1 // SPDX-License-Identifier: GPL-2.0+
3 * ***************************************************************************
4 * Marvell Armada-3700 Serial Driver
5 * Author: Wilson Ding <dingwei@marvell.com>
6 * Copyright (C) 2015 Marvell International Ltd.
7 * ***************************************************************************
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/console.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/init.h>
17 #include <linux/iopoll.h>
18 #include <linux/math64.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/serial.h>
26 #include <linux/serial_core.h>
27 #include <linux/slab.h>
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
32 #define UART_STD_RBR 0x00
33 #define UART_EXT_RBR 0x18
35 #define UART_STD_TSH 0x04
36 #define UART_EXT_TSH 0x1C
38 #define UART_STD_CTRL1 0x08
39 #define UART_EXT_CTRL1 0x04
40 #define CTRL_SOFT_RST BIT(31)
41 #define CTRL_TXFIFO_RST BIT(15)
42 #define CTRL_RXFIFO_RST BIT(14)
43 #define CTRL_SND_BRK_SEQ BIT(11)
44 #define CTRL_BRK_DET_INT BIT(3)
45 #define CTRL_FRM_ERR_INT BIT(2)
46 #define CTRL_PAR_ERR_INT BIT(1)
47 #define CTRL_OVR_ERR_INT BIT(0)
48 #define CTRL_BRK_INT (CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
49 CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
51 #define UART_STD_CTRL2 UART_STD_CTRL1
52 #define UART_EXT_CTRL2 0x20
53 #define CTRL_STD_TX_RDY_INT BIT(5)
54 #define CTRL_EXT_TX_RDY_INT BIT(6)
55 #define CTRL_STD_RX_RDY_INT BIT(4)
56 #define CTRL_EXT_RX_RDY_INT BIT(5)
58 #define UART_STAT 0x0C
59 #define STAT_TX_FIFO_EMP BIT(13)
60 #define STAT_TX_FIFO_FUL BIT(11)
61 #define STAT_TX_EMP BIT(6)
62 #define STAT_STD_TX_RDY BIT(5)
63 #define STAT_EXT_TX_RDY BIT(15)
64 #define STAT_STD_RX_RDY BIT(4)
65 #define STAT_EXT_RX_RDY BIT(14)
66 #define STAT_BRK_DET BIT(3)
67 #define STAT_FRM_ERR BIT(2)
68 #define STAT_PAR_ERR BIT(1)
69 #define STAT_OVR_ERR BIT(0)
70 #define STAT_BRK_ERR (STAT_BRK_DET | STAT_FRM_ERR \
71 | STAT_PAR_ERR | STAT_OVR_ERR)
74 * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
75 * Clock Control register controls UART1 and bit 20 controls UART2. But in
76 * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
77 * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
80 #define UART_BRDV 0x10
81 /* These bits are located in UART1 address space and control UART2 */
82 #define UART2_CLK_DIS BIT(21)
83 /* These bits are located in UART1 address space and control UART1 */
84 #define UART1_CLK_DIS BIT(20)
85 /* These bits are located in UART1 address space and control both UARTs */
86 #define CLK_NO_XTAL BIT(19)
87 #define CLK_TBG_DIV1_SHIFT 15
88 #define CLK_TBG_DIV1_MASK 0x7
89 #define CLK_TBG_DIV1_MAX 6
90 #define CLK_TBG_DIV2_SHIFT 12
91 #define CLK_TBG_DIV2_MASK 0x7
92 #define CLK_TBG_DIV2_MAX 6
93 #define CLK_TBG_SEL_SHIFT 10
94 #define CLK_TBG_SEL_MASK 0x3
95 /* These bits are located in both UARTs address space */
96 #define BRDV_BAUD_MASK 0x3FF
97 #define BRDV_BAUD_MAX BRDV_BAUD_MASK
99 #define UART_OSAMP 0x14
100 #define OSAMP_DEFAULT_DIVISOR 16
101 #define OSAMP_DIVISORS_MASK 0x3F3F3F3F
102 #define OSAMP_MAX_DIVISOR 63
104 #define MVEBU_NR_UARTS 2
106 #define MVEBU_UART_TYPE "mvebu-uart"
107 #define DRIVER_NAME "mvebu_serial"
110 /* Either there is only one summed IRQ... */
112 /* ...or there are two separate IRQ for RX and TX */
118 /* Diverging register offsets */
119 struct uart_regs_layout
{
126 /* Diverging flags */
128 unsigned int ctrl_tx_rdy_int
;
129 unsigned int ctrl_rx_rdy_int
;
130 unsigned int stat_tx_rdy
;
131 unsigned int stat_rx_rdy
;
134 /* Driver data, a structure for each UART port */
135 struct mvebu_uart_driver_data
{
137 struct uart_regs_layout regs
;
138 struct uart_flags flags
;
141 /* Saved registers during suspend */
142 struct mvebu_uart_pm_regs
{
152 /* MVEBU UART driver structure */
154 struct uart_port
*port
;
156 int irq
[UART_IRQ_COUNT
];
157 struct mvebu_uart_driver_data
*data
;
158 #if defined(CONFIG_PM)
159 struct mvebu_uart_pm_regs pm_regs
;
160 #endif /* CONFIG_PM */
163 static struct mvebu_uart
*to_mvuart(struct uart_port
*port
)
165 return (struct mvebu_uart
*)port
->private_data
;
168 #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
170 #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
171 #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
172 #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
173 #define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
175 #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
176 #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
177 #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
178 #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
180 static struct uart_port mvebu_uart_ports
[MVEBU_NR_UARTS
];
182 static DEFINE_SPINLOCK(mvebu_uart_lock
);
184 /* Core UART Driver Operations */
185 static unsigned int mvebu_uart_tx_empty(struct uart_port
*port
)
190 uart_port_lock_irqsave(port
, &flags
);
191 st
= readl(port
->membase
+ UART_STAT
);
192 uart_port_unlock_irqrestore(port
, flags
);
194 return (st
& STAT_TX_EMP
) ? TIOCSER_TEMT
: 0;
197 static unsigned int mvebu_uart_get_mctrl(struct uart_port
*port
)
199 return TIOCM_CTS
| TIOCM_DSR
| TIOCM_CAR
;
202 static void mvebu_uart_set_mctrl(struct uart_port
*port
,
206 * Even if we do not support configuring the modem control lines, this
207 * function must be proided to the serial core
211 static void mvebu_uart_stop_tx(struct uart_port
*port
)
213 unsigned int ctl
= readl(port
->membase
+ UART_INTR(port
));
215 ctl
&= ~CTRL_TX_RDY_INT(port
);
216 writel(ctl
, port
->membase
+ UART_INTR(port
));
219 static void mvebu_uart_start_tx(struct uart_port
*port
)
224 if (IS_EXTENDED(port
) && uart_fifo_get(port
, &c
))
225 writel(c
, port
->membase
+ UART_TSH(port
));
227 ctl
= readl(port
->membase
+ UART_INTR(port
));
228 ctl
|= CTRL_TX_RDY_INT(port
);
229 writel(ctl
, port
->membase
+ UART_INTR(port
));
232 static void mvebu_uart_stop_rx(struct uart_port
*port
)
236 ctl
= readl(port
->membase
+ UART_CTRL(port
));
237 ctl
&= ~CTRL_BRK_INT
;
238 writel(ctl
, port
->membase
+ UART_CTRL(port
));
240 ctl
= readl(port
->membase
+ UART_INTR(port
));
241 ctl
&= ~CTRL_RX_RDY_INT(port
);
242 writel(ctl
, port
->membase
+ UART_INTR(port
));
245 static void mvebu_uart_break_ctl(struct uart_port
*port
, int brk
)
250 uart_port_lock_irqsave(port
, &flags
);
251 ctl
= readl(port
->membase
+ UART_CTRL(port
));
253 ctl
|= CTRL_SND_BRK_SEQ
;
255 ctl
&= ~CTRL_SND_BRK_SEQ
;
256 writel(ctl
, port
->membase
+ UART_CTRL(port
));
257 uart_port_unlock_irqrestore(port
, flags
);
260 static void mvebu_uart_rx_chars(struct uart_port
*port
, unsigned int status
)
262 struct tty_port
*tport
= &port
->state
->port
;
263 unsigned char ch
= 0;
268 if (status
& STAT_RX_RDY(port
)) {
269 ch
= readl(port
->membase
+ UART_RBR(port
));
274 if (status
& STAT_PAR_ERR
)
275 port
->icount
.parity
++;
279 * For UART2, error bits are not cleared on buffer read.
280 * This causes interrupt loop and system hang.
282 if (IS_EXTENDED(port
) && (status
& STAT_BRK_ERR
)) {
283 ret
= readl(port
->membase
+ UART_STAT
);
285 writel(ret
, port
->membase
+ UART_STAT
);
288 if (status
& STAT_BRK_DET
) {
290 status
&= ~(STAT_FRM_ERR
| STAT_PAR_ERR
);
291 if (uart_handle_break(port
))
295 if (status
& STAT_OVR_ERR
)
296 port
->icount
.overrun
++;
298 if (status
& STAT_FRM_ERR
)
299 port
->icount
.frame
++;
301 if (uart_handle_sysrq_char(port
, ch
))
304 if (status
& port
->ignore_status_mask
& STAT_PAR_ERR
)
305 status
&= ~STAT_RX_RDY(port
);
307 status
&= port
->read_status_mask
;
309 if (status
& STAT_PAR_ERR
)
312 status
&= ~port
->ignore_status_mask
;
314 if (status
& STAT_RX_RDY(port
))
315 tty_insert_flip_char(tport
, ch
, flag
);
317 if (status
& STAT_BRK_DET
)
318 tty_insert_flip_char(tport
, 0, TTY_BREAK
);
320 if (status
& STAT_FRM_ERR
)
321 tty_insert_flip_char(tport
, 0, TTY_FRAME
);
323 if (status
& STAT_OVR_ERR
)
324 tty_insert_flip_char(tport
, 0, TTY_OVERRUN
);
327 status
= readl(port
->membase
+ UART_STAT
);
328 } while (status
& (STAT_RX_RDY(port
) | STAT_BRK_DET
));
330 tty_flip_buffer_push(tport
);
333 static void mvebu_uart_tx_chars(struct uart_port
*port
, unsigned int status
)
337 uart_port_tx_limited(port
, ch
, port
->fifosize
,
338 !(readl(port
->membase
+ UART_STAT
) & STAT_TX_FIFO_FUL
),
339 writel(ch
, port
->membase
+ UART_TSH(port
)),
343 static irqreturn_t
mvebu_uart_isr(int irq
, void *dev_id
)
345 struct uart_port
*port
= (struct uart_port
*)dev_id
;
346 unsigned int st
= readl(port
->membase
+ UART_STAT
);
348 if (st
& (STAT_RX_RDY(port
) | STAT_OVR_ERR
| STAT_FRM_ERR
|
350 mvebu_uart_rx_chars(port
, st
);
352 if (st
& STAT_TX_RDY(port
))
353 mvebu_uart_tx_chars(port
, st
);
358 static irqreturn_t
mvebu_uart_rx_isr(int irq
, void *dev_id
)
360 struct uart_port
*port
= (struct uart_port
*)dev_id
;
361 unsigned int st
= readl(port
->membase
+ UART_STAT
);
363 if (st
& (STAT_RX_RDY(port
) | STAT_OVR_ERR
| STAT_FRM_ERR
|
365 mvebu_uart_rx_chars(port
, st
);
370 static irqreturn_t
mvebu_uart_tx_isr(int irq
, void *dev_id
)
372 struct uart_port
*port
= (struct uart_port
*)dev_id
;
373 unsigned int st
= readl(port
->membase
+ UART_STAT
);
375 if (st
& STAT_TX_RDY(port
))
376 mvebu_uart_tx_chars(port
, st
);
381 static int mvebu_uart_startup(struct uart_port
*port
)
383 struct mvebu_uart
*mvuart
= to_mvuart(port
);
387 writel(CTRL_TXFIFO_RST
| CTRL_RXFIFO_RST
,
388 port
->membase
+ UART_CTRL(port
));
391 /* Clear the error bits of state register before IRQ request */
392 ret
= readl(port
->membase
+ UART_STAT
);
394 writel(ret
, port
->membase
+ UART_STAT
);
396 writel(CTRL_BRK_INT
, port
->membase
+ UART_CTRL(port
));
398 ctl
= readl(port
->membase
+ UART_INTR(port
));
399 ctl
|= CTRL_RX_RDY_INT(port
);
400 writel(ctl
, port
->membase
+ UART_INTR(port
));
402 if (!mvuart
->irq
[UART_TX_IRQ
]) {
403 /* Old bindings with just one interrupt (UART0 only) */
404 ret
= devm_request_irq(port
->dev
, mvuart
->irq
[UART_IRQ_SUM
],
405 mvebu_uart_isr
, port
->irqflags
,
406 dev_name(port
->dev
), port
);
408 dev_err(port
->dev
, "unable to request IRQ %d\n",
409 mvuart
->irq
[UART_IRQ_SUM
]);
413 /* New bindings with an IRQ for RX and TX (both UART) */
414 ret
= devm_request_irq(port
->dev
, mvuart
->irq
[UART_RX_IRQ
],
415 mvebu_uart_rx_isr
, port
->irqflags
,
416 dev_name(port
->dev
), port
);
418 dev_err(port
->dev
, "unable to request IRQ %d\n",
419 mvuart
->irq
[UART_RX_IRQ
]);
423 ret
= devm_request_irq(port
->dev
, mvuart
->irq
[UART_TX_IRQ
],
424 mvebu_uart_tx_isr
, port
->irqflags
,
428 dev_err(port
->dev
, "unable to request IRQ %d\n",
429 mvuart
->irq
[UART_TX_IRQ
]);
430 devm_free_irq(port
->dev
, mvuart
->irq
[UART_RX_IRQ
],
439 static void mvebu_uart_shutdown(struct uart_port
*port
)
441 struct mvebu_uart
*mvuart
= to_mvuart(port
);
443 writel(0, port
->membase
+ UART_INTR(port
));
445 if (!mvuart
->irq
[UART_TX_IRQ
]) {
446 devm_free_irq(port
->dev
, mvuart
->irq
[UART_IRQ_SUM
], port
);
448 devm_free_irq(port
->dev
, mvuart
->irq
[UART_RX_IRQ
], port
);
449 devm_free_irq(port
->dev
, mvuart
->irq
[UART_TX_IRQ
], port
);
453 static unsigned int mvebu_uart_baud_rate_set(struct uart_port
*port
, unsigned int baud
)
455 unsigned int d_divisor
, m_divisor
;
463 * The baudrate is derived from the UART clock thanks to divisors:
464 * > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
465 * > D ("baud generator"): can divide the clock from 1 to 1023
466 * > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
468 * Exact formulas for calculating baudrate:
470 * with default x16 scheme:
471 * baudrate = xtal / (d * 16)
472 * baudrate = tbg / (d1 * d2 * d * 16)
474 * with fractional divisor:
475 * baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
476 * baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
478 * Oversampling value:
479 * osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
481 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
482 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
484 * To simplify baudrate setup set all the M prescalers to the same
485 * value. For baudrates 9600 Bd and higher, it is enough to use the
486 * default (x16) divisor or fractional divisor with M = 63, so there
487 * is no need to use real fractional support (where the M prescalers
490 * When all the M prescalers are zeroed then default (x16) divisor is
491 * used. Default x16 scheme is more stable than M (fractional divisor),
492 * so use M only when D divisor is not enough to derive baudrate.
494 * Member port->uartclk is either xtal clock rate or TBG clock rate
495 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
496 * driver (and UART driver itself cannot change them). Moreover they are
497 * shared between both UARTs.
500 m_divisor
= OSAMP_DEFAULT_DIVISOR
;
501 d_divisor
= DIV_ROUND_CLOSEST(port
->uartclk
, baud
* m_divisor
);
503 if (d_divisor
> BRDV_BAUD_MAX
) {
505 * Experiments show that small M divisors are unstable.
506 * Use maximal possible M = 63 and calculate D divisor.
508 m_divisor
= OSAMP_MAX_DIVISOR
;
509 d_divisor
= DIV_ROUND_CLOSEST(port
->uartclk
, baud
* m_divisor
);
514 else if (d_divisor
> BRDV_BAUD_MAX
)
515 d_divisor
= BRDV_BAUD_MAX
;
517 spin_lock_irqsave(&mvebu_uart_lock
, flags
);
518 brdv
= readl(port
->membase
+ UART_BRDV
);
519 brdv
&= ~BRDV_BAUD_MASK
;
521 writel(brdv
, port
->membase
+ UART_BRDV
);
522 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
524 osamp
= readl(port
->membase
+ UART_OSAMP
);
525 osamp
&= ~OSAMP_DIVISORS_MASK
;
526 if (m_divisor
!= OSAMP_DEFAULT_DIVISOR
)
527 osamp
|= (m_divisor
<< 0) | (m_divisor
<< 8) |
528 (m_divisor
<< 16) | (m_divisor
<< 24);
529 writel(osamp
, port
->membase
+ UART_OSAMP
);
531 return DIV_ROUND_CLOSEST(port
->uartclk
, d_divisor
* m_divisor
);
534 static void mvebu_uart_set_termios(struct uart_port
*port
,
535 struct ktermios
*termios
,
536 const struct ktermios
*old
)
539 unsigned int baud
, min_baud
, max_baud
;
541 uart_port_lock_irqsave(port
, &flags
);
543 port
->read_status_mask
= STAT_RX_RDY(port
) | STAT_OVR_ERR
|
544 STAT_TX_RDY(port
) | STAT_TX_FIFO_FUL
;
546 if (termios
->c_iflag
& INPCK
)
547 port
->read_status_mask
|= STAT_FRM_ERR
| STAT_PAR_ERR
;
549 port
->ignore_status_mask
= 0;
550 if (termios
->c_iflag
& IGNPAR
)
551 port
->ignore_status_mask
|=
552 STAT_FRM_ERR
| STAT_PAR_ERR
| STAT_OVR_ERR
;
554 if ((termios
->c_cflag
& CREAD
) == 0)
555 port
->ignore_status_mask
|= STAT_RX_RDY(port
) | STAT_BRK_ERR
;
558 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
559 * experiments show that baudrates above 1/80 of parent clock rate are
560 * not stable. So disallow baudrates above 1/80 of the parent clock
561 * rate. If port->uartclk is not available, then
562 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
563 * in this case do not matter.
565 min_baud
= DIV_ROUND_UP(port
->uartclk
, BRDV_BAUD_MAX
*
567 max_baud
= port
->uartclk
/ 80;
569 baud
= uart_get_baud_rate(port
, termios
, old
, min_baud
, max_baud
);
570 baud
= mvebu_uart_baud_rate_set(port
, baud
);
572 /* In case baudrate cannot be changed, report previous old value */
573 if (baud
== 0 && old
)
574 baud
= tty_termios_baud_rate(old
);
576 /* Only the following flag changes are supported */
578 termios
->c_iflag
&= INPCK
| IGNPAR
;
579 termios
->c_iflag
|= old
->c_iflag
& ~(INPCK
| IGNPAR
);
580 termios
->c_cflag
&= CREAD
| CBAUD
;
581 termios
->c_cflag
|= old
->c_cflag
& ~(CREAD
| CBAUD
);
582 termios
->c_cflag
|= CS8
;
586 tty_termios_encode_baud_rate(termios
, baud
, baud
);
587 uart_update_timeout(port
, termios
->c_cflag
, baud
);
590 uart_port_unlock_irqrestore(port
, flags
);
593 static const char *mvebu_uart_type(struct uart_port
*port
)
595 return MVEBU_UART_TYPE
;
598 static void mvebu_uart_release_port(struct uart_port
*port
)
600 /* Nothing to do here */
603 static int mvebu_uart_request_port(struct uart_port
*port
)
608 #ifdef CONFIG_CONSOLE_POLL
609 static int mvebu_uart_get_poll_char(struct uart_port
*port
)
611 unsigned int st
= readl(port
->membase
+ UART_STAT
);
613 if (!(st
& STAT_RX_RDY(port
)))
616 return readl(port
->membase
+ UART_RBR(port
));
619 static void mvebu_uart_put_poll_char(struct uart_port
*port
, unsigned char c
)
624 st
= readl(port
->membase
+ UART_STAT
);
626 if (!(st
& STAT_TX_FIFO_FUL
))
632 writel(c
, port
->membase
+ UART_TSH(port
));
636 static const struct uart_ops mvebu_uart_ops
= {
637 .tx_empty
= mvebu_uart_tx_empty
,
638 .set_mctrl
= mvebu_uart_set_mctrl
,
639 .get_mctrl
= mvebu_uart_get_mctrl
,
640 .stop_tx
= mvebu_uart_stop_tx
,
641 .start_tx
= mvebu_uart_start_tx
,
642 .stop_rx
= mvebu_uart_stop_rx
,
643 .break_ctl
= mvebu_uart_break_ctl
,
644 .startup
= mvebu_uart_startup
,
645 .shutdown
= mvebu_uart_shutdown
,
646 .set_termios
= mvebu_uart_set_termios
,
647 .type
= mvebu_uart_type
,
648 .release_port
= mvebu_uart_release_port
,
649 .request_port
= mvebu_uart_request_port
,
650 #ifdef CONFIG_CONSOLE_POLL
651 .poll_get_char
= mvebu_uart_get_poll_char
,
652 .poll_put_char
= mvebu_uart_put_poll_char
,
656 /* Console Driver Operations */
658 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
660 static void mvebu_uart_putc(struct uart_port
*port
, unsigned char c
)
665 st
= readl(port
->membase
+ UART_STAT
);
666 if (!(st
& STAT_TX_FIFO_FUL
))
670 /* At early stage, DT is not parsed yet, only use UART0 */
671 writel(c
, port
->membase
+ UART_STD_TSH
);
674 st
= readl(port
->membase
+ UART_STAT
);
675 if (st
& STAT_TX_FIFO_EMP
)
680 static void mvebu_uart_putc_early_write(struct console
*con
,
684 struct earlycon_device
*dev
= con
->data
;
686 uart_console_write(&dev
->port
, s
, n
, mvebu_uart_putc
);
690 mvebu_uart_early_console_setup(struct earlycon_device
*device
,
693 if (!device
->port
.membase
)
696 device
->con
->write
= mvebu_uart_putc_early_write
;
701 EARLYCON_DECLARE(ar3700_uart
, mvebu_uart_early_console_setup
);
702 OF_EARLYCON_DECLARE(ar3700_uart
, "marvell,armada-3700-uart",
703 mvebu_uart_early_console_setup
);
705 static void wait_for_xmitr(struct uart_port
*port
)
709 readl_poll_timeout_atomic(port
->membase
+ UART_STAT
, val
,
710 (val
& STAT_TX_RDY(port
)), 1, 10000);
713 static void wait_for_xmite(struct uart_port
*port
)
717 readl_poll_timeout_atomic(port
->membase
+ UART_STAT
, val
,
718 (val
& STAT_TX_EMP
), 1, 10000);
721 static void mvebu_uart_console_putchar(struct uart_port
*port
, unsigned char ch
)
723 wait_for_xmitr(port
);
724 writel(ch
, port
->membase
+ UART_TSH(port
));
727 static void mvebu_uart_console_write(struct console
*co
, const char *s
,
730 struct uart_port
*port
= &mvebu_uart_ports
[co
->index
];
732 unsigned int ier
, intr
, ctl
;
735 if (oops_in_progress
)
736 locked
= uart_port_trylock_irqsave(port
, &flags
);
738 uart_port_lock_irqsave(port
, &flags
);
740 ier
= readl(port
->membase
+ UART_CTRL(port
)) & CTRL_BRK_INT
;
741 intr
= readl(port
->membase
+ UART_INTR(port
)) &
742 (CTRL_RX_RDY_INT(port
) | CTRL_TX_RDY_INT(port
));
743 writel(0, port
->membase
+ UART_CTRL(port
));
744 writel(0, port
->membase
+ UART_INTR(port
));
746 uart_console_write(port
, s
, count
, mvebu_uart_console_putchar
);
748 wait_for_xmite(port
);
751 writel(ier
, port
->membase
+ UART_CTRL(port
));
754 ctl
= intr
| readl(port
->membase
+ UART_INTR(port
));
755 writel(ctl
, port
->membase
+ UART_INTR(port
));
759 uart_port_unlock_irqrestore(port
, flags
);
762 static int mvebu_uart_console_setup(struct console
*co
, char *options
)
764 struct uart_port
*port
;
770 if (co
->index
< 0 || co
->index
>= MVEBU_NR_UARTS
)
773 port
= &mvebu_uart_ports
[co
->index
];
775 if (!port
->mapbase
|| !port
->membase
) {
776 pr_debug("console on ttyMV%i not present\n", co
->index
);
781 uart_parse_options(options
, &baud
, &parity
, &bits
, &flow
);
783 return uart_set_options(port
, co
, baud
, parity
, bits
, flow
);
786 static struct uart_driver mvebu_uart_driver
;
788 static struct console mvebu_uart_console
= {
790 .write
= mvebu_uart_console_write
,
791 .device
= uart_console_device
,
792 .setup
= mvebu_uart_console_setup
,
793 .flags
= CON_PRINTBUFFER
,
795 .data
= &mvebu_uart_driver
,
798 static int __init
mvebu_uart_console_init(void)
800 register_console(&mvebu_uart_console
);
804 console_initcall(mvebu_uart_console_init
);
807 #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
809 static struct uart_driver mvebu_uart_driver
= {
810 .owner
= THIS_MODULE
,
811 .driver_name
= DRIVER_NAME
,
813 .nr
= MVEBU_NR_UARTS
,
814 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
815 .cons
= &mvebu_uart_console
,
819 #if defined(CONFIG_PM)
820 static int mvebu_uart_suspend(struct device
*dev
)
822 struct mvebu_uart
*mvuart
= dev_get_drvdata(dev
);
823 struct uart_port
*port
= mvuart
->port
;
826 uart_suspend_port(&mvebu_uart_driver
, port
);
828 mvuart
->pm_regs
.rbr
= readl(port
->membase
+ UART_RBR(port
));
829 mvuart
->pm_regs
.tsh
= readl(port
->membase
+ UART_TSH(port
));
830 mvuart
->pm_regs
.ctrl
= readl(port
->membase
+ UART_CTRL(port
));
831 mvuart
->pm_regs
.intr
= readl(port
->membase
+ UART_INTR(port
));
832 mvuart
->pm_regs
.stat
= readl(port
->membase
+ UART_STAT
);
833 spin_lock_irqsave(&mvebu_uart_lock
, flags
);
834 mvuart
->pm_regs
.brdv
= readl(port
->membase
+ UART_BRDV
);
835 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
836 mvuart
->pm_regs
.osamp
= readl(port
->membase
+ UART_OSAMP
);
838 device_set_wakeup_enable(dev
, true);
843 static int mvebu_uart_resume(struct device
*dev
)
845 struct mvebu_uart
*mvuart
= dev_get_drvdata(dev
);
846 struct uart_port
*port
= mvuart
->port
;
849 writel(mvuart
->pm_regs
.rbr
, port
->membase
+ UART_RBR(port
));
850 writel(mvuart
->pm_regs
.tsh
, port
->membase
+ UART_TSH(port
));
851 writel(mvuart
->pm_regs
.ctrl
, port
->membase
+ UART_CTRL(port
));
852 writel(mvuart
->pm_regs
.intr
, port
->membase
+ UART_INTR(port
));
853 writel(mvuart
->pm_regs
.stat
, port
->membase
+ UART_STAT
);
854 spin_lock_irqsave(&mvebu_uart_lock
, flags
);
855 writel(mvuart
->pm_regs
.brdv
, port
->membase
+ UART_BRDV
);
856 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
857 writel(mvuart
->pm_regs
.osamp
, port
->membase
+ UART_OSAMP
);
859 uart_resume_port(&mvebu_uart_driver
, port
);
864 static const struct dev_pm_ops mvebu_uart_pm_ops
= {
865 .suspend
= mvebu_uart_suspend
,
866 .resume
= mvebu_uart_resume
,
868 #endif /* CONFIG_PM */
870 static const struct of_device_id mvebu_uart_of_match
[];
872 /* Counter to keep track of each UART port id when not using CONFIG_OF */
873 static int uart_num_counter
;
875 static int mvebu_uart_probe(struct platform_device
*pdev
)
877 const struct of_device_id
*match
= of_match_device(mvebu_uart_of_match
,
879 struct uart_port
*port
;
880 struct mvebu_uart
*mvuart
;
881 struct resource
*reg
;
884 /* Assume that all UART ports have a DT alias or none has */
885 id
= of_alias_get_id(pdev
->dev
.of_node
, "serial");
886 if (!pdev
->dev
.of_node
|| id
< 0)
887 pdev
->id
= uart_num_counter
++;
891 if (pdev
->id
>= MVEBU_NR_UARTS
) {
892 dev_err(&pdev
->dev
, "cannot have more than %d UART ports\n",
897 port
= &mvebu_uart_ports
[pdev
->id
];
899 spin_lock_init(&port
->lock
);
901 port
->dev
= &pdev
->dev
;
902 port
->type
= PORT_MVEBU
;
903 port
->ops
= &mvebu_uart_ops
;
907 port
->iotype
= UPIO_MEM32
;
908 port
->flags
= UPF_FIXED_PORT
;
909 port
->line
= pdev
->id
;
912 * IRQ number is not stored in this structure because we may have two of
913 * them per port (RX and TX). Instead, use the driver UART structure
914 * array so called ->irq[].
919 port
->membase
= devm_platform_get_and_ioremap_resource(pdev
, 0, ®
);
920 if (IS_ERR(port
->membase
))
921 return PTR_ERR(port
->membase
);
922 port
->mapbase
= reg
->start
;
924 mvuart
= devm_kzalloc(&pdev
->dev
, sizeof(struct mvebu_uart
),
929 /* Get controller data depending on the compatible string */
930 mvuart
->data
= (struct mvebu_uart_driver_data
*)match
->data
;
933 port
->private_data
= mvuart
;
934 platform_set_drvdata(pdev
, mvuart
);
936 /* Get fixed clock frequency */
937 mvuart
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
938 if (IS_ERR(mvuart
->clk
)) {
939 if (PTR_ERR(mvuart
->clk
) == -EPROBE_DEFER
)
940 return PTR_ERR(mvuart
->clk
);
942 if (IS_EXTENDED(port
)) {
943 dev_err(&pdev
->dev
, "unable to get UART clock\n");
944 return PTR_ERR(mvuart
->clk
);
947 if (!clk_prepare_enable(mvuart
->clk
))
948 port
->uartclk
= clk_get_rate(mvuart
->clk
);
951 /* Manage interrupts */
952 if (platform_irq_count(pdev
) == 1) {
953 /* Old bindings: no name on the single unamed UART0 IRQ */
954 irq
= platform_get_irq(pdev
, 0);
958 mvuart
->irq
[UART_IRQ_SUM
] = irq
;
961 * New bindings: named interrupts (RX, TX) for both UARTS,
962 * only make use of uart-rx and uart-tx interrupts, do not use
963 * uart-sum of UART0 port.
965 irq
= platform_get_irq_byname(pdev
, "uart-rx");
969 mvuart
->irq
[UART_RX_IRQ
] = irq
;
971 irq
= platform_get_irq_byname(pdev
, "uart-tx");
975 mvuart
->irq
[UART_TX_IRQ
] = irq
;
979 writel(CTRL_SOFT_RST
, port
->membase
+ UART_CTRL(port
));
981 writel(0, port
->membase
+ UART_CTRL(port
));
983 return uart_add_one_port(&mvebu_uart_driver
, port
);
986 static struct mvebu_uart_driver_data uart_std_driver_data
= {
988 .regs
.rbr
= UART_STD_RBR
,
989 .regs
.tsh
= UART_STD_TSH
,
990 .regs
.ctrl
= UART_STD_CTRL1
,
991 .regs
.intr
= UART_STD_CTRL2
,
992 .flags
.ctrl_tx_rdy_int
= CTRL_STD_TX_RDY_INT
,
993 .flags
.ctrl_rx_rdy_int
= CTRL_STD_RX_RDY_INT
,
994 .flags
.stat_tx_rdy
= STAT_STD_TX_RDY
,
995 .flags
.stat_rx_rdy
= STAT_STD_RX_RDY
,
998 static struct mvebu_uart_driver_data uart_ext_driver_data
= {
1000 .regs
.rbr
= UART_EXT_RBR
,
1001 .regs
.tsh
= UART_EXT_TSH
,
1002 .regs
.ctrl
= UART_EXT_CTRL1
,
1003 .regs
.intr
= UART_EXT_CTRL2
,
1004 .flags
.ctrl_tx_rdy_int
= CTRL_EXT_TX_RDY_INT
,
1005 .flags
.ctrl_rx_rdy_int
= CTRL_EXT_RX_RDY_INT
,
1006 .flags
.stat_tx_rdy
= STAT_EXT_TX_RDY
,
1007 .flags
.stat_rx_rdy
= STAT_EXT_RX_RDY
,
1010 /* Match table for of_platform binding */
1011 static const struct of_device_id mvebu_uart_of_match
[] = {
1013 .compatible
= "marvell,armada-3700-uart",
1014 .data
= (void *)&uart_std_driver_data
,
1017 .compatible
= "marvell,armada-3700-uart-ext",
1018 .data
= (void *)&uart_ext_driver_data
,
1023 static struct platform_driver mvebu_uart_platform_driver
= {
1024 .probe
= mvebu_uart_probe
,
1026 .name
= "mvebu-uart",
1027 .of_match_table
= of_match_ptr(mvebu_uart_of_match
),
1028 .suppress_bind_attrs
= true,
1029 #if defined(CONFIG_PM)
1030 .pm
= &mvebu_uart_pm_ops
,
1031 #endif /* CONFIG_PM */
1035 /* This code is based on clk-fixed-factor.c driver and modified. */
1037 struct mvebu_uart_clock
{
1038 struct clk_hw clk_hw
;
1040 u32 pm_context_reg1
;
1041 u32 pm_context_reg2
;
1044 struct mvebu_uart_clock_base
{
1045 struct mvebu_uart_clock clocks
[2];
1046 unsigned int parent_rates
[5];
1054 #define PARENT_CLOCK_XTAL 4
1056 #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1057 #define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1058 struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1060 static int mvebu_uart_clock_prepare(struct clk_hw
*hw
)
1062 struct mvebu_uart_clock
*uart_clock
= to_uart_clock(hw
);
1063 struct mvebu_uart_clock_base
*uart_clock_base
=
1064 to_uart_clock_base(uart_clock
);
1065 unsigned int prev_clock_idx
, prev_clock_rate
, prev_d1d2
;
1066 unsigned int parent_clock_idx
, parent_clock_rate
;
1067 unsigned long flags
;
1068 unsigned int d1
, d2
;
1073 * This function just reconfigures UART Clock Control register (located
1074 * in UART1 address space which controls both UART1 and UART2) to
1075 * selected UART base clock and recalculates current UART1/UART2
1076 * divisors in their address spaces, so that final baudrate will not be
1077 * changed by switching UART parent clock. This is required for
1078 * otherwise kernel's boot log stops working - we need to ensure that
1079 * UART baudrate does not change during this setup. It is a one time
1080 * operation, it will execute only once and set `configured` to true,
1081 * and be skipped on subsequent calls. Because this UART Clock Control
1082 * register (UART_BRDV) is shared between UART1 baudrate function,
1083 * UART1 clock selector and UART2 clock selector, every access to
1084 * UART_BRDV (reg1) needs to be protected by a lock.
1087 spin_lock_irqsave(&mvebu_uart_lock
, flags
);
1089 if (uart_clock_base
->configured
) {
1090 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
1094 parent_clock_idx
= uart_clock_base
->parent_idx
;
1095 parent_clock_rate
= uart_clock_base
->parent_rates
[parent_clock_idx
];
1097 val
= readl(uart_clock_base
->reg1
);
1099 if (uart_clock_base
->div
> CLK_TBG_DIV1_MAX
) {
1100 d1
= CLK_TBG_DIV1_MAX
;
1101 d2
= uart_clock_base
->div
/ CLK_TBG_DIV1_MAX
;
1103 d1
= uart_clock_base
->div
;
1107 if (val
& CLK_NO_XTAL
) {
1108 prev_clock_idx
= (val
>> CLK_TBG_SEL_SHIFT
) & CLK_TBG_SEL_MASK
;
1109 prev_d1d2
= ((val
>> CLK_TBG_DIV1_SHIFT
) & CLK_TBG_DIV1_MASK
) *
1110 ((val
>> CLK_TBG_DIV2_SHIFT
) & CLK_TBG_DIV2_MASK
);
1112 prev_clock_idx
= PARENT_CLOCK_XTAL
;
1116 /* Note that uart_clock_base->parent_rates[i] may not be available */
1117 prev_clock_rate
= uart_clock_base
->parent_rates
[prev_clock_idx
];
1119 /* Recalculate UART1 divisor so UART1 baudrate does not change */
1120 if (prev_clock_rate
) {
1121 divisor
= DIV_U64_ROUND_CLOSEST((u64
)(val
& BRDV_BAUD_MASK
) *
1122 parent_clock_rate
* prev_d1d2
,
1123 prev_clock_rate
* d1
* d2
);
1126 else if (divisor
> BRDV_BAUD_MAX
)
1127 divisor
= BRDV_BAUD_MAX
;
1128 val
= (val
& ~BRDV_BAUD_MASK
) | divisor
;
1131 if (parent_clock_idx
!= PARENT_CLOCK_XTAL
) {
1132 /* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1134 val
&= ~(CLK_TBG_DIV1_MASK
<< CLK_TBG_DIV1_SHIFT
);
1135 val
|= d1
<< CLK_TBG_DIV1_SHIFT
;
1136 val
&= ~(CLK_TBG_DIV2_MASK
<< CLK_TBG_DIV2_SHIFT
);
1137 val
|= d2
<< CLK_TBG_DIV2_SHIFT
;
1138 val
&= ~(CLK_TBG_SEL_MASK
<< CLK_TBG_SEL_SHIFT
);
1139 val
|= parent_clock_idx
<< CLK_TBG_SEL_SHIFT
;
1141 /* Use XTAL, TBG bits are then ignored */
1142 val
&= ~CLK_NO_XTAL
;
1145 writel(val
, uart_clock_base
->reg1
);
1147 /* Recalculate UART2 divisor so UART2 baudrate does not change */
1148 if (prev_clock_rate
) {
1149 val
= readl(uart_clock_base
->reg2
);
1150 divisor
= DIV_U64_ROUND_CLOSEST((u64
)(val
& BRDV_BAUD_MASK
) *
1151 parent_clock_rate
* prev_d1d2
,
1152 prev_clock_rate
* d1
* d2
);
1155 else if (divisor
> BRDV_BAUD_MAX
)
1156 divisor
= BRDV_BAUD_MAX
;
1157 val
= (val
& ~BRDV_BAUD_MASK
) | divisor
;
1158 writel(val
, uart_clock_base
->reg2
);
1161 uart_clock_base
->configured
= true;
1163 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
1168 static int mvebu_uart_clock_enable(struct clk_hw
*hw
)
1170 struct mvebu_uart_clock
*uart_clock
= to_uart_clock(hw
);
1171 struct mvebu_uart_clock_base
*uart_clock_base
=
1172 to_uart_clock_base(uart_clock
);
1173 unsigned long flags
;
1176 spin_lock_irqsave(&mvebu_uart_lock
, flags
);
1178 val
= readl(uart_clock_base
->reg1
);
1180 if (uart_clock
->clock_idx
== 0)
1181 val
&= ~UART1_CLK_DIS
;
1183 val
&= ~UART2_CLK_DIS
;
1185 writel(val
, uart_clock_base
->reg1
);
1187 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
1192 static void mvebu_uart_clock_disable(struct clk_hw
*hw
)
1194 struct mvebu_uart_clock
*uart_clock
= to_uart_clock(hw
);
1195 struct mvebu_uart_clock_base
*uart_clock_base
=
1196 to_uart_clock_base(uart_clock
);
1197 unsigned long flags
;
1200 spin_lock_irqsave(&mvebu_uart_lock
, flags
);
1202 val
= readl(uart_clock_base
->reg1
);
1204 if (uart_clock
->clock_idx
== 0)
1205 val
|= UART1_CLK_DIS
;
1207 val
|= UART2_CLK_DIS
;
1209 writel(val
, uart_clock_base
->reg1
);
1211 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
1214 static int mvebu_uart_clock_is_enabled(struct clk_hw
*hw
)
1216 struct mvebu_uart_clock
*uart_clock
= to_uart_clock(hw
);
1217 struct mvebu_uart_clock_base
*uart_clock_base
=
1218 to_uart_clock_base(uart_clock
);
1221 val
= readl(uart_clock_base
->reg1
);
1223 if (uart_clock
->clock_idx
== 0)
1224 return !(val
& UART1_CLK_DIS
);
1226 return !(val
& UART2_CLK_DIS
);
1229 static int mvebu_uart_clock_save_context(struct clk_hw
*hw
)
1231 struct mvebu_uart_clock
*uart_clock
= to_uart_clock(hw
);
1232 struct mvebu_uart_clock_base
*uart_clock_base
=
1233 to_uart_clock_base(uart_clock
);
1234 unsigned long flags
;
1236 spin_lock_irqsave(&mvebu_uart_lock
, flags
);
1237 uart_clock
->pm_context_reg1
= readl(uart_clock_base
->reg1
);
1238 uart_clock
->pm_context_reg2
= readl(uart_clock_base
->reg2
);
1239 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
1244 static void mvebu_uart_clock_restore_context(struct clk_hw
*hw
)
1246 struct mvebu_uart_clock
*uart_clock
= to_uart_clock(hw
);
1247 struct mvebu_uart_clock_base
*uart_clock_base
=
1248 to_uart_clock_base(uart_clock
);
1249 unsigned long flags
;
1251 spin_lock_irqsave(&mvebu_uart_lock
, flags
);
1252 writel(uart_clock
->pm_context_reg1
, uart_clock_base
->reg1
);
1253 writel(uart_clock
->pm_context_reg2
, uart_clock_base
->reg2
);
1254 spin_unlock_irqrestore(&mvebu_uart_lock
, flags
);
1257 static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw
*hw
,
1258 unsigned long parent_rate
)
1260 struct mvebu_uart_clock
*uart_clock
= to_uart_clock(hw
);
1261 struct mvebu_uart_clock_base
*uart_clock_base
=
1262 to_uart_clock_base(uart_clock
);
1264 return parent_rate
/ uart_clock_base
->div
;
1267 static long mvebu_uart_clock_round_rate(struct clk_hw
*hw
, unsigned long rate
,
1268 unsigned long *parent_rate
)
1270 struct mvebu_uart_clock
*uart_clock
= to_uart_clock(hw
);
1271 struct mvebu_uart_clock_base
*uart_clock_base
=
1272 to_uart_clock_base(uart_clock
);
1274 return *parent_rate
/ uart_clock_base
->div
;
1277 static int mvebu_uart_clock_set_rate(struct clk_hw
*hw
, unsigned long rate
,
1278 unsigned long parent_rate
)
1281 * We must report success but we can do so unconditionally because
1282 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1289 static const struct clk_ops mvebu_uart_clock_ops
= {
1290 .prepare
= mvebu_uart_clock_prepare
,
1291 .enable
= mvebu_uart_clock_enable
,
1292 .disable
= mvebu_uart_clock_disable
,
1293 .is_enabled
= mvebu_uart_clock_is_enabled
,
1294 .save_context
= mvebu_uart_clock_save_context
,
1295 .restore_context
= mvebu_uart_clock_restore_context
,
1296 .round_rate
= mvebu_uart_clock_round_rate
,
1297 .set_rate
= mvebu_uart_clock_set_rate
,
1298 .recalc_rate
= mvebu_uart_clock_recalc_rate
,
1301 static int mvebu_uart_clock_register(struct device
*dev
,
1302 struct mvebu_uart_clock
*uart_clock
,
1304 const char *parent_name
)
1306 struct clk_init_data init
= { };
1308 uart_clock
->clk_hw
.init
= &init
;
1311 init
.ops
= &mvebu_uart_clock_ops
;
1313 init
.num_parents
= 1;
1314 init
.parent_names
= &parent_name
;
1316 return devm_clk_hw_register(dev
, &uart_clock
->clk_hw
);
1319 static int mvebu_uart_clock_probe(struct platform_device
*pdev
)
1321 static const char *const uart_clk_names
[] = { "uart_1", "uart_2" };
1322 static const char *const parent_clk_names
[] = { "TBG-A-P", "TBG-B-P",
1323 "TBG-A-S", "TBG-B-S",
1325 struct clk
*parent_clks
[ARRAY_SIZE(parent_clk_names
)];
1326 struct mvebu_uart_clock_base
*uart_clock_base
;
1327 struct clk_hw_onecell_data
*hw_clk_data
;
1328 struct device
*dev
= &pdev
->dev
;
1329 int i
, parent_clk_idx
, ret
;
1330 unsigned long div
, rate
;
1331 struct resource
*res
;
1332 unsigned int d1
, d2
;
1334 BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names
) !=
1335 ARRAY_SIZE(uart_clock_base
->clocks
));
1336 BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names
) !=
1337 ARRAY_SIZE(uart_clock_base
->parent_rates
));
1339 uart_clock_base
= devm_kzalloc(dev
,
1340 sizeof(*uart_clock_base
),
1342 if (!uart_clock_base
)
1345 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1347 dev_err(dev
, "Couldn't get first register\n");
1352 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1353 * space of UART1 (standard UART variant), controls parent clock and
1354 * dividers for both UART1 and UART2 and is supplied via DT as the first
1355 * resource. Therefore use ioremap() rather than ioremap_resource() to
1356 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1357 * by a lock shared between clock and UART driver.
1359 uart_clock_base
->reg1
= devm_ioremap(dev
, res
->start
,
1360 resource_size(res
));
1361 if (!uart_clock_base
->reg1
)
1364 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1366 dev_err(dev
, "Couldn't get second register\n");
1371 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1372 * space of UART2 (extended UART variant), controls only one UART2
1373 * specific divider and is supplied via DT as second resource.
1374 * Therefore use ioremap() rather than ioremap_resource() to avoid
1375 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1376 * by lock shared between clock and UART driver.
1378 uart_clock_base
->reg2
= devm_ioremap(dev
, res
->start
,
1379 resource_size(res
));
1380 if (!uart_clock_base
->reg2
)
1383 hw_clk_data
= devm_kzalloc(dev
,
1384 struct_size(hw_clk_data
, hws
,
1385 ARRAY_SIZE(uart_clk_names
)),
1390 hw_clk_data
->num
= ARRAY_SIZE(uart_clk_names
);
1391 for (i
= 0; i
< ARRAY_SIZE(uart_clk_names
); i
++) {
1392 hw_clk_data
->hws
[i
] = &uart_clock_base
->clocks
[i
].clk_hw
;
1393 uart_clock_base
->clocks
[i
].clock_idx
= i
;
1396 parent_clk_idx
= -1;
1398 for (i
= 0; i
< ARRAY_SIZE(parent_clk_names
); i
++) {
1399 parent_clks
[i
] = devm_clk_get(dev
, parent_clk_names
[i
]);
1400 if (IS_ERR(parent_clks
[i
])) {
1401 if (PTR_ERR(parent_clks
[i
]) == -EPROBE_DEFER
)
1402 return -EPROBE_DEFER
;
1403 dev_warn(dev
, "Couldn't get the parent clock %s: %ld\n",
1404 parent_clk_names
[i
], PTR_ERR(parent_clks
[i
]));
1408 ret
= clk_prepare_enable(parent_clks
[i
]);
1410 dev_warn(dev
, "Couldn't enable parent clock %s: %d\n",
1411 parent_clk_names
[i
], ret
);
1414 rate
= clk_get_rate(parent_clks
[i
]);
1415 uart_clock_base
->parent_rates
[i
] = rate
;
1417 if (i
!= PARENT_CLOCK_XTAL
) {
1419 * Calculate the smallest TBG d1 and d2 divisors that
1420 * still can provide 9600 baudrate.
1422 d1
= DIV_ROUND_UP(rate
, 9600 * OSAMP_MAX_DIVISOR
*
1426 else if (d1
> CLK_TBG_DIV1_MAX
)
1427 d1
= CLK_TBG_DIV1_MAX
;
1429 d2
= DIV_ROUND_UP(rate
, 9600 * OSAMP_MAX_DIVISOR
*
1430 BRDV_BAUD_MAX
* d1
);
1433 else if (d2
> CLK_TBG_DIV2_MAX
)
1434 d2
= CLK_TBG_DIV2_MAX
;
1437 * When UART clock uses XTAL clock as a source then it
1438 * is not possible to use d1 and d2 divisors.
1443 /* Skip clock source which cannot provide 9600 baudrate */
1444 if (rate
> 9600 * OSAMP_MAX_DIVISOR
* BRDV_BAUD_MAX
* d1
* d2
)
1448 * Choose TBG clock source with the smallest divisors. Use XTAL
1449 * clock source only in case TBG is not available as XTAL cannot
1450 * be used for baudrates higher than 230400.
1452 if (parent_clk_idx
== -1 ||
1453 (i
!= PARENT_CLOCK_XTAL
&& div
> d1
* d2
)) {
1459 for (i
= 0; i
< ARRAY_SIZE(parent_clk_names
); i
++) {
1460 if (i
== parent_clk_idx
|| IS_ERR(parent_clks
[i
]))
1462 clk_disable_unprepare(parent_clks
[i
]);
1463 devm_clk_put(dev
, parent_clks
[i
]);
1466 if (parent_clk_idx
== -1) {
1467 dev_err(dev
, "No usable parent clock\n");
1471 uart_clock_base
->parent_idx
= parent_clk_idx
;
1472 uart_clock_base
->div
= div
;
1474 dev_notice(dev
, "Using parent clock %s as base UART clock\n",
1475 __clk_get_name(parent_clks
[parent_clk_idx
]));
1477 for (i
= 0; i
< ARRAY_SIZE(uart_clk_names
); i
++) {
1478 ret
= mvebu_uart_clock_register(dev
,
1479 &uart_clock_base
->clocks
[i
],
1481 __clk_get_name(parent_clks
[parent_clk_idx
]));
1483 dev_err(dev
, "Can't register UART clock %d: %d\n",
1489 return devm_of_clk_add_hw_provider(dev
, of_clk_hw_onecell_get
,
1493 static const struct of_device_id mvebu_uart_clock_of_match
[] = {
1494 { .compatible
= "marvell,armada-3700-uart-clock", },
1498 static struct platform_driver mvebu_uart_clock_platform_driver
= {
1499 .probe
= mvebu_uart_clock_probe
,
1501 .name
= "mvebu-uart-clock",
1502 .of_match_table
= mvebu_uart_clock_of_match
,
1506 static int __init
mvebu_uart_init(void)
1510 ret
= uart_register_driver(&mvebu_uart_driver
);
1514 ret
= platform_driver_register(&mvebu_uart_clock_platform_driver
);
1516 uart_unregister_driver(&mvebu_uart_driver
);
1520 ret
= platform_driver_register(&mvebu_uart_platform_driver
);
1522 platform_driver_unregister(&mvebu_uart_clock_platform_driver
);
1523 uart_unregister_driver(&mvebu_uart_driver
);
1529 arch_initcall(mvebu_uart_init
);