Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / thunderbolt / tb.c
blob4f777788e9179c54c1528c65a77e04b4e9194e97
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - bus logic (NHI independent)
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2019, Intel Corporation
7 */
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/platform_data/x86/apple.h>
15 #include "tb.h"
16 #include "tb_regs.h"
17 #include "tunnel.h"
19 #define TB_TIMEOUT 100 /* ms */
20 #define TB_RELEASE_BW_TIMEOUT 10000 /* ms */
23 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
24 * direction. This is 40G - 10% guard band bandwidth.
26 #define TB_ASYM_MIN (40000 * 90 / 100)
29 * Threshold bandwidth (in Mb/s) that is used to switch the links to
30 * asymmetric and back. This is selected as 45G which means when the
31 * request is higher than this, we switch the link to asymmetric, and
32 * when it is less than this we switch it back. The 45G is selected so
33 * that we still have 27G (of the total 72G) for bulk PCIe traffic when
34 * switching back to symmetric.
36 #define TB_ASYM_THRESHOLD 45000
38 #define MAX_GROUPS 7 /* max Group_ID is 7 */
40 static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
41 module_param_named(asym_threshold, asym_threshold, uint, 0444);
42 MODULE_PARM_DESC(asym_threshold,
43 "threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
44 __MODULE_STRING(TB_ASYM_THRESHOLD) ")");
46 /**
47 * struct tb_cm - Simple Thunderbolt connection manager
48 * @tunnel_list: List of active tunnels
49 * @dp_resources: List of available DP resources for DP tunneling
50 * @hotplug_active: tb_handle_hotplug will stop progressing plug
51 * events and exit if this is not set (it needs to
52 * acquire the lock one more time). Used to drain wq
53 * after cfg has been paused.
54 * @remove_work: Work used to remove any unplugged routers after
55 * runtime resume
56 * @groups: Bandwidth groups used in this domain.
58 struct tb_cm {
59 struct list_head tunnel_list;
60 struct list_head dp_resources;
61 bool hotplug_active;
62 struct delayed_work remove_work;
63 struct tb_bandwidth_group groups[MAX_GROUPS];
66 static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
68 return ((void *)tcm - sizeof(struct tb));
71 struct tb_hotplug_event {
72 struct work_struct work;
73 struct tb *tb;
74 u64 route;
75 u8 port;
76 bool unplug;
79 static void tb_handle_hotplug(struct work_struct *work);
81 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
83 struct tb_hotplug_event *ev;
85 ev = kmalloc(sizeof(*ev), GFP_KERNEL);
86 if (!ev)
87 return;
89 ev->tb = tb;
90 ev->route = route;
91 ev->port = port;
92 ev->unplug = unplug;
93 INIT_WORK(&ev->work, tb_handle_hotplug);
94 queue_work(tb->wq, &ev->work);
97 /* enumeration & hot plug handling */
99 static void tb_add_dp_resources(struct tb_switch *sw)
101 struct tb_cm *tcm = tb_priv(sw->tb);
102 struct tb_port *port;
104 tb_switch_for_each_port(sw, port) {
105 if (!tb_port_is_dpin(port))
106 continue;
108 if (!tb_switch_query_dp_resource(sw, port))
109 continue;
112 * If DP IN on device router exist, position it at the
113 * beginning of the DP resources list, so that it is used
114 * before DP IN of the host router. This way external GPU(s)
115 * will be prioritized when pairing DP IN to a DP OUT.
117 if (tb_route(sw))
118 list_add(&port->list, &tcm->dp_resources);
119 else
120 list_add_tail(&port->list, &tcm->dp_resources);
122 tb_port_dbg(port, "DP IN resource available\n");
126 static void tb_remove_dp_resources(struct tb_switch *sw)
128 struct tb_cm *tcm = tb_priv(sw->tb);
129 struct tb_port *port, *tmp;
131 /* Clear children resources first */
132 tb_switch_for_each_port(sw, port) {
133 if (tb_port_has_remote(port))
134 tb_remove_dp_resources(port->remote->sw);
137 list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
138 if (port->sw == sw) {
139 tb_port_dbg(port, "DP OUT resource unavailable\n");
140 list_del_init(&port->list);
145 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
147 struct tb_cm *tcm = tb_priv(tb);
148 struct tb_port *p;
150 list_for_each_entry(p, &tcm->dp_resources, list) {
151 if (p == port)
152 return;
155 tb_port_dbg(port, "DP %s resource available discovered\n",
156 tb_port_is_dpin(port) ? "IN" : "OUT");
157 list_add_tail(&port->list, &tcm->dp_resources);
160 static void tb_discover_dp_resources(struct tb *tb)
162 struct tb_cm *tcm = tb_priv(tb);
163 struct tb_tunnel *tunnel;
165 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
166 if (tb_tunnel_is_dp(tunnel))
167 tb_discover_dp_resource(tb, tunnel->dst_port);
171 /* Enables CL states up to host router */
172 static int tb_enable_clx(struct tb_switch *sw)
174 struct tb_cm *tcm = tb_priv(sw->tb);
175 unsigned int clx = TB_CL0S | TB_CL1;
176 const struct tb_tunnel *tunnel;
177 int ret;
180 * Currently only enable CLx for the first link. This is enough
181 * to allow the CPU to save energy at least on Intel hardware
182 * and makes it slightly simpler to implement. We may change
183 * this in the future to cover the whole topology if it turns
184 * out to be beneficial.
186 while (sw && tb_switch_depth(sw) > 1)
187 sw = tb_switch_parent(sw);
189 if (!sw)
190 return 0;
192 if (tb_switch_depth(sw) != 1)
193 return 0;
196 * If we are re-enabling then check if there is an active DMA
197 * tunnel and in that case bail out.
199 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
200 if (tb_tunnel_is_dma(tunnel)) {
201 if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
202 return 0;
207 * Initially try with CL2. If that's not supported by the
208 * topology try with CL0s and CL1 and then give up.
210 ret = tb_switch_clx_enable(sw, clx | TB_CL2);
211 if (ret == -EOPNOTSUPP)
212 ret = tb_switch_clx_enable(sw, clx);
213 return ret == -EOPNOTSUPP ? 0 : ret;
217 * tb_disable_clx() - Disable CL states up to host router
218 * @sw: Router to start
220 * Disables CL states from @sw up to the host router. Returns true if
221 * any CL state were disabled. This can be used to figure out whether
222 * the link was setup by us or the boot firmware so we don't
223 * accidentally enable them if they were not enabled during discovery.
225 static bool tb_disable_clx(struct tb_switch *sw)
227 bool disabled = false;
229 do {
230 int ret;
232 ret = tb_switch_clx_disable(sw);
233 if (ret > 0)
234 disabled = true;
235 else if (ret < 0)
236 tb_sw_warn(sw, "failed to disable CL states\n");
238 sw = tb_switch_parent(sw);
239 } while (sw);
241 return disabled;
244 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
246 struct tb_switch *sw;
248 sw = tb_to_switch(dev);
249 if (!sw)
250 return 0;
252 if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
253 enum tb_switch_tmu_mode mode;
254 int ret;
256 if (tb_switch_clx_is_enabled(sw, TB_CL1))
257 mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
258 else
259 mode = TB_SWITCH_TMU_MODE_HIFI_BI;
261 ret = tb_switch_tmu_configure(sw, mode);
262 if (ret)
263 return ret;
265 return tb_switch_tmu_enable(sw);
268 return 0;
271 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
273 struct tb_switch *sw;
275 if (!tunnel)
276 return;
279 * Once first DP tunnel is established we change the TMU
280 * accuracy of first depth child routers (and the host router)
281 * to the highest. This is needed for the DP tunneling to work
282 * but also allows CL0s.
284 * If both routers are v2 then we don't need to do anything as
285 * they are using enhanced TMU mode that allows all CLx.
287 sw = tunnel->tb->root_switch;
288 device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
291 static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used)
293 struct tb_switch *sw = tb_to_switch(dev);
295 if (sw && tb_switch_tmu_is_enabled(sw) &&
296 tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI))
297 return 1;
299 return device_for_each_child(dev, NULL,
300 tb_switch_tmu_hifi_uni_required);
303 static bool tb_tmu_hifi_uni_required(struct tb *tb)
305 return device_for_each_child(&tb->dev, NULL,
306 tb_switch_tmu_hifi_uni_required) == 1;
309 static int tb_enable_tmu(struct tb_switch *sw)
311 int ret;
314 * If both routers at the end of the link are v2 we simply
315 * enable the enhanched uni-directional mode. That covers all
316 * the CL states. For v1 and before we need to use the normal
317 * rate to allow CL1 (when supported). Otherwise we keep the TMU
318 * running at the highest accuracy.
320 ret = tb_switch_tmu_configure(sw,
321 TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
322 if (ret == -EOPNOTSUPP) {
323 if (tb_switch_clx_is_enabled(sw, TB_CL1)) {
325 * Figure out uni-directional HiFi TMU requirements
326 * currently in the domain. If there are no
327 * uni-directional HiFi requirements we can put the TMU
328 * into LowRes mode.
330 * Deliberately skip bi-directional HiFi links
331 * as these work independently of other links
332 * (and they do not allow any CL states anyway).
334 if (tb_tmu_hifi_uni_required(sw->tb))
335 ret = tb_switch_tmu_configure(sw,
336 TB_SWITCH_TMU_MODE_HIFI_UNI);
337 else
338 ret = tb_switch_tmu_configure(sw,
339 TB_SWITCH_TMU_MODE_LOWRES);
340 } else {
341 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
344 /* If not supported, fallback to bi-directional HiFi */
345 if (ret == -EOPNOTSUPP)
346 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
348 if (ret)
349 return ret;
351 /* If it is already enabled in correct mode, don't touch it */
352 if (tb_switch_tmu_is_enabled(sw))
353 return 0;
355 ret = tb_switch_tmu_disable(sw);
356 if (ret)
357 return ret;
359 ret = tb_switch_tmu_post_time(sw);
360 if (ret)
361 return ret;
363 return tb_switch_tmu_enable(sw);
366 static void tb_switch_discover_tunnels(struct tb_switch *sw,
367 struct list_head *list,
368 bool alloc_hopids)
370 struct tb *tb = sw->tb;
371 struct tb_port *port;
373 tb_switch_for_each_port(sw, port) {
374 struct tb_tunnel *tunnel = NULL;
376 switch (port->config.type) {
377 case TB_TYPE_DP_HDMI_IN:
378 tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
379 tb_increase_tmu_accuracy(tunnel);
380 break;
382 case TB_TYPE_PCIE_DOWN:
383 tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
384 break;
386 case TB_TYPE_USB3_DOWN:
387 tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
388 break;
390 default:
391 break;
394 if (tunnel)
395 list_add_tail(&tunnel->list, list);
398 tb_switch_for_each_port(sw, port) {
399 if (tb_port_has_remote(port)) {
400 tb_switch_discover_tunnels(port->remote->sw, list,
401 alloc_hopids);
406 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
408 if (tb_switch_is_usb4(port->sw))
409 return usb4_port_configure_xdomain(port, xd);
410 return tb_lc_configure_xdomain(port);
413 static void tb_port_unconfigure_xdomain(struct tb_port *port)
415 if (tb_switch_is_usb4(port->sw))
416 usb4_port_unconfigure_xdomain(port);
417 else
418 tb_lc_unconfigure_xdomain(port);
421 static void tb_scan_xdomain(struct tb_port *port)
423 struct tb_switch *sw = port->sw;
424 struct tb *tb = sw->tb;
425 struct tb_xdomain *xd;
426 u64 route;
428 if (!tb_is_xdomain_enabled())
429 return;
431 route = tb_downstream_route(port);
432 xd = tb_xdomain_find_by_route(tb, route);
433 if (xd) {
434 tb_xdomain_put(xd);
435 return;
438 xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
439 NULL);
440 if (xd) {
441 tb_port_at(route, sw)->xdomain = xd;
442 tb_port_configure_xdomain(port, xd);
443 tb_xdomain_add(xd);
448 * tb_find_unused_port() - return the first inactive port on @sw
449 * @sw: Switch to find the port on
450 * @type: Port type to look for
452 static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
453 enum tb_port_type type)
455 struct tb_port *port;
457 tb_switch_for_each_port(sw, port) {
458 if (tb_is_upstream_port(port))
459 continue;
460 if (port->config.type != type)
461 continue;
462 if (!port->cap_adap)
463 continue;
464 if (tb_port_is_enabled(port))
465 continue;
466 return port;
468 return NULL;
471 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
472 const struct tb_port *port)
474 struct tb_port *down;
476 down = usb4_switch_map_usb3_down(sw, port);
477 if (down && !tb_usb3_port_is_enabled(down))
478 return down;
479 return NULL;
482 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
483 struct tb_port *src_port,
484 struct tb_port *dst_port)
486 struct tb_cm *tcm = tb_priv(tb);
487 struct tb_tunnel *tunnel;
489 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
490 if (tunnel->type == type &&
491 ((src_port && src_port == tunnel->src_port) ||
492 (dst_port && dst_port == tunnel->dst_port))) {
493 return tunnel;
497 return NULL;
500 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
501 struct tb_port *src_port,
502 struct tb_port *dst_port)
504 struct tb_port *port, *usb3_down;
505 struct tb_switch *sw;
507 /* Pick the router that is deepest in the topology */
508 if (tb_port_path_direction_downstream(src_port, dst_port))
509 sw = dst_port->sw;
510 else
511 sw = src_port->sw;
513 /* Can't be the host router */
514 if (sw == tb->root_switch)
515 return NULL;
517 /* Find the downstream USB4 port that leads to this router */
518 port = tb_port_at(tb_route(sw), tb->root_switch);
519 /* Find the corresponding host router USB3 downstream port */
520 usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
521 if (!usb3_down)
522 return NULL;
524 return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
528 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
529 * @tb: Domain structure
530 * @src_port: Source protocol adapter
531 * @dst_port: Destination protocol adapter
532 * @port: USB4 port the consumed bandwidth is calculated
533 * @consumed_up: Consumed upsream bandwidth (Mb/s)
534 * @consumed_down: Consumed downstream bandwidth (Mb/s)
536 * Calculates consumed USB3 and PCIe bandwidth at @port between path
537 * from @src_port to @dst_port. Does not take USB3 tunnel starting from
538 * @src_port and ending on @src_port into account because that bandwidth is
539 * already included in as part of the "first hop" USB3 tunnel.
541 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
542 struct tb_port *src_port,
543 struct tb_port *dst_port,
544 struct tb_port *port,
545 int *consumed_up,
546 int *consumed_down)
548 int pci_consumed_up, pci_consumed_down;
549 struct tb_tunnel *tunnel;
551 *consumed_up = *consumed_down = 0;
553 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
554 if (tunnel && !tb_port_is_usb3_down(src_port) &&
555 !tb_port_is_usb3_up(dst_port)) {
556 int ret;
558 ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
559 consumed_down);
560 if (ret)
561 return ret;
565 * If there is anything reserved for PCIe bulk traffic take it
566 * into account here too.
568 if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
569 *consumed_up += pci_consumed_up;
570 *consumed_down += pci_consumed_down;
573 return 0;
577 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
578 * @tb: Domain structure
579 * @src_port: Source protocol adapter
580 * @dst_port: Destination protocol adapter
581 * @port: USB4 port the consumed bandwidth is calculated
582 * @consumed_up: Consumed upsream bandwidth (Mb/s)
583 * @consumed_down: Consumed downstream bandwidth (Mb/s)
585 * Calculates consumed DP bandwidth at @port between path from @src_port
586 * to @dst_port. Does not take tunnel starting from @src_port and ending
587 * from @src_port into account.
589 * If there is bandwidth reserved for any of the groups between
590 * @src_port and @dst_port (but not yet used) that is also taken into
591 * account in the returned consumed bandwidth.
593 static int tb_consumed_dp_bandwidth(struct tb *tb,
594 struct tb_port *src_port,
595 struct tb_port *dst_port,
596 struct tb_port *port,
597 int *consumed_up,
598 int *consumed_down)
600 int group_reserved[MAX_GROUPS] = {};
601 struct tb_cm *tcm = tb_priv(tb);
602 struct tb_tunnel *tunnel;
603 bool downstream;
604 int i, ret;
606 *consumed_up = *consumed_down = 0;
609 * Find all DP tunnels that cross the port and reduce
610 * their consumed bandwidth from the available.
612 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
613 const struct tb_bandwidth_group *group;
614 int dp_consumed_up, dp_consumed_down;
616 if (tb_tunnel_is_invalid(tunnel))
617 continue;
619 if (!tb_tunnel_is_dp(tunnel))
620 continue;
622 if (!tb_tunnel_port_on_path(tunnel, port))
623 continue;
626 * Calculate what is reserved for groups crossing the
627 * same ports only once (as that is reserved for all the
628 * tunnels in the group).
630 group = tunnel->src_port->group;
631 if (group && group->reserved && !group_reserved[group->index])
632 group_reserved[group->index] = group->reserved;
635 * Ignore the DP tunnel between src_port and dst_port
636 * because it is the same tunnel and we may be
637 * re-calculating estimated bandwidth.
639 if (tunnel->src_port == src_port &&
640 tunnel->dst_port == dst_port)
641 continue;
643 ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
644 &dp_consumed_down);
645 if (ret)
646 return ret;
648 *consumed_up += dp_consumed_up;
649 *consumed_down += dp_consumed_down;
652 downstream = tb_port_path_direction_downstream(src_port, dst_port);
653 for (i = 0; i < ARRAY_SIZE(group_reserved); i++) {
654 if (downstream)
655 *consumed_down += group_reserved[i];
656 else
657 *consumed_up += group_reserved[i];
660 return 0;
663 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
664 struct tb_port *port)
666 bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
667 enum tb_link_width width;
669 if (tb_is_upstream_port(port))
670 width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
671 else
672 width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
674 return tb_port_width_supported(port, width);
678 * tb_maximum_bandwidth() - Maximum bandwidth over a single link
679 * @tb: Domain structure
680 * @src_port: Source protocol adapter
681 * @dst_port: Destination protocol adapter
682 * @port: USB4 port the total bandwidth is calculated
683 * @max_up: Maximum upstream bandwidth (Mb/s)
684 * @max_down: Maximum downstream bandwidth (Mb/s)
685 * @include_asym: Include bandwidth if the link is switched from
686 * symmetric to asymmetric
688 * Returns maximum possible bandwidth in @max_up and @max_down over a
689 * single link at @port. If @include_asym is set then includes the
690 * additional banwdith if the links are transitioned into asymmetric to
691 * direction from @src_port to @dst_port.
693 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
694 struct tb_port *dst_port, struct tb_port *port,
695 int *max_up, int *max_down, bool include_asym)
697 bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
698 int link_speed, link_width, up_bw, down_bw;
701 * Can include asymmetric, only if it is actually supported by
702 * the lane adapter.
704 if (!tb_asym_supported(src_port, dst_port, port))
705 include_asym = false;
707 if (tb_is_upstream_port(port)) {
708 link_speed = port->sw->link_speed;
710 * sw->link_width is from upstream perspective so we use
711 * the opposite for downstream of the host router.
713 if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
714 up_bw = link_speed * 3 * 1000;
715 down_bw = link_speed * 1 * 1000;
716 } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
717 up_bw = link_speed * 1 * 1000;
718 down_bw = link_speed * 3 * 1000;
719 } else if (include_asym) {
721 * The link is symmetric at the moment but we
722 * can switch it to asymmetric as needed. Report
723 * this bandwidth as available (even though it
724 * is not yet enabled).
726 if (downstream) {
727 up_bw = link_speed * 1 * 1000;
728 down_bw = link_speed * 3 * 1000;
729 } else {
730 up_bw = link_speed * 3 * 1000;
731 down_bw = link_speed * 1 * 1000;
733 } else {
734 up_bw = link_speed * port->sw->link_width * 1000;
735 down_bw = up_bw;
737 } else {
738 link_speed = tb_port_get_link_speed(port);
739 if (link_speed < 0)
740 return link_speed;
742 link_width = tb_port_get_link_width(port);
743 if (link_width < 0)
744 return link_width;
746 if (link_width == TB_LINK_WIDTH_ASYM_TX) {
747 up_bw = link_speed * 1 * 1000;
748 down_bw = link_speed * 3 * 1000;
749 } else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
750 up_bw = link_speed * 3 * 1000;
751 down_bw = link_speed * 1 * 1000;
752 } else if (include_asym) {
754 * The link is symmetric at the moment but we
755 * can switch it to asymmetric as needed. Report
756 * this bandwidth as available (even though it
757 * is not yet enabled).
759 if (downstream) {
760 up_bw = link_speed * 1 * 1000;
761 down_bw = link_speed * 3 * 1000;
762 } else {
763 up_bw = link_speed * 3 * 1000;
764 down_bw = link_speed * 1 * 1000;
766 } else {
767 up_bw = link_speed * link_width * 1000;
768 down_bw = up_bw;
772 /* Leave 10% guard band */
773 *max_up = up_bw - up_bw / 10;
774 *max_down = down_bw - down_bw / 10;
776 tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
777 return 0;
781 * tb_available_bandwidth() - Available bandwidth for tunneling
782 * @tb: Domain structure
783 * @src_port: Source protocol adapter
784 * @dst_port: Destination protocol adapter
785 * @available_up: Available bandwidth upstream (Mb/s)
786 * @available_down: Available bandwidth downstream (Mb/s)
787 * @include_asym: Include bandwidth if the link is switched from
788 * symmetric to asymmetric
790 * Calculates maximum available bandwidth for protocol tunneling between
791 * @src_port and @dst_port at the moment. This is minimum of maximum
792 * link bandwidth across all links reduced by currently consumed
793 * bandwidth on that link.
795 * If @include_asym is true then includes also bandwidth that can be
796 * added when the links are transitioned into asymmetric (but does not
797 * transition the links).
799 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
800 struct tb_port *dst_port, int *available_up,
801 int *available_down, bool include_asym)
803 struct tb_port *port;
804 int ret;
806 /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
807 *available_up = *available_down = 120000;
809 /* Find the minimum available bandwidth over all links */
810 tb_for_each_port_on_path(src_port, dst_port, port) {
811 int max_up, max_down, consumed_up, consumed_down;
813 if (!tb_port_is_null(port))
814 continue;
816 ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
817 &max_up, &max_down, include_asym);
818 if (ret)
819 return ret;
821 ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
822 port, &consumed_up,
823 &consumed_down);
824 if (ret)
825 return ret;
826 max_up -= consumed_up;
827 max_down -= consumed_down;
829 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
830 &consumed_up, &consumed_down);
831 if (ret)
832 return ret;
833 max_up -= consumed_up;
834 max_down -= consumed_down;
836 if (max_up < *available_up)
837 *available_up = max_up;
838 if (max_down < *available_down)
839 *available_down = max_down;
842 if (*available_up < 0)
843 *available_up = 0;
844 if (*available_down < 0)
845 *available_down = 0;
847 return 0;
850 static int tb_release_unused_usb3_bandwidth(struct tb *tb,
851 struct tb_port *src_port,
852 struct tb_port *dst_port)
854 struct tb_tunnel *tunnel;
856 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
857 return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
860 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
861 struct tb_port *dst_port)
863 int ret, available_up, available_down;
864 struct tb_tunnel *tunnel;
866 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
867 if (!tunnel)
868 return;
870 tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
873 * Calculate available bandwidth for the first hop USB3 tunnel.
874 * That determines the whole USB3 bandwidth for this branch.
876 ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
877 &available_up, &available_down, false);
878 if (ret) {
879 tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
880 return;
883 tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
884 available_down);
886 tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
889 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
891 struct tb_switch *parent = tb_switch_parent(sw);
892 int ret, available_up, available_down;
893 struct tb_port *up, *down, *port;
894 struct tb_cm *tcm = tb_priv(tb);
895 struct tb_tunnel *tunnel;
897 if (!tb_acpi_may_tunnel_usb3()) {
898 tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
899 return 0;
902 up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
903 if (!up)
904 return 0;
906 if (!sw->link_usb4)
907 return 0;
910 * Look up available down port. Since we are chaining it should
911 * be found right above this switch.
913 port = tb_switch_downstream_port(sw);
914 down = tb_find_usb3_down(parent, port);
915 if (!down)
916 return 0;
918 if (tb_route(parent)) {
919 struct tb_port *parent_up;
921 * Check first that the parent switch has its upstream USB3
922 * port enabled. Otherwise the chain is not complete and
923 * there is no point setting up a new tunnel.
925 parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
926 if (!parent_up || !tb_port_is_enabled(parent_up))
927 return 0;
929 /* Make all unused bandwidth available for the new tunnel */
930 ret = tb_release_unused_usb3_bandwidth(tb, down, up);
931 if (ret)
932 return ret;
935 ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
936 false);
937 if (ret)
938 goto err_reclaim;
940 tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
941 available_up, available_down);
943 tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
944 available_down);
945 if (!tunnel) {
946 ret = -ENOMEM;
947 goto err_reclaim;
950 if (tb_tunnel_activate(tunnel)) {
951 tb_port_info(up,
952 "USB3 tunnel activation failed, aborting\n");
953 ret = -EIO;
954 goto err_free;
957 list_add_tail(&tunnel->list, &tcm->tunnel_list);
958 if (tb_route(parent))
959 tb_reclaim_usb3_bandwidth(tb, down, up);
961 return 0;
963 err_free:
964 tb_tunnel_free(tunnel);
965 err_reclaim:
966 if (tb_route(parent))
967 tb_reclaim_usb3_bandwidth(tb, down, up);
969 return ret;
972 static int tb_create_usb3_tunnels(struct tb_switch *sw)
974 struct tb_port *port;
975 int ret;
977 if (!tb_acpi_may_tunnel_usb3())
978 return 0;
980 if (tb_route(sw)) {
981 ret = tb_tunnel_usb3(sw->tb, sw);
982 if (ret)
983 return ret;
986 tb_switch_for_each_port(sw, port) {
987 if (!tb_port_has_remote(port))
988 continue;
989 ret = tb_create_usb3_tunnels(port->remote->sw);
990 if (ret)
991 return ret;
994 return 0;
998 * tb_configure_asym() - Transition links to asymmetric if needed
999 * @tb: Domain structure
1000 * @src_port: Source adapter to start the transition
1001 * @dst_port: Destination adapter
1002 * @requested_up: Additional bandwidth (Mb/s) required upstream
1003 * @requested_down: Additional bandwidth (Mb/s) required downstream
1005 * Transition links between @src_port and @dst_port into asymmetric, with
1006 * three lanes in the direction from @src_port towards @dst_port and one lane
1007 * in the opposite direction, if the bandwidth requirements
1008 * (requested + currently consumed) on that link exceed @asym_threshold.
1010 * Must be called with available >= requested over all links.
1012 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1013 struct tb_port *dst_port, int requested_up,
1014 int requested_down)
1016 bool clx = false, clx_disabled = false, downstream;
1017 struct tb_switch *sw;
1018 struct tb_port *up;
1019 int ret = 0;
1021 if (!asym_threshold)
1022 return 0;
1024 downstream = tb_port_path_direction_downstream(src_port, dst_port);
1025 /* Pick up router deepest in the hierarchy */
1026 if (downstream)
1027 sw = dst_port->sw;
1028 else
1029 sw = src_port->sw;
1031 tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1032 struct tb_port *down = tb_switch_downstream_port(up->sw);
1033 enum tb_link_width width_up, width_down;
1034 int consumed_up, consumed_down;
1036 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1037 &consumed_up, &consumed_down);
1038 if (ret)
1039 break;
1041 if (downstream) {
1043 * Downstream so make sure upstream is within the 36G
1044 * (40G - guard band 10%), and the requested is above
1045 * what the threshold is.
1047 if (consumed_up + requested_up >= TB_ASYM_MIN) {
1048 ret = -ENOBUFS;
1049 break;
1051 /* Does consumed + requested exceed the threshold */
1052 if (consumed_down + requested_down < asym_threshold)
1053 continue;
1055 width_up = TB_LINK_WIDTH_ASYM_RX;
1056 width_down = TB_LINK_WIDTH_ASYM_TX;
1057 } else {
1058 /* Upstream, the opposite of above */
1059 if (consumed_down + requested_down >= TB_ASYM_MIN) {
1060 ret = -ENOBUFS;
1061 break;
1063 if (consumed_up + requested_up < asym_threshold)
1064 continue;
1066 width_up = TB_LINK_WIDTH_ASYM_TX;
1067 width_down = TB_LINK_WIDTH_ASYM_RX;
1070 if (up->sw->link_width == width_up)
1071 continue;
1073 if (!tb_port_width_supported(up, width_up) ||
1074 !tb_port_width_supported(down, width_down))
1075 continue;
1078 * Disable CL states before doing any transitions. We
1079 * delayed it until now that we know there is a real
1080 * transition taking place.
1082 if (!clx_disabled) {
1083 clx = tb_disable_clx(sw);
1084 clx_disabled = true;
1087 tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1090 * Here requested + consumed > threshold so we need to
1091 * transtion the link into asymmetric now.
1093 ret = tb_switch_set_link_width(up->sw, width_up);
1094 if (ret) {
1095 tb_sw_warn(up->sw, "failed to set link width\n");
1096 break;
1100 /* Re-enable CL states if they were previosly enabled */
1101 if (clx)
1102 tb_enable_clx(sw);
1104 return ret;
1108 * tb_configure_sym() - Transition links to symmetric if possible
1109 * @tb: Domain structure
1110 * @src_port: Source adapter to start the transition
1111 * @dst_port: Destination adapter
1112 * @keep_asym: Keep asymmetric link if preferred
1114 * Goes over each link from @src_port to @dst_port and tries to
1115 * transition the link to symmetric if the currently consumed bandwidth
1116 * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1118 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1119 struct tb_port *dst_port, bool keep_asym)
1121 bool clx = false, clx_disabled = false, downstream;
1122 struct tb_switch *sw;
1123 struct tb_port *up;
1124 int ret = 0;
1126 if (!asym_threshold)
1127 return 0;
1129 downstream = tb_port_path_direction_downstream(src_port, dst_port);
1130 /* Pick up router deepest in the hierarchy */
1131 if (downstream)
1132 sw = dst_port->sw;
1133 else
1134 sw = src_port->sw;
1136 tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1137 int consumed_up, consumed_down;
1139 /* Already symmetric */
1140 if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1141 continue;
1142 /* Unplugged, no need to switch */
1143 if (up->sw->is_unplugged)
1144 continue;
1146 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1147 &consumed_up, &consumed_down);
1148 if (ret)
1149 break;
1151 if (downstream) {
1153 * Downstream so we want the consumed_down < threshold.
1154 * Upstream traffic should be less than 36G (40G
1155 * guard band 10%) as the link was configured asymmetric
1156 * already.
1158 if (consumed_down >= asym_threshold)
1159 continue;
1160 } else {
1161 if (consumed_up >= asym_threshold)
1162 continue;
1165 if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1166 continue;
1169 * Here consumed < threshold so we can transition the
1170 * link to symmetric.
1172 * However, if the router prefers asymmetric link we
1173 * honor that (unless @keep_asym is %false).
1175 if (keep_asym &&
1176 up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1177 tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1178 continue;
1181 /* Disable CL states before doing any transitions */
1182 if (!clx_disabled) {
1183 clx = tb_disable_clx(sw);
1184 clx_disabled = true;
1187 tb_sw_dbg(up->sw, "configuring symmetric link\n");
1189 ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1190 if (ret) {
1191 tb_sw_warn(up->sw, "failed to set link width\n");
1192 break;
1196 /* Re-enable CL states if they were previosly enabled */
1197 if (clx)
1198 tb_enable_clx(sw);
1200 return ret;
1203 static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1204 struct tb_switch *sw)
1206 struct tb *tb = sw->tb;
1208 /* Link the routers using both links if available */
1209 down->remote = up;
1210 up->remote = down;
1211 if (down->dual_link_port && up->dual_link_port) {
1212 down->dual_link_port->remote = up->dual_link_port;
1213 up->dual_link_port->remote = down->dual_link_port;
1217 * Enable lane bonding if the link is currently two single lane
1218 * links.
1220 if (sw->link_width < TB_LINK_WIDTH_DUAL)
1221 tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1224 * Device router that comes up as symmetric link is
1225 * connected deeper in the hierarchy, we transition the links
1226 * above into symmetric if bandwidth allows.
1228 if (tb_switch_depth(sw) > 1 &&
1229 tb_port_get_link_generation(up) >= 4 &&
1230 up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1231 struct tb_port *host_port;
1233 host_port = tb_port_at(tb_route(sw), tb->root_switch);
1234 tb_configure_sym(tb, host_port, up, false);
1237 /* Set the link configured */
1238 tb_switch_configure_link(sw);
1241 static void tb_scan_port(struct tb_port *port);
1244 * tb_scan_switch() - scan for and initialize downstream switches
1246 static void tb_scan_switch(struct tb_switch *sw)
1248 struct tb_port *port;
1250 pm_runtime_get_sync(&sw->dev);
1252 tb_switch_for_each_port(sw, port)
1253 tb_scan_port(port);
1255 pm_runtime_mark_last_busy(&sw->dev);
1256 pm_runtime_put_autosuspend(&sw->dev);
1260 * tb_scan_port() - check for and initialize switches below port
1262 static void tb_scan_port(struct tb_port *port)
1264 struct tb_cm *tcm = tb_priv(port->sw->tb);
1265 struct tb_port *upstream_port;
1266 bool discovery = false;
1267 struct tb_switch *sw;
1269 if (tb_is_upstream_port(port))
1270 return;
1272 if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1273 !tb_dp_port_is_enabled(port)) {
1274 tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1275 tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1276 false);
1277 return;
1280 if (port->config.type != TB_TYPE_PORT)
1281 return;
1282 if (port->dual_link_port && port->link_nr)
1283 return; /*
1284 * Downstream switch is reachable through two ports.
1285 * Only scan on the primary port (link_nr == 0).
1288 if (port->usb4)
1289 pm_runtime_get_sync(&port->usb4->dev);
1291 if (tb_wait_for_port(port, false) <= 0)
1292 goto out_rpm_put;
1293 if (port->remote) {
1294 tb_port_dbg(port, "port already has a remote\n");
1295 goto out_rpm_put;
1298 tb_retimer_scan(port, true);
1300 sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1301 tb_downstream_route(port));
1302 if (IS_ERR(sw)) {
1304 * If there is an error accessing the connected switch
1305 * it may be connected to another domain. Also we allow
1306 * the other domain to be connected to a max depth switch.
1308 if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1309 tb_scan_xdomain(port);
1310 goto out_rpm_put;
1313 if (tb_switch_configure(sw)) {
1314 tb_switch_put(sw);
1315 goto out_rpm_put;
1319 * If there was previously another domain connected remove it
1320 * first.
1322 if (port->xdomain) {
1323 tb_xdomain_remove(port->xdomain);
1324 tb_port_unconfigure_xdomain(port);
1325 port->xdomain = NULL;
1329 * Do not send uevents until we have discovered all existing
1330 * tunnels and know which switches were authorized already by
1331 * the boot firmware.
1333 if (!tcm->hotplug_active) {
1334 dev_set_uevent_suppress(&sw->dev, true);
1335 discovery = true;
1339 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1340 * can support runtime PM.
1342 sw->rpm = sw->generation > 1;
1344 if (tb_switch_add(sw)) {
1345 tb_switch_put(sw);
1346 goto out_rpm_put;
1349 upstream_port = tb_upstream_port(sw);
1350 tb_configure_link(port, upstream_port, sw);
1353 * CL0s and CL1 are enabled and supported together.
1354 * Silently ignore CLx enabling in case CLx is not supported.
1356 if (discovery)
1357 tb_sw_dbg(sw, "discovery, not touching CL states\n");
1358 else if (tb_enable_clx(sw))
1359 tb_sw_warn(sw, "failed to enable CL states\n");
1361 if (tb_enable_tmu(sw))
1362 tb_sw_warn(sw, "failed to enable TMU\n");
1365 * Configuration valid needs to be set after the TMU has been
1366 * enabled for the upstream port of the router so we do it here.
1368 tb_switch_configuration_valid(sw);
1370 /* Scan upstream retimers */
1371 tb_retimer_scan(upstream_port, true);
1374 * Create USB 3.x tunnels only when the switch is plugged to the
1375 * domain. This is because we scan the domain also during discovery
1376 * and want to discover existing USB 3.x tunnels before we create
1377 * any new.
1379 if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1380 tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1382 tb_add_dp_resources(sw);
1383 tb_scan_switch(sw);
1385 out_rpm_put:
1386 if (port->usb4) {
1387 pm_runtime_mark_last_busy(&port->usb4->dev);
1388 pm_runtime_put_autosuspend(&port->usb4->dev);
1392 static void
1393 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1395 struct tb_tunnel *first_tunnel;
1396 struct tb *tb = group->tb;
1397 struct tb_port *in;
1398 int ret;
1400 tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1401 group->index);
1403 first_tunnel = NULL;
1404 list_for_each_entry(in, &group->ports, group_list) {
1405 int estimated_bw, estimated_up, estimated_down;
1406 struct tb_tunnel *tunnel;
1407 struct tb_port *out;
1409 if (!usb4_dp_port_bandwidth_mode_enabled(in))
1410 continue;
1412 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1413 if (WARN_ON(!tunnel))
1414 break;
1416 if (!first_tunnel) {
1418 * Since USB3 bandwidth is shared by all DP
1419 * tunnels under the host router USB4 port, even
1420 * if they do not begin from the host router, we
1421 * can release USB3 bandwidth just once and not
1422 * for each tunnel separately.
1424 first_tunnel = tunnel;
1425 ret = tb_release_unused_usb3_bandwidth(tb,
1426 first_tunnel->src_port, first_tunnel->dst_port);
1427 if (ret) {
1428 tb_tunnel_warn(tunnel,
1429 "failed to release unused bandwidth\n");
1430 break;
1434 out = tunnel->dst_port;
1435 ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1436 &estimated_down, true);
1437 if (ret) {
1438 tb_tunnel_warn(tunnel,
1439 "failed to re-calculate estimated bandwidth\n");
1440 break;
1444 * Estimated bandwidth includes:
1445 * - already allocated bandwidth for the DP tunnel
1446 * - available bandwidth along the path
1447 * - bandwidth allocated for USB 3.x but not used.
1449 if (tb_tunnel_direction_downstream(tunnel))
1450 estimated_bw = estimated_down;
1451 else
1452 estimated_bw = estimated_up;
1455 * If there is reserved bandwidth for the group that is
1456 * not yet released we report that too.
1458 tb_tunnel_dbg(tunnel,
1459 "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n",
1460 estimated_bw, group->reserved,
1461 estimated_bw + group->reserved);
1463 if (usb4_dp_port_set_estimated_bandwidth(in,
1464 estimated_bw + group->reserved))
1465 tb_tunnel_warn(tunnel,
1466 "failed to update estimated bandwidth\n");
1469 if (first_tunnel)
1470 tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1471 first_tunnel->dst_port);
1473 tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1476 static void tb_recalc_estimated_bandwidth(struct tb *tb)
1478 struct tb_cm *tcm = tb_priv(tb);
1479 int i;
1481 tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1483 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1484 struct tb_bandwidth_group *group = &tcm->groups[i];
1486 if (!list_empty(&group->ports))
1487 tb_recalc_estimated_bandwidth_for_group(group);
1490 tb_dbg(tb, "bandwidth re-calculation done\n");
1493 static bool __release_group_bandwidth(struct tb_bandwidth_group *group)
1495 if (group->reserved) {
1496 tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index,
1497 group->reserved);
1498 group->reserved = 0;
1499 return true;
1501 return false;
1504 static void __configure_group_sym(struct tb_bandwidth_group *group)
1506 struct tb_tunnel *tunnel;
1507 struct tb_port *in;
1509 if (list_empty(&group->ports))
1510 return;
1513 * All the tunnels in the group go through the same USB4 links
1514 * so we find the first one here and pass the IN and OUT
1515 * adapters to tb_configure_sym() which now transitions the
1516 * links back to symmetric if bandwidth requirement < asym_threshold.
1518 * We do this here to avoid unnecessary transitions (for example
1519 * if the graphics released bandwidth for other tunnel in the
1520 * same group).
1522 in = list_first_entry(&group->ports, struct tb_port, group_list);
1523 tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL);
1524 if (tunnel)
1525 tb_configure_sym(group->tb, in, tunnel->dst_port, true);
1528 static void tb_bandwidth_group_release_work(struct work_struct *work)
1530 struct tb_bandwidth_group *group =
1531 container_of(work, typeof(*group), release_work.work);
1532 struct tb *tb = group->tb;
1534 mutex_lock(&tb->lock);
1535 if (__release_group_bandwidth(group))
1536 tb_recalc_estimated_bandwidth(tb);
1537 __configure_group_sym(group);
1538 mutex_unlock(&tb->lock);
1541 static void tb_init_bandwidth_groups(struct tb_cm *tcm)
1543 int i;
1545 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1546 struct tb_bandwidth_group *group = &tcm->groups[i];
1548 group->tb = tcm_to_tb(tcm);
1549 group->index = i + 1;
1550 INIT_LIST_HEAD(&group->ports);
1551 INIT_DELAYED_WORK(&group->release_work,
1552 tb_bandwidth_group_release_work);
1556 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
1557 struct tb_port *in)
1559 if (!group || WARN_ON(in->group))
1560 return;
1562 in->group = group;
1563 list_add_tail(&in->group_list, &group->ports);
1565 tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
1568 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
1570 int i;
1572 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1573 struct tb_bandwidth_group *group = &tcm->groups[i];
1575 if (list_empty(&group->ports))
1576 return group;
1579 return NULL;
1582 static struct tb_bandwidth_group *
1583 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1584 struct tb_port *out)
1586 struct tb_bandwidth_group *group;
1587 struct tb_tunnel *tunnel;
1590 * Find all DP tunnels that go through all the same USB4 links
1591 * as this one. Because we always setup tunnels the same way we
1592 * can just check for the routers at both ends of the tunnels
1593 * and if they are the same we have a match.
1595 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1596 if (!tb_tunnel_is_dp(tunnel))
1597 continue;
1599 if (tunnel->src_port->sw == in->sw &&
1600 tunnel->dst_port->sw == out->sw) {
1601 group = tunnel->src_port->group;
1602 if (group) {
1603 tb_bandwidth_group_attach_port(group, in);
1604 return group;
1609 /* Pick up next available group then */
1610 group = tb_find_free_bandwidth_group(tcm);
1611 if (group)
1612 tb_bandwidth_group_attach_port(group, in);
1613 else
1614 tb_port_warn(in, "no available bandwidth groups\n");
1616 return group;
1619 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1620 struct tb_port *out)
1622 if (usb4_dp_port_bandwidth_mode_enabled(in)) {
1623 int index, i;
1625 index = usb4_dp_port_group_id(in);
1626 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1627 if (tcm->groups[i].index == index) {
1628 tb_bandwidth_group_attach_port(&tcm->groups[i], in);
1629 return;
1634 tb_attach_bandwidth_group(tcm, in, out);
1637 static void tb_detach_bandwidth_group(struct tb_port *in)
1639 struct tb_bandwidth_group *group = in->group;
1641 if (group) {
1642 in->group = NULL;
1643 list_del_init(&in->group_list);
1645 tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
1647 /* No more tunnels so release the reserved bandwidth if any */
1648 if (list_empty(&group->ports)) {
1649 cancel_delayed_work(&group->release_work);
1650 __release_group_bandwidth(group);
1655 static void tb_discover_tunnels(struct tb *tb)
1657 struct tb_cm *tcm = tb_priv(tb);
1658 struct tb_tunnel *tunnel;
1660 tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
1662 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1663 if (tb_tunnel_is_pci(tunnel)) {
1664 struct tb_switch *parent = tunnel->dst_port->sw;
1666 while (parent != tunnel->src_port->sw) {
1667 parent->boot = true;
1668 parent = tb_switch_parent(parent);
1670 } else if (tb_tunnel_is_dp(tunnel)) {
1671 struct tb_port *in = tunnel->src_port;
1672 struct tb_port *out = tunnel->dst_port;
1674 /* Keep the domain from powering down */
1675 pm_runtime_get_sync(&in->sw->dev);
1676 pm_runtime_get_sync(&out->sw->dev);
1678 tb_discover_bandwidth_group(tcm, in, out);
1683 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1685 struct tb_port *src_port, *dst_port;
1686 struct tb *tb;
1688 if (!tunnel)
1689 return;
1691 tb_tunnel_deactivate(tunnel);
1692 list_del(&tunnel->list);
1694 tb = tunnel->tb;
1695 src_port = tunnel->src_port;
1696 dst_port = tunnel->dst_port;
1698 switch (tunnel->type) {
1699 case TB_TUNNEL_DP:
1700 tb_detach_bandwidth_group(src_port);
1702 * In case of DP tunnel make sure the DP IN resource is
1703 * deallocated properly.
1705 tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1707 * If bandwidth on a link is < asym_threshold
1708 * transition the link to symmetric.
1710 tb_configure_sym(tb, src_port, dst_port, true);
1711 /* Now we can allow the domain to runtime suspend again */
1712 pm_runtime_mark_last_busy(&dst_port->sw->dev);
1713 pm_runtime_put_autosuspend(&dst_port->sw->dev);
1714 pm_runtime_mark_last_busy(&src_port->sw->dev);
1715 pm_runtime_put_autosuspend(&src_port->sw->dev);
1716 fallthrough;
1718 case TB_TUNNEL_USB3:
1719 tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1720 break;
1722 default:
1724 * PCIe and DMA tunnels do not consume guaranteed
1725 * bandwidth.
1727 break;
1730 tb_tunnel_free(tunnel);
1734 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1736 static void tb_free_invalid_tunnels(struct tb *tb)
1738 struct tb_cm *tcm = tb_priv(tb);
1739 struct tb_tunnel *tunnel;
1740 struct tb_tunnel *n;
1742 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1743 if (tb_tunnel_is_invalid(tunnel))
1744 tb_deactivate_and_free_tunnel(tunnel);
1749 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1751 static void tb_free_unplugged_children(struct tb_switch *sw)
1753 struct tb_port *port;
1755 tb_switch_for_each_port(sw, port) {
1756 if (!tb_port_has_remote(port))
1757 continue;
1759 if (port->remote->sw->is_unplugged) {
1760 tb_retimer_remove_all(port);
1761 tb_remove_dp_resources(port->remote->sw);
1762 tb_switch_unconfigure_link(port->remote->sw);
1763 tb_switch_set_link_width(port->remote->sw,
1764 TB_LINK_WIDTH_SINGLE);
1765 tb_switch_remove(port->remote->sw);
1766 port->remote = NULL;
1767 if (port->dual_link_port)
1768 port->dual_link_port->remote = NULL;
1769 } else {
1770 tb_free_unplugged_children(port->remote->sw);
1775 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1776 const struct tb_port *port)
1778 struct tb_port *down = NULL;
1781 * To keep plugging devices consistently in the same PCIe
1782 * hierarchy, do mapping here for switch downstream PCIe ports.
1784 if (tb_switch_is_usb4(sw)) {
1785 down = usb4_switch_map_pcie_down(sw, port);
1786 } else if (!tb_route(sw)) {
1787 int phy_port = tb_phy_port_from_link(port->port);
1788 int index;
1791 * Hard-coded Thunderbolt port to PCIe down port mapping
1792 * per controller.
1794 if (tb_switch_is_cactus_ridge(sw) ||
1795 tb_switch_is_alpine_ridge(sw))
1796 index = !phy_port ? 6 : 7;
1797 else if (tb_switch_is_falcon_ridge(sw))
1798 index = !phy_port ? 6 : 8;
1799 else if (tb_switch_is_titan_ridge(sw))
1800 index = !phy_port ? 8 : 9;
1801 else
1802 goto out;
1804 /* Validate the hard-coding */
1805 if (WARN_ON(index > sw->config.max_port_number))
1806 goto out;
1808 down = &sw->ports[index];
1811 if (down) {
1812 if (WARN_ON(!tb_port_is_pcie_down(down)))
1813 goto out;
1814 if (tb_pci_port_is_enabled(down))
1815 goto out;
1817 return down;
1820 out:
1821 return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1824 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1826 struct tb_port *host_port, *port;
1827 struct tb_cm *tcm = tb_priv(tb);
1829 host_port = tb_route(in->sw) ?
1830 tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1832 list_for_each_entry(port, &tcm->dp_resources, list) {
1833 if (!tb_port_is_dpout(port))
1834 continue;
1836 if (tb_port_is_enabled(port)) {
1837 tb_port_dbg(port, "DP OUT in use\n");
1838 continue;
1841 /* Needs to be on different routers */
1842 if (in->sw == port->sw) {
1843 tb_port_dbg(port, "skipping DP OUT on same router\n");
1844 continue;
1847 tb_port_dbg(port, "DP OUT available\n");
1850 * Keep the DP tunnel under the topology starting from
1851 * the same host router downstream port.
1853 if (host_port && tb_route(port->sw)) {
1854 struct tb_port *p;
1856 p = tb_port_at(tb_route(port->sw), tb->root_switch);
1857 if (p != host_port)
1858 continue;
1861 return port;
1864 return NULL;
1867 static bool tb_tunnel_one_dp(struct tb *tb, struct tb_port *in,
1868 struct tb_port *out)
1870 int available_up, available_down, ret, link_nr;
1871 struct tb_cm *tcm = tb_priv(tb);
1872 int consumed_up, consumed_down;
1873 struct tb_tunnel *tunnel;
1876 * This is only applicable to links that are not bonded (so
1877 * when Thunderbolt 1 hardware is involved somewhere in the
1878 * topology). For these try to share the DP bandwidth between
1879 * the two lanes.
1881 link_nr = 1;
1882 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1883 if (tb_tunnel_is_dp(tunnel)) {
1884 link_nr = 0;
1885 break;
1890 * DP stream needs the domain to be active so runtime resume
1891 * both ends of the tunnel.
1893 * This should bring the routers in the middle active as well
1894 * and keeps the domain from runtime suspending while the DP
1895 * tunnel is active.
1897 pm_runtime_get_sync(&in->sw->dev);
1898 pm_runtime_get_sync(&out->sw->dev);
1900 if (tb_switch_alloc_dp_resource(in->sw, in)) {
1901 tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1902 goto err_rpm_put;
1905 if (!tb_attach_bandwidth_group(tcm, in, out))
1906 goto err_dealloc_dp;
1908 /* Make all unused USB3 bandwidth available for the new DP tunnel */
1909 ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1910 if (ret) {
1911 tb_warn(tb, "failed to release unused bandwidth\n");
1912 goto err_detach_group;
1915 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
1916 true);
1917 if (ret)
1918 goto err_reclaim_usb;
1920 tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1921 available_up, available_down);
1923 tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
1924 available_down);
1925 if (!tunnel) {
1926 tb_port_dbg(out, "could not allocate DP tunnel\n");
1927 goto err_reclaim_usb;
1930 if (tb_tunnel_activate(tunnel)) {
1931 tb_port_info(out, "DP tunnel activation failed, aborting\n");
1932 goto err_free;
1935 /* If fail reading tunnel's consumed bandwidth, tear it down */
1936 ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down);
1937 if (ret)
1938 goto err_deactivate;
1940 list_add_tail(&tunnel->list, &tcm->tunnel_list);
1942 tb_reclaim_usb3_bandwidth(tb, in, out);
1944 * Transition the links to asymmetric if the consumption exceeds
1945 * the threshold.
1947 tb_configure_asym(tb, in, out, consumed_up, consumed_down);
1949 /* Update the domain with the new bandwidth estimation */
1950 tb_recalc_estimated_bandwidth(tb);
1953 * In case of DP tunnel exists, change host router's 1st children
1954 * TMU mode to HiFi for CL0s to work.
1956 tb_increase_tmu_accuracy(tunnel);
1957 return true;
1959 err_deactivate:
1960 tb_tunnel_deactivate(tunnel);
1961 err_free:
1962 tb_tunnel_free(tunnel);
1963 err_reclaim_usb:
1964 tb_reclaim_usb3_bandwidth(tb, in, out);
1965 err_detach_group:
1966 tb_detach_bandwidth_group(in);
1967 err_dealloc_dp:
1968 tb_switch_dealloc_dp_resource(in->sw, in);
1969 err_rpm_put:
1970 pm_runtime_mark_last_busy(&out->sw->dev);
1971 pm_runtime_put_autosuspend(&out->sw->dev);
1972 pm_runtime_mark_last_busy(&in->sw->dev);
1973 pm_runtime_put_autosuspend(&in->sw->dev);
1975 return false;
1978 static void tb_tunnel_dp(struct tb *tb)
1980 struct tb_cm *tcm = tb_priv(tb);
1981 struct tb_port *port, *in, *out;
1983 if (!tb_acpi_may_tunnel_dp()) {
1984 tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1985 return;
1989 * Find pair of inactive DP IN and DP OUT adapters and then
1990 * establish a DP tunnel between them.
1992 tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1994 in = NULL;
1995 out = NULL;
1996 list_for_each_entry(port, &tcm->dp_resources, list) {
1997 if (!tb_port_is_dpin(port))
1998 continue;
2000 if (tb_port_is_enabled(port)) {
2001 tb_port_dbg(port, "DP IN in use\n");
2002 continue;
2005 in = port;
2006 tb_port_dbg(in, "DP IN available\n");
2008 out = tb_find_dp_out(tb, port);
2009 if (out)
2010 tb_tunnel_one_dp(tb, in, out);
2011 else
2012 tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n");
2015 if (!in)
2016 tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
2019 static void tb_enter_redrive(struct tb_port *port)
2021 struct tb_switch *sw = port->sw;
2023 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2024 return;
2027 * If we get hot-unplug for the DP IN port of the host router
2028 * and the DP resource is not available anymore it means there
2029 * is a monitor connected directly to the Type-C port and we are
2030 * in "redrive" mode. For this to work we cannot enter RTD3 so
2031 * we bump up the runtime PM reference count here.
2033 if (!tb_port_is_dpin(port))
2034 return;
2035 if (tb_route(sw))
2036 return;
2037 if (!tb_switch_query_dp_resource(sw, port)) {
2038 port->redrive = true;
2039 pm_runtime_get(&sw->dev);
2040 tb_port_dbg(port, "enter redrive mode, keeping powered\n");
2044 static void tb_exit_redrive(struct tb_port *port)
2046 struct tb_switch *sw = port->sw;
2048 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2049 return;
2051 if (!tb_port_is_dpin(port))
2052 return;
2053 if (tb_route(sw))
2054 return;
2055 if (port->redrive && tb_switch_query_dp_resource(sw, port)) {
2056 port->redrive = false;
2057 pm_runtime_put(&sw->dev);
2058 tb_port_dbg(port, "exit redrive mode\n");
2062 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
2064 struct tb_port *in, *out;
2065 struct tb_tunnel *tunnel;
2067 if (tb_port_is_dpin(port)) {
2068 tb_port_dbg(port, "DP IN resource unavailable\n");
2069 in = port;
2070 out = NULL;
2071 } else {
2072 tb_port_dbg(port, "DP OUT resource unavailable\n");
2073 in = NULL;
2074 out = port;
2077 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
2078 if (tunnel)
2079 tb_deactivate_and_free_tunnel(tunnel);
2080 else
2081 tb_enter_redrive(port);
2082 list_del_init(&port->list);
2085 * See if there is another DP OUT port that can be used for
2086 * to create another tunnel.
2088 tb_recalc_estimated_bandwidth(tb);
2089 tb_tunnel_dp(tb);
2092 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
2094 struct tb_cm *tcm = tb_priv(tb);
2095 struct tb_port *p;
2097 if (tb_port_is_enabled(port))
2098 return;
2100 list_for_each_entry(p, &tcm->dp_resources, list) {
2101 if (p == port)
2102 return;
2105 tb_port_dbg(port, "DP %s resource available after hotplug\n",
2106 tb_port_is_dpin(port) ? "IN" : "OUT");
2107 list_add_tail(&port->list, &tcm->dp_resources);
2108 tb_exit_redrive(port);
2110 /* Look for suitable DP IN <-> DP OUT pairs now */
2111 tb_tunnel_dp(tb);
2114 static void tb_disconnect_and_release_dp(struct tb *tb)
2116 struct tb_cm *tcm = tb_priv(tb);
2117 struct tb_tunnel *tunnel, *n;
2120 * Tear down all DP tunnels and release their resources. They
2121 * will be re-established after resume based on plug events.
2123 list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
2124 if (tb_tunnel_is_dp(tunnel))
2125 tb_deactivate_and_free_tunnel(tunnel);
2128 while (!list_empty(&tcm->dp_resources)) {
2129 struct tb_port *port;
2131 port = list_first_entry(&tcm->dp_resources,
2132 struct tb_port, list);
2133 list_del_init(&port->list);
2137 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
2139 struct tb_tunnel *tunnel;
2140 struct tb_port *up;
2142 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2143 if (WARN_ON(!up))
2144 return -ENODEV;
2146 tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
2147 if (WARN_ON(!tunnel))
2148 return -ENODEV;
2150 tb_switch_xhci_disconnect(sw);
2152 tb_tunnel_deactivate(tunnel);
2153 list_del(&tunnel->list);
2154 tb_tunnel_free(tunnel);
2155 return 0;
2158 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
2160 struct tb_port *up, *down, *port;
2161 struct tb_cm *tcm = tb_priv(tb);
2162 struct tb_tunnel *tunnel;
2164 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2165 if (!up)
2166 return 0;
2169 * Look up available down port. Since we are chaining it should
2170 * be found right above this switch.
2172 port = tb_switch_downstream_port(sw);
2173 down = tb_find_pcie_down(tb_switch_parent(sw), port);
2174 if (!down)
2175 return 0;
2177 tunnel = tb_tunnel_alloc_pci(tb, up, down);
2178 if (!tunnel)
2179 return -ENOMEM;
2181 if (tb_tunnel_activate(tunnel)) {
2182 tb_port_info(up,
2183 "PCIe tunnel activation failed, aborting\n");
2184 tb_tunnel_free(tunnel);
2185 return -EIO;
2189 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2190 * here.
2192 if (tb_switch_pcie_l1_enable(sw))
2193 tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2195 if (tb_switch_xhci_connect(sw))
2196 tb_sw_warn(sw, "failed to connect xHCI\n");
2198 list_add_tail(&tunnel->list, &tcm->tunnel_list);
2199 return 0;
2202 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2203 int transmit_path, int transmit_ring,
2204 int receive_path, int receive_ring)
2206 struct tb_cm *tcm = tb_priv(tb);
2207 struct tb_port *nhi_port, *dst_port;
2208 struct tb_tunnel *tunnel;
2209 struct tb_switch *sw;
2210 int ret;
2212 sw = tb_to_switch(xd->dev.parent);
2213 dst_port = tb_port_at(xd->route, sw);
2214 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2216 mutex_lock(&tb->lock);
2219 * When tunneling DMA paths the link should not enter CL states
2220 * so disable them now.
2222 tb_disable_clx(sw);
2224 tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2225 transmit_ring, receive_path, receive_ring);
2226 if (!tunnel) {
2227 ret = -ENOMEM;
2228 goto err_clx;
2231 if (tb_tunnel_activate(tunnel)) {
2232 tb_port_info(nhi_port,
2233 "DMA tunnel activation failed, aborting\n");
2234 ret = -EIO;
2235 goto err_free;
2238 list_add_tail(&tunnel->list, &tcm->tunnel_list);
2239 mutex_unlock(&tb->lock);
2240 return 0;
2242 err_free:
2243 tb_tunnel_free(tunnel);
2244 err_clx:
2245 tb_enable_clx(sw);
2246 mutex_unlock(&tb->lock);
2248 return ret;
2251 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2252 int transmit_path, int transmit_ring,
2253 int receive_path, int receive_ring)
2255 struct tb_cm *tcm = tb_priv(tb);
2256 struct tb_port *nhi_port, *dst_port;
2257 struct tb_tunnel *tunnel, *n;
2258 struct tb_switch *sw;
2260 sw = tb_to_switch(xd->dev.parent);
2261 dst_port = tb_port_at(xd->route, sw);
2262 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2264 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2265 if (!tb_tunnel_is_dma(tunnel))
2266 continue;
2267 if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2268 continue;
2270 if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2271 receive_path, receive_ring))
2272 tb_deactivate_and_free_tunnel(tunnel);
2276 * Try to re-enable CL states now, it is OK if this fails
2277 * because we may still have another DMA tunnel active through
2278 * the same host router USB4 downstream port.
2280 tb_enable_clx(sw);
2283 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2284 int transmit_path, int transmit_ring,
2285 int receive_path, int receive_ring)
2287 if (!xd->is_unplugged) {
2288 mutex_lock(&tb->lock);
2289 __tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2290 transmit_ring, receive_path,
2291 receive_ring);
2292 mutex_unlock(&tb->lock);
2294 return 0;
2297 /* hotplug handling */
2300 * tb_handle_hotplug() - handle hotplug event
2302 * Executes on tb->wq.
2304 static void tb_handle_hotplug(struct work_struct *work)
2306 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2307 struct tb *tb = ev->tb;
2308 struct tb_cm *tcm = tb_priv(tb);
2309 struct tb_switch *sw;
2310 struct tb_port *port;
2312 /* Bring the domain back from sleep if it was suspended */
2313 pm_runtime_get_sync(&tb->dev);
2315 mutex_lock(&tb->lock);
2316 if (!tcm->hotplug_active)
2317 goto out; /* during init, suspend or shutdown */
2319 sw = tb_switch_find_by_route(tb, ev->route);
2320 if (!sw) {
2321 tb_warn(tb,
2322 "hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2323 ev->route, ev->port, ev->unplug);
2324 goto out;
2326 if (ev->port > sw->config.max_port_number) {
2327 tb_warn(tb,
2328 "hotplug event from non existent port %llx:%x (unplug: %d)\n",
2329 ev->route, ev->port, ev->unplug);
2330 goto put_sw;
2332 port = &sw->ports[ev->port];
2333 if (tb_is_upstream_port(port)) {
2334 tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2335 ev->route, ev->port, ev->unplug);
2336 goto put_sw;
2339 pm_runtime_get_sync(&sw->dev);
2341 if (ev->unplug) {
2342 tb_retimer_remove_all(port);
2344 if (tb_port_has_remote(port)) {
2345 tb_port_dbg(port, "switch unplugged\n");
2346 tb_sw_set_unplugged(port->remote->sw);
2347 tb_free_invalid_tunnels(tb);
2348 tb_remove_dp_resources(port->remote->sw);
2349 tb_switch_tmu_disable(port->remote->sw);
2350 tb_switch_unconfigure_link(port->remote->sw);
2351 tb_switch_set_link_width(port->remote->sw,
2352 TB_LINK_WIDTH_SINGLE);
2353 tb_switch_remove(port->remote->sw);
2354 port->remote = NULL;
2355 if (port->dual_link_port)
2356 port->dual_link_port->remote = NULL;
2357 /* Maybe we can create another DP tunnel */
2358 tb_recalc_estimated_bandwidth(tb);
2359 tb_tunnel_dp(tb);
2360 } else if (port->xdomain) {
2361 struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2363 tb_port_dbg(port, "xdomain unplugged\n");
2365 * Service drivers are unbound during
2366 * tb_xdomain_remove() so setting XDomain as
2367 * unplugged here prevents deadlock if they call
2368 * tb_xdomain_disable_paths(). We will tear down
2369 * all the tunnels below.
2371 xd->is_unplugged = true;
2372 tb_xdomain_remove(xd);
2373 port->xdomain = NULL;
2374 __tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2375 tb_xdomain_put(xd);
2376 tb_port_unconfigure_xdomain(port);
2377 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2378 tb_dp_resource_unavailable(tb, port);
2379 } else if (!port->port) {
2380 tb_sw_dbg(sw, "xHCI disconnect request\n");
2381 tb_switch_xhci_disconnect(sw);
2382 } else {
2383 tb_port_dbg(port,
2384 "got unplug event for disconnected port, ignoring\n");
2386 } else if (port->remote) {
2387 tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2388 } else if (!port->port && sw->authorized) {
2389 tb_sw_dbg(sw, "xHCI connect request\n");
2390 tb_switch_xhci_connect(sw);
2391 } else {
2392 if (tb_port_is_null(port)) {
2393 tb_port_dbg(port, "hotplug: scanning\n");
2394 tb_scan_port(port);
2395 if (!port->remote)
2396 tb_port_dbg(port, "hotplug: no switch found\n");
2397 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2398 tb_dp_resource_available(tb, port);
2402 pm_runtime_mark_last_busy(&sw->dev);
2403 pm_runtime_put_autosuspend(&sw->dev);
2405 put_sw:
2406 tb_switch_put(sw);
2407 out:
2408 mutex_unlock(&tb->lock);
2410 pm_runtime_mark_last_busy(&tb->dev);
2411 pm_runtime_put_autosuspend(&tb->dev);
2413 kfree(ev);
2416 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2417 int *requested_down)
2419 int allocated_up, allocated_down, available_up, available_down, ret;
2420 int requested_up_corrected, requested_down_corrected, granularity;
2421 int max_up, max_down, max_up_rounded, max_down_rounded;
2422 struct tb_bandwidth_group *group;
2423 struct tb *tb = tunnel->tb;
2424 struct tb_port *in, *out;
2425 bool downstream;
2427 ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2428 if (ret)
2429 return ret;
2431 in = tunnel->src_port;
2432 out = tunnel->dst_port;
2434 tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2435 allocated_up, allocated_down);
2438 * If we get rounded up request from graphics side, say HBR2 x 4
2439 * that is 17500 instead of 17280 (this is because of the
2440 * granularity), we allow it too. Here the graphics has already
2441 * negotiated with the DPRX the maximum possible rates (which is
2442 * 17280 in this case).
2444 * Since the link cannot go higher than 17280 we use that in our
2445 * calculations but the DP IN adapter Allocated BW write must be
2446 * the same value (17500) otherwise the adapter will mark it as
2447 * failed for graphics.
2449 ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2450 if (ret)
2451 goto fail;
2453 ret = usb4_dp_port_granularity(in);
2454 if (ret < 0)
2455 goto fail;
2456 granularity = ret;
2458 max_up_rounded = roundup(max_up, granularity);
2459 max_down_rounded = roundup(max_down, granularity);
2462 * This will "fix" the request down to the maximum supported
2463 * rate * lanes if it is at the maximum rounded up level.
2465 requested_up_corrected = *requested_up;
2466 if (requested_up_corrected == max_up_rounded)
2467 requested_up_corrected = max_up;
2468 else if (requested_up_corrected < 0)
2469 requested_up_corrected = 0;
2470 requested_down_corrected = *requested_down;
2471 if (requested_down_corrected == max_down_rounded)
2472 requested_down_corrected = max_down;
2473 else if (requested_down_corrected < 0)
2474 requested_down_corrected = 0;
2476 tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2477 requested_up_corrected, requested_down_corrected);
2479 if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2480 (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2481 tb_tunnel_dbg(tunnel,
2482 "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2483 requested_up_corrected, requested_down_corrected,
2484 max_up_rounded, max_down_rounded);
2485 ret = -ENOBUFS;
2486 goto fail;
2489 downstream = tb_tunnel_direction_downstream(tunnel);
2490 group = in->group;
2492 if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2493 (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2494 if (tunnel->bw_mode) {
2495 int reserved;
2497 * If requested bandwidth is less or equal than
2498 * what is currently allocated to that tunnel we
2499 * simply change the reservation of the tunnel
2500 * and add the released bandwidth for the group
2501 * for the next 10s. Then we release it for
2502 * others to use.
2504 if (downstream)
2505 reserved = allocated_down - *requested_down;
2506 else
2507 reserved = allocated_up - *requested_up;
2509 if (reserved > 0) {
2510 group->reserved += reserved;
2511 tb_dbg(tb, "group %d reserved %d total %d Mb/s\n",
2512 group->index, reserved, group->reserved);
2515 * If it was not already pending,
2516 * schedule release now. If it is then
2517 * postpone it for the next 10s (unless
2518 * it is already running in which case
2519 * the 10s already expired and we should
2520 * give the reserved back to others).
2522 mod_delayed_work(system_wq, &group->release_work,
2523 msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT));
2527 return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2528 requested_down);
2532 * More bandwidth is requested. Release all the potential
2533 * bandwidth from USB3 first.
2535 ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2536 if (ret)
2537 goto fail;
2540 * Then go over all tunnels that cross the same USB4 ports (they
2541 * are also in the same group but we use the same function here
2542 * that we use with the normal bandwidth allocation).
2544 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2545 true);
2546 if (ret)
2547 goto reclaim;
2549 tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n",
2550 available_up, available_down, group->reserved);
2552 if ((*requested_up >= 0 &&
2553 available_up + group->reserved >= requested_up_corrected) ||
2554 (*requested_down >= 0 &&
2555 available_down + group->reserved >= requested_down_corrected)) {
2556 int released = 0;
2559 * If bandwidth on a link is >= asym_threshold
2560 * transition the link to asymmetric.
2562 ret = tb_configure_asym(tb, in, out, *requested_up,
2563 *requested_down);
2564 if (ret) {
2565 tb_configure_sym(tb, in, out, true);
2566 goto fail;
2569 ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2570 requested_down);
2571 if (ret) {
2572 tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2573 tb_configure_sym(tb, in, out, true);
2576 if (downstream) {
2577 if (*requested_down > available_down)
2578 released = *requested_down - available_down;
2579 } else {
2580 if (*requested_up > available_up)
2581 released = *requested_up - available_up;
2583 if (released) {
2584 group->reserved -= released;
2585 tb_dbg(tb, "group %d released %d total %d Mb/s\n",
2586 group->index, released, group->reserved);
2588 } else {
2589 ret = -ENOBUFS;
2592 reclaim:
2593 tb_reclaim_usb3_bandwidth(tb, in, out);
2594 fail:
2595 if (ret && ret != -ENODEV) {
2597 * Write back the same allocated (so no change), this
2598 * makes the DPTX request fail on graphics side.
2600 tb_tunnel_dbg(tunnel,
2601 "failing the request by rewriting allocated %d/%d Mb/s\n",
2602 allocated_up, allocated_down);
2603 tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down);
2606 return ret;
2609 static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2611 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2612 int requested_bw, requested_up, requested_down, ret;
2613 struct tb_tunnel *tunnel;
2614 struct tb *tb = ev->tb;
2615 struct tb_cm *tcm = tb_priv(tb);
2616 struct tb_switch *sw;
2617 struct tb_port *in;
2619 pm_runtime_get_sync(&tb->dev);
2621 mutex_lock(&tb->lock);
2622 if (!tcm->hotplug_active)
2623 goto unlock;
2625 sw = tb_switch_find_by_route(tb, ev->route);
2626 if (!sw) {
2627 tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2628 ev->route);
2629 goto unlock;
2632 in = &sw->ports[ev->port];
2633 if (!tb_port_is_dpin(in)) {
2634 tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2635 goto put_sw;
2638 tb_port_dbg(in, "handling bandwidth allocation request\n");
2640 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2641 if (!tunnel) {
2642 tb_port_warn(in, "failed to find tunnel\n");
2643 goto put_sw;
2646 if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2647 if (tunnel->bw_mode) {
2649 * Reset the tunnel back to use the legacy
2650 * allocation.
2652 tunnel->bw_mode = false;
2653 tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n");
2654 } else {
2655 tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2657 goto put_sw;
2660 ret = usb4_dp_port_requested_bandwidth(in);
2661 if (ret < 0) {
2662 if (ret == -ENODATA) {
2664 * There is no request active so this means the
2665 * BW allocation mode was enabled from graphics
2666 * side. At this point we know that the graphics
2667 * driver has read the DRPX capabilities so we
2668 * can offer an better bandwidth estimatation.
2670 tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n");
2671 tb_recalc_estimated_bandwidth(tb);
2672 } else {
2673 tb_port_warn(in, "failed to read requested bandwidth\n");
2675 goto put_sw;
2677 requested_bw = ret;
2679 tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2681 if (tb_tunnel_direction_downstream(tunnel)) {
2682 requested_up = -1;
2683 requested_down = requested_bw;
2684 } else {
2685 requested_up = requested_bw;
2686 requested_down = -1;
2689 ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2690 if (ret) {
2691 if (ret == -ENOBUFS)
2692 tb_tunnel_warn(tunnel,
2693 "not enough bandwidth available\n");
2694 else
2695 tb_tunnel_warn(tunnel,
2696 "failed to change bandwidth allocation\n");
2697 } else {
2698 tb_tunnel_dbg(tunnel,
2699 "bandwidth allocation changed to %d/%d Mb/s\n",
2700 requested_up, requested_down);
2702 /* Update other clients about the allocation change */
2703 tb_recalc_estimated_bandwidth(tb);
2706 put_sw:
2707 tb_switch_put(sw);
2708 unlock:
2709 mutex_unlock(&tb->lock);
2711 pm_runtime_mark_last_busy(&tb->dev);
2712 pm_runtime_put_autosuspend(&tb->dev);
2714 kfree(ev);
2717 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2719 struct tb_hotplug_event *ev;
2721 ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2722 if (!ev)
2723 return;
2725 ev->tb = tb;
2726 ev->route = route;
2727 ev->port = port;
2728 INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2729 queue_work(tb->wq, &ev->work);
2732 static void tb_handle_notification(struct tb *tb, u64 route,
2733 const struct cfg_error_pkg *error)
2736 switch (error->error) {
2737 case TB_CFG_ERROR_PCIE_WAKE:
2738 case TB_CFG_ERROR_DP_CON_CHANGE:
2739 case TB_CFG_ERROR_DPTX_DISCOVERY:
2740 if (tb_cfg_ack_notification(tb->ctl, route, error))
2741 tb_warn(tb, "could not ack notification on %llx\n",
2742 route);
2743 break;
2745 case TB_CFG_ERROR_DP_BW:
2746 if (tb_cfg_ack_notification(tb->ctl, route, error))
2747 tb_warn(tb, "could not ack notification on %llx\n",
2748 route);
2749 tb_queue_dp_bandwidth_request(tb, route, error->port);
2750 break;
2752 default:
2753 /* Ignore for now */
2754 break;
2759 * tb_schedule_hotplug_handler() - callback function for the control channel
2761 * Delegates to tb_handle_hotplug.
2763 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2764 const void *buf, size_t size)
2766 const struct cfg_event_pkg *pkg = buf;
2767 u64 route = tb_cfg_get_route(&pkg->header);
2769 switch (type) {
2770 case TB_CFG_PKG_ERROR:
2771 tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2772 return;
2773 case TB_CFG_PKG_EVENT:
2774 break;
2775 default:
2776 tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2777 return;
2780 if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2781 tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2782 pkg->port);
2785 tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2788 static void tb_stop(struct tb *tb)
2790 struct tb_cm *tcm = tb_priv(tb);
2791 struct tb_tunnel *tunnel;
2792 struct tb_tunnel *n;
2794 cancel_delayed_work(&tcm->remove_work);
2795 /* tunnels are only present after everything has been initialized */
2796 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2798 * DMA tunnels require the driver to be functional so we
2799 * tear them down. Other protocol tunnels can be left
2800 * intact.
2802 if (tb_tunnel_is_dma(tunnel))
2803 tb_tunnel_deactivate(tunnel);
2804 tb_tunnel_free(tunnel);
2806 tb_switch_remove(tb->root_switch);
2807 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2810 static void tb_deinit(struct tb *tb)
2812 struct tb_cm *tcm = tb_priv(tb);
2813 int i;
2815 /* Cancel all the release bandwidth workers */
2816 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++)
2817 cancel_delayed_work_sync(&tcm->groups[i].release_work);
2820 static int tb_scan_finalize_switch(struct device *dev, void *data)
2822 if (tb_is_switch(dev)) {
2823 struct tb_switch *sw = tb_to_switch(dev);
2826 * If we found that the switch was already setup by the
2827 * boot firmware, mark it as authorized now before we
2828 * send uevent to userspace.
2830 if (sw->boot)
2831 sw->authorized = 1;
2833 dev_set_uevent_suppress(dev, false);
2834 kobject_uevent(&dev->kobj, KOBJ_ADD);
2835 device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2838 return 0;
2841 static int tb_start(struct tb *tb, bool reset)
2843 struct tb_cm *tcm = tb_priv(tb);
2844 bool discover = true;
2845 int ret;
2847 tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2848 if (IS_ERR(tb->root_switch))
2849 return PTR_ERR(tb->root_switch);
2852 * ICM firmware upgrade needs running firmware and in native
2853 * mode that is not available so disable firmware upgrade of the
2854 * root switch.
2856 * However, USB4 routers support NVM firmware upgrade if they
2857 * implement the necessary router operations.
2859 tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2860 /* All USB4 routers support runtime PM */
2861 tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2863 ret = tb_switch_configure(tb->root_switch);
2864 if (ret) {
2865 tb_switch_put(tb->root_switch);
2866 return ret;
2869 /* Announce the switch to the world */
2870 ret = tb_switch_add(tb->root_switch);
2871 if (ret) {
2872 tb_switch_put(tb->root_switch);
2873 return ret;
2877 * To support highest CLx state, we set host router's TMU to
2878 * Normal mode.
2880 tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
2881 /* Enable TMU if it is off */
2882 tb_switch_tmu_enable(tb->root_switch);
2885 * Boot firmware might have created tunnels of its own. Since we
2886 * cannot be sure they are usable for us, tear them down and
2887 * reset the ports to handle it as new hotplug for USB4 v1
2888 * routers (for USB4 v2 and beyond we already do host reset).
2890 if (reset && tb_switch_is_usb4(tb->root_switch)) {
2891 discover = false;
2892 if (usb4_switch_version(tb->root_switch) == 1)
2893 tb_switch_reset(tb->root_switch);
2896 if (discover) {
2897 /* Full scan to discover devices added before the driver was loaded. */
2898 tb_scan_switch(tb->root_switch);
2899 /* Find out tunnels created by the boot firmware */
2900 tb_discover_tunnels(tb);
2901 /* Add DP resources from the DP tunnels created by the boot firmware */
2902 tb_discover_dp_resources(tb);
2906 * If the boot firmware did not create USB 3.x tunnels create them
2907 * now for the whole topology.
2909 tb_create_usb3_tunnels(tb->root_switch);
2910 /* Add DP IN resources for the root switch */
2911 tb_add_dp_resources(tb->root_switch);
2912 /* Make the discovered switches available to the userspace */
2913 device_for_each_child(&tb->root_switch->dev, NULL,
2914 tb_scan_finalize_switch);
2916 /* Allow tb_handle_hotplug to progress events */
2917 tcm->hotplug_active = true;
2918 return 0;
2921 static int tb_suspend_noirq(struct tb *tb)
2923 struct tb_cm *tcm = tb_priv(tb);
2925 tb_dbg(tb, "suspending...\n");
2926 tb_disconnect_and_release_dp(tb);
2927 tb_switch_suspend(tb->root_switch, false);
2928 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2929 tb_dbg(tb, "suspend finished\n");
2931 return 0;
2934 static void tb_restore_children(struct tb_switch *sw)
2936 struct tb_port *port;
2938 /* No need to restore if the router is already unplugged */
2939 if (sw->is_unplugged)
2940 return;
2942 if (tb_enable_clx(sw))
2943 tb_sw_warn(sw, "failed to re-enable CL states\n");
2945 if (tb_enable_tmu(sw))
2946 tb_sw_warn(sw, "failed to restore TMU configuration\n");
2948 tb_switch_configuration_valid(sw);
2950 tb_switch_for_each_port(sw, port) {
2951 if (!tb_port_has_remote(port) && !port->xdomain)
2952 continue;
2954 if (port->remote) {
2955 tb_switch_set_link_width(port->remote->sw,
2956 port->remote->sw->link_width);
2957 tb_switch_configure_link(port->remote->sw);
2959 tb_restore_children(port->remote->sw);
2960 } else if (port->xdomain) {
2961 tb_port_configure_xdomain(port, port->xdomain);
2966 static int tb_resume_noirq(struct tb *tb)
2968 struct tb_cm *tcm = tb_priv(tb);
2969 struct tb_tunnel *tunnel, *n;
2970 unsigned int usb3_delay = 0;
2971 LIST_HEAD(tunnels);
2973 tb_dbg(tb, "resuming...\n");
2976 * For non-USB4 hosts (Apple systems) remove any PCIe devices
2977 * the firmware might have setup.
2979 if (!tb_switch_is_usb4(tb->root_switch))
2980 tb_switch_reset(tb->root_switch);
2982 tb_switch_resume(tb->root_switch, false);
2983 tb_free_invalid_tunnels(tb);
2984 tb_free_unplugged_children(tb->root_switch);
2985 tb_restore_children(tb->root_switch);
2988 * If we get here from suspend to disk the boot firmware or the
2989 * restore kernel might have created tunnels of its own. Since
2990 * we cannot be sure they are usable for us we find and tear
2991 * them down.
2993 tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
2994 list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
2995 if (tb_tunnel_is_usb3(tunnel))
2996 usb3_delay = 500;
2997 tb_tunnel_deactivate(tunnel);
2998 tb_tunnel_free(tunnel);
3001 /* Re-create our tunnels now */
3002 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
3003 /* USB3 requires delay before it can be re-activated */
3004 if (tb_tunnel_is_usb3(tunnel)) {
3005 msleep(usb3_delay);
3006 /* Only need to do it once */
3007 usb3_delay = 0;
3009 tb_tunnel_restart(tunnel);
3011 if (!list_empty(&tcm->tunnel_list)) {
3013 * the pcie links need some time to get going.
3014 * 100ms works for me...
3016 tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
3017 msleep(100);
3019 /* Allow tb_handle_hotplug to progress events */
3020 tcm->hotplug_active = true;
3021 tb_dbg(tb, "resume finished\n");
3023 return 0;
3026 static int tb_free_unplugged_xdomains(struct tb_switch *sw)
3028 struct tb_port *port;
3029 int ret = 0;
3031 tb_switch_for_each_port(sw, port) {
3032 if (tb_is_upstream_port(port))
3033 continue;
3034 if (port->xdomain && port->xdomain->is_unplugged) {
3035 tb_retimer_remove_all(port);
3036 tb_xdomain_remove(port->xdomain);
3037 tb_port_unconfigure_xdomain(port);
3038 port->xdomain = NULL;
3039 ret++;
3040 } else if (port->remote) {
3041 ret += tb_free_unplugged_xdomains(port->remote->sw);
3045 return ret;
3048 static int tb_freeze_noirq(struct tb *tb)
3050 struct tb_cm *tcm = tb_priv(tb);
3052 tcm->hotplug_active = false;
3053 return 0;
3056 static int tb_thaw_noirq(struct tb *tb)
3058 struct tb_cm *tcm = tb_priv(tb);
3060 tcm->hotplug_active = true;
3061 return 0;
3064 static void tb_complete(struct tb *tb)
3067 * Release any unplugged XDomains and if there is a case where
3068 * another domain is swapped in place of unplugged XDomain we
3069 * need to run another rescan.
3071 mutex_lock(&tb->lock);
3072 if (tb_free_unplugged_xdomains(tb->root_switch))
3073 tb_scan_switch(tb->root_switch);
3074 mutex_unlock(&tb->lock);
3077 static int tb_runtime_suspend(struct tb *tb)
3079 struct tb_cm *tcm = tb_priv(tb);
3081 mutex_lock(&tb->lock);
3082 tb_switch_suspend(tb->root_switch, true);
3083 tcm->hotplug_active = false;
3084 mutex_unlock(&tb->lock);
3086 return 0;
3089 static void tb_remove_work(struct work_struct *work)
3091 struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
3092 struct tb *tb = tcm_to_tb(tcm);
3094 mutex_lock(&tb->lock);
3095 if (tb->root_switch) {
3096 tb_free_unplugged_children(tb->root_switch);
3097 tb_free_unplugged_xdomains(tb->root_switch);
3099 mutex_unlock(&tb->lock);
3102 static int tb_runtime_resume(struct tb *tb)
3104 struct tb_cm *tcm = tb_priv(tb);
3105 struct tb_tunnel *tunnel, *n;
3107 mutex_lock(&tb->lock);
3108 tb_switch_resume(tb->root_switch, true);
3109 tb_free_invalid_tunnels(tb);
3110 tb_restore_children(tb->root_switch);
3111 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
3112 tb_tunnel_restart(tunnel);
3113 tcm->hotplug_active = true;
3114 mutex_unlock(&tb->lock);
3117 * Schedule cleanup of any unplugged devices. Run this in a
3118 * separate thread to avoid possible deadlock if the device
3119 * removal runtime resumes the unplugged device.
3121 queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
3122 return 0;
3125 static const struct tb_cm_ops tb_cm_ops = {
3126 .start = tb_start,
3127 .stop = tb_stop,
3128 .deinit = tb_deinit,
3129 .suspend_noirq = tb_suspend_noirq,
3130 .resume_noirq = tb_resume_noirq,
3131 .freeze_noirq = tb_freeze_noirq,
3132 .thaw_noirq = tb_thaw_noirq,
3133 .complete = tb_complete,
3134 .runtime_suspend = tb_runtime_suspend,
3135 .runtime_resume = tb_runtime_resume,
3136 .handle_event = tb_handle_event,
3137 .disapprove_switch = tb_disconnect_pci,
3138 .approve_switch = tb_tunnel_pci,
3139 .approve_xdomain_paths = tb_approve_xdomain_paths,
3140 .disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
3144 * During suspend the Thunderbolt controller is reset and all PCIe
3145 * tunnels are lost. The NHI driver will try to reestablish all tunnels
3146 * during resume. This adds device links between the tunneled PCIe
3147 * downstream ports and the NHI so that the device core will make sure
3148 * NHI is resumed first before the rest.
3150 static bool tb_apple_add_links(struct tb_nhi *nhi)
3152 struct pci_dev *upstream, *pdev;
3153 bool ret;
3155 if (!x86_apple_machine)
3156 return false;
3158 switch (nhi->pdev->device) {
3159 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
3160 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
3161 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
3162 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
3163 break;
3164 default:
3165 return false;
3168 upstream = pci_upstream_bridge(nhi->pdev);
3169 while (upstream) {
3170 if (!pci_is_pcie(upstream))
3171 return false;
3172 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
3173 break;
3174 upstream = pci_upstream_bridge(upstream);
3177 if (!upstream)
3178 return false;
3181 * For each hotplug downstream port, create add device link
3182 * back to NHI so that PCIe tunnels can be re-established after
3183 * sleep.
3185 ret = false;
3186 for_each_pci_bridge(pdev, upstream->subordinate) {
3187 const struct device_link *link;
3189 if (!pci_is_pcie(pdev))
3190 continue;
3191 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
3192 !pdev->is_hotplug_bridge)
3193 continue;
3195 link = device_link_add(&pdev->dev, &nhi->pdev->dev,
3196 DL_FLAG_AUTOREMOVE_SUPPLIER |
3197 DL_FLAG_PM_RUNTIME);
3198 if (link) {
3199 dev_dbg(&nhi->pdev->dev, "created link from %s\n",
3200 dev_name(&pdev->dev));
3201 ret = true;
3202 } else {
3203 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
3204 dev_name(&pdev->dev));
3208 return ret;
3211 struct tb *tb_probe(struct tb_nhi *nhi)
3213 struct tb_cm *tcm;
3214 struct tb *tb;
3216 tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
3217 if (!tb)
3218 return NULL;
3220 if (tb_acpi_may_tunnel_pcie())
3221 tb->security_level = TB_SECURITY_USER;
3222 else
3223 tb->security_level = TB_SECURITY_NOPCIE;
3225 tb->cm_ops = &tb_cm_ops;
3227 tcm = tb_priv(tb);
3228 INIT_LIST_HEAD(&tcm->tunnel_list);
3229 INIT_LIST_HEAD(&tcm->dp_resources);
3230 INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
3231 tb_init_bandwidth_groups(tcm);
3233 tb_dbg(tb, "using software connection manager\n");
3236 * Device links are needed to make sure we establish tunnels
3237 * before the PCIe/USB stack is resumed so complain here if we
3238 * found them missing.
3240 if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
3241 tb_warn(tb, "device links to tunneled native ports are missing!\n");
3243 return tb;