Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / tty / serial / sh-sci.c
blobdf523c74442308360c1b411b27fea32f74c48f77
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
5 * Copyright (C) 2002 - 2011 Paul Mundt
6 * Copyright (C) 2015 Glider bvba
7 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
9 * based off of the old drivers/char/sh-sci.c by:
11 * Copyright (C) 1999, 2000 Niibe Yutaka
12 * Copyright (C) 2000 Sugioka Toshinobu
13 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
14 * Modified to support SecureEdge. David McCullough (2002)
15 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16 * Removed SH7300 support (Jul 2007).
18 #undef DEBUG
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/reset.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
57 #include "serial_mctrl_gpio.h"
58 #include "sh-sci.h"
60 /* Offsets into the sci_port->irqs array */
61 enum {
62 SCIx_ERI_IRQ,
63 SCIx_RXI_IRQ,
64 SCIx_TXI_IRQ,
65 SCIx_BRI_IRQ,
66 SCIx_DRI_IRQ,
67 SCIx_TEI_IRQ,
68 SCIx_NR_IRQS,
70 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
73 #define SCIx_IRQ_IS_MUXED(port) \
74 ((port)->irqs[SCIx_ERI_IRQ] == \
75 (port)->irqs[SCIx_RXI_IRQ]) || \
76 ((port)->irqs[SCIx_ERI_IRQ] && \
77 ((port)->irqs[SCIx_RXI_IRQ] < 0))
79 enum SCI_CLKS {
80 SCI_FCK, /* Functional Clock */
81 SCI_SCK, /* Optional External Clock */
82 SCI_BRG_INT, /* Optional BRG Internal Clock Source */
83 SCI_SCIF_CLK, /* Optional BRG External Clock Source */
84 SCI_NUM_CLKS
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x) BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1)
91 #define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 SCI_SR(19) | SCI_SR(27)
95 #define min_sr(_port) ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port) fls((_port)->sampling_rate_mask)
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port) \
100 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \
101 if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
103 struct plat_sci_reg {
104 u8 offset, size;
107 struct sci_port_params {
108 const struct plat_sci_reg regs[SCIx_NR_REGS];
109 unsigned int fifosize;
110 unsigned int overrun_reg;
111 unsigned int overrun_mask;
112 unsigned int sampling_rate_mask;
113 unsigned int error_mask;
114 unsigned int error_clear;
117 struct sci_port {
118 struct uart_port port;
120 /* Platform configuration */
121 const struct sci_port_params *params;
122 const struct plat_sci_port *cfg;
123 unsigned int sampling_rate_mask;
124 resource_size_t reg_size;
125 struct mctrl_gpios *gpios;
127 /* Clocks */
128 struct clk *clks[SCI_NUM_CLKS];
129 unsigned long clk_rates[SCI_NUM_CLKS];
131 int irqs[SCIx_NR_IRQS];
132 char *irqstr[SCIx_NR_IRQS];
134 struct dma_chan *chan_tx;
135 struct dma_chan *chan_rx;
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 struct dma_chan *chan_tx_saved;
139 struct dma_chan *chan_rx_saved;
140 dma_cookie_t cookie_tx;
141 dma_cookie_t cookie_rx[2];
142 dma_cookie_t active_rx;
143 dma_addr_t tx_dma_addr;
144 unsigned int tx_dma_len;
145 struct scatterlist sg_rx[2];
146 void *rx_buf[2];
147 size_t buf_len_rx;
148 struct work_struct work_tx;
149 struct hrtimer rx_timer;
150 unsigned int rx_timeout; /* microseconds */
151 #endif
152 unsigned int rx_frame;
153 int rx_trigger;
154 struct timer_list rx_fifo_timer;
155 int rx_fifo_timeout;
156 u16 hscif_tot;
158 bool has_rtscts;
159 bool autorts;
162 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
164 static struct sci_port sci_ports[SCI_NPORTS];
165 static unsigned long sci_ports_in_use;
166 static struct uart_driver sci_uart_driver;
168 static inline struct sci_port *
169 to_sci_port(struct uart_port *uart)
171 return container_of(uart, struct sci_port, port);
174 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
176 * Common SCI definitions, dependent on the port's regshift
177 * value.
179 [SCIx_SCI_REGTYPE] = {
180 .regs = {
181 [SCSMR] = { 0x00, 8 },
182 [SCBRR] = { 0x01, 8 },
183 [SCSCR] = { 0x02, 8 },
184 [SCxTDR] = { 0x03, 8 },
185 [SCxSR] = { 0x04, 8 },
186 [SCxRDR] = { 0x05, 8 },
188 .fifosize = 1,
189 .overrun_reg = SCxSR,
190 .overrun_mask = SCI_ORER,
191 .sampling_rate_mask = SCI_SR(32),
192 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
193 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
197 * Common definitions for legacy IrDA ports.
199 [SCIx_IRDA_REGTYPE] = {
200 .regs = {
201 [SCSMR] = { 0x00, 8 },
202 [SCBRR] = { 0x02, 8 },
203 [SCSCR] = { 0x04, 8 },
204 [SCxTDR] = { 0x06, 8 },
205 [SCxSR] = { 0x08, 16 },
206 [SCxRDR] = { 0x0a, 8 },
207 [SCFCR] = { 0x0c, 8 },
208 [SCFDR] = { 0x0e, 16 },
210 .fifosize = 1,
211 .overrun_reg = SCxSR,
212 .overrun_mask = SCI_ORER,
213 .sampling_rate_mask = SCI_SR(32),
214 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
215 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
219 * Common SCIFA definitions.
221 [SCIx_SCIFA_REGTYPE] = {
222 .regs = {
223 [SCSMR] = { 0x00, 16 },
224 [SCBRR] = { 0x04, 8 },
225 [SCSCR] = { 0x08, 16 },
226 [SCxTDR] = { 0x20, 8 },
227 [SCxSR] = { 0x14, 16 },
228 [SCxRDR] = { 0x24, 8 },
229 [SCFCR] = { 0x18, 16 },
230 [SCFDR] = { 0x1c, 16 },
231 [SCPCR] = { 0x30, 16 },
232 [SCPDR] = { 0x34, 16 },
234 .fifosize = 64,
235 .overrun_reg = SCxSR,
236 .overrun_mask = SCIFA_ORER,
237 .sampling_rate_mask = SCI_SR_SCIFAB,
238 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
239 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
243 * Common SCIFB definitions.
245 [SCIx_SCIFB_REGTYPE] = {
246 .regs = {
247 [SCSMR] = { 0x00, 16 },
248 [SCBRR] = { 0x04, 8 },
249 [SCSCR] = { 0x08, 16 },
250 [SCxTDR] = { 0x40, 8 },
251 [SCxSR] = { 0x14, 16 },
252 [SCxRDR] = { 0x60, 8 },
253 [SCFCR] = { 0x18, 16 },
254 [SCTFDR] = { 0x38, 16 },
255 [SCRFDR] = { 0x3c, 16 },
256 [SCPCR] = { 0x30, 16 },
257 [SCPDR] = { 0x34, 16 },
259 .fifosize = 256,
260 .overrun_reg = SCxSR,
261 .overrun_mask = SCIFA_ORER,
262 .sampling_rate_mask = SCI_SR_SCIFAB,
263 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
264 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
268 * Common SH-2(A) SCIF definitions for ports with FIFO data
269 * count registers.
271 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
272 .regs = {
273 [SCSMR] = { 0x00, 16 },
274 [SCBRR] = { 0x04, 8 },
275 [SCSCR] = { 0x08, 16 },
276 [SCxTDR] = { 0x0c, 8 },
277 [SCxSR] = { 0x10, 16 },
278 [SCxRDR] = { 0x14, 8 },
279 [SCFCR] = { 0x18, 16 },
280 [SCFDR] = { 0x1c, 16 },
281 [SCSPTR] = { 0x20, 16 },
282 [SCLSR] = { 0x24, 16 },
284 .fifosize = 16,
285 .overrun_reg = SCLSR,
286 .overrun_mask = SCLSR_ORER,
287 .sampling_rate_mask = SCI_SR(32),
288 .error_mask = SCIF_DEFAULT_ERROR_MASK,
289 .error_clear = SCIF_ERROR_CLEAR,
293 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
294 * It looks like a normal SCIF with FIFO data, but with a
295 * compressed address space. Also, the break out of interrupts
296 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
298 [SCIx_RZ_SCIFA_REGTYPE] = {
299 .regs = {
300 [SCSMR] = { 0x00, 16 },
301 [SCBRR] = { 0x02, 8 },
302 [SCSCR] = { 0x04, 16 },
303 [SCxTDR] = { 0x06, 8 },
304 [SCxSR] = { 0x08, 16 },
305 [SCxRDR] = { 0x0A, 8 },
306 [SCFCR] = { 0x0C, 16 },
307 [SCFDR] = { 0x0E, 16 },
308 [SCSPTR] = { 0x10, 16 },
309 [SCLSR] = { 0x12, 16 },
310 [SEMR] = { 0x14, 8 },
312 .fifosize = 16,
313 .overrun_reg = SCLSR,
314 .overrun_mask = SCLSR_ORER,
315 .sampling_rate_mask = SCI_SR(32),
316 .error_mask = SCIF_DEFAULT_ERROR_MASK,
317 .error_clear = SCIF_ERROR_CLEAR,
321 * The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
322 * with below differences,
323 * - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
324 * TEI-DRI, RXI-EDGE and TXI-EDGE.
325 * - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
326 * - SCFCR register does not have SCFCR_MCE bit.
327 * - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
329 [SCIx_RZV2H_SCIF_REGTYPE] = {
330 .regs = {
331 [SCSMR] = { 0x00, 16 },
332 [SCBRR] = { 0x02, 8 },
333 [SCSCR] = { 0x04, 16 },
334 [SCxTDR] = { 0x06, 8 },
335 [SCxSR] = { 0x08, 16 },
336 [SCxRDR] = { 0x0a, 8 },
337 [SCFCR] = { 0x0c, 16 },
338 [SCFDR] = { 0x0e, 16 },
339 [SCSPTR] = { 0x10, 16 },
340 [SCLSR] = { 0x12, 16 },
341 [SEMR] = { 0x14, 8 },
343 .fifosize = 16,
344 .overrun_reg = SCLSR,
345 .overrun_mask = SCLSR_ORER,
346 .sampling_rate_mask = SCI_SR(32),
347 .error_mask = SCIF_DEFAULT_ERROR_MASK,
348 .error_clear = SCIF_ERROR_CLEAR,
352 * Common SH-3 SCIF definitions.
354 [SCIx_SH3_SCIF_REGTYPE] = {
355 .regs = {
356 [SCSMR] = { 0x00, 8 },
357 [SCBRR] = { 0x02, 8 },
358 [SCSCR] = { 0x04, 8 },
359 [SCxTDR] = { 0x06, 8 },
360 [SCxSR] = { 0x08, 16 },
361 [SCxRDR] = { 0x0a, 8 },
362 [SCFCR] = { 0x0c, 8 },
363 [SCFDR] = { 0x0e, 16 },
365 .fifosize = 16,
366 .overrun_reg = SCLSR,
367 .overrun_mask = SCLSR_ORER,
368 .sampling_rate_mask = SCI_SR(32),
369 .error_mask = SCIF_DEFAULT_ERROR_MASK,
370 .error_clear = SCIF_ERROR_CLEAR,
374 * Common SH-4(A) SCIF(B) definitions.
376 [SCIx_SH4_SCIF_REGTYPE] = {
377 .regs = {
378 [SCSMR] = { 0x00, 16 },
379 [SCBRR] = { 0x04, 8 },
380 [SCSCR] = { 0x08, 16 },
381 [SCxTDR] = { 0x0c, 8 },
382 [SCxSR] = { 0x10, 16 },
383 [SCxRDR] = { 0x14, 8 },
384 [SCFCR] = { 0x18, 16 },
385 [SCFDR] = { 0x1c, 16 },
386 [SCSPTR] = { 0x20, 16 },
387 [SCLSR] = { 0x24, 16 },
389 .fifosize = 16,
390 .overrun_reg = SCLSR,
391 .overrun_mask = SCLSR_ORER,
392 .sampling_rate_mask = SCI_SR(32),
393 .error_mask = SCIF_DEFAULT_ERROR_MASK,
394 .error_clear = SCIF_ERROR_CLEAR,
398 * Common SCIF definitions for ports with a Baud Rate Generator for
399 * External Clock (BRG).
401 [SCIx_SH4_SCIF_BRG_REGTYPE] = {
402 .regs = {
403 [SCSMR] = { 0x00, 16 },
404 [SCBRR] = { 0x04, 8 },
405 [SCSCR] = { 0x08, 16 },
406 [SCxTDR] = { 0x0c, 8 },
407 [SCxSR] = { 0x10, 16 },
408 [SCxRDR] = { 0x14, 8 },
409 [SCFCR] = { 0x18, 16 },
410 [SCFDR] = { 0x1c, 16 },
411 [SCSPTR] = { 0x20, 16 },
412 [SCLSR] = { 0x24, 16 },
413 [SCDL] = { 0x30, 16 },
414 [SCCKS] = { 0x34, 16 },
416 .fifosize = 16,
417 .overrun_reg = SCLSR,
418 .overrun_mask = SCLSR_ORER,
419 .sampling_rate_mask = SCI_SR(32),
420 .error_mask = SCIF_DEFAULT_ERROR_MASK,
421 .error_clear = SCIF_ERROR_CLEAR,
425 * Common HSCIF definitions.
427 [SCIx_HSCIF_REGTYPE] = {
428 .regs = {
429 [SCSMR] = { 0x00, 16 },
430 [SCBRR] = { 0x04, 8 },
431 [SCSCR] = { 0x08, 16 },
432 [SCxTDR] = { 0x0c, 8 },
433 [SCxSR] = { 0x10, 16 },
434 [SCxRDR] = { 0x14, 8 },
435 [SCFCR] = { 0x18, 16 },
436 [SCFDR] = { 0x1c, 16 },
437 [SCSPTR] = { 0x20, 16 },
438 [SCLSR] = { 0x24, 16 },
439 [HSSRR] = { 0x40, 16 },
440 [SCDL] = { 0x30, 16 },
441 [SCCKS] = { 0x34, 16 },
442 [HSRTRGR] = { 0x54, 16 },
443 [HSTTRGR] = { 0x58, 16 },
445 .fifosize = 128,
446 .overrun_reg = SCLSR,
447 .overrun_mask = SCLSR_ORER,
448 .sampling_rate_mask = SCI_SR_RANGE(8, 32),
449 .error_mask = SCIF_DEFAULT_ERROR_MASK,
450 .error_clear = SCIF_ERROR_CLEAR,
454 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
455 * register.
457 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
458 .regs = {
459 [SCSMR] = { 0x00, 16 },
460 [SCBRR] = { 0x04, 8 },
461 [SCSCR] = { 0x08, 16 },
462 [SCxTDR] = { 0x0c, 8 },
463 [SCxSR] = { 0x10, 16 },
464 [SCxRDR] = { 0x14, 8 },
465 [SCFCR] = { 0x18, 16 },
466 [SCFDR] = { 0x1c, 16 },
467 [SCLSR] = { 0x24, 16 },
469 .fifosize = 16,
470 .overrun_reg = SCLSR,
471 .overrun_mask = SCLSR_ORER,
472 .sampling_rate_mask = SCI_SR(32),
473 .error_mask = SCIF_DEFAULT_ERROR_MASK,
474 .error_clear = SCIF_ERROR_CLEAR,
478 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
479 * count registers.
481 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
482 .regs = {
483 [SCSMR] = { 0x00, 16 },
484 [SCBRR] = { 0x04, 8 },
485 [SCSCR] = { 0x08, 16 },
486 [SCxTDR] = { 0x0c, 8 },
487 [SCxSR] = { 0x10, 16 },
488 [SCxRDR] = { 0x14, 8 },
489 [SCFCR] = { 0x18, 16 },
490 [SCFDR] = { 0x1c, 16 },
491 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
492 [SCRFDR] = { 0x20, 16 },
493 [SCSPTR] = { 0x24, 16 },
494 [SCLSR] = { 0x28, 16 },
496 .fifosize = 16,
497 .overrun_reg = SCLSR,
498 .overrun_mask = SCLSR_ORER,
499 .sampling_rate_mask = SCI_SR(32),
500 .error_mask = SCIF_DEFAULT_ERROR_MASK,
501 .error_clear = SCIF_ERROR_CLEAR,
505 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
506 * registers.
508 [SCIx_SH7705_SCIF_REGTYPE] = {
509 .regs = {
510 [SCSMR] = { 0x00, 16 },
511 [SCBRR] = { 0x04, 8 },
512 [SCSCR] = { 0x08, 16 },
513 [SCxTDR] = { 0x20, 8 },
514 [SCxSR] = { 0x14, 16 },
515 [SCxRDR] = { 0x24, 8 },
516 [SCFCR] = { 0x18, 16 },
517 [SCFDR] = { 0x1c, 16 },
519 .fifosize = 64,
520 .overrun_reg = SCxSR,
521 .overrun_mask = SCIFA_ORER,
522 .sampling_rate_mask = SCI_SR(16),
523 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
524 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
528 #define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset])
531 * The "offset" here is rather misleading, in that it refers to an enum
532 * value relative to the port mapping rather than the fixed offset
533 * itself, which needs to be manually retrieved from the platform's
534 * register map for the given port.
536 static unsigned int sci_serial_in(struct uart_port *p, int offset)
538 const struct plat_sci_reg *reg = sci_getreg(p, offset);
540 if (reg->size == 8)
541 return ioread8(p->membase + (reg->offset << p->regshift));
542 else if (reg->size == 16)
543 return ioread16(p->membase + (reg->offset << p->regshift));
544 else
545 WARN(1, "Invalid register access\n");
547 return 0;
550 static void sci_serial_out(struct uart_port *p, int offset, int value)
552 const struct plat_sci_reg *reg = sci_getreg(p, offset);
554 if (reg->size == 8)
555 iowrite8(value, p->membase + (reg->offset << p->regshift));
556 else if (reg->size == 16)
557 iowrite16(value, p->membase + (reg->offset << p->regshift));
558 else
559 WARN(1, "Invalid register access\n");
562 static void sci_port_enable(struct sci_port *sci_port)
564 unsigned int i;
566 if (!sci_port->port.dev)
567 return;
569 pm_runtime_get_sync(sci_port->port.dev);
571 for (i = 0; i < SCI_NUM_CLKS; i++) {
572 clk_prepare_enable(sci_port->clks[i]);
573 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
575 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
578 static void sci_port_disable(struct sci_port *sci_port)
580 unsigned int i;
582 if (!sci_port->port.dev)
583 return;
585 for (i = SCI_NUM_CLKS; i-- > 0; )
586 clk_disable_unprepare(sci_port->clks[i]);
588 pm_runtime_put_sync(sci_port->port.dev);
591 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
594 * Not all ports (such as SCIFA) will support REIE. Rather than
595 * special-casing the port type, we check the port initialization
596 * IRQ enable mask to see whether the IRQ is desired at all. If
597 * it's unset, it's logically inferred that there's no point in
598 * testing for it.
600 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
603 static void sci_start_tx(struct uart_port *port)
605 struct sci_port *s = to_sci_port(port);
606 unsigned short ctrl;
608 #ifdef CONFIG_SERIAL_SH_SCI_DMA
609 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
610 u16 new, scr = sci_serial_in(port, SCSCR);
611 if (s->chan_tx)
612 new = scr | SCSCR_TDRQE;
613 else
614 new = scr & ~SCSCR_TDRQE;
615 if (new != scr)
616 sci_serial_out(port, SCSCR, new);
619 if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
620 dma_submit_error(s->cookie_tx)) {
621 if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
622 /* Switch irq from SCIF to DMA */
623 disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
625 s->cookie_tx = 0;
626 schedule_work(&s->work_tx);
628 #endif
630 if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
631 port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
632 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
633 ctrl = sci_serial_in(port, SCSCR);
636 * For SCI, TE (transmit enable) must be set after setting TIE
637 * (transmit interrupt enable) or in the same instruction to start
638 * the transmit process.
640 if (port->type == PORT_SCI)
641 ctrl |= SCSCR_TE;
643 sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
647 static void sci_stop_tx(struct uart_port *port)
649 unsigned short ctrl;
651 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
652 ctrl = sci_serial_in(port, SCSCR);
654 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
655 ctrl &= ~SCSCR_TDRQE;
657 ctrl &= ~SCSCR_TIE;
659 sci_serial_out(port, SCSCR, ctrl);
661 #ifdef CONFIG_SERIAL_SH_SCI_DMA
662 if (to_sci_port(port)->chan_tx &&
663 !dma_submit_error(to_sci_port(port)->cookie_tx)) {
664 dmaengine_terminate_async(to_sci_port(port)->chan_tx);
665 to_sci_port(port)->cookie_tx = -EINVAL;
667 #endif
670 static void sci_start_rx(struct uart_port *port)
672 unsigned short ctrl;
674 ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
676 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
677 ctrl &= ~SCSCR_RDRQE;
679 sci_serial_out(port, SCSCR, ctrl);
682 static void sci_stop_rx(struct uart_port *port)
684 unsigned short ctrl;
686 ctrl = sci_serial_in(port, SCSCR);
688 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
689 ctrl &= ~SCSCR_RDRQE;
691 ctrl &= ~port_rx_irq_mask(port);
693 sci_serial_out(port, SCSCR, ctrl);
696 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
698 if (port->type == PORT_SCI) {
699 /* Just store the mask */
700 sci_serial_out(port, SCxSR, mask);
701 } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
702 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
703 /* Only clear the status bits we want to clear */
704 sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
705 } else {
706 /* Store the mask, clear parity/framing errors */
707 sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
711 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
712 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
714 #ifdef CONFIG_CONSOLE_POLL
715 static int sci_poll_get_char(struct uart_port *port)
717 unsigned short status;
718 int c;
720 do {
721 status = sci_serial_in(port, SCxSR);
722 if (status & SCxSR_ERRORS(port)) {
723 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
724 continue;
726 break;
727 } while (1);
729 if (!(status & SCxSR_RDxF(port)))
730 return NO_POLL_CHAR;
732 c = sci_serial_in(port, SCxRDR);
734 /* Dummy read */
735 sci_serial_in(port, SCxSR);
736 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
738 return c;
740 #endif
742 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
744 unsigned short status;
746 do {
747 status = sci_serial_in(port, SCxSR);
748 } while (!(status & SCxSR_TDxE(port)));
750 sci_serial_out(port, SCxTDR, c);
751 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
753 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
754 CONFIG_SERIAL_SH_SCI_EARLYCON */
756 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
758 struct sci_port *s = to_sci_port(port);
761 * Use port-specific handler if provided.
763 if (s->cfg->ops && s->cfg->ops->init_pins) {
764 s->cfg->ops->init_pins(port, cflag);
765 return;
768 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
769 u16 data = sci_serial_in(port, SCPDR);
770 u16 ctrl = sci_serial_in(port, SCPCR);
772 /* Enable RXD and TXD pin functions */
773 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
774 if (to_sci_port(port)->has_rtscts) {
775 /* RTS# is output, active low, unless autorts */
776 if (!(port->mctrl & TIOCM_RTS)) {
777 ctrl |= SCPCR_RTSC;
778 data |= SCPDR_RTSD;
779 } else if (!s->autorts) {
780 ctrl |= SCPCR_RTSC;
781 data &= ~SCPDR_RTSD;
782 } else {
783 /* Enable RTS# pin function */
784 ctrl &= ~SCPCR_RTSC;
786 /* Enable CTS# pin function */
787 ctrl &= ~SCPCR_CTSC;
789 sci_serial_out(port, SCPDR, data);
790 sci_serial_out(port, SCPCR, ctrl);
791 } else if (sci_getreg(port, SCSPTR)->size && s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
792 u16 status = sci_serial_in(port, SCSPTR);
794 /* RTS# is always output; and active low, unless autorts */
795 status |= SCSPTR_RTSIO;
796 if (!(port->mctrl & TIOCM_RTS))
797 status |= SCSPTR_RTSDT;
798 else if (!s->autorts)
799 status &= ~SCSPTR_RTSDT;
800 /* CTS# and SCK are inputs */
801 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
802 sci_serial_out(port, SCSPTR, status);
806 static int sci_txfill(struct uart_port *port)
808 struct sci_port *s = to_sci_port(port);
809 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
810 const struct plat_sci_reg *reg;
812 reg = sci_getreg(port, SCTFDR);
813 if (reg->size)
814 return sci_serial_in(port, SCTFDR) & fifo_mask;
816 reg = sci_getreg(port, SCFDR);
817 if (reg->size)
818 return sci_serial_in(port, SCFDR) >> 8;
820 return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
823 static int sci_txroom(struct uart_port *port)
825 return port->fifosize - sci_txfill(port);
828 static int sci_rxfill(struct uart_port *port)
830 struct sci_port *s = to_sci_port(port);
831 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
832 const struct plat_sci_reg *reg;
834 reg = sci_getreg(port, SCRFDR);
835 if (reg->size)
836 return sci_serial_in(port, SCRFDR) & fifo_mask;
838 reg = sci_getreg(port, SCFDR);
839 if (reg->size)
840 return sci_serial_in(port, SCFDR) & fifo_mask;
842 return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
845 /* ********************************************************************** *
846 * the interrupt related routines *
847 * ********************************************************************** */
849 static void sci_transmit_chars(struct uart_port *port)
851 struct tty_port *tport = &port->state->port;
852 unsigned int stopped = uart_tx_stopped(port);
853 unsigned short status;
854 unsigned short ctrl;
855 int count;
857 status = sci_serial_in(port, SCxSR);
858 if (!(status & SCxSR_TDxE(port))) {
859 ctrl = sci_serial_in(port, SCSCR);
860 if (kfifo_is_empty(&tport->xmit_fifo))
861 ctrl &= ~SCSCR_TIE;
862 else
863 ctrl |= SCSCR_TIE;
864 sci_serial_out(port, SCSCR, ctrl);
865 return;
868 count = sci_txroom(port);
870 do {
871 unsigned char c;
873 if (port->x_char) {
874 c = port->x_char;
875 port->x_char = 0;
876 } else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
877 if (port->type == PORT_SCI &&
878 kfifo_is_empty(&tport->xmit_fifo)) {
879 ctrl = sci_serial_in(port, SCSCR);
880 ctrl &= ~SCSCR_TE;
881 sci_serial_out(port, SCSCR, ctrl);
882 return;
884 break;
887 sci_serial_out(port, SCxTDR, c);
889 port->icount.tx++;
890 } while (--count > 0);
892 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
894 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
895 uart_write_wakeup(port);
896 if (kfifo_is_empty(&tport->xmit_fifo)) {
897 if (port->type == PORT_SCI) {
898 ctrl = sci_serial_in(port, SCSCR);
899 ctrl &= ~SCSCR_TIE;
900 ctrl |= SCSCR_TEIE;
901 sci_serial_out(port, SCSCR, ctrl);
904 sci_stop_tx(port);
908 static void sci_receive_chars(struct uart_port *port)
910 struct tty_port *tport = &port->state->port;
911 int i, count, copied = 0;
912 unsigned short status;
913 unsigned char flag;
915 status = sci_serial_in(port, SCxSR);
916 if (!(status & SCxSR_RDxF(port)))
917 return;
919 while (1) {
920 /* Don't copy more bytes than there is room for in the buffer */
921 count = tty_buffer_request_room(tport, sci_rxfill(port));
923 /* If for any reason we can't copy more data, we're done! */
924 if (count == 0)
925 break;
927 if (port->type == PORT_SCI) {
928 char c = sci_serial_in(port, SCxRDR);
929 if (uart_handle_sysrq_char(port, c))
930 count = 0;
931 else
932 tty_insert_flip_char(tport, c, TTY_NORMAL);
933 } else {
934 for (i = 0; i < count; i++) {
935 char c;
937 if (port->type == PORT_SCIF ||
938 port->type == PORT_HSCIF) {
939 status = sci_serial_in(port, SCxSR);
940 c = sci_serial_in(port, SCxRDR);
941 } else {
942 c = sci_serial_in(port, SCxRDR);
943 status = sci_serial_in(port, SCxSR);
945 if (uart_handle_sysrq_char(port, c)) {
946 count--; i--;
947 continue;
950 /* Store data and status */
951 if (status & SCxSR_FER(port)) {
952 flag = TTY_FRAME;
953 port->icount.frame++;
954 } else if (status & SCxSR_PER(port)) {
955 flag = TTY_PARITY;
956 port->icount.parity++;
957 } else
958 flag = TTY_NORMAL;
960 tty_insert_flip_char(tport, c, flag);
964 sci_serial_in(port, SCxSR); /* dummy read */
965 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
967 copied += count;
968 port->icount.rx += count;
971 if (copied) {
972 /* Tell the rest of the system the news. New characters! */
973 tty_flip_buffer_push(tport);
974 } else {
975 /* TTY buffers full; read from RX reg to prevent lockup */
976 sci_serial_in(port, SCxRDR);
977 sci_serial_in(port, SCxSR); /* dummy read */
978 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
982 static int sci_handle_errors(struct uart_port *port)
984 int copied = 0;
985 unsigned short status = sci_serial_in(port, SCxSR);
986 struct tty_port *tport = &port->state->port;
987 struct sci_port *s = to_sci_port(port);
989 /* Handle overruns */
990 if (status & s->params->overrun_mask) {
991 port->icount.overrun++;
993 /* overrun error */
994 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
995 copied++;
998 if (status & SCxSR_FER(port)) {
999 /* frame error */
1000 port->icount.frame++;
1002 if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1003 copied++;
1006 if (status & SCxSR_PER(port)) {
1007 /* parity error */
1008 port->icount.parity++;
1010 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1011 copied++;
1014 if (copied)
1015 tty_flip_buffer_push(tport);
1017 return copied;
1020 static int sci_handle_fifo_overrun(struct uart_port *port)
1022 struct tty_port *tport = &port->state->port;
1023 struct sci_port *s = to_sci_port(port);
1024 const struct plat_sci_reg *reg;
1025 int copied = 0;
1026 u16 status;
1028 reg = sci_getreg(port, s->params->overrun_reg);
1029 if (!reg->size)
1030 return 0;
1032 status = sci_serial_in(port, s->params->overrun_reg);
1033 if (status & s->params->overrun_mask) {
1034 status &= ~s->params->overrun_mask;
1035 sci_serial_out(port, s->params->overrun_reg, status);
1037 port->icount.overrun++;
1039 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1040 tty_flip_buffer_push(tport);
1041 copied++;
1044 return copied;
1047 static int sci_handle_breaks(struct uart_port *port)
1049 int copied = 0;
1050 unsigned short status = sci_serial_in(port, SCxSR);
1051 struct tty_port *tport = &port->state->port;
1053 if (uart_handle_break(port))
1054 return 0;
1056 if (status & SCxSR_BRK(port)) {
1057 port->icount.brk++;
1059 /* Notify of BREAK */
1060 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1061 copied++;
1064 if (copied)
1065 tty_flip_buffer_push(tport);
1067 copied += sci_handle_fifo_overrun(port);
1069 return copied;
1072 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1074 unsigned int bits;
1076 if (rx_trig >= port->fifosize)
1077 rx_trig = port->fifosize - 1;
1078 if (rx_trig < 1)
1079 rx_trig = 1;
1081 /* HSCIF can be set to an arbitrary level. */
1082 if (sci_getreg(port, HSRTRGR)->size) {
1083 sci_serial_out(port, HSRTRGR, rx_trig);
1084 return rx_trig;
1087 switch (port->type) {
1088 case PORT_SCIF:
1089 if (rx_trig < 4) {
1090 bits = 0;
1091 rx_trig = 1;
1092 } else if (rx_trig < 8) {
1093 bits = SCFCR_RTRG0;
1094 rx_trig = 4;
1095 } else if (rx_trig < 14) {
1096 bits = SCFCR_RTRG1;
1097 rx_trig = 8;
1098 } else {
1099 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1100 rx_trig = 14;
1102 break;
1103 case PORT_SCIFA:
1104 case PORT_SCIFB:
1105 if (rx_trig < 16) {
1106 bits = 0;
1107 rx_trig = 1;
1108 } else if (rx_trig < 32) {
1109 bits = SCFCR_RTRG0;
1110 rx_trig = 16;
1111 } else if (rx_trig < 48) {
1112 bits = SCFCR_RTRG1;
1113 rx_trig = 32;
1114 } else {
1115 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1116 rx_trig = 48;
1118 break;
1119 default:
1120 WARN(1, "unknown FIFO configuration");
1121 return 1;
1124 sci_serial_out(port, SCFCR,
1125 (sci_serial_in(port, SCFCR) &
1126 ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1128 return rx_trig;
1131 static int scif_rtrg_enabled(struct uart_port *port)
1133 if (sci_getreg(port, HSRTRGR)->size)
1134 return sci_serial_in(port, HSRTRGR) != 0;
1135 else
1136 return (sci_serial_in(port, SCFCR) &
1137 (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1140 static void rx_fifo_timer_fn(struct timer_list *t)
1142 struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1143 struct uart_port *port = &s->port;
1145 dev_dbg(port->dev, "Rx timed out\n");
1146 scif_set_rtrg(port, 1);
1149 static ssize_t rx_fifo_trigger_show(struct device *dev,
1150 struct device_attribute *attr, char *buf)
1152 struct uart_port *port = dev_get_drvdata(dev);
1153 struct sci_port *sci = to_sci_port(port);
1155 return sprintf(buf, "%d\n", sci->rx_trigger);
1158 static ssize_t rx_fifo_trigger_store(struct device *dev,
1159 struct device_attribute *attr,
1160 const char *buf, size_t count)
1162 struct uart_port *port = dev_get_drvdata(dev);
1163 struct sci_port *sci = to_sci_port(port);
1164 int ret;
1165 long r;
1167 ret = kstrtol(buf, 0, &r);
1168 if (ret)
1169 return ret;
1171 sci->rx_trigger = scif_set_rtrg(port, r);
1172 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1173 scif_set_rtrg(port, 1);
1175 return count;
1178 static DEVICE_ATTR_RW(rx_fifo_trigger);
1180 static ssize_t rx_fifo_timeout_show(struct device *dev,
1181 struct device_attribute *attr,
1182 char *buf)
1184 struct uart_port *port = dev_get_drvdata(dev);
1185 struct sci_port *sci = to_sci_port(port);
1186 int v;
1188 if (port->type == PORT_HSCIF)
1189 v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1190 else
1191 v = sci->rx_fifo_timeout;
1193 return sprintf(buf, "%d\n", v);
1196 static ssize_t rx_fifo_timeout_store(struct device *dev,
1197 struct device_attribute *attr,
1198 const char *buf,
1199 size_t count)
1201 struct uart_port *port = dev_get_drvdata(dev);
1202 struct sci_port *sci = to_sci_port(port);
1203 int ret;
1204 long r;
1206 ret = kstrtol(buf, 0, &r);
1207 if (ret)
1208 return ret;
1210 if (port->type == PORT_HSCIF) {
1211 if (r < 0 || r > 3)
1212 return -EINVAL;
1213 sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1214 } else {
1215 sci->rx_fifo_timeout = r;
1216 scif_set_rtrg(port, 1);
1217 if (r > 0)
1218 timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1221 return count;
1224 static DEVICE_ATTR_RW(rx_fifo_timeout);
1227 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1228 static void sci_dma_tx_complete(void *arg)
1230 struct sci_port *s = arg;
1231 struct uart_port *port = &s->port;
1232 struct tty_port *tport = &port->state->port;
1233 unsigned long flags;
1235 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1237 uart_port_lock_irqsave(port, &flags);
1239 uart_xmit_advance(port, s->tx_dma_len);
1241 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1242 uart_write_wakeup(port);
1244 if (!kfifo_is_empty(&tport->xmit_fifo)) {
1245 s->cookie_tx = 0;
1246 schedule_work(&s->work_tx);
1247 } else {
1248 s->cookie_tx = -EINVAL;
1249 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1250 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1251 u16 ctrl = sci_serial_in(port, SCSCR);
1252 sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1253 if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1254 /* Switch irq from DMA to SCIF */
1255 dmaengine_pause(s->chan_tx_saved);
1256 enable_irq(s->irqs[SCIx_TXI_IRQ]);
1261 uart_port_unlock_irqrestore(port, flags);
1264 /* Locking: called with port lock held */
1265 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1267 struct uart_port *port = &s->port;
1268 struct tty_port *tport = &port->state->port;
1269 int copied;
1271 copied = tty_insert_flip_string(tport, buf, count);
1272 if (copied < count)
1273 port->icount.buf_overrun++;
1275 port->icount.rx += copied;
1277 return copied;
1280 static int sci_dma_rx_find_active(struct sci_port *s)
1282 unsigned int i;
1284 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1285 if (s->active_rx == s->cookie_rx[i])
1286 return i;
1288 return -1;
1291 /* Must only be called with uart_port_lock taken */
1292 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1294 unsigned int i;
1296 s->chan_rx = NULL;
1297 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1298 s->cookie_rx[i] = -EINVAL;
1299 s->active_rx = 0;
1302 static void sci_dma_rx_release(struct sci_port *s)
1304 struct dma_chan *chan = s->chan_rx_saved;
1305 struct uart_port *port = &s->port;
1306 unsigned long flags;
1308 uart_port_lock_irqsave(port, &flags);
1309 s->chan_rx_saved = NULL;
1310 sci_dma_rx_chan_invalidate(s);
1311 uart_port_unlock_irqrestore(port, flags);
1313 dmaengine_terminate_sync(chan);
1314 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1315 sg_dma_address(&s->sg_rx[0]));
1316 dma_release_channel(chan);
1319 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1321 long sec = usec / 1000000;
1322 long nsec = (usec % 1000000) * 1000;
1323 ktime_t t = ktime_set(sec, nsec);
1325 hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1328 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1330 struct uart_port *port = &s->port;
1331 u16 scr;
1333 /* Direct new serial port interrupts back to CPU */
1334 scr = sci_serial_in(port, SCSCR);
1335 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1336 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1337 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1338 if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1339 scif_set_rtrg(port, s->rx_trigger);
1340 else
1341 scr &= ~SCSCR_RDRQE;
1343 sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1346 static void sci_dma_rx_complete(void *arg)
1348 struct sci_port *s = arg;
1349 struct dma_chan *chan = s->chan_rx;
1350 struct uart_port *port = &s->port;
1351 struct dma_async_tx_descriptor *desc;
1352 unsigned long flags;
1353 int active, count = 0;
1355 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1356 s->active_rx);
1358 hrtimer_cancel(&s->rx_timer);
1360 uart_port_lock_irqsave(port, &flags);
1362 active = sci_dma_rx_find_active(s);
1363 if (active >= 0)
1364 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1366 if (count)
1367 tty_flip_buffer_push(&port->state->port);
1369 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1370 DMA_DEV_TO_MEM,
1371 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1372 if (!desc)
1373 goto fail;
1375 desc->callback = sci_dma_rx_complete;
1376 desc->callback_param = s;
1377 s->cookie_rx[active] = dmaengine_submit(desc);
1378 if (dma_submit_error(s->cookie_rx[active]))
1379 goto fail;
1381 s->active_rx = s->cookie_rx[!active];
1383 dma_async_issue_pending(chan);
1385 uart_port_unlock_irqrestore(port, flags);
1386 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1387 __func__, s->cookie_rx[active], active, s->active_rx);
1389 start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1391 return;
1393 fail:
1394 /* Switch to PIO */
1395 dmaengine_terminate_async(chan);
1396 sci_dma_rx_chan_invalidate(s);
1397 sci_dma_rx_reenable_irq(s);
1398 uart_port_unlock_irqrestore(port, flags);
1399 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1402 static void sci_dma_tx_release(struct sci_port *s)
1404 struct dma_chan *chan = s->chan_tx_saved;
1406 cancel_work_sync(&s->work_tx);
1407 s->chan_tx_saved = s->chan_tx = NULL;
1408 s->cookie_tx = -EINVAL;
1409 dmaengine_terminate_sync(chan);
1410 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1411 DMA_TO_DEVICE);
1412 dma_release_channel(chan);
1415 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1417 struct dma_chan *chan = s->chan_rx;
1418 struct uart_port *port = &s->port;
1419 unsigned long flags;
1420 int i;
1422 for (i = 0; i < 2; i++) {
1423 struct scatterlist *sg = &s->sg_rx[i];
1424 struct dma_async_tx_descriptor *desc;
1426 desc = dmaengine_prep_slave_sg(chan,
1427 sg, 1, DMA_DEV_TO_MEM,
1428 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1429 if (!desc)
1430 goto fail;
1432 desc->callback = sci_dma_rx_complete;
1433 desc->callback_param = s;
1434 s->cookie_rx[i] = dmaengine_submit(desc);
1435 if (dma_submit_error(s->cookie_rx[i]))
1436 goto fail;
1440 s->active_rx = s->cookie_rx[0];
1442 dma_async_issue_pending(chan);
1443 return 0;
1445 fail:
1446 /* Switch to PIO */
1447 if (!port_lock_held)
1448 uart_port_lock_irqsave(port, &flags);
1449 if (i)
1450 dmaengine_terminate_async(chan);
1451 sci_dma_rx_chan_invalidate(s);
1452 sci_start_rx(port);
1453 if (!port_lock_held)
1454 uart_port_unlock_irqrestore(port, flags);
1455 return -EAGAIN;
1458 static void sci_dma_tx_work_fn(struct work_struct *work)
1460 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1461 struct dma_async_tx_descriptor *desc;
1462 struct dma_chan *chan = s->chan_tx;
1463 struct uart_port *port = &s->port;
1464 struct tty_port *tport = &port->state->port;
1465 unsigned long flags;
1466 unsigned int tail;
1467 dma_addr_t buf;
1470 * DMA is idle now.
1471 * Port xmit buffer is already mapped, and it is one page... Just adjust
1472 * offsets and lengths. Since it is a circular buffer, we have to
1473 * transmit till the end, and then the rest. Take the port lock to get a
1474 * consistent xmit buffer state.
1476 uart_port_lock_irq(port);
1477 s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
1478 UART_XMIT_SIZE);
1479 buf = s->tx_dma_addr + tail;
1480 if (!s->tx_dma_len) {
1481 /* Transmit buffer has been flushed */
1482 uart_port_unlock_irq(port);
1483 return;
1486 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1487 DMA_MEM_TO_DEV,
1488 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1489 if (!desc) {
1490 uart_port_unlock_irq(port);
1491 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1492 goto switch_to_pio;
1495 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1496 DMA_TO_DEVICE);
1498 desc->callback = sci_dma_tx_complete;
1499 desc->callback_param = s;
1500 s->cookie_tx = dmaengine_submit(desc);
1501 if (dma_submit_error(s->cookie_tx)) {
1502 uart_port_unlock_irq(port);
1503 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1504 goto switch_to_pio;
1507 uart_port_unlock_irq(port);
1508 dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
1509 __func__, tport->xmit_buf, tail, s->cookie_tx);
1511 dma_async_issue_pending(chan);
1512 return;
1514 switch_to_pio:
1515 uart_port_lock_irqsave(port, &flags);
1516 s->chan_tx = NULL;
1517 sci_start_tx(port);
1518 uart_port_unlock_irqrestore(port, flags);
1519 return;
1522 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1524 struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1525 struct dma_chan *chan = s->chan_rx;
1526 struct uart_port *port = &s->port;
1527 struct dma_tx_state state;
1528 enum dma_status status;
1529 unsigned long flags;
1530 unsigned int read;
1531 int active, count;
1533 dev_dbg(port->dev, "DMA Rx timed out\n");
1535 uart_port_lock_irqsave(port, &flags);
1537 active = sci_dma_rx_find_active(s);
1538 if (active < 0) {
1539 uart_port_unlock_irqrestore(port, flags);
1540 return HRTIMER_NORESTART;
1543 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1544 if (status == DMA_COMPLETE) {
1545 uart_port_unlock_irqrestore(port, flags);
1546 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1547 s->active_rx, active);
1549 /* Let packet complete handler take care of the packet */
1550 return HRTIMER_NORESTART;
1553 dmaengine_pause(chan);
1556 * sometimes DMA transfer doesn't stop even if it is stopped and
1557 * data keeps on coming until transaction is complete so check
1558 * for DMA_COMPLETE again
1559 * Let packet complete handler take care of the packet
1561 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1562 if (status == DMA_COMPLETE) {
1563 uart_port_unlock_irqrestore(port, flags);
1564 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1565 return HRTIMER_NORESTART;
1568 /* Handle incomplete DMA receive */
1569 dmaengine_terminate_async(s->chan_rx);
1570 read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1572 if (read) {
1573 count = sci_dma_rx_push(s, s->rx_buf[active], read);
1574 if (count)
1575 tty_flip_buffer_push(&port->state->port);
1578 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1579 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1580 sci_dma_rx_submit(s, true);
1582 sci_dma_rx_reenable_irq(s);
1584 uart_port_unlock_irqrestore(port, flags);
1586 return HRTIMER_NORESTART;
1589 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1590 enum dma_transfer_direction dir)
1592 struct dma_chan *chan;
1593 struct dma_slave_config cfg;
1594 int ret;
1596 chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1597 if (IS_ERR(chan)) {
1598 dev_dbg(port->dev, "dma_request_chan failed\n");
1599 return NULL;
1602 memset(&cfg, 0, sizeof(cfg));
1603 cfg.direction = dir;
1604 cfg.dst_addr = port->mapbase +
1605 (sci_getreg(port, SCxTDR)->offset << port->regshift);
1606 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1607 cfg.src_addr = port->mapbase +
1608 (sci_getreg(port, SCxRDR)->offset << port->regshift);
1609 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1611 ret = dmaengine_slave_config(chan, &cfg);
1612 if (ret) {
1613 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1614 dma_release_channel(chan);
1615 return NULL;
1618 return chan;
1621 static void sci_request_dma(struct uart_port *port)
1623 struct sci_port *s = to_sci_port(port);
1624 struct tty_port *tport = &port->state->port;
1625 struct dma_chan *chan;
1627 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1630 * DMA on console may interfere with Kernel log messages which use
1631 * plain putchar(). So, simply don't use it with a console.
1633 if (uart_console(port))
1634 return;
1636 if (!port->dev->of_node)
1637 return;
1639 s->cookie_tx = -EINVAL;
1642 * Don't request a dma channel if no channel was specified
1643 * in the device tree.
1645 if (!of_property_present(port->dev->of_node, "dmas"))
1646 return;
1648 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1649 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1650 if (chan) {
1651 /* UART circular tx buffer is an aligned page. */
1652 s->tx_dma_addr = dma_map_single(chan->device->dev,
1653 tport->xmit_buf,
1654 UART_XMIT_SIZE,
1655 DMA_TO_DEVICE);
1656 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1657 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1658 dma_release_channel(chan);
1659 } else {
1660 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1661 __func__, UART_XMIT_SIZE,
1662 tport->xmit_buf, &s->tx_dma_addr);
1664 INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1665 s->chan_tx_saved = s->chan_tx = chan;
1669 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1670 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1671 if (chan) {
1672 unsigned int i;
1673 dma_addr_t dma;
1674 void *buf;
1676 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1677 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1678 &dma, GFP_KERNEL);
1679 if (!buf) {
1680 dev_warn(port->dev,
1681 "Failed to allocate Rx dma buffer, using PIO\n");
1682 dma_release_channel(chan);
1683 return;
1686 for (i = 0; i < 2; i++) {
1687 struct scatterlist *sg = &s->sg_rx[i];
1689 sg_init_table(sg, 1);
1690 s->rx_buf[i] = buf;
1691 sg_dma_address(sg) = dma;
1692 sg_dma_len(sg) = s->buf_len_rx;
1694 buf += s->buf_len_rx;
1695 dma += s->buf_len_rx;
1698 hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1699 s->rx_timer.function = sci_dma_rx_timer_fn;
1701 s->chan_rx_saved = s->chan_rx = chan;
1703 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1704 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1705 sci_dma_rx_submit(s, false);
1709 static void sci_free_dma(struct uart_port *port)
1711 struct sci_port *s = to_sci_port(port);
1713 if (s->chan_tx_saved)
1714 sci_dma_tx_release(s);
1715 if (s->chan_rx_saved)
1716 sci_dma_rx_release(s);
1719 static void sci_flush_buffer(struct uart_port *port)
1721 struct sci_port *s = to_sci_port(port);
1724 * In uart_flush_buffer(), the xmit circular buffer has just been
1725 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1726 * pending transfers
1728 s->tx_dma_len = 0;
1729 if (s->chan_tx) {
1730 dmaengine_terminate_async(s->chan_tx);
1731 s->cookie_tx = -EINVAL;
1734 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1735 static inline void sci_request_dma(struct uart_port *port)
1739 static inline void sci_free_dma(struct uart_port *port)
1743 #define sci_flush_buffer NULL
1744 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1746 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1748 struct uart_port *port = ptr;
1749 struct sci_port *s = to_sci_port(port);
1751 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1752 if (s->chan_rx) {
1753 u16 scr = sci_serial_in(port, SCSCR);
1754 u16 ssr = sci_serial_in(port, SCxSR);
1756 /* Disable future Rx interrupts */
1757 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1758 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1759 disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1760 if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1761 scif_set_rtrg(port, 1);
1762 scr |= SCSCR_RIE;
1763 } else {
1764 scr |= SCSCR_RDRQE;
1766 } else {
1767 if (sci_dma_rx_submit(s, false) < 0)
1768 goto handle_pio;
1770 scr &= ~SCSCR_RIE;
1772 sci_serial_out(port, SCSCR, scr);
1773 /* Clear current interrupt */
1774 sci_serial_out(port, SCxSR,
1775 ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1776 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1777 jiffies, s->rx_timeout);
1778 start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1780 return IRQ_HANDLED;
1783 handle_pio:
1784 #endif
1786 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1787 if (!scif_rtrg_enabled(port))
1788 scif_set_rtrg(port, s->rx_trigger);
1790 mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1791 s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1794 /* I think sci_receive_chars has to be called irrespective
1795 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1796 * to be disabled?
1798 sci_receive_chars(port);
1800 return IRQ_HANDLED;
1803 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1805 struct uart_port *port = ptr;
1806 unsigned long flags;
1808 uart_port_lock_irqsave(port, &flags);
1809 sci_transmit_chars(port);
1810 uart_port_unlock_irqrestore(port, flags);
1812 return IRQ_HANDLED;
1815 static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1817 struct uart_port *port = ptr;
1818 unsigned long flags;
1819 unsigned short ctrl;
1821 if (port->type != PORT_SCI)
1822 return sci_tx_interrupt(irq, ptr);
1824 uart_port_lock_irqsave(port, &flags);
1825 ctrl = sci_serial_in(port, SCSCR);
1826 ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1827 sci_serial_out(port, SCSCR, ctrl);
1828 uart_port_unlock_irqrestore(port, flags);
1830 return IRQ_HANDLED;
1833 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1835 struct uart_port *port = ptr;
1837 /* Handle BREAKs */
1838 sci_handle_breaks(port);
1840 /* drop invalid character received before break was detected */
1841 sci_serial_in(port, SCxRDR);
1843 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1845 return IRQ_HANDLED;
1848 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1850 struct uart_port *port = ptr;
1851 struct sci_port *s = to_sci_port(port);
1853 if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1854 /* Break and Error interrupts are muxed */
1855 unsigned short ssr_status = sci_serial_in(port, SCxSR);
1857 /* Break Interrupt */
1858 if (ssr_status & SCxSR_BRK(port))
1859 sci_br_interrupt(irq, ptr);
1861 /* Break only? */
1862 if (!(ssr_status & SCxSR_ERRORS(port)))
1863 return IRQ_HANDLED;
1866 /* Handle errors */
1867 if (port->type == PORT_SCI) {
1868 if (sci_handle_errors(port)) {
1869 /* discard character in rx buffer */
1870 sci_serial_in(port, SCxSR);
1871 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1873 } else {
1874 sci_handle_fifo_overrun(port);
1875 if (!s->chan_rx)
1876 sci_receive_chars(port);
1879 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1881 /* Kick the transmission */
1882 if (!s->chan_tx)
1883 sci_tx_interrupt(irq, ptr);
1885 return IRQ_HANDLED;
1888 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1890 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1891 struct uart_port *port = ptr;
1892 struct sci_port *s = to_sci_port(port);
1893 irqreturn_t ret = IRQ_NONE;
1895 ssr_status = sci_serial_in(port, SCxSR);
1896 scr_status = sci_serial_in(port, SCSCR);
1897 if (s->params->overrun_reg == SCxSR)
1898 orer_status = ssr_status;
1899 else if (sci_getreg(port, s->params->overrun_reg)->size)
1900 orer_status = sci_serial_in(port, s->params->overrun_reg);
1902 err_enabled = scr_status & port_rx_irq_mask(port);
1904 /* Tx Interrupt */
1905 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1906 !s->chan_tx)
1907 ret = sci_tx_interrupt(irq, ptr);
1910 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1911 * DR flags
1913 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1914 (scr_status & SCSCR_RIE))
1915 ret = sci_rx_interrupt(irq, ptr);
1917 /* Error Interrupt */
1918 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1919 ret = sci_er_interrupt(irq, ptr);
1921 /* Break Interrupt */
1922 if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1923 (ssr_status & SCxSR_BRK(port)) && err_enabled)
1924 ret = sci_br_interrupt(irq, ptr);
1926 /* Overrun Interrupt */
1927 if (orer_status & s->params->overrun_mask) {
1928 sci_handle_fifo_overrun(port);
1929 ret = IRQ_HANDLED;
1932 return ret;
1935 static const struct sci_irq_desc {
1936 const char *desc;
1937 irq_handler_t handler;
1938 } sci_irq_desc[] = {
1940 * Split out handlers, the default case.
1942 [SCIx_ERI_IRQ] = {
1943 .desc = "rx err",
1944 .handler = sci_er_interrupt,
1947 [SCIx_RXI_IRQ] = {
1948 .desc = "rx full",
1949 .handler = sci_rx_interrupt,
1952 [SCIx_TXI_IRQ] = {
1953 .desc = "tx empty",
1954 .handler = sci_tx_interrupt,
1957 [SCIx_BRI_IRQ] = {
1958 .desc = "break",
1959 .handler = sci_br_interrupt,
1962 [SCIx_DRI_IRQ] = {
1963 .desc = "rx ready",
1964 .handler = sci_rx_interrupt,
1967 [SCIx_TEI_IRQ] = {
1968 .desc = "tx end",
1969 .handler = sci_tx_end_interrupt,
1973 * Special muxed handler.
1975 [SCIx_MUX_IRQ] = {
1976 .desc = "mux",
1977 .handler = sci_mpxed_interrupt,
1981 static int sci_request_irq(struct sci_port *port)
1983 struct uart_port *up = &port->port;
1984 int i, j, w, ret = 0;
1986 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1987 const struct sci_irq_desc *desc;
1988 int irq;
1990 /* Check if already registered (muxed) */
1991 for (w = 0; w < i; w++)
1992 if (port->irqs[w] == port->irqs[i])
1993 w = i + 1;
1994 if (w > i)
1995 continue;
1997 if (SCIx_IRQ_IS_MUXED(port)) {
1998 i = SCIx_MUX_IRQ;
1999 irq = up->irq;
2000 } else {
2001 irq = port->irqs[i];
2004 * Certain port types won't support all of the
2005 * available interrupt sources.
2007 if (unlikely(irq < 0))
2008 continue;
2011 desc = sci_irq_desc + i;
2012 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
2013 dev_name(up->dev), desc->desc);
2014 if (!port->irqstr[j]) {
2015 ret = -ENOMEM;
2016 goto out_nomem;
2019 ret = request_irq(irq, desc->handler, up->irqflags,
2020 port->irqstr[j], port);
2021 if (unlikely(ret)) {
2022 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
2023 goto out_noirq;
2027 return 0;
2029 out_noirq:
2030 while (--i >= 0)
2031 free_irq(port->irqs[i], port);
2033 out_nomem:
2034 while (--j >= 0)
2035 kfree(port->irqstr[j]);
2037 return ret;
2040 static void sci_free_irq(struct sci_port *port)
2042 int i, j;
2045 * Intentionally in reverse order so we iterate over the muxed
2046 * IRQ first.
2048 for (i = 0; i < SCIx_NR_IRQS; i++) {
2049 int irq = port->irqs[i];
2052 * Certain port types won't support all of the available
2053 * interrupt sources.
2055 if (unlikely(irq < 0))
2056 continue;
2058 /* Check if already freed (irq was muxed) */
2059 for (j = 0; j < i; j++)
2060 if (port->irqs[j] == irq)
2061 j = i + 1;
2062 if (j > i)
2063 continue;
2065 free_irq(port->irqs[i], port);
2066 kfree(port->irqstr[i]);
2068 if (SCIx_IRQ_IS_MUXED(port)) {
2069 /* If there's only one IRQ, we're done. */
2070 return;
2075 static unsigned int sci_tx_empty(struct uart_port *port)
2077 unsigned short status = sci_serial_in(port, SCxSR);
2078 unsigned short in_tx_fifo = sci_txfill(port);
2080 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2083 static void sci_set_rts(struct uart_port *port, bool state)
2085 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2086 u16 data = sci_serial_in(port, SCPDR);
2088 /* Active low */
2089 if (state)
2090 data &= ~SCPDR_RTSD;
2091 else
2092 data |= SCPDR_RTSD;
2093 sci_serial_out(port, SCPDR, data);
2095 /* RTS# is output */
2096 sci_serial_out(port, SCPCR,
2097 sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2098 } else if (sci_getreg(port, SCSPTR)->size) {
2099 u16 ctrl = sci_serial_in(port, SCSPTR);
2101 /* Active low */
2102 if (state)
2103 ctrl &= ~SCSPTR_RTSDT;
2104 else
2105 ctrl |= SCSPTR_RTSDT;
2106 sci_serial_out(port, SCSPTR, ctrl);
2110 static bool sci_get_cts(struct uart_port *port)
2112 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2113 /* Active low */
2114 return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2115 } else if (sci_getreg(port, SCSPTR)->size) {
2116 /* Active low */
2117 return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2120 return true;
2124 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2125 * CTS/RTS is supported in hardware by at least one port and controlled
2126 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2127 * handled via the ->init_pins() op, which is a bit of a one-way street,
2128 * lacking any ability to defer pin control -- this will later be
2129 * converted over to the GPIO framework).
2131 * Other modes (such as loopback) are supported generically on certain
2132 * port types, but not others. For these it's sufficient to test for the
2133 * existence of the support register and simply ignore the port type.
2135 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2137 struct sci_port *s = to_sci_port(port);
2139 if (mctrl & TIOCM_LOOP) {
2140 const struct plat_sci_reg *reg;
2143 * Standard loopback mode for SCFCR ports.
2145 reg = sci_getreg(port, SCFCR);
2146 if (reg->size)
2147 sci_serial_out(port, SCFCR,
2148 sci_serial_in(port, SCFCR) | SCFCR_LOOP);
2151 mctrl_gpio_set(s->gpios, mctrl);
2153 if (!s->has_rtscts)
2154 return;
2156 if (!(mctrl & TIOCM_RTS)) {
2157 /* Disable Auto RTS */
2158 if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2159 sci_serial_out(port, SCFCR,
2160 sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2162 /* Clear RTS */
2163 sci_set_rts(port, 0);
2164 } else if (s->autorts) {
2165 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2166 /* Enable RTS# pin function */
2167 sci_serial_out(port, SCPCR,
2168 sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2171 /* Enable Auto RTS */
2172 if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2173 sci_serial_out(port, SCFCR,
2174 sci_serial_in(port, SCFCR) | SCFCR_MCE);
2175 } else {
2176 /* Set RTS */
2177 sci_set_rts(port, 1);
2181 static unsigned int sci_get_mctrl(struct uart_port *port)
2183 struct sci_port *s = to_sci_port(port);
2184 struct mctrl_gpios *gpios = s->gpios;
2185 unsigned int mctrl = 0;
2187 mctrl_gpio_get(gpios, &mctrl);
2190 * CTS/RTS is handled in hardware when supported, while nothing
2191 * else is wired up.
2193 if (s->autorts) {
2194 if (sci_get_cts(port))
2195 mctrl |= TIOCM_CTS;
2196 } else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2197 mctrl |= TIOCM_CTS;
2199 if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2200 mctrl |= TIOCM_DSR;
2201 if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2202 mctrl |= TIOCM_CAR;
2204 return mctrl;
2207 static void sci_enable_ms(struct uart_port *port)
2209 mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2212 static void sci_break_ctl(struct uart_port *port, int break_state)
2214 unsigned short scscr, scsptr;
2215 unsigned long flags;
2217 /* check whether the port has SCSPTR */
2218 if (!sci_getreg(port, SCSPTR)->size) {
2220 * Not supported by hardware. Most parts couple break and rx
2221 * interrupts together, with break detection always enabled.
2223 return;
2226 uart_port_lock_irqsave(port, &flags);
2227 scsptr = sci_serial_in(port, SCSPTR);
2228 scscr = sci_serial_in(port, SCSCR);
2230 if (break_state == -1) {
2231 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2232 scscr &= ~SCSCR_TE;
2233 } else {
2234 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2235 scscr |= SCSCR_TE;
2238 sci_serial_out(port, SCSPTR, scsptr);
2239 sci_serial_out(port, SCSCR, scscr);
2240 uart_port_unlock_irqrestore(port, flags);
2243 static int sci_startup(struct uart_port *port)
2245 struct sci_port *s = to_sci_port(port);
2246 int ret;
2248 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2250 sci_request_dma(port);
2252 ret = sci_request_irq(s);
2253 if (unlikely(ret < 0)) {
2254 sci_free_dma(port);
2255 return ret;
2258 return 0;
2261 static void sci_shutdown(struct uart_port *port)
2263 struct sci_port *s = to_sci_port(port);
2264 unsigned long flags;
2265 u16 scr;
2267 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2269 s->autorts = false;
2270 mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2272 uart_port_lock_irqsave(port, &flags);
2273 sci_stop_rx(port);
2274 sci_stop_tx(port);
2276 * Stop RX and TX, disable related interrupts, keep clock source
2277 * and HSCIF TOT bits
2279 scr = sci_serial_in(port, SCSCR);
2280 sci_serial_out(port, SCSCR,
2281 scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2282 uart_port_unlock_irqrestore(port, flags);
2284 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2285 if (s->chan_rx_saved) {
2286 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2287 port->line);
2288 hrtimer_cancel(&s->rx_timer);
2290 #endif
2292 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2293 del_timer_sync(&s->rx_fifo_timer);
2294 sci_free_irq(s);
2295 sci_free_dma(port);
2298 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2299 unsigned int *srr)
2301 unsigned long freq = s->clk_rates[SCI_SCK];
2302 int err, min_err = INT_MAX;
2303 unsigned int sr;
2305 if (s->port.type != PORT_HSCIF)
2306 freq *= 2;
2308 for_each_sr(sr, s) {
2309 err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2310 if (abs(err) >= abs(min_err))
2311 continue;
2313 min_err = err;
2314 *srr = sr - 1;
2316 if (!err)
2317 break;
2320 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2321 *srr + 1);
2322 return min_err;
2325 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2326 unsigned long freq, unsigned int *dlr,
2327 unsigned int *srr)
2329 int err, min_err = INT_MAX;
2330 unsigned int sr, dl;
2332 if (s->port.type != PORT_HSCIF)
2333 freq *= 2;
2335 for_each_sr(sr, s) {
2336 dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2337 dl = clamp(dl, 1U, 65535U);
2339 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2340 if (abs(err) >= abs(min_err))
2341 continue;
2343 min_err = err;
2344 *dlr = dl;
2345 *srr = sr - 1;
2347 if (!err)
2348 break;
2351 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2352 min_err, *dlr, *srr + 1);
2353 return min_err;
2356 /* calculate sample rate, BRR, and clock select */
2357 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2358 unsigned int *brr, unsigned int *srr,
2359 unsigned int *cks)
2361 unsigned long freq = s->clk_rates[SCI_FCK];
2362 unsigned int sr, br, prediv, scrate, c;
2363 int err, min_err = INT_MAX;
2365 if (s->port.type != PORT_HSCIF)
2366 freq *= 2;
2369 * Find the combination of sample rate and clock select with the
2370 * smallest deviation from the desired baud rate.
2371 * Prefer high sample rates to maximise the receive margin.
2373 * M: Receive margin (%)
2374 * N: Ratio of bit rate to clock (N = sampling rate)
2375 * D: Clock duty (D = 0 to 1.0)
2376 * L: Frame length (L = 9 to 12)
2377 * F: Absolute value of clock frequency deviation
2379 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2380 * (|D - 0.5| / N * (1 + F))|
2381 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2383 for_each_sr(sr, s) {
2384 for (c = 0; c <= 3; c++) {
2385 /* integerized formulas from HSCIF documentation */
2386 prediv = sr << (2 * c + 1);
2389 * We need to calculate:
2391 * br = freq / (prediv * bps) clamped to [1..256]
2392 * err = freq / (br * prediv) - bps
2394 * Watch out for overflow when calculating the desired
2395 * sampling clock rate!
2397 if (bps > UINT_MAX / prediv)
2398 break;
2400 scrate = prediv * bps;
2401 br = DIV_ROUND_CLOSEST(freq, scrate);
2402 br = clamp(br, 1U, 256U);
2404 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2405 if (abs(err) >= abs(min_err))
2406 continue;
2408 min_err = err;
2409 *brr = br - 1;
2410 *srr = sr - 1;
2411 *cks = c;
2413 if (!err)
2414 goto found;
2418 found:
2419 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2420 min_err, *brr, *srr + 1, *cks);
2421 return min_err;
2424 static void sci_reset(struct uart_port *port)
2426 const struct plat_sci_reg *reg;
2427 unsigned int status;
2428 struct sci_port *s = to_sci_port(port);
2430 sci_serial_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */
2432 reg = sci_getreg(port, SCFCR);
2433 if (reg->size)
2434 sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2436 sci_clear_SCxSR(port,
2437 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2438 SCxSR_BREAK_CLEAR(port));
2439 if (sci_getreg(port, SCLSR)->size) {
2440 status = sci_serial_in(port, SCLSR);
2441 status &= ~(SCLSR_TO | SCLSR_ORER);
2442 sci_serial_out(port, SCLSR, status);
2445 if (s->rx_trigger > 1) {
2446 if (s->rx_fifo_timeout) {
2447 scif_set_rtrg(port, 1);
2448 timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2449 } else {
2450 if (port->type == PORT_SCIFA ||
2451 port->type == PORT_SCIFB)
2452 scif_set_rtrg(port, 1);
2453 else
2454 scif_set_rtrg(port, s->rx_trigger);
2459 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2460 const struct ktermios *old)
2462 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2463 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2464 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2465 struct sci_port *s = to_sci_port(port);
2466 const struct plat_sci_reg *reg;
2467 int min_err = INT_MAX, err;
2468 unsigned long max_freq = 0;
2469 int best_clk = -1;
2470 unsigned long flags;
2472 if ((termios->c_cflag & CSIZE) == CS7) {
2473 smr_val |= SCSMR_CHR;
2474 } else {
2475 termios->c_cflag &= ~CSIZE;
2476 termios->c_cflag |= CS8;
2478 if (termios->c_cflag & PARENB)
2479 smr_val |= SCSMR_PE;
2480 if (termios->c_cflag & PARODD)
2481 smr_val |= SCSMR_PE | SCSMR_ODD;
2482 if (termios->c_cflag & CSTOPB)
2483 smr_val |= SCSMR_STOP;
2486 * earlyprintk comes here early on with port->uartclk set to zero.
2487 * the clock framework is not up and running at this point so here
2488 * we assume that 115200 is the maximum baud rate. please note that
2489 * the baud rate is not programmed during earlyprintk - it is assumed
2490 * that the previous boot loader has enabled required clocks and
2491 * setup the baud rate generator hardware for us already.
2493 if (!port->uartclk) {
2494 baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2495 goto done;
2498 for (i = 0; i < SCI_NUM_CLKS; i++)
2499 max_freq = max(max_freq, s->clk_rates[i]);
2501 baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2502 if (!baud)
2503 goto done;
2506 * There can be multiple sources for the sampling clock. Find the one
2507 * that gives us the smallest deviation from the desired baud rate.
2510 /* Optional Undivided External Clock */
2511 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2512 port->type != PORT_SCIFB) {
2513 err = sci_sck_calc(s, baud, &srr1);
2514 if (abs(err) < abs(min_err)) {
2515 best_clk = SCI_SCK;
2516 scr_val = SCSCR_CKE1;
2517 sccks = SCCKS_CKS;
2518 min_err = err;
2519 srr = srr1;
2520 if (!err)
2521 goto done;
2525 /* Optional BRG Frequency Divided External Clock */
2526 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2527 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2528 &srr1);
2529 if (abs(err) < abs(min_err)) {
2530 best_clk = SCI_SCIF_CLK;
2531 scr_val = SCSCR_CKE1;
2532 sccks = 0;
2533 min_err = err;
2534 dl = dl1;
2535 srr = srr1;
2536 if (!err)
2537 goto done;
2541 /* Optional BRG Frequency Divided Internal Clock */
2542 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2543 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2544 &srr1);
2545 if (abs(err) < abs(min_err)) {
2546 best_clk = SCI_BRG_INT;
2547 scr_val = SCSCR_CKE1;
2548 sccks = SCCKS_XIN;
2549 min_err = err;
2550 dl = dl1;
2551 srr = srr1;
2552 if (!min_err)
2553 goto done;
2557 /* Divided Functional Clock using standard Bit Rate Register */
2558 err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2559 if (abs(err) < abs(min_err)) {
2560 best_clk = SCI_FCK;
2561 scr_val = 0;
2562 min_err = err;
2563 brr = brr1;
2564 srr = srr1;
2565 cks = cks1;
2568 done:
2569 if (best_clk >= 0)
2570 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2571 s->clks[best_clk], baud, min_err);
2573 sci_port_enable(s);
2576 * Program the optional External Baud Rate Generator (BRG) first.
2577 * It controls the mux to select (H)SCK or frequency divided clock.
2579 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2580 sci_serial_out(port, SCDL, dl);
2581 sci_serial_out(port, SCCKS, sccks);
2584 uart_port_lock_irqsave(port, &flags);
2586 sci_reset(port);
2588 uart_update_timeout(port, termios->c_cflag, baud);
2590 /* byte size and parity */
2591 bits = tty_get_frame_size(termios->c_cflag);
2593 if (sci_getreg(port, SEMR)->size)
2594 sci_serial_out(port, SEMR, 0);
2596 if (best_clk >= 0) {
2597 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2598 switch (srr + 1) {
2599 case 5: smr_val |= SCSMR_SRC_5; break;
2600 case 7: smr_val |= SCSMR_SRC_7; break;
2601 case 11: smr_val |= SCSMR_SRC_11; break;
2602 case 13: smr_val |= SCSMR_SRC_13; break;
2603 case 16: smr_val |= SCSMR_SRC_16; break;
2604 case 17: smr_val |= SCSMR_SRC_17; break;
2605 case 19: smr_val |= SCSMR_SRC_19; break;
2606 case 27: smr_val |= SCSMR_SRC_27; break;
2608 smr_val |= cks;
2609 sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2610 sci_serial_out(port, SCSMR, smr_val);
2611 sci_serial_out(port, SCBRR, brr);
2612 if (sci_getreg(port, HSSRR)->size) {
2613 unsigned int hssrr = srr | HSCIF_SRE;
2614 /* Calculate deviation from intended rate at the
2615 * center of the last stop bit in sampling clocks.
2617 int last_stop = bits * 2 - 1;
2618 int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2619 (int)(srr + 1),
2620 2 * (int)baud);
2622 if (abs(deviation) >= 2) {
2623 /* At least two sampling clocks off at the
2624 * last stop bit; we can increase the error
2625 * margin by shifting the sampling point.
2627 int shift = clamp(deviation / 2, -8, 7);
2629 hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2630 HSCIF_SRHP_MASK;
2631 hssrr |= HSCIF_SRDE;
2633 sci_serial_out(port, HSSRR, hssrr);
2636 /* Wait one bit interval */
2637 udelay((1000000 + (baud - 1)) / baud);
2638 } else {
2639 /* Don't touch the bit rate configuration */
2640 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2641 smr_val |= sci_serial_in(port, SCSMR) &
2642 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2643 sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2644 sci_serial_out(port, SCSMR, smr_val);
2647 sci_init_pins(port, termios->c_cflag);
2649 port->status &= ~UPSTAT_AUTOCTS;
2650 s->autorts = false;
2651 reg = sci_getreg(port, SCFCR);
2652 if (reg->size) {
2653 unsigned short ctrl = sci_serial_in(port, SCFCR);
2655 if ((port->flags & UPF_HARD_FLOW) &&
2656 (termios->c_cflag & CRTSCTS)) {
2657 /* There is no CTS interrupt to restart the hardware */
2658 port->status |= UPSTAT_AUTOCTS;
2659 /* MCE is enabled when RTS is raised */
2660 s->autorts = true;
2664 * As we've done a sci_reset() above, ensure we don't
2665 * interfere with the FIFOs while toggling MCE. As the
2666 * reset values could still be set, simply mask them out.
2668 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2670 sci_serial_out(port, SCFCR, ctrl);
2672 if (port->flags & UPF_HARD_FLOW) {
2673 /* Refresh (Auto) RTS */
2674 sci_set_mctrl(port, port->mctrl);
2678 * For SCI, TE (transmit enable) must be set after setting TIE
2679 * (transmit interrupt enable) or in the same instruction to
2680 * start the transmitting process. So skip setting TE here for SCI.
2682 if (port->type != PORT_SCI)
2683 scr_val |= SCSCR_TE;
2684 scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2685 sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2686 if ((srr + 1 == 5) &&
2687 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2689 * In asynchronous mode, when the sampling rate is 1/5, first
2690 * received data may become invalid on some SCIFA and SCIFB.
2691 * To avoid this problem wait more than 1 serial data time (1
2692 * bit time x serial data number) after setting SCSCR.RE = 1.
2694 udelay(DIV_ROUND_UP(10 * 1000000, baud));
2697 /* Calculate delay for 2 DMA buffers (4 FIFO). */
2698 s->rx_frame = (10000 * bits) / (baud / 100);
2699 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2700 s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2701 #endif
2703 if ((termios->c_cflag & CREAD) != 0)
2704 sci_start_rx(port);
2706 uart_port_unlock_irqrestore(port, flags);
2708 sci_port_disable(s);
2710 if (UART_ENABLE_MS(port, termios->c_cflag))
2711 sci_enable_ms(port);
2714 static void sci_pm(struct uart_port *port, unsigned int state,
2715 unsigned int oldstate)
2717 struct sci_port *sci_port = to_sci_port(port);
2719 switch (state) {
2720 case UART_PM_STATE_OFF:
2721 sci_port_disable(sci_port);
2722 break;
2723 default:
2724 sci_port_enable(sci_port);
2725 break;
2729 static const char *sci_type(struct uart_port *port)
2731 switch (port->type) {
2732 case PORT_IRDA:
2733 return "irda";
2734 case PORT_SCI:
2735 return "sci";
2736 case PORT_SCIF:
2737 return "scif";
2738 case PORT_SCIFA:
2739 return "scifa";
2740 case PORT_SCIFB:
2741 return "scifb";
2742 case PORT_HSCIF:
2743 return "hscif";
2746 return NULL;
2749 static int sci_remap_port(struct uart_port *port)
2751 struct sci_port *sport = to_sci_port(port);
2754 * Nothing to do if there's already an established membase.
2756 if (port->membase)
2757 return 0;
2759 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2760 port->membase = ioremap(port->mapbase, sport->reg_size);
2761 if (unlikely(!port->membase)) {
2762 dev_err(port->dev, "can't remap port#%d\n", port->line);
2763 return -ENXIO;
2765 } else {
2767 * For the simple (and majority of) cases where we don't
2768 * need to do any remapping, just cast the cookie
2769 * directly.
2771 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2774 return 0;
2777 static void sci_release_port(struct uart_port *port)
2779 struct sci_port *sport = to_sci_port(port);
2781 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2782 iounmap(port->membase);
2783 port->membase = NULL;
2786 release_mem_region(port->mapbase, sport->reg_size);
2789 static int sci_request_port(struct uart_port *port)
2791 struct resource *res;
2792 struct sci_port *sport = to_sci_port(port);
2793 int ret;
2795 res = request_mem_region(port->mapbase, sport->reg_size,
2796 dev_name(port->dev));
2797 if (unlikely(res == NULL)) {
2798 dev_err(port->dev, "request_mem_region failed.");
2799 return -EBUSY;
2802 ret = sci_remap_port(port);
2803 if (unlikely(ret != 0)) {
2804 release_resource(res);
2805 return ret;
2808 return 0;
2811 static void sci_config_port(struct uart_port *port, int flags)
2813 if (flags & UART_CONFIG_TYPE) {
2814 struct sci_port *sport = to_sci_port(port);
2816 port->type = sport->cfg->type;
2817 sci_request_port(port);
2821 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2823 if (ser->baud_base < 2400)
2824 /* No paper tape reader for Mitch.. */
2825 return -EINVAL;
2827 return 0;
2830 static const struct uart_ops sci_uart_ops = {
2831 .tx_empty = sci_tx_empty,
2832 .set_mctrl = sci_set_mctrl,
2833 .get_mctrl = sci_get_mctrl,
2834 .start_tx = sci_start_tx,
2835 .stop_tx = sci_stop_tx,
2836 .stop_rx = sci_stop_rx,
2837 .enable_ms = sci_enable_ms,
2838 .break_ctl = sci_break_ctl,
2839 .startup = sci_startup,
2840 .shutdown = sci_shutdown,
2841 .flush_buffer = sci_flush_buffer,
2842 .set_termios = sci_set_termios,
2843 .pm = sci_pm,
2844 .type = sci_type,
2845 .release_port = sci_release_port,
2846 .request_port = sci_request_port,
2847 .config_port = sci_config_port,
2848 .verify_port = sci_verify_port,
2849 #ifdef CONFIG_CONSOLE_POLL
2850 .poll_get_char = sci_poll_get_char,
2851 .poll_put_char = sci_poll_put_char,
2852 #endif
2855 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2857 const char *clk_names[] = {
2858 [SCI_FCK] = "fck",
2859 [SCI_SCK] = "sck",
2860 [SCI_BRG_INT] = "brg_int",
2861 [SCI_SCIF_CLK] = "scif_clk",
2863 struct clk *clk;
2864 unsigned int i;
2866 if (sci_port->cfg->type == PORT_HSCIF)
2867 clk_names[SCI_SCK] = "hsck";
2869 for (i = 0; i < SCI_NUM_CLKS; i++) {
2870 clk = devm_clk_get_optional(dev, clk_names[i]);
2871 if (IS_ERR(clk))
2872 return PTR_ERR(clk);
2874 if (!clk && i == SCI_FCK) {
2876 * Not all SH platforms declare a clock lookup entry
2877 * for SCI devices, in which case we need to get the
2878 * global "peripheral_clk" clock.
2880 clk = devm_clk_get(dev, "peripheral_clk");
2881 if (IS_ERR(clk))
2882 return dev_err_probe(dev, PTR_ERR(clk),
2883 "failed to get %s\n",
2884 clk_names[i]);
2887 if (!clk)
2888 dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2889 else
2890 dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2891 clk, clk_get_rate(clk));
2892 sci_port->clks[i] = clk;
2894 return 0;
2897 static const struct sci_port_params *
2898 sci_probe_regmap(const struct plat_sci_port *cfg)
2900 unsigned int regtype;
2902 if (cfg->regtype != SCIx_PROBE_REGTYPE)
2903 return &sci_port_params[cfg->regtype];
2905 switch (cfg->type) {
2906 case PORT_SCI:
2907 regtype = SCIx_SCI_REGTYPE;
2908 break;
2909 case PORT_IRDA:
2910 regtype = SCIx_IRDA_REGTYPE;
2911 break;
2912 case PORT_SCIFA:
2913 regtype = SCIx_SCIFA_REGTYPE;
2914 break;
2915 case PORT_SCIFB:
2916 regtype = SCIx_SCIFB_REGTYPE;
2917 break;
2918 case PORT_SCIF:
2920 * The SH-4 is a bit of a misnomer here, although that's
2921 * where this particular port layout originated. This
2922 * configuration (or some slight variation thereof)
2923 * remains the dominant model for all SCIFs.
2925 regtype = SCIx_SH4_SCIF_REGTYPE;
2926 break;
2927 case PORT_HSCIF:
2928 regtype = SCIx_HSCIF_REGTYPE;
2929 break;
2930 default:
2931 pr_err("Can't probe register map for given port\n");
2932 return NULL;
2935 return &sci_port_params[regtype];
2938 static int sci_init_single(struct platform_device *dev,
2939 struct sci_port *sci_port, unsigned int index,
2940 const struct plat_sci_port *p, bool early)
2942 struct uart_port *port = &sci_port->port;
2943 const struct resource *res;
2944 unsigned int i;
2945 int ret;
2947 sci_port->cfg = p;
2949 port->ops = &sci_uart_ops;
2950 port->iotype = UPIO_MEM;
2951 port->line = index;
2952 port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2954 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2955 if (res == NULL)
2956 return -ENOMEM;
2958 port->mapbase = res->start;
2959 sci_port->reg_size = resource_size(res);
2961 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2962 if (i)
2963 sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2964 else
2965 sci_port->irqs[i] = platform_get_irq(dev, i);
2969 * The fourth interrupt on SCI port is transmit end interrupt, so
2970 * shuffle the interrupts.
2972 if (p->type == PORT_SCI)
2973 swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2975 /* The SCI generates several interrupts. They can be muxed together or
2976 * connected to different interrupt lines. In the muxed case only one
2977 * interrupt resource is specified as there is only one interrupt ID.
2978 * In the non-muxed case, up to 6 interrupt signals might be generated
2979 * from the SCI, however those signals might have their own individual
2980 * interrupt ID numbers, or muxed together with another interrupt.
2982 if (sci_port->irqs[0] < 0)
2983 return -ENXIO;
2985 if (sci_port->irqs[1] < 0)
2986 for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2987 sci_port->irqs[i] = sci_port->irqs[0];
2989 sci_port->params = sci_probe_regmap(p);
2990 if (unlikely(sci_port->params == NULL))
2991 return -EINVAL;
2993 switch (p->type) {
2994 case PORT_SCIFB:
2995 sci_port->rx_trigger = 48;
2996 break;
2997 case PORT_HSCIF:
2998 sci_port->rx_trigger = 64;
2999 break;
3000 case PORT_SCIFA:
3001 sci_port->rx_trigger = 32;
3002 break;
3003 case PORT_SCIF:
3004 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
3005 /* RX triggering not implemented for this IP */
3006 sci_port->rx_trigger = 1;
3007 else
3008 sci_port->rx_trigger = 8;
3009 break;
3010 default:
3011 sci_port->rx_trigger = 1;
3012 break;
3015 sci_port->rx_fifo_timeout = 0;
3016 sci_port->hscif_tot = 0;
3018 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
3019 * match the SoC datasheet, this should be investigated. Let platform
3020 * data override the sampling rate for now.
3022 sci_port->sampling_rate_mask = p->sampling_rate
3023 ? SCI_SR(p->sampling_rate)
3024 : sci_port->params->sampling_rate_mask;
3026 if (!early) {
3027 ret = sci_init_clocks(sci_port, &dev->dev);
3028 if (ret < 0)
3029 return ret;
3031 port->dev = &dev->dev;
3033 pm_runtime_enable(&dev->dev);
3036 port->type = p->type;
3037 port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3038 port->fifosize = sci_port->params->fifosize;
3040 if (port->type == PORT_SCI && !dev->dev.of_node) {
3041 if (sci_port->reg_size >= 0x20)
3042 port->regshift = 2;
3043 else
3044 port->regshift = 1;
3048 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3049 * for the multi-IRQ ports, which is where we are primarily
3050 * concerned with the shutdown path synchronization.
3052 * For the muxed case there's nothing more to do.
3054 port->irq = sci_port->irqs[SCIx_RXI_IRQ];
3055 port->irqflags = 0;
3057 return 0;
3060 static void sci_cleanup_single(struct sci_port *port)
3062 pm_runtime_disable(port->port.dev);
3065 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3066 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3067 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3069 sci_poll_put_char(port, ch);
3073 * Print a string to the serial port trying not to disturb
3074 * any possible real use of the port...
3076 static void serial_console_write(struct console *co, const char *s,
3077 unsigned count)
3079 struct sci_port *sci_port = &sci_ports[co->index];
3080 struct uart_port *port = &sci_port->port;
3081 unsigned short bits, ctrl, ctrl_temp;
3082 unsigned long flags;
3083 int locked = 1;
3085 if (port->sysrq)
3086 locked = 0;
3087 else if (oops_in_progress)
3088 locked = uart_port_trylock_irqsave(port, &flags);
3089 else
3090 uart_port_lock_irqsave(port, &flags);
3092 /* first save SCSCR then disable interrupts, keep clock source */
3093 ctrl = sci_serial_in(port, SCSCR);
3094 ctrl_temp = SCSCR_RE | SCSCR_TE |
3095 (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3096 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3097 sci_serial_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3099 uart_console_write(port, s, count, serial_console_putchar);
3101 /* wait until fifo is empty and last bit has been transmitted */
3102 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3103 while ((sci_serial_in(port, SCxSR) & bits) != bits)
3104 cpu_relax();
3106 /* restore the SCSCR */
3107 sci_serial_out(port, SCSCR, ctrl);
3109 if (locked)
3110 uart_port_unlock_irqrestore(port, flags);
3113 static int serial_console_setup(struct console *co, char *options)
3115 struct sci_port *sci_port;
3116 struct uart_port *port;
3117 int baud = 115200;
3118 int bits = 8;
3119 int parity = 'n';
3120 int flow = 'n';
3121 int ret;
3124 * Refuse to handle any bogus ports.
3126 if (co->index < 0 || co->index >= SCI_NPORTS)
3127 return -ENODEV;
3129 sci_port = &sci_ports[co->index];
3130 port = &sci_port->port;
3133 * Refuse to handle uninitialized ports.
3135 if (!port->ops)
3136 return -ENODEV;
3138 ret = sci_remap_port(port);
3139 if (unlikely(ret != 0))
3140 return ret;
3142 if (options)
3143 uart_parse_options(options, &baud, &parity, &bits, &flow);
3145 return uart_set_options(port, co, baud, parity, bits, flow);
3148 static struct console serial_console = {
3149 .name = "ttySC",
3150 .device = uart_console_device,
3151 .write = serial_console_write,
3152 .setup = serial_console_setup,
3153 .flags = CON_PRINTBUFFER,
3154 .index = -1,
3155 .data = &sci_uart_driver,
3158 #ifdef CONFIG_SUPERH
3159 static char early_serial_buf[32];
3161 static int early_serial_console_setup(struct console *co, char *options)
3164 * This early console is always registered using the earlyprintk=
3165 * parameter, which does not call add_preferred_console(). Thus
3166 * @options is always NULL and the options for this early console
3167 * are passed using a custom buffer.
3169 WARN_ON(options);
3171 return serial_console_setup(co, early_serial_buf);
3174 static struct console early_serial_console = {
3175 .name = "early_ttySC",
3176 .write = serial_console_write,
3177 .setup = early_serial_console_setup,
3178 .flags = CON_PRINTBUFFER,
3179 .index = -1,
3182 static int sci_probe_earlyprintk(struct platform_device *pdev)
3184 const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3186 if (early_serial_console.data)
3187 return -EEXIST;
3189 early_serial_console.index = pdev->id;
3191 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3193 if (!strstr(early_serial_buf, "keep"))
3194 early_serial_console.flags |= CON_BOOT;
3196 register_console(&early_serial_console);
3197 return 0;
3199 #endif
3201 #define SCI_CONSOLE (&serial_console)
3203 #else
3204 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3206 return -EINVAL;
3209 #define SCI_CONSOLE NULL
3211 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3213 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3215 static DEFINE_MUTEX(sci_uart_registration_lock);
3216 static struct uart_driver sci_uart_driver = {
3217 .owner = THIS_MODULE,
3218 .driver_name = "sci",
3219 .dev_name = "ttySC",
3220 .major = SCI_MAJOR,
3221 .minor = SCI_MINOR_START,
3222 .nr = SCI_NPORTS,
3223 .cons = SCI_CONSOLE,
3226 static void sci_remove(struct platform_device *dev)
3228 struct sci_port *port = platform_get_drvdata(dev);
3229 unsigned int type = port->port.type; /* uart_remove_... clears it */
3231 sci_ports_in_use &= ~BIT(port->port.line);
3232 uart_remove_one_port(&sci_uart_driver, &port->port);
3234 sci_cleanup_single(port);
3236 if (port->port.fifosize > 1)
3237 device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3238 if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3239 device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3243 #define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype))
3244 #define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16)
3245 #define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff)
3247 static const struct of_device_id of_sci_match[] __maybe_unused = {
3248 /* SoC-specific types */
3250 .compatible = "renesas,scif-r7s72100",
3251 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3254 .compatible = "renesas,scif-r7s9210",
3255 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3258 .compatible = "renesas,scif-r9a07g044",
3259 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3262 .compatible = "renesas,scif-r9a09g057",
3263 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZV2H_SCIF_REGTYPE),
3265 /* Family-specific types */
3267 .compatible = "renesas,rcar-gen1-scif",
3268 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3269 }, {
3270 .compatible = "renesas,rcar-gen2-scif",
3271 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3272 }, {
3273 .compatible = "renesas,rcar-gen3-scif",
3274 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3275 }, {
3276 .compatible = "renesas,rcar-gen4-scif",
3277 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3279 /* Generic types */
3281 .compatible = "renesas,scif",
3282 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3283 }, {
3284 .compatible = "renesas,scifa",
3285 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3286 }, {
3287 .compatible = "renesas,scifb",
3288 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3289 }, {
3290 .compatible = "renesas,hscif",
3291 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3292 }, {
3293 .compatible = "renesas,sci",
3294 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3295 }, {
3296 /* Terminator */
3299 MODULE_DEVICE_TABLE(of, of_sci_match);
3301 static void sci_reset_control_assert(void *data)
3303 reset_control_assert(data);
3306 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3307 unsigned int *dev_id)
3309 struct device_node *np = pdev->dev.of_node;
3310 struct reset_control *rstc;
3311 struct plat_sci_port *p;
3312 struct sci_port *sp;
3313 const void *data;
3314 int id, ret;
3316 if (!IS_ENABLED(CONFIG_OF) || !np)
3317 return ERR_PTR(-EINVAL);
3319 data = of_device_get_match_data(&pdev->dev);
3321 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3322 if (IS_ERR(rstc))
3323 return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3324 "failed to get reset ctrl\n"));
3326 ret = reset_control_deassert(rstc);
3327 if (ret) {
3328 dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3329 return ERR_PTR(ret);
3332 ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3333 if (ret) {
3334 dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3335 ret);
3336 return ERR_PTR(ret);
3339 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3340 if (!p)
3341 return ERR_PTR(-ENOMEM);
3343 /* Get the line number from the aliases node. */
3344 id = of_alias_get_id(np, "serial");
3345 if (id < 0 && ~sci_ports_in_use)
3346 id = ffz(sci_ports_in_use);
3347 if (id < 0) {
3348 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3349 return ERR_PTR(-EINVAL);
3351 if (id >= ARRAY_SIZE(sci_ports)) {
3352 dev_err(&pdev->dev, "serial%d out of range\n", id);
3353 return ERR_PTR(-EINVAL);
3356 sp = &sci_ports[id];
3357 *dev_id = id;
3359 p->type = SCI_OF_TYPE(data);
3360 p->regtype = SCI_OF_REGTYPE(data);
3362 sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3364 return p;
3367 static int sci_probe_single(struct platform_device *dev,
3368 unsigned int index,
3369 struct plat_sci_port *p,
3370 struct sci_port *sciport)
3372 int ret;
3374 /* Sanity check */
3375 if (unlikely(index >= SCI_NPORTS)) {
3376 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3377 index+1, SCI_NPORTS);
3378 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3379 return -EINVAL;
3381 BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3382 if (sci_ports_in_use & BIT(index))
3383 return -EBUSY;
3385 mutex_lock(&sci_uart_registration_lock);
3386 if (!sci_uart_driver.state) {
3387 ret = uart_register_driver(&sci_uart_driver);
3388 if (ret) {
3389 mutex_unlock(&sci_uart_registration_lock);
3390 return ret;
3393 mutex_unlock(&sci_uart_registration_lock);
3395 ret = sci_init_single(dev, sciport, index, p, false);
3396 if (ret)
3397 return ret;
3399 sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3400 if (IS_ERR(sciport->gpios))
3401 return PTR_ERR(sciport->gpios);
3403 if (sciport->has_rtscts) {
3404 if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3405 mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3406 dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3407 return -EINVAL;
3409 sciport->port.flags |= UPF_HARD_FLOW;
3412 ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3413 if (ret) {
3414 sci_cleanup_single(sciport);
3415 return ret;
3418 return 0;
3421 static int sci_probe(struct platform_device *dev)
3423 struct plat_sci_port *p;
3424 struct sci_port *sp;
3425 unsigned int dev_id;
3426 int ret;
3429 * If we've come here via earlyprintk initialization, head off to
3430 * the special early probe. We don't have sufficient device state
3431 * to make it beyond this yet.
3433 #ifdef CONFIG_SUPERH
3434 if (is_sh_early_platform_device(dev))
3435 return sci_probe_earlyprintk(dev);
3436 #endif
3438 if (dev->dev.of_node) {
3439 p = sci_parse_dt(dev, &dev_id);
3440 if (IS_ERR(p))
3441 return PTR_ERR(p);
3442 } else {
3443 p = dev->dev.platform_data;
3444 if (p == NULL) {
3445 dev_err(&dev->dev, "no platform data supplied\n");
3446 return -EINVAL;
3449 dev_id = dev->id;
3452 sp = &sci_ports[dev_id];
3453 platform_set_drvdata(dev, sp);
3455 ret = sci_probe_single(dev, dev_id, p, sp);
3456 if (ret)
3457 return ret;
3459 if (sp->port.fifosize > 1) {
3460 ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3461 if (ret)
3462 return ret;
3464 if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3465 sp->port.type == PORT_HSCIF) {
3466 ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3467 if (ret) {
3468 if (sp->port.fifosize > 1) {
3469 device_remove_file(&dev->dev,
3470 &dev_attr_rx_fifo_trigger);
3472 return ret;
3476 #ifdef CONFIG_SH_STANDARD_BIOS
3477 sh_bios_gdb_detach();
3478 #endif
3480 sci_ports_in_use |= BIT(dev_id);
3481 return 0;
3484 static __maybe_unused int sci_suspend(struct device *dev)
3486 struct sci_port *sport = dev_get_drvdata(dev);
3488 if (sport)
3489 uart_suspend_port(&sci_uart_driver, &sport->port);
3491 return 0;
3494 static __maybe_unused int sci_resume(struct device *dev)
3496 struct sci_port *sport = dev_get_drvdata(dev);
3498 if (sport)
3499 uart_resume_port(&sci_uart_driver, &sport->port);
3501 return 0;
3504 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3506 static struct platform_driver sci_driver = {
3507 .probe = sci_probe,
3508 .remove = sci_remove,
3509 .driver = {
3510 .name = "sh-sci",
3511 .pm = &sci_dev_pm_ops,
3512 .of_match_table = of_match_ptr(of_sci_match),
3516 static int __init sci_init(void)
3518 pr_info("%s\n", banner);
3520 return platform_driver_register(&sci_driver);
3523 static void __exit sci_exit(void)
3525 platform_driver_unregister(&sci_driver);
3527 if (sci_uart_driver.state)
3528 uart_unregister_driver(&sci_uart_driver);
3531 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3532 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3533 early_serial_buf, ARRAY_SIZE(early_serial_buf));
3534 #endif
3535 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3536 static struct plat_sci_port port_cfg __initdata;
3538 static int __init early_console_setup(struct earlycon_device *device,
3539 int type)
3541 if (!device->port.membase)
3542 return -ENODEV;
3544 device->port.type = type;
3545 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3546 port_cfg.type = type;
3547 sci_ports[0].cfg = &port_cfg;
3548 sci_ports[0].params = sci_probe_regmap(&port_cfg);
3549 port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3550 sci_serial_out(&sci_ports[0].port, SCSCR,
3551 SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3553 device->con->write = serial_console_write;
3554 return 0;
3556 static int __init sci_early_console_setup(struct earlycon_device *device,
3557 const char *opt)
3559 return early_console_setup(device, PORT_SCI);
3561 static int __init scif_early_console_setup(struct earlycon_device *device,
3562 const char *opt)
3564 return early_console_setup(device, PORT_SCIF);
3566 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3567 const char *opt)
3569 port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3570 return early_console_setup(device, PORT_SCIF);
3573 static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
3574 const char *opt)
3576 port_cfg.regtype = SCIx_RZV2H_SCIF_REGTYPE;
3577 return early_console_setup(device, PORT_SCIF);
3580 static int __init scifa_early_console_setup(struct earlycon_device *device,
3581 const char *opt)
3583 return early_console_setup(device, PORT_SCIFA);
3585 static int __init scifb_early_console_setup(struct earlycon_device *device,
3586 const char *opt)
3588 return early_console_setup(device, PORT_SCIFB);
3590 static int __init hscif_early_console_setup(struct earlycon_device *device,
3591 const char *opt)
3593 return early_console_setup(device, PORT_HSCIF);
3596 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3597 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3598 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3599 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3600 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
3601 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3602 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3603 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3604 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3606 module_init(sci_init);
3607 module_exit(sci_exit);
3609 MODULE_LICENSE("GPL");
3610 MODULE_ALIAS("platform:sh-sci");
3611 MODULE_AUTHOR("Paul Mundt");
3612 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");