) {
1231 total
= (nfc_credits
& ADP_CS_4_TOTAL_BUFFERS_MASK
) >>
1232 ADP_CS_4_TOTAL_BUFFERS_SHIFT
;
1234 tb_port_dbg(port
, "total credits changed %u -> %u\n",
1235 port
->total_credits
, total
);
1237 port
->config
.nfc_credits
= nfc_credits
;
1238 port
->total_credits
= total
;
1245 * tb_port_update_credits() - Re-read port total credits
1246 * @port: Port to update
1248 * After the link is bonded (or bonding was disabled) the port total
1249 * credits may change, so this function needs to be called to re-read
1250 * the credits. Updates also the second lane adapter.
1252 int tb_port_update_credits(struct tb_port
*port
)
1256 ret
= tb_port_do_update_credits(port
);
1260 if (!port
->dual_link_port
)
1262 return tb_port_do_update_credits(port
->dual_link_port
);
1265 static int tb_port_start_lane_initialization(struct tb_port
*port
)
1269 if (tb_switch_is_usb4(port
->sw
))
1272 ret
= tb_lc_start_lane_initialization(port
);
1273 return ret
== -EINVAL
? 0 : ret
;
1277 * Returns true if the port had something (router, XDomain) connected
1280 static bool tb_port_resume(struct tb_port
*port
)
1282 bool has_remote
= tb_port_has_remote(port
);
1285 usb4_port_device_resume(port
->usb4
);
1286 } else if (!has_remote
) {
1288 * For disconnected downstream lane adapters start lane
1289 * initialization now so we detect future connects.
1291 * For XDomain start the lane initialzation now so the
1292 * link gets re-established.
1294 * This is only needed for non-USB4 ports.
1296 if (!tb_is_upstream_port(port
) || port
->xdomain
)
1297 tb_port_start_lane_initialization(port
);
1300 return has_remote
|| port
->xdomain
;
1304 * tb_port_is_enabled() - Is the adapter port enabled
1305 * @port: Port to check
1307 bool tb_port_is_enabled(struct tb_port
*port
)
1309 switch (port
->config
.type
) {
1310 case TB_TYPE_PCIE_UP
:
1311 case TB_TYPE_PCIE_DOWN
:
1312 return tb_pci_port_is_enabled(port
);
1314 case TB_TYPE_DP_HDMI_IN
:
1315 case TB_TYPE_DP_HDMI_OUT
:
1316 return tb_dp_port_is_enabled(port
);
1318 case TB_TYPE_USB3_UP
:
1319 case TB_TYPE_USB3_DOWN
:
1320 return tb_usb3_port_is_enabled(port
);
1328 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1329 * @port: USB3 adapter port to check
1331 bool tb_usb3_port_is_enabled(struct tb_port
*port
)
1335 if (tb_port_read(port
, &data
, TB_CFG_PORT
,
1336 port
->cap_adap
+ ADP_USB3_CS_0
, 1))
1339 return !!(data
& ADP_USB3_CS_0_PE
);
1343 * tb_usb3_port_enable() - Enable USB3 adapter port
1344 * @port: USB3 adapter port to enable
1345 * @enable: Enable/disable the USB3 adapter
1347 int tb_usb3_port_enable(struct tb_port
*port
, bool enable
)
1349 u32 word
= enable
? (ADP_USB3_CS_0_PE
| ADP_USB3_CS_0_V
)
1352 if (!port
->cap_adap
)
1354 return tb_port_write(port
, &word
, TB_CFG_PORT
,
1355 port
->cap_adap
+ ADP_USB3_CS_0
, 1);
1359 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1360 * @port: PCIe port to check
1362 bool tb_pci_port_is_enabled(struct tb_port
*port
)
1366 if (tb_port_read(port
, &data
, TB_CFG_PORT
,
1367 port
->cap_adap
+ ADP_PCIE_CS_0
, 1))
1370 return !!(data
& ADP_PCIE_CS_0_PE
);
1374 * tb_pci_port_enable() - Enable PCIe adapter port
1375 * @port: PCIe port to enable
1376 * @enable: Enable/disable the PCIe adapter
1378 int tb_pci_port_enable(struct tb_port
*port
, bool enable
)
1380 u32 word
= enable
? ADP_PCIE_CS_0_PE
: 0x0;
1381 if (!port
->cap_adap
)
1383 return tb_port_write(port
, &word
, TB_CFG_PORT
,
1384 port
->cap_adap
+ ADP_PCIE_CS_0
, 1);
1388 * tb_dp_port_hpd_is_active() - Is HPD already active
1389 * @port: DP out port to check
1391 * Checks if the DP OUT adapter port has HPD bit already set.
1393 int tb_dp_port_hpd_is_active(struct tb_port
*port
)
1398 ret
= tb_port_read(port
, &data
, TB_CFG_PORT
,
1399 port
->cap_adap
+ ADP_DP_CS_2
, 1);
1403 return !!(data
& ADP_DP_CS_2_HPD
);
1407 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1408 * @port: Port to clear HPD
1410 * If the DP IN port has HPD set, this function can be used to clear it.
1412 int tb_dp_port_hpd_clear(struct tb_port
*port
)
1417 ret
= tb_port_read(port
, &data
, TB_CFG_PORT
,
1418 port
->cap_adap
+ ADP_DP_CS_3
, 1);
1422 data
|= ADP_DP_CS_3_HPDC
;
1423 return tb_port_write(port
, &data
, TB_CFG_PORT
,
1424 port
->cap_adap
+ ADP_DP_CS_3
, 1);
1428 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1429 * @port: DP IN/OUT port to set hops
1430 * @video: Video Hop ID
1431 * @aux_tx: AUX TX Hop ID
1432 * @aux_rx: AUX RX Hop ID
1434 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1435 * router DP adapters too but does not program the values as the fields
1438 int tb_dp_port_set_hops(struct tb_port
*port
, unsigned int video
,
1439 unsigned int aux_tx
, unsigned int aux_rx
)
1444 if (tb_switch_is_usb4(port
->sw
))
1447 ret
= tb_port_read(port
, data
, TB_CFG_PORT
,
1448 port
->cap_adap
+ ADP_DP_CS_0
, ARRAY_SIZE(data
));
1452 data
[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK
;
1453 data
[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK
;
1454 data
[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK
;
1456 data
[0] |= (video
<< ADP_DP_CS_0_VIDEO_HOPID_SHIFT
) &
1457 ADP_DP_CS_0_VIDEO_HOPID_MASK
;
1458 data
[1] |= aux_tx
& ADP_DP_CS_1_AUX_TX_HOPID_MASK
;
1459 data
[1] |= (aux_rx
<< ADP_DP_CS_1_AUX_RX_HOPID_SHIFT
) &
1460 ADP_DP_CS_1_AUX_RX_HOPID_MASK
;
1462 return tb_port_write(port
, data
, TB_CFG_PORT
,
1463 port
->cap_adap
+ ADP_DP_CS_0
, ARRAY_SIZE(data
));
1467 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1468 * @port: DP adapter port to check
1470 bool tb_dp_port_is_enabled(struct tb_port
*port
)
1474 if (tb_port_read(port
, data
, TB_CFG_PORT
, port
->cap_adap
+ ADP_DP_CS_0
,
1478 return !!(data
[0] & (ADP_DP_CS_0_VE
| ADP_DP_CS_0_AE
));
1482 * tb_dp_port_enable() - Enables/disables DP paths of a port
1483 * @port: DP IN/OUT port
1484 * @enable: Enable/disable DP path
1486 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1487 * calling this function.
1489 int tb_dp_port_enable(struct tb_port
*port
, bool enable
)
1494 ret
= tb_port_read(port
, data
, TB_CFG_PORT
,
1495 port
->cap_adap
+ ADP_DP_CS_0
, ARRAY_SIZE(data
));
1500 data
[0] |= ADP_DP_CS_0_VE
| ADP_DP_CS_0_AE
;
1502 data
[0] &= ~(ADP_DP_CS_0_VE
| ADP_DP_CS_0_AE
);
1504 return tb_port_write(port
, data
, TB_CFG_PORT
,
1505 port
->cap_adap
+ ADP_DP_CS_0
, ARRAY_SIZE(data
));
1508 /* switch utility functions */
1510 static const char *tb_switch_generation_name(const struct tb_switch
*sw
)
1512 switch (sw
->generation
) {
1514 return "Thunderbolt 1";
1516 return "Thunderbolt 2";
1518 return "Thunderbolt 3";
1526 static void tb_dump_switch(const struct tb
*tb
, const struct tb_switch
*sw
)
1528 const struct tb_regs_switch_header
*regs
= &sw
->config
;
1530 tb_dbg(tb
, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1531 tb_switch_generation_name(sw
), regs
->vendor_id
, regs
->device_id
,
1532 regs
->revision
, regs
->thunderbolt_version
);
1533 tb_dbg(tb
, " Max Port Number: %d\n", regs
->max_port_number
);
1534 tb_dbg(tb
, " Config:\n");
1536 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1537 regs
->upstream_port_number
, regs
->depth
,
1538 (((u64
) regs
->route_hi
) << 32) | regs
->route_lo
,
1539 regs
->enabled
, regs
->plug_events_delay
);
1540 tb_dbg(tb
, " unknown1: %#x unknown4: %#x\n",
1541 regs
->__unknown1
, regs
->__unknown4
);
1544 static int tb_switch_reset_host(struct tb_switch
*sw
)
1546 if (sw
->generation
> 1) {
1547 struct tb_port
*port
;
1549 tb_switch_for_each_port(sw
, port
) {
1553 * For lane adapters we issue downstream port
1554 * reset and clear up path config spaces.
1556 * For protocol adapters we disable the path and
1557 * clear path config space one by one (from 8 to
1558 * Max Input HopID of the adapter).
1560 if (tb_port_is_null(port
) && !tb_is_upstream_port(port
)) {
1561 ret
= tb_port_reset(port
);
1564 } else if (tb_port_is_usb3_down(port
) ||
1565 tb_port_is_usb3_up(port
)) {
1566 tb_usb3_port_enable(port
, false);
1567 } else if (tb_port_is_dpin(port
) ||
1568 tb_port_is_dpout(port
)) {
1569 tb_dp_port_enable(port
, false);
1570 } else if (tb_port_is_pcie_down(port
) ||
1571 tb_port_is_pcie_up(port
)) {
1572 tb_pci_port_enable(port
, false);
1577 /* Cleanup path config space of protocol adapter */
1578 for (i
= TB_PATH_MIN_HOPID
;
1579 i
<= port
->config
.max_in_hop_id
; i
++) {
1580 ret
= tb_path_deactivate_hop(port
, i
);
1586 struct tb_cfg_result res
;
1588 /* Thunderbolt 1 uses the "reset" config space packet */
1589 res
.err
= tb_sw_write(sw
, ((u32
*) &sw
->config
) + 2,
1590 TB_CFG_SWITCH
, 2, 2);
1593 res
= tb_cfg_reset(sw
->tb
->ctl
, tb_route(sw
));
1596 else if (res
.err
< 0)
1603 static int tb_switch_reset_device(struct tb_switch
*sw
)
1605 return tb_port_reset(tb_switch_downstream_port(sw
));
1608 static bool tb_switch_enumerated(struct tb_switch
*sw
)
1614 * Read directly from the hardware because we use this also
1615 * during system sleep where sw->config.enabled is already set
1618 ret
= tb_sw_read(sw
, &val
, TB_CFG_SWITCH
, ROUTER_CS_3
, 1);
1622 return !!(val
& ROUTER_CS_3_V
);
1626 * tb_switch_reset() - Perform reset to the router
1627 * @sw: Router to reset
1629 * Issues reset to the router @sw. Can be used for any router. For host
1630 * routers, resets all the downstream ports and cleans up path config
1631 * spaces accordingly. For device routers issues downstream port reset
1632 * through the parent router, so as side effect there will be unplug
1633 * soon after this is finished.
1635 * If the router is not enumerated does nothing.
1637 * Returns %0 on success or negative errno in case of failure.
1639 int tb_switch_reset(struct tb_switch
*sw
)
1644 * We cannot access the port config spaces unless the router is
1645 * already enumerated. If the router is not enumerated it is
1646 * equal to being reset so we can skip that here.
1648 if (!tb_switch_enumerated(sw
))
1651 tb_sw_dbg(sw
, "resetting\n");
1654 ret
= tb_switch_reset_device(sw
);
1656 ret
= tb_switch_reset_host(sw
);
1659 tb_sw_warn(sw
, "failed to reset\n");
1665 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1666 * @sw: Router to read the offset value from
1667 * @offset: Offset in the router config space to read from
1668 * @bit: Bit mask in the offset to wait for
1669 * @value: Value of the bits to wait for
1670 * @timeout_msec: Timeout in ms how long to wait
1672 * Wait till the specified bits in specified offset reach specified value.
1673 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1674 * within the given timeout or a negative errno in case of failure.
1676 int tb_switch_wait_for_bit(struct tb_switch
*sw
, u32 offset
, u32 bit
,
1677 u32 value
, int timeout_msec
)
1679 ktime_t timeout
= ktime_add_ms(ktime_get(), timeout_msec
);
1685 ret
= tb_sw_read(sw
, &val
, TB_CFG_SWITCH
, offset
, 1);
1689 if ((val
& bit
) == value
)
1692 usleep_range(50, 100);
1693 } while (ktime_before(ktime_get(), timeout
));
1699 * tb_plug_events_active() - enable/disable plug events on a switch
1701 * Also configures a sane plug_events_delay of 255ms.
1703 * Return: Returns 0 on success or an error code on failure.
1705 static int tb_plug_events_active(struct tb_switch
*sw
, bool active
)
1710 if (tb_switch_is_icm(sw
) || tb_switch_is_usb4(sw
))
1713 sw
->config
.plug_events_delay
= 0xff;
1714 res
= tb_sw_write(sw
, ((u32
*) &sw
->config
) + 4, TB_CFG_SWITCH
, 4, 1);
1718 res
= tb_sw_read(sw
, &data
, TB_CFG_SWITCH
, sw
->cap_plug_events
+ 1, 1);
1723 data
= data
& 0xFFFFFF83;
1724 switch (sw
->config
.device_id
) {
1725 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE
:
1726 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE
:
1727 case PCI_DEVICE_ID_INTEL_PORT_RIDGE
:
1731 * Skip Alpine Ridge, it needs to have vendor
1732 * specific USB hotplug event enabled for the
1733 * internal xHCI to work.
1735 if (!tb_switch_is_alpine_ridge(sw
))
1736 data
|= TB_PLUG_EVENTS_USB_DISABLE
;
1741 return tb_sw_write(sw
, &data
, TB_CFG_SWITCH
,
1742 sw
->cap_plug_events
+ 1, 1);
1745 static ssize_t
authorized_show(struct device
*dev
,
1746 struct device_attribute
*attr
,
1749 struct tb_switch
*sw
= tb_to_switch(dev
);
1751 return sysfs_emit(buf
, "%u\n", sw
->authorized
);
1754 static int disapprove_switch(struct device
*dev
, void *not_used
)
1756 char *envp
[] = { "AUTHORIZED=0", NULL
};
1757 struct tb_switch
*sw
;
1759 sw
= tb_to_switch(dev
);
1760 if (sw
&& sw
->authorized
) {
1763 /* First children */
1764 ret
= device_for_each_child_reverse(&sw
->dev
, NULL
, disapprove_switch
);
1768 ret
= tb_domain_disapprove_switch(sw
->tb
, sw
);
1773 kobject_uevent_env(&sw
->dev
.kobj
, KOBJ_CHANGE
, envp
);
1779 static int tb_switch_set_authorized(struct tb_switch
*sw
, unsigned int val
)
1781 char envp_string
[13];
1783 char *envp
[] = { envp_string
, NULL
};
1785 if (!mutex_trylock(&sw
->tb
->lock
))
1786 return restart_syscall();
1788 if (!!sw
->authorized
== !!val
)
1792 /* Disapprove switch */
1795 ret
= disapprove_switch(&sw
->dev
, NULL
);
1800 /* Approve switch */
1803 ret
= tb_domain_approve_switch_key(sw
->tb
, sw
);
1805 ret
= tb_domain_approve_switch(sw
->tb
, sw
);
1808 /* Challenge switch */
1811 ret
= tb_domain_challenge_switch_key(sw
->tb
, sw
);
1819 sw
->authorized
= val
;
1821 * Notify status change to the userspace, informing the new
1822 * value of /sys/bus/thunderbolt/devices/.../authorized.
1824 sprintf(envp_string
, "AUTHORIZED=%u", sw
->authorized
);
1825 kobject_uevent_env(&sw
->dev
.kobj
, KOBJ_CHANGE
, envp
);
1829 mutex_unlock(&sw
->tb
->lock
);
1833 static ssize_t
authorized_store(struct device
*dev
,
1834 struct device_attribute
*attr
,
1835 const char *buf
, size_t count
)
1837 struct tb_switch
*sw
= tb_to_switch(dev
);
1841 ret
= kstrtouint(buf
, 0, &val
);
1847 pm_runtime_get_sync(&sw
->dev
);
1848 ret
= tb_switch_set_authorized(sw
, val
);
1849 pm_runtime_mark_last_busy(&sw
->dev
);
1850 pm_runtime_put_autosuspend(&sw
->dev
);
1852 return ret
? ret
: count
;
1854 static DEVICE_ATTR_RW(authorized
);
1856 static ssize_t
boot_show(struct device
*dev
, struct device_attribute
*attr
,
1859 struct tb_switch
*sw
= tb_to_switch(dev
);
1861 return sysfs_emit(buf
, "%u\n", sw
->boot
);
1863 static DEVICE_ATTR_RO(boot
);
1865 static ssize_t
device_show(struct device
*dev
, struct device_attribute
*attr
,
1868 struct tb_switch
*sw
= tb_to_switch(dev
);
1870 return sysfs_emit(buf
, "%#x\n", sw
->device
);
1872 static DEVICE_ATTR_RO(device
);
1875 device_name_show(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1877 struct tb_switch
*sw
= tb_to_switch(dev
);
1879 return sysfs_emit(buf
, "%s\n", sw
->device_name
?: "");
1881 static DEVICE_ATTR_RO(device_name
);
1884 generation_show(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1886 struct tb_switch
*sw
= tb_to_switch(dev
);
1888 return sysfs_emit(buf
, "%u\n", sw
->generation
);
1890 static DEVICE_ATTR_RO(generation
);
1892 static ssize_t
key_show(struct device
*dev
, struct device_attribute
*attr
,
1895 struct tb_switch
*sw
= tb_to_switch(dev
);
1898 if (!mutex_trylock(&sw
->tb
->lock
))
1899 return restart_syscall();
1902 ret
= sysfs_emit(buf
, "%*phN\n", TB_SWITCH_KEY_SIZE
, sw
->key
);
1904 ret
= sysfs_emit(buf
, "\n");
1906 mutex_unlock(&sw
->tb
->lock
);
1910 static ssize_t
key_store(struct device
*dev
, struct device_attribute
*attr
,
1911 const char *buf
, size_t count
)
1913 struct tb_switch
*sw
= tb_to_switch(dev
);
1914 u8 key
[TB_SWITCH_KEY_SIZE
];
1915 ssize_t ret
= count
;
1918 if (!strcmp(buf
, "\n"))
1920 else if (hex2bin(key
, buf
, sizeof(key
)))
1923 if (!mutex_trylock(&sw
->tb
->lock
))
1924 return restart_syscall();
1926 if (sw
->authorized
) {
1933 sw
->key
= kmemdup(key
, sizeof(key
), GFP_KERNEL
);
1939 mutex_unlock(&sw
->tb
->lock
);
1942 static DEVICE_ATTR(key
, 0600, key_show
, key_store
);
1944 static ssize_t
speed_show(struct device
*dev
, struct device_attribute
*attr
,
1947 struct tb_switch
*sw
= tb_to_switch(dev
);
1949 return sysfs_emit(buf
, "%u.0 Gb/s\n", sw
->link_speed
);
1953 * Currently all lanes must run at the same speed but we expose here
1954 * both directions to allow possible asymmetric links in the future.
1956 static DEVICE_ATTR(rx_speed
, 0444, speed_show
, NULL
);
1957 static DEVICE_ATTR(tx_speed
, 0444, speed_show
, NULL
);
1959 static ssize_t
rx_lanes_show(struct device
*dev
, struct device_attribute
*attr
,
1962 struct tb_switch
*sw
= tb_to_switch(dev
);
1965 switch (sw
->link_width
) {
1966 case TB_LINK_WIDTH_SINGLE
:
1967 case TB_LINK_WIDTH_ASYM_TX
:
1970 case TB_LINK_WIDTH_DUAL
:
1973 case TB_LINK_WIDTH_ASYM_RX
:
1981 return sysfs_emit(buf
, "%u\n", width
);
1983 static DEVICE_ATTR(rx_lanes
, 0444, rx_lanes_show
, NULL
);
1985 static ssize_t
tx_lanes_show(struct device
*dev
, struct device_attribute
*attr
,
1988 struct tb_switch
*sw
= tb_to_switch(dev
);
1991 switch (sw
->link_width
) {
1992 case TB_LINK_WIDTH_SINGLE
:
1993 case TB_LINK_WIDTH_ASYM_RX
:
1996 case TB_LINK_WIDTH_DUAL
:
1999 case TB_LINK_WIDTH_ASYM_TX
:
2007 return sysfs_emit(buf
, "%u\n", width
);
2009 static DEVICE_ATTR(tx_lanes
, 0444, tx_lanes_show
, NULL
);
2011 static ssize_t
nvm_authenticate_show(struct device
*dev
,
2012 struct device_attribute
*attr
, char *buf
)
2014 struct tb_switch
*sw
= tb_to_switch(dev
);
2017 nvm_get_auth_status(sw
, &status
);
2018 return sysfs_emit(buf
, "%#x\n", status
);
2021 static ssize_t
nvm_authenticate_sysfs(struct device
*dev
, const char *buf
,
2024 struct tb_switch
*sw
= tb_to_switch(dev
);
2027 pm_runtime_get_sync(&sw
->dev
);
2029 if (!mutex_trylock(&sw
->tb
->lock
)) {
2030 ret
= restart_syscall();
2034 if (sw
->no_nvm_upgrade
) {
2039 /* If NVMem devices are not yet added */
2045 ret
= kstrtoint(buf
, 10, &val
);
2049 /* Always clear the authentication status */
2050 nvm_clear_auth_status(sw
);
2053 if (val
== AUTHENTICATE_ONLY
) {
2057 ret
= nvm_authenticate(sw
, true);
2059 if (!sw
->nvm
->flushed
) {
2060 if (!sw
->nvm
->buf
) {
2065 ret
= nvm_validate_and_write(sw
);
2066 if (ret
|| val
== WRITE_ONLY
)
2069 if (val
== WRITE_AND_AUTHENTICATE
) {
2071 ret
= tb_lc_force_power(sw
);
2073 ret
= nvm_authenticate(sw
, false);
2079 mutex_unlock(&sw
->tb
->lock
);
2081 pm_runtime_mark_last_busy(&sw
->dev
);
2082 pm_runtime_put_autosuspend(&sw
->dev
);
2087 static ssize_t
nvm_authenticate_store(struct device
*dev
,
2088 struct device_attribute
*attr
, const char *buf
, size_t count
)
2090 int ret
= nvm_authenticate_sysfs(dev
, buf
, false);
2095 static DEVICE_ATTR_RW(nvm_authenticate
);
2097 static ssize_t
nvm_authenticate_on_disconnect_show(struct device
*dev
,
2098 struct device_attribute
*attr
, char *buf
)
2100 return nvm_authenticate_show(dev
, attr
, buf
);
2103 static ssize_t
nvm_authenticate_on_disconnect_store(struct device
*dev
,
2104 struct device_attribute
*attr
, const char *buf
, size_t count
)
2108 ret
= nvm_authenticate_sysfs(dev
, buf
, true);
2109 return ret
? ret
: count
;
2111 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect
);
2113 static ssize_t
nvm_version_show(struct device
*dev
,
2114 struct device_attribute
*attr
, char *buf
)
2116 struct tb_switch
*sw
= tb_to_switch(dev
);
2119 if (!mutex_trylock(&sw
->tb
->lock
))
2120 return restart_syscall();
2127 ret
= sysfs_emit(buf
, "%x.%x\n", sw
->nvm
->major
, sw
->nvm
->minor
);
2129 mutex_unlock(&sw
->tb
->lock
);
2133 static DEVICE_ATTR_RO(nvm_version
);
2135 static ssize_t
vendor_show(struct device
*dev
, struct device_attribute
*attr
,
2138 struct tb_switch
*sw
= tb_to_switch(dev
);
2140 return sysfs_emit(buf
, "%#x\n", sw
->vendor
);
2142 static DEVICE_ATTR_RO(vendor
);
2145 vendor_name_show(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2147 struct tb_switch
*sw
= tb_to_switch(dev
);
2149 return sysfs_emit(buf
, "%s\n", sw
->vendor_name
?: "");
2151 static DEVICE_ATTR_RO(vendor_name
);
2153 static ssize_t
unique_id_show(struct device
*dev
, struct device_attribute
*attr
,
2156 struct tb_switch
*sw
= tb_to_switch(dev
);
2158 return sysfs_emit(buf
, "%pUb\n", sw
->uuid
);
2160 static DEVICE_ATTR_RO(unique_id
);
2162 static struct attribute
*switch_attrs
[] = {
2163 &dev_attr_authorized
.attr
,
2164 &dev_attr_boot
.attr
,
2165 &dev_attr_device
.attr
,
2166 &dev_attr_device_name
.attr
,
2167 &dev_attr_generation
.attr
,
2169 &dev_attr_nvm_authenticate
.attr
,
2170 &dev_attr_nvm_authenticate_on_disconnect
.attr
,
2171 &dev_attr_nvm_version
.attr
,
2172 &dev_attr_rx_speed
.attr
,
2173 &dev_attr_rx_lanes
.attr
,
2174 &dev_attr_tx_speed
.attr
,
2175 &dev_attr_tx_lanes
.attr
,
2176 &dev_attr_vendor
.attr
,
2177 &dev_attr_vendor_name
.attr
,
2178 &dev_attr_unique_id
.attr
,
2182 static umode_t
switch_attr_is_visible(struct kobject
*kobj
,
2183 struct attribute
*attr
, int n
)
2185 struct device
*dev
= kobj_to_dev(kobj
);
2186 struct tb_switch
*sw
= tb_to_switch(dev
);
2188 if (attr
== &dev_attr_authorized
.attr
) {
2189 if (sw
->tb
->security_level
== TB_SECURITY_NOPCIE
||
2190 sw
->tb
->security_level
== TB_SECURITY_DPONLY
)
2192 } else if (attr
== &dev_attr_device
.attr
) {
2195 } else if (attr
== &dev_attr_device_name
.attr
) {
2196 if (!sw
->device_name
)
2198 } else if (attr
== &dev_attr_vendor
.attr
) {
2201 } else if (attr
== &dev_attr_vendor_name
.attr
) {
2202 if (!sw
->vendor_name
)
2204 } else if (attr
== &dev_attr_key
.attr
) {
2206 sw
->tb
->security_level
== TB_SECURITY_SECURE
&&
2207 sw
->security_level
== TB_SECURITY_SECURE
)
2210 } else if (attr
== &dev_attr_rx_speed
.attr
||
2211 attr
== &dev_attr_rx_lanes
.attr
||
2212 attr
== &dev_attr_tx_speed
.attr
||
2213 attr
== &dev_attr_tx_lanes
.attr
) {
2217 } else if (attr
== &dev_attr_nvm_authenticate
.attr
) {
2218 if (nvm_upgradeable(sw
))
2221 } else if (attr
== &dev_attr_nvm_version
.attr
) {
2222 if (nvm_readable(sw
))
2225 } else if (attr
== &dev_attr_boot
.attr
) {
2229 } else if (attr
== &dev_attr_nvm_authenticate_on_disconnect
.attr
) {
2230 if (sw
->quirks
& QUIRK_FORCE_POWER_LINK_CONTROLLER
)
2235 return sw
->safe_mode
? 0 : attr
->mode
;
2238 static const struct attribute_group switch_group
= {
2239 .is_visible
= switch_attr_is_visible
,
2240 .attrs
= switch_attrs
,
2243 static const struct attribute_group
*switch_groups
[] = {
2248 static void tb_switch_release(struct device
*dev
)
2250 struct tb_switch
*sw
= tb_to_switch(dev
);
2251 struct tb_port
*port
;
2253 dma_port_free(sw
->dma_port
);
2255 tb_switch_for_each_port(sw
, port
) {
2256 ida_destroy(&port
->in_hopids
);
2257 ida_destroy(&port
->out_hopids
);
2261 kfree(sw
->device_name
);
2262 kfree(sw
->vendor_name
);
2269 static int tb_switch_uevent(const struct device
*dev
, struct kobj_uevent_env
*env
)
2271 const struct tb_switch
*sw
= tb_to_switch(dev
);
2274 if (tb_switch_is_usb4(sw
)) {
2275 if (add_uevent_var(env
, "USB4_VERSION=%u.0",
2276 usb4_switch_version(sw
)))
2280 if (!tb_route(sw
)) {
2283 const struct tb_port
*port
;
2286 /* Device is hub if it has any downstream ports */
2287 tb_switch_for_each_port(sw
, port
) {
2288 if (!port
->disabled
&& !tb_is_upstream_port(port
) &&
2289 tb_port_is_null(port
)) {
2295 type
= hub
? "hub" : "device";
2298 if (add_uevent_var(env
, "USB4_TYPE=%s", type
))
2304 * Currently only need to provide the callbacks. Everything else is handled
2305 * in the connection manager.
2307 static int __maybe_unused
tb_switch_runtime_suspend(struct device
*dev
)
2309 struct tb_switch
*sw
= tb_to_switch(dev
);
2310 const struct tb_cm_ops
*cm_ops
= sw
->tb
->cm_ops
;
2312 if (cm_ops
->runtime_suspend_switch
)
2313 return cm_ops
->runtime_suspend_switch(sw
);
2318 static int __maybe_unused
tb_switch_runtime_resume(struct device
*dev
)
2320 struct tb_switch
*sw
= tb_to_switch(dev
);
2321 const struct tb_cm_ops
*cm_ops
= sw
->tb
->cm_ops
;
2323 if (cm_ops
->runtime_resume_switch
)
2324 return cm_ops
->runtime_resume_switch(sw
);
2328 static const struct dev_pm_ops tb_switch_pm_ops
= {
2329 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend
, tb_switch_runtime_resume
,
2333 const struct device_type tb_switch_type
= {
2334 .name
= "thunderbolt_device",
2335 .release
= tb_switch_release
,
2336 .uevent
= tb_switch_uevent
,
2337 .pm
= &tb_switch_pm_ops
,
2340 static int tb_switch_get_generation(struct tb_switch
*sw
)
2342 if (tb_switch_is_usb4(sw
))
2345 if (sw
->config
.vendor_id
== PCI_VENDOR_ID_INTEL
) {
2346 switch (sw
->config
.device_id
) {
2347 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE
:
2348 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE
:
2349 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK
:
2350 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C
:
2351 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C
:
2352 case PCI_DEVICE_ID_INTEL_PORT_RIDGE
:
2353 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE
:
2354 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE
:
2357 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE
:
2358 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE
:
2359 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE
:
2362 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE
:
2363 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE
:
2364 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE
:
2365 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE
:
2366 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE
:
2367 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE
:
2368 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE
:
2369 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE
:
2370 case PCI_DEVICE_ID_INTEL_ICL_NHI0
:
2371 case PCI_DEVICE_ID_INTEL_ICL_NHI1
:
2377 * For unknown switches assume generation to be 1 to be on the
2380 tb_sw_warn(sw
, "unsupported switch device id %#x\n",
2381 sw
->config
.device_id
);
2385 static bool tb_switch_exceeds_max_depth(const struct tb_switch
*sw
, int depth
)
2389 if (tb_switch_is_usb4(sw
) ||
2390 (sw
->tb
->root_switch
&& tb_switch_is_usb4(sw
->tb
->root_switch
)))
2391 max_depth
= USB4_SWITCH_MAX_DEPTH
;
2393 max_depth
= TB_SWITCH_MAX_DEPTH
;
2395 return depth
> max_depth
;
2399 * tb_switch_alloc() - allocate a switch
2400 * @tb: Pointer to the owning domain
2401 * @parent: Parent device for this switch
2402 * @route: Route string for this switch
2404 * Allocates and initializes a switch. Will not upload configuration to
2405 * the switch. For that you need to call tb_switch_configure()
2406 * separately. The returned switch should be released by calling
2409 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2412 struct tb_switch
*tb_switch_alloc(struct tb
*tb
, struct device
*parent
,
2415 struct tb_switch
*sw
;
2419 /* Unlock the downstream port so we can access the switch below */
2421 struct tb_switch
*parent_sw
= tb_to_switch(parent
);
2422 struct tb_port
*down
;
2424 down
= tb_port_at(route
, parent_sw
);
2425 tb_port_unlock(down
);
2428 depth
= tb_route_length(route
);
2430 upstream_port
= tb_cfg_get_upstream_port(tb
->ctl
, route
);
2431 if (upstream_port
< 0)
2432 return ERR_PTR(upstream_port
);
2434 sw
= kzalloc(sizeof(*sw
), GFP_KERNEL
);
2436 return ERR_PTR(-ENOMEM
);
2439 ret
= tb_cfg_read(tb
->ctl
, &sw
->config
, route
, 0, TB_CFG_SWITCH
, 0, 5);
2441 goto err_free_sw_ports
;
2443 sw
->generation
= tb_switch_get_generation(sw
);
2445 tb_dbg(tb
, "current switch config:\n");
2446 tb_dump_switch(tb
, sw
);
2448 /* configure switch */
2449 sw
->config
.upstream_port_number
= upstream_port
;
2450 sw
->config
.depth
= depth
;
2451 sw
->config
.route_hi
= upper_32_bits(route
);
2452 sw
->config
.route_lo
= lower_32_bits(route
);
2453 sw
->config
.enabled
= 0;
2455 /* Make sure we do not exceed maximum topology limit */
2456 if (tb_switch_exceeds_max_depth(sw
, depth
)) {
2457 ret
= -EADDRNOTAVAIL
;
2458 goto err_free_sw_ports
;
2461 /* initialize ports */
2462 sw
->ports
= kcalloc(sw
->config
.max_port_number
+ 1, sizeof(*sw
->ports
),
2466 goto err_free_sw_ports
;
2469 for (i
= 0; i
<= sw
->config
.max_port_number
; i
++) {
2470 /* minimum setup for tb_find_cap and tb_drom_read to work */
2471 sw
->ports
[i
].sw
= sw
;
2472 sw
->ports
[i
].port
= i
;
2474 /* Control port does not need HopID allocation */
2476 ida_init(&sw
->ports
[i
].in_hopids
);
2477 ida_init(&sw
->ports
[i
].out_hopids
);
2481 ret
= tb_switch_find_vse_cap(sw
, TB_VSE_CAP_PLUG_EVENTS
);
2483 sw
->cap_plug_events
= ret
;
2485 ret
= tb_switch_find_vse_cap(sw
, TB_VSE_CAP_TIME2
);
2487 sw
->cap_vsec_tmu
= ret
;
2489 ret
= tb_switch_find_vse_cap(sw
, TB_VSE_CAP_LINK_CONTROLLER
);
2493 ret
= tb_switch_find_vse_cap(sw
, TB_VSE_CAP_CP_LP
);
2497 /* Root switch is always authorized */
2499 sw
->authorized
= true;
2501 device_initialize(&sw
->dev
);
2502 sw
->dev
.parent
= parent
;
2503 sw
->dev
.bus
= &tb_bus_type
;
2504 sw
->dev
.type
= &tb_switch_type
;
2505 sw
->dev
.groups
= switch_groups
;
2506 dev_set_name(&sw
->dev
, "%u-%llx", tb
->index
, tb_route(sw
));
2514 return ERR_PTR(ret
);
2518 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2519 * @tb: Pointer to the owning domain
2520 * @parent: Parent device for this switch
2521 * @route: Route string for this switch
2523 * This creates a switch in safe mode. This means the switch pretty much
2524 * lacks all capabilities except DMA configuration port before it is
2525 * flashed with a valid NVM firmware.
2527 * The returned switch must be released by calling tb_switch_put().
2529 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2532 tb_switch_alloc_safe_mode(struct tb
*tb
, struct device
*parent
, u64 route
)
2534 struct tb_switch
*sw
;
2536 sw
= kzalloc(sizeof(*sw
), GFP_KERNEL
);
2538 return ERR_PTR(-ENOMEM
);
2541 sw
->config
.depth
= tb_route_length(route
);
2542 sw
->config
.route_hi
= upper_32_bits(route
);
2543 sw
->config
.route_lo
= lower_32_bits(route
);
2544 sw
->safe_mode
= true;
2546 device_initialize(&sw
->dev
);
2547 sw
->dev
.parent
= parent
;
2548 sw
->dev
.bus
= &tb_bus_type
;
2549 sw
->dev
.type
= &tb_switch_type
;
2550 sw
->dev
.groups
= switch_groups
;
2551 dev_set_name(&sw
->dev
, "%u-%llx", tb
->index
, tb_route(sw
));
2557 * tb_switch_configure() - Uploads configuration to the switch
2558 * @sw: Switch to configure
2560 * Call this function before the switch is added to the system. It will
2561 * upload configuration to the switch and makes it available for the
2562 * connection manager to use. Can be called to the switch again after
2563 * resume from low power states to re-initialize it.
2565 * Return: %0 in case of success and negative errno in case of failure
2567 int tb_switch_configure(struct tb_switch
*sw
)
2569 struct tb
*tb
= sw
->tb
;
2573 route
= tb_route(sw
);
2575 tb_dbg(tb
, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2576 sw
->config
.enabled
? "restoring" : "initializing", route
,
2577 tb_route_length(route
), sw
->config
.upstream_port_number
);
2579 sw
->config
.enabled
= 1;
2581 if (tb_switch_is_usb4(sw
)) {
2583 * For USB4 devices, we need to program the CM version
2584 * accordingly so that it knows to expose all the
2585 * additional capabilities. Program it according to USB4
2586 * version to avoid changing existing (v1) routers behaviour.
2588 if (usb4_switch_version(sw
) < 2)
2589 sw
->config
.cmuv
= ROUTER_CS_4_CMUV_V1
;
2591 sw
->config
.cmuv
= ROUTER_CS_4_CMUV_V2
;
2592 sw
->config
.plug_events_delay
= 0xa;
2594 /* Enumerate the switch */
2595 ret
= tb_sw_write(sw
, (u32
*)&sw
->config
+ 1, TB_CFG_SWITCH
,
2600 ret
= usb4_switch_setup(sw
);
2602 if (sw
->config
.vendor_id
!= PCI_VENDOR_ID_INTEL
)
2603 tb_sw_warn(sw
, "unknown switch vendor id %#x\n",
2604 sw
->config
.vendor_id
);
2606 if (!sw
->cap_plug_events
) {
2607 tb_sw_warn(sw
, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2611 /* Enumerate the switch */
2612 ret
= tb_sw_write(sw
, (u32
*)&sw
->config
+ 1, TB_CFG_SWITCH
,
2618 return tb_plug_events_active(sw
, true);
2622 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2623 * @sw: Router to configure
2625 * Needs to be called before any tunnels can be setup through the
2626 * router. Can be called to any router.
2628 * Returns %0 in success and negative errno otherwise.
2630 int tb_switch_configuration_valid(struct tb_switch
*sw
)
2632 if (tb_switch_is_usb4(sw
))
2633 return usb4_switch_configuration_valid(sw
);
2637 static int tb_switch_set_uuid(struct tb_switch
*sw
)
2646 if (tb_switch_is_usb4(sw
)) {
2647 ret
= usb4_switch_read_uid(sw
, &sw
->uid
);
2653 * The newer controllers include fused UUID as part of
2654 * link controller specific registers
2656 ret
= tb_lc_read_uuid(sw
, uuid
);
2666 * ICM generates UUID based on UID and fills the upper
2667 * two words with ones. This is not strictly following
2668 * UUID format but we want to be compatible with it so
2669 * we do the same here.
2671 uuid
[0] = sw
->uid
& 0xffffffff;
2672 uuid
[1] = (sw
->uid
>> 32) & 0xffffffff;
2673 uuid
[2] = 0xffffffff;
2674 uuid
[3] = 0xffffffff;
2677 sw
->uuid
= kmemdup(uuid
, sizeof(uuid
), GFP_KERNEL
);
2683 static int tb_switch_add_dma_port(struct tb_switch
*sw
)
2688 switch (sw
->generation
) {
2690 /* Only root switch can be upgraded */
2697 ret
= tb_switch_set_uuid(sw
);
2704 * DMA port is the only thing available when the switch
2712 if (sw
->no_nvm_upgrade
)
2715 if (tb_switch_is_usb4(sw
)) {
2716 ret
= usb4_switch_nvm_authenticate_status(sw
, &status
);
2721 tb_sw_info(sw
, "switch flash authentication failed\n");
2722 nvm_set_auth_status(sw
, status
);
2728 /* Root switch DMA port requires running firmware */
2729 if (!tb_route(sw
) && !tb_switch_is_icm(sw
))
2732 sw
->dma_port
= dma_port_alloc(sw
);
2737 * If there is status already set then authentication failed
2738 * when the dma_port_flash_update_auth() returned. Power cycling
2739 * is not needed (it was done already) so only thing we do here
2740 * is to unblock runtime PM of the root port.
2742 nvm_get_auth_status(sw
, &status
);
2745 nvm_authenticate_complete_dma_port(sw
);
2750 * Check status of the previous flash authentication. If there
2751 * is one we need to power cycle the switch in any case to make
2752 * it functional again.
2754 ret
= dma_port_flash_update_auth_status(sw
->dma_port
, &status
);
2758 /* Now we can allow root port to suspend again */
2760 nvm_authenticate_complete_dma_port(sw
);
2763 tb_sw_info(sw
, "switch flash authentication failed\n");
2764 nvm_set_auth_status(sw
, status
);
2767 tb_sw_info(sw
, "power cycling the switch now\n");
2768 dma_port_power_cycle(sw
->dma_port
);
2771 * We return error here which causes the switch adding failure.
2772 * It should appear back after power cycle is complete.
2777 static void tb_switch_default_link_ports(struct tb_switch
*sw
)
2781 for (i
= 1; i
<= sw
->config
.max_port_number
; i
++) {
2782 struct tb_port
*port
= &sw
->ports
[i
];
2783 struct tb_port
*subordinate
;
2785 if (!tb_port_is_null(port
))
2788 /* Check for the subordinate port */
2789 if (i
== sw
->config
.max_port_number
||
2790 !tb_port_is_null(&sw
->ports
[i
+ 1]))
2793 /* Link them if not already done so (by DROM) */
2794 subordinate
= &sw
->ports
[i
+ 1];
2795 if (!port
->dual_link_port
&& !subordinate
->dual_link_port
) {
2797 port
->dual_link_port
= subordinate
;
2798 subordinate
->link_nr
= 1;
2799 subordinate
->dual_link_port
= port
;
2801 tb_sw_dbg(sw
, "linked ports %d <-> %d\n",
2802 port
->port
, subordinate
->port
);
2807 static bool tb_switch_lane_bonding_possible(struct tb_switch
*sw
)
2809 const struct tb_port
*up
= tb_upstream_port(sw
);
2811 if (!up
->dual_link_port
|| !up
->dual_link_port
->remote
)
2814 if (tb_switch_is_usb4(sw
))
2815 return usb4_switch_lane_bonding_possible(sw
);
2816 return tb_lc_lane_bonding_possible(sw
);
2819 static int tb_switch_update_link_attributes(struct tb_switch
*sw
)
2822 bool change
= false;
2825 if (!tb_route(sw
) || tb_switch_is_icm(sw
))
2828 up
= tb_upstream_port(sw
);
2830 ret
= tb_port_get_link_speed(up
);
2833 if (sw
->link_speed
!= ret
)
2835 sw
->link_speed
= ret
;
2837 ret
= tb_port_get_link_width(up
);
2840 if (sw
->link_width
!= ret
)
2842 sw
->link_width
= ret
;
2844 /* Notify userspace that there is possible link attribute change */
2845 if (device_is_registered(&sw
->dev
) && change
)
2846 kobject_uevent(&sw
->dev
.kobj
, KOBJ_CHANGE
);
2851 /* Must be called after tb_switch_update_link_attributes() */
2852 static void tb_switch_link_init(struct tb_switch
*sw
)
2854 struct tb_port
*up
, *down
;
2857 if (!tb_route(sw
) || tb_switch_is_icm(sw
))
2860 tb_sw_dbg(sw
, "current link speed %u.0 Gb/s\n", sw
->link_speed
);
2861 tb_sw_dbg(sw
, "current link width %s\n", tb_width_name(sw
->link_width
));
2863 bonded
= sw
->link_width
>= TB_LINK_WIDTH_DUAL
;
2866 * Gen 4 links come up as bonded so update the port structures
2869 up
= tb_upstream_port(sw
);
2870 down
= tb_switch_downstream_port(sw
);
2872 up
->bonded
= bonded
;
2873 if (up
->dual_link_port
)
2874 up
->dual_link_port
->bonded
= bonded
;
2875 tb_port_update_credits(up
);
2877 down
->bonded
= bonded
;
2878 if (down
->dual_link_port
)
2879 down
->dual_link_port
->bonded
= bonded
;
2880 tb_port_update_credits(down
);
2882 if (tb_port_get_link_generation(up
) < 4)
2886 * Set the Gen 4 preferred link width. This is what the router
2887 * prefers when the link is brought up. If the router does not
2888 * support asymmetric link configuration, this also will be set
2889 * to TB_LINK_WIDTH_DUAL.
2891 sw
->preferred_link_width
= sw
->link_width
;
2892 tb_sw_dbg(sw
, "preferred link width %s\n",
2893 tb_width_name(sw
->preferred_link_width
));
2897 * tb_switch_lane_bonding_enable() - Enable lane bonding
2898 * @sw: Switch to enable lane bonding
2900 * Connection manager can call this function to enable lane bonding of a
2901 * switch. If conditions are correct and both switches support the feature,
2902 * lanes are bonded. It is safe to call this to any switch.
2904 static int tb_switch_lane_bonding_enable(struct tb_switch
*sw
)
2906 struct tb_port
*up
, *down
;
2910 if (!tb_switch_lane_bonding_possible(sw
))
2913 up
= tb_upstream_port(sw
);
2914 down
= tb_switch_downstream_port(sw
);
2916 if (!tb_port_width_supported(up
, TB_LINK_WIDTH_DUAL
) ||
2917 !tb_port_width_supported(down
, TB_LINK_WIDTH_DUAL
))
2921 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2922 * CL0 and check just for lane 1.
2924 if (tb_wait_for_port(down
->dual_link_port
, false) <= 0)
2927 ret
= tb_port_lane_bonding_enable(up
);
2929 tb_port_warn(up
, "failed to enable lane bonding\n");
2933 ret
= tb_port_lane_bonding_enable(down
);
2935 tb_port_warn(down
, "failed to enable lane bonding\n");
2936 tb_port_lane_bonding_disable(up
);
2940 /* Any of the widths are all bonded */
2941 width
= TB_LINK_WIDTH_DUAL
| TB_LINK_WIDTH_ASYM_TX
|
2942 TB_LINK_WIDTH_ASYM_RX
;
2944 return tb_port_wait_for_link_width(down
, width
, 100);
2948 * tb_switch_lane_bonding_disable() - Disable lane bonding
2949 * @sw: Switch whose lane bonding to disable
2951 * Disables lane bonding between @sw and parent. This can be called even
2952 * if lanes were not bonded originally.
2954 static int tb_switch_lane_bonding_disable(struct tb_switch
*sw
)
2956 struct tb_port
*up
, *down
;
2959 up
= tb_upstream_port(sw
);
2964 * If the link is Gen 4 there is no way to switch the link to
2965 * two single lane links so avoid that here. Also don't bother
2966 * if the link is not up anymore (sw is unplugged).
2968 ret
= tb_port_get_link_generation(up
);
2974 down
= tb_switch_downstream_port(sw
);
2975 tb_port_lane_bonding_disable(up
);
2976 tb_port_lane_bonding_disable(down
);
2979 * It is fine if we get other errors as the router might have
2982 return tb_port_wait_for_link_width(down
, TB_LINK_WIDTH_SINGLE
, 100);
2985 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2986 static int tb_switch_asym_enable(struct tb_switch
*sw
, enum tb_link_width width
)
2988 struct tb_port
*up
, *down
, *port
;
2989 enum tb_link_width down_width
;
2992 up
= tb_upstream_port(sw
);
2993 down
= tb_switch_downstream_port(sw
);
2995 if (width
== TB_LINK_WIDTH_ASYM_TX
) {
2996 down_width
= TB_LINK_WIDTH_ASYM_RX
;
2999 down_width
= TB_LINK_WIDTH_ASYM_TX
;
3003 ret
= tb_port_set_link_width(up
, width
);
3007 ret
= tb_port_set_link_width(down
, down_width
);
3012 * Initiate the change in the router that one of its TX lanes is
3013 * changing to RX but do so only if there is an actual change.
3015 if (sw
->link_width
!= width
) {
3016 ret
= usb4_port_asym_start(port
);
3020 ret
= tb_port_wait_for_link_width(up
, width
, 100);
3028 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
3029 static int tb_switch_asym_disable(struct tb_switch
*sw
)
3031 struct tb_port
*up
, *down
;
3034 up
= tb_upstream_port(sw
);
3035 down
= tb_switch_downstream_port(sw
);
3037 ret
= tb_port_set_link_width(up
, TB_LINK_WIDTH_DUAL
);
3041 ret
= tb_port_set_link_width(down
, TB_LINK_WIDTH_DUAL
);
3046 * Initiate the change in the router that has three TX lanes and
3047 * is changing one of its TX lanes to RX but only if there is a
3048 * change in the link width.
3050 if (sw
->link_width
> TB_LINK_WIDTH_DUAL
) {
3051 if (sw
->link_width
== TB_LINK_WIDTH_ASYM_TX
)
3052 ret
= usb4_port_asym_start(up
);
3054 ret
= usb4_port_asym_start(down
);
3058 ret
= tb_port_wait_for_link_width(up
, TB_LINK_WIDTH_DUAL
, 100);
3067 * tb_switch_set_link_width() - Configure router link width
3068 * @sw: Router to configure
3069 * @width: The new link width
3071 * Set device router link width to @width from router upstream port
3072 * perspective. Supports also asymmetric links if the routers boths side
3073 * of the link supports it.
3075 * Does nothing for host router.
3077 * Returns %0 in case of success, negative errno otherwise.
3079 int tb_switch_set_link_width(struct tb_switch
*sw
, enum tb_link_width width
)
3081 struct tb_port
*up
, *down
;
3087 up
= tb_upstream_port(sw
);
3088 down
= tb_switch_downstream_port(sw
);
3091 case TB_LINK_WIDTH_SINGLE
:
3092 ret
= tb_switch_lane_bonding_disable(sw
);
3095 case TB_LINK_WIDTH_DUAL
:
3096 if (sw
->link_width
== TB_LINK_WIDTH_ASYM_TX
||
3097 sw
->link_width
== TB_LINK_WIDTH_ASYM_RX
) {
3098 ret
= tb_switch_asym_disable(sw
);
3102 ret
= tb_switch_lane_bonding_enable(sw
);
3105 case TB_LINK_WIDTH_ASYM_TX
:
3106 case TB_LINK_WIDTH_ASYM_RX
:
3107 ret
= tb_switch_asym_enable(sw
, width
);
3116 tb_sw_warn(sw
, "timeout changing link width\n");
3125 tb_sw_dbg(sw
, "failed to change link width: %d\n", ret
);
3129 tb_port_update_credits(down
);
3130 tb_port_update_credits(up
);
3132 tb_switch_update_link_attributes(sw
);
3134 tb_sw_dbg(sw
, "link width set to %s\n", tb_width_name(width
));
3139 * tb_switch_configure_link() - Set link configured
3140 * @sw: Switch whose link is configured
3142 * Sets the link upstream from @sw configured (from both ends) so that
3143 * it will not be disconnected when the domain exits sleep. Can be
3144 * called for any switch.
3146 * It is recommended that this is called after lane bonding is enabled.
3148 * Returns %0 on success and negative errno in case of error.
3150 int tb_switch_configure_link(struct tb_switch
*sw
)
3152 struct tb_port
*up
, *down
;
3155 if (!tb_route(sw
) || tb_switch_is_icm(sw
))
3158 up
= tb_upstream_port(sw
);
3159 if (tb_switch_is_usb4(up
->sw
))
3160 ret
= usb4_port_configure(up
);
3162 ret
= tb_lc_configure_port(up
);
3167 if (tb_switch_is_usb4(down
->sw
))
3168 return usb4_port_configure(down
);
3169 return tb_lc_configure_port(down
);
3173 * tb_switch_unconfigure_link() - Unconfigure link
3174 * @sw: Switch whose link is unconfigured
3176 * Sets the link unconfigured so the @sw will be disconnected if the
3177 * domain exists sleep.
3179 void tb_switch_unconfigure_link(struct tb_switch
*sw
)
3181 struct tb_port
*up
, *down
;
3183 if (!tb_route(sw
) || tb_switch_is_icm(sw
))
3187 * Unconfigure downstream port so that wake-on-connect can be
3188 * configured after router unplug. No need to unconfigure upstream port
3189 * since its router is unplugged.
3191 up
= tb_upstream_port(sw
);
3193 if (tb_switch_is_usb4(down
->sw
))
3194 usb4_port_unconfigure(down
);
3196 tb_lc_unconfigure_port(down
);
3198 if (sw
->is_unplugged
)
3201 up
= tb_upstream_port(sw
);
3202 if (tb_switch_is_usb4(up
->sw
))
3203 usb4_port_unconfigure(up
);
3205 tb_lc_unconfigure_port(up
);
3208 static void tb_switch_credits_init(struct tb_switch
*sw
)
3210 if (tb_switch_is_icm(sw
))
3212 if (!tb_switch_is_usb4(sw
))
3214 if (usb4_switch_credits_init(sw
))
3215 tb_sw_info(sw
, "failed to determine preferred buffer allocation, using defaults\n");
3218 static int tb_switch_port_hotplug_enable(struct tb_switch
*sw
)
3220 struct tb_port
*port
;
3222 if (tb_switch_is_icm(sw
))
3225 tb_switch_for_each_port(sw
, port
) {
3228 if (!port
->cap_usb4
)
3231 res
= usb4_port_hotplug_enable(port
);
3239 * tb_switch_add() - Add a switch to the domain
3240 * @sw: Switch to add
3242 * This is the last step in adding switch to the domain. It will read
3243 * identification information from DROM and initializes ports so that
3244 * they can be used to connect other switches. The switch will be
3245 * exposed to the userspace when this function successfully returns. To
3246 * remove and release the switch, call tb_switch_remove().
3248 * Return: %0 in case of success and negative errno in case of failure
3250 int tb_switch_add(struct tb_switch
*sw
)
3255 * Initialize DMA control port now before we read DROM. Recent
3256 * host controllers have more complete DROM on NVM that includes
3257 * vendor and model identification strings which we then expose
3258 * to the userspace. NVM can be accessed through DMA
3259 * configuration based mailbox.
3261 ret
= tb_switch_add_dma_port(sw
);
3263 dev_err(&sw
->dev
, "failed to add DMA port\n");
3267 if (!sw
->safe_mode
) {
3268 tb_switch_credits_init(sw
);
3271 ret
= tb_drom_read(sw
);
3273 dev_warn(&sw
->dev
, "reading DROM failed: %d\n", ret
);
3274 tb_sw_dbg(sw
, "uid: %#llx\n", sw
->uid
);
3276 ret
= tb_switch_set_uuid(sw
);
3278 dev_err(&sw
->dev
, "failed to set UUID\n");
3282 for (i
= 0; i
<= sw
->config
.max_port_number
; i
++) {
3283 if (sw
->ports
[i
].disabled
) {
3284 tb_port_dbg(&sw
->ports
[i
], "disabled by eeprom\n");
3287 ret
= tb_init_port(&sw
->ports
[i
]);
3289 dev_err(&sw
->dev
, "failed to initialize port %d\n", i
);
3294 tb_check_quirks(sw
);
3296 tb_switch_default_link_ports(sw
);
3298 ret
= tb_switch_update_link_attributes(sw
);
3302 tb_switch_link_init(sw
);
3304 ret
= tb_switch_clx_init(sw
);
3308 ret
= tb_switch_tmu_init(sw
);
3313 ret
= tb_switch_port_hotplug_enable(sw
);
3317 ret
= device_add(&sw
->dev
);
3319 dev_err(&sw
->dev
, "failed to add device: %d\n", ret
);
3324 dev_info(&sw
->dev
, "new device found, vendor=%#x device=%#x\n",
3325 sw
->vendor
, sw
->device
);
3326 if (sw
->vendor_name
&& sw
->device_name
)
3327 dev_info(&sw
->dev
, "%s %s\n", sw
->vendor_name
,
3331 ret
= usb4_switch_add_ports(sw
);
3333 dev_err(&sw
->dev
, "failed to add USB4 ports\n");
3337 ret
= tb_switch_nvm_add(sw
);
3339 dev_err(&sw
->dev
, "failed to add NVM devices\n");
3344 * Thunderbolt routers do not generate wakeups themselves but
3345 * they forward wakeups from tunneled protocols, so enable it
3348 device_init_wakeup(&sw
->dev
, true);
3350 pm_runtime_set_active(&sw
->dev
);
3352 pm_runtime_set_autosuspend_delay(&sw
->dev
, TB_AUTOSUSPEND_DELAY
);
3353 pm_runtime_use_autosuspend(&sw
->dev
);
3354 pm_runtime_mark_last_busy(&sw
->dev
);
3355 pm_runtime_enable(&sw
->dev
);
3356 pm_request_autosuspend(&sw
->dev
);
3359 tb_switch_debugfs_init(sw
);
3363 usb4_switch_remove_ports(sw
);
3365 device_del(&sw
->dev
);
3371 * tb_switch_remove() - Remove and release a switch
3372 * @sw: Switch to remove
3374 * This will remove the switch from the domain and release it after last
3375 * reference count drops to zero. If there are switches connected below
3376 * this switch, they will be removed as well.
3378 void tb_switch_remove(struct tb_switch
*sw
)
3380 struct tb_port
*port
;
3382 tb_switch_debugfs_remove(sw
);
3385 pm_runtime_get_sync(&sw
->dev
);
3386 pm_runtime_disable(&sw
->dev
);
3389 /* port 0 is the switch itself and never has a remote */
3390 tb_switch_for_each_port(sw
, port
) {
3391 if (tb_port_has_remote(port
)) {
3392 tb_switch_remove(port
->remote
->sw
);
3393 port
->remote
= NULL
;
3394 } else if (port
->xdomain
) {
3395 port
->xdomain
->is_unplugged
= true;
3396 tb_xdomain_remove(port
->xdomain
);
3397 port
->xdomain
= NULL
;
3400 /* Remove any downstream retimers */
3401 tb_retimer_remove_all(port
);
3404 if (!sw
->is_unplugged
)
3405 tb_plug_events_active(sw
, false);
3407 tb_switch_nvm_remove(sw
);
3408 usb4_switch_remove_ports(sw
);
3411 dev_info(&sw
->dev
, "device disconnected\n");
3412 device_unregister(&sw
->dev
);
3416 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3417 * @sw: Router to mark unplugged
3419 void tb_sw_set_unplugged(struct tb_switch
*sw
)
3421 struct tb_port
*port
;
3423 if (sw
== sw
->tb
->root_switch
) {
3424 tb_sw_WARN(sw
, "cannot unplug root switch\n");
3427 if (sw
->is_unplugged
) {
3428 tb_sw_WARN(sw
, "is_unplugged already set\n");
3431 sw
->is_unplugged
= true;
3432 tb_switch_for_each_port(sw
, port
) {
3433 if (tb_port_has_remote(port
))
3434 tb_sw_set_unplugged(port
->remote
->sw
);
3435 else if (port
->xdomain
)
3436 port
->xdomain
->is_unplugged
= true;
3440 static int tb_switch_set_wake(struct tb_switch
*sw
, unsigned int flags
)
3443 tb_sw_dbg(sw
, "enabling wakeup: %#x\n", flags
);
3445 tb_sw_dbg(sw
, "disabling wakeup\n");
3447 if (tb_switch_is_usb4(sw
))
3448 return usb4_switch_set_wake(sw
, flags
);
3449 return tb_lc_set_wake(sw
, flags
);
3452 static void tb_switch_check_wakes(struct tb_switch
*sw
)
3454 if (device_may_wakeup(&sw
->dev
)) {
3455 if (tb_switch_is_usb4(sw
))
3456 usb4_switch_check_wakes(sw
);
3461 * tb_switch_resume() - Resume a switch after sleep
3462 * @sw: Switch to resume
3463 * @runtime: Is this resume from runtime suspend or system sleep
3465 * Resumes and re-enumerates router (and all its children), if still plugged
3466 * after suspend. Don't enumerate device router whose UID was changed during
3467 * suspend. If this is resume from system sleep, notifies PM core about the
3468 * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3469 * upstream port for USB4 routers that shall be always enabled.
3471 int tb_switch_resume(struct tb_switch
*sw
, bool runtime
)
3473 struct tb_port
*port
;
3476 tb_sw_dbg(sw
, "resuming switch\n");
3479 * Check for UID of the connected switches except for root
3480 * switch which we assume cannot be removed.
3486 * Check first that we can still read the switch config
3487 * space. It may be that there is now another domain
3490 err
= tb_cfg_get_upstream_port(sw
->tb
->ctl
, tb_route(sw
));
3492 tb_sw_info(sw
, "switch not present anymore\n");
3496 /* We don't have any way to confirm this was the same device */
3500 if (tb_switch_is_usb4(sw
))
3501 err
= usb4_switch_read_uid(sw
, &uid
);
3503 err
= tb_drom_read_uid_only(sw
, &uid
);
3505 tb_sw_warn(sw
, "uid read failed\n");
3508 if (sw
->uid
!= uid
) {
3510 "changed while suspended (uid %#llx -> %#llx)\n",
3516 err
= tb_switch_configure(sw
);
3521 tb_switch_check_wakes(sw
);
3524 tb_switch_set_wake(sw
, 0);
3526 err
= tb_switch_tmu_init(sw
);
3530 /* check for surviving downstream switches */
3531 tb_switch_for_each_port(sw
, port
) {
3532 if (!tb_port_is_null(port
))
3535 if (!tb_port_resume(port
))
3538 if (tb_wait_for_port(port
, true) <= 0) {
3540 "lost during suspend, disconnecting\n");
3541 if (tb_port_has_remote(port
))
3542 tb_sw_set_unplugged(port
->remote
->sw
);
3543 else if (port
->xdomain
)
3544 port
->xdomain
->is_unplugged
= true;
3547 * Always unlock the port so the downstream
3548 * switch/domain is accessible.
3550 if (tb_port_unlock(port
))
3551 tb_port_warn(port
, "failed to unlock port\n");
3553 tb_switch_resume(port
->remote
->sw
, runtime
)) {
3555 "lost during suspend, disconnecting\n");
3556 tb_sw_set_unplugged(port
->remote
->sw
);
3564 * tb_switch_suspend() - Put a switch to sleep
3565 * @sw: Switch to suspend
3566 * @runtime: Is this runtime suspend or system sleep
3568 * Suspends router and all its children. Enables wakes according to
3569 * value of @runtime and then sets sleep bit for the router. If @sw is
3570 * host router the domain is ready to go to sleep once this function
3573 void tb_switch_suspend(struct tb_switch
*sw
, bool runtime
)
3575 unsigned int flags
= 0;
3576 struct tb_port
*port
;
3579 tb_sw_dbg(sw
, "suspending switch\n");
3582 * Actually only needed for Titan Ridge but for simplicity can be
3583 * done for USB4 device too as CLx is re-enabled at resume.
3585 tb_switch_clx_disable(sw
);
3587 err
= tb_plug_events_active(sw
, false);
3591 tb_switch_for_each_port(sw
, port
) {
3592 if (tb_port_has_remote(port
))
3593 tb_switch_suspend(port
->remote
->sw
, runtime
);
3597 /* Trigger wake when something is plugged in/out */
3598 flags
|= TB_WAKE_ON_CONNECT
| TB_WAKE_ON_DISCONNECT
;
3599 flags
|= TB_WAKE_ON_USB4
;
3600 flags
|= TB_WAKE_ON_USB3
| TB_WAKE_ON_PCIE
| TB_WAKE_ON_DP
;
3601 } else if (device_may_wakeup(&sw
->dev
)) {
3602 flags
|= TB_WAKE_ON_USB4
| TB_WAKE_ON_USB3
| TB_WAKE_ON_PCIE
;
3605 tb_switch_set_wake(sw
, flags
);
3607 if (tb_switch_is_usb4(sw
))
3608 usb4_switch_set_sleep(sw
);
3610 tb_lc_set_sleep(sw
);
3614 * tb_switch_query_dp_resource() - Query availability of DP resource
3615 * @sw: Switch whose DP resource is queried
3618 * Queries availability of DP resource for DP tunneling using switch
3619 * specific means. Returns %true if resource is available.
3621 bool tb_switch_query_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
3623 if (tb_switch_is_usb4(sw
))
3624 return usb4_switch_query_dp_resource(sw
, in
);
3625 return tb_lc_dp_sink_query(sw
, in
);
3629 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3630 * @sw: Switch whose DP resource is allocated
3633 * Allocates DP resource for DP tunneling. The resource must be
3634 * available for this to succeed (see tb_switch_query_dp_resource()).
3635 * Returns %0 in success and negative errno otherwise.
3637 int tb_switch_alloc_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
3641 if (tb_switch_is_usb4(sw
))
3642 ret
= usb4_switch_alloc_dp_resource(sw
, in
);
3644 ret
= tb_lc_dp_sink_alloc(sw
, in
);
3647 tb_sw_warn(sw
, "failed to allocate DP resource for port %d\n",
3650 tb_sw_dbg(sw
, "allocated DP resource for port %d\n", in
->port
);
3656 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3657 * @sw: Switch whose DP resource is de-allocated
3660 * De-allocates DP resource that was previously allocated for DP
3663 void tb_switch_dealloc_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
3667 if (tb_switch_is_usb4(sw
))
3668 ret
= usb4_switch_dealloc_dp_resource(sw
, in
);
3670 ret
= tb_lc_dp_sink_dealloc(sw
, in
);
3673 tb_sw_warn(sw
, "failed to de-allocate DP resource for port %d\n",
3676 tb_sw_dbg(sw
, "released DP resource for port %d\n", in
->port
);
3679 struct tb_sw_lookup
{
3687 static int tb_switch_match(struct device
*dev
, const void *data
)
3689 struct tb_switch
*sw
= tb_to_switch(dev
);
3690 const struct tb_sw_lookup
*lookup
= data
;
3694 if (sw
->tb
!= lookup
->tb
)
3698 return !memcmp(sw
->uuid
, lookup
->uuid
, sizeof(*lookup
->uuid
));
3700 if (lookup
->route
) {
3701 return sw
->config
.route_lo
== lower_32_bits(lookup
->route
) &&
3702 sw
->config
.route_hi
== upper_32_bits(lookup
->route
);
3705 /* Root switch is matched only by depth */
3709 return sw
->link
== lookup
->link
&& sw
->depth
== lookup
->depth
;
3713 * tb_switch_find_by_link_depth() - Find switch by link and depth
3714 * @tb: Domain the switch belongs
3715 * @link: Link number the switch is connected
3716 * @depth: Depth of the switch in link
3718 * Returned switch has reference count increased so the caller needs to
3719 * call tb_switch_put() when done with the switch.
3721 struct tb_switch
*tb_switch_find_by_link_depth(struct tb
*tb
, u8 link
, u8 depth
)
3723 struct tb_sw_lookup lookup
;
3726 memset(&lookup
, 0, sizeof(lookup
));
3729 lookup
.depth
= depth
;
3731 dev
= bus_find_device(&tb_bus_type
, NULL
, &lookup
, tb_switch_match
);
3733 return tb_to_switch(dev
);
3739 * tb_switch_find_by_uuid() - Find switch by UUID
3740 * @tb: Domain the switch belongs
3741 * @uuid: UUID to look for
3743 * Returned switch has reference count increased so the caller needs to
3744 * call tb_switch_put() when done with the switch.
3746 struct tb_switch
*tb_switch_find_by_uuid(struct tb
*tb
, const uuid_t
*uuid
)
3748 struct tb_sw_lookup lookup
;
3751 memset(&lookup
, 0, sizeof(lookup
));
3755 dev
= bus_find_device(&tb_bus_type
, NULL
, &lookup
, tb_switch_match
);
3757 return tb_to_switch(dev
);
3763 * tb_switch_find_by_route() - Find switch by route string
3764 * @tb: Domain the switch belongs
3765 * @route: Route string to look for
3767 * Returned switch has reference count increased so the caller needs to
3768 * call tb_switch_put() when done with the switch.
3770 struct tb_switch
*tb_switch_find_by_route(struct tb
*tb
, u64 route
)
3772 struct tb_sw_lookup lookup
;
3776 return tb_switch_get(tb
->root_switch
);
3778 memset(&lookup
, 0, sizeof(lookup
));
3780 lookup
.route
= route
;
3782 dev
= bus_find_device(&tb_bus_type
, NULL
, &lookup
, tb_switch_match
);
3784 return tb_to_switch(dev
);
3790 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3791 * @sw: Switch to find the port from
3792 * @type: Port type to look for
3794 struct tb_port
*tb_switch_find_port(struct tb_switch
*sw
,
3795 enum tb_port_type type
)
3797 struct tb_port
*port
;
3799 tb_switch_for_each_port(sw
, port
) {
3800 if (port
->config
.type
== type
)
3808 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3809 * device. For now used only for Titan Ridge.
3811 static int tb_switch_pcie_bridge_write(struct tb_switch
*sw
, unsigned int bridge
,
3812 unsigned int pcie_offset
, u32 value
)
3814 u32 offset
, command
, val
;
3817 if (sw
->generation
!= 3)
3820 offset
= sw
->cap_plug_events
+ TB_PLUG_EVENTS_PCIE_WR_DATA
;
3821 ret
= tb_sw_write(sw
, &value
, TB_CFG_SWITCH
, offset
, 1);
3825 command
= pcie_offset
& TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK
;
3826 command
|= BIT(bridge
+ TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT
);
3827 command
|= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK
;
3828 command
|= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3829 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT
;
3830 command
|= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK
;
3832 offset
= sw
->cap_plug_events
+ TB_PLUG_EVENTS_PCIE_CMD
;
3834 ret
= tb_sw_write(sw
, &command
, TB_CFG_SWITCH
, offset
, 1);
3838 ret
= tb_switch_wait_for_bit(sw
, offset
,
3839 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK
, 0, 100);
3843 ret
= tb_sw_read(sw
, &val
, TB_CFG_SWITCH
, offset
, 1);
3847 if (val
& TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK
)
3854 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3855 * @sw: Router to enable PCIe L1
3857 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3858 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3859 * was configured. Due to Intel platforms limitation, shall be called only
3860 * for first hop switch.
3862 int tb_switch_pcie_l1_enable(struct tb_switch
*sw
)
3864 struct tb_switch
*parent
= tb_switch_parent(sw
);
3870 if (!tb_switch_is_titan_ridge(sw
))
3873 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3874 if (tb_route(parent
))
3877 /* Write to downstream PCIe bridge #5 aka Dn4 */
3878 ret
= tb_switch_pcie_bridge_write(sw
, 5, 0x143, 0x0c7806b1);
3882 /* Write to Upstream PCIe bridge #0 aka Up0 */
3883 return tb_switch_pcie_bridge_write(sw
, 0, 0x143, 0x0c5806b1);
3887 * tb_switch_xhci_connect() - Connect internal xHCI
3888 * @sw: Router whose xHCI to connect
3890 * Can be called to any router. For Alpine Ridge and Titan Ridge
3891 * performs special flows that bring the xHCI functional for any device
3892 * connected to the type-C port. Call only after PCIe tunnel has been
3893 * established. The function only does the connect if not done already
3894 * so can be called several times for the same router.
3896 int tb_switch_xhci_connect(struct tb_switch
*sw
)
3898 struct tb_port
*port1
, *port3
;
3901 if (sw
->generation
!= 3)
3904 port1
= &sw
->ports
[1];
3905 port3
= &sw
->ports
[3];
3907 if (tb_switch_is_alpine_ridge(sw
)) {
3908 bool usb_port1
, usb_port3
, xhci_port1
, xhci_port3
;
3910 usb_port1
= tb_lc_is_usb_plugged(port1
);
3911 usb_port3
= tb_lc_is_usb_plugged(port3
);
3912 xhci_port1
= tb_lc_is_xhci_connected(port1
);
3913 xhci_port3
= tb_lc_is_xhci_connected(port3
);
3915 /* Figure out correct USB port to connect */
3916 if (usb_port1
&& !xhci_port1
) {
3917 ret
= tb_lc_xhci_connect(port1
);
3921 if (usb_port3
&& !xhci_port3
)
3922 return tb_lc_xhci_connect(port3
);
3923 } else if (tb_switch_is_titan_ridge(sw
)) {
3924 ret
= tb_lc_xhci_connect(port1
);
3927 return tb_lc_xhci_connect(port3
);
3934 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3935 * @sw: Router whose xHCI to disconnect
3937 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3940 void tb_switch_xhci_disconnect(struct tb_switch
*sw
)
3942 if (sw
->generation
== 3) {
3943 struct tb_port
*port1
= &sw
->ports
[1];
3944 struct tb_port
*port3
= &sw
->ports
[3];
3946 tb_lc_xhci_disconnect(port1
);
3947 tb_port_dbg(port1
, "disconnected xHCI\n");
3948 tb_lc_xhci_disconnect(port3
);
3949 tb_port_dbg(port3
, "disconnected xHCI\n");