1 // SPDX-License-Identifier: GPL-2.0
3 * zs.c: Serial port driver for IOASIC DECstations.
5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
9 * Copyright (C) 1998-2000 Harald Koerfgen
10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * For the rest of the code the original Copyright applies:
13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
17 * Note: for IOASIC systems the wiring is as follows:
20 * DIN-7 MJ-4 signal SCC
25 * DB-25 MMJ-6 signal SCC
32 * 12 DSRS(DCE) -> ~A.CTS (*)
37 * 23 DSRS(DTE) <- ~B.RTS
39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
40 * is shared with DSRS(DTE) at pin 23.
42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
43 * is a bit odd. This makes the handling of port B unnecessarily
44 * complicated and prevents the use of some automatic modes of operation.
47 #include <linux/bug.h>
48 #include <linux/console.h>
49 #include <linux/delay.h>
50 #include <linux/errno.h>
51 #include <linux/init.h>
52 #include <linux/interrupt.h>
54 #include <linux/ioport.h>
55 #include <linux/irqflags.h>
56 #include <linux/kernel.h>
57 #include <linux/module.h>
58 #include <linux/major.h>
59 #include <linux/serial.h>
60 #include <linux/serial_core.h>
61 #include <linux/spinlock.h>
62 #include <linux/sysrq.h>
63 #include <linux/tty.h>
64 #include <linux/tty_flip.h>
65 #include <linux/types.h>
67 #include <linux/atomic.h>
69 #include <asm/dec/interrupts.h>
70 #include <asm/dec/ioasic_addrs.h>
71 #include <asm/dec/system.h>
76 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
77 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
78 MODULE_LICENSE("GPL");
81 static char zs_name
[] __initdata
= "DECstation Z85C30 serial driver version ";
82 static char zs_version
[] __initdata
= "0.10";
85 * It would be nice to dynamically allocate everything that
86 * depends on ZS_NUM_SCCS, so we could support any number of
87 * Z85C30s, but for now...
89 #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */
90 #define ZS_NUM_CHAN 2 /* 2 channels per chip. */
91 #define ZS_CHAN_A 0 /* Index of the channel A. */
92 #define ZS_CHAN_B 1 /* Index of the channel B. */
93 #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */
94 #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */
95 #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte
96 of the 16-bit IOBUS. */
97 #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */
99 #define to_zport(uport) container_of(uport, struct zs_port, port)
102 resource_size_t scc
[ZS_NUM_SCCS
];
103 int irq
[ZS_NUM_SCCS
];
106 static struct zs_scc zs_sccs
[ZS_NUM_SCCS
];
108 static u8 zs_init_regs
[ZS_NUM_REGS
] __initdata
= {
110 PAR_SPEC
, /* write 1 */
113 X16CLK
| SB1
, /* write 4 */
115 0, 0, 0, /* write 6, 7, 8 */
116 MIE
| DLC
| NV
, /* write 9 */
118 TCBR
| RCBR
, /* write 11 */
119 0, 0, /* BRG time constant, write 12 + 13 */
120 BRSRC
| BRENABL
, /* write 14 */
131 * Reading and writing Z85C30 registers.
133 static void recovery_delay(void)
138 static u8
read_zsreg(struct zs_port
*zport
, int reg
)
140 void __iomem
*control
= zport
->port
.membase
+ ZS_CHAN_IO_OFFSET
;
144 writeb(reg
& 0xf, control
);
148 retval
= readb(control
);
153 static void write_zsreg(struct zs_port
*zport
, int reg
, u8 value
)
155 void __iomem
*control
= zport
->port
.membase
+ ZS_CHAN_IO_OFFSET
;
158 writeb(reg
& 0xf, control
);
159 fast_iob(); recovery_delay();
161 writeb(value
, control
);
167 static u8
read_zsdata(struct zs_port
*zport
)
169 void __iomem
*data
= zport
->port
.membase
+
170 ZS_CHAN_IO_STRIDE
+ ZS_CHAN_IO_OFFSET
;
173 retval
= readb(data
);
178 static void write_zsdata(struct zs_port
*zport
, u8 value
)
180 void __iomem
*data
= zport
->port
.membase
+
181 ZS_CHAN_IO_STRIDE
+ ZS_CHAN_IO_OFFSET
;
192 struct zs_port
*zport
;
195 for (i
= 0; i
< ZS_NUM_SCCS
* ZS_NUM_CHAN
; i
++) {
196 zport
= &zs_sccs
[i
/ ZS_NUM_CHAN
].zport
[i
% ZS_NUM_CHAN
];
201 for (j
= 0; j
< 16; j
++)
202 printk("W%-2d = 0x%02x\t", j
, zport
->regs
[j
]);
204 for (j
= 0; j
< 16; j
++)
205 printk("R%-2d = 0x%02x\t", j
, read_zsreg(zport
, j
));
212 static void zs_spin_lock_cond_irq(spinlock_t
*lock
, int irq
)
220 static void zs_spin_unlock_cond_irq(spinlock_t
*lock
, int irq
)
223 spin_unlock_irq(lock
);
228 static int zs_receive_drain(struct zs_port
*zport
)
232 while ((read_zsreg(zport
, R0
) & Rx_CH_AV
) && --loops
)
237 static int zs_transmit_drain(struct zs_port
*zport
, int irq
)
239 struct zs_scc
*scc
= zport
->scc
;
242 while (!(read_zsreg(zport
, R0
) & Tx_BUF_EMP
) && --loops
) {
243 zs_spin_unlock_cond_irq(&scc
->zlock
, irq
);
245 zs_spin_lock_cond_irq(&scc
->zlock
, irq
);
250 static int zs_line_drain(struct zs_port
*zport
, int irq
)
252 struct zs_scc
*scc
= zport
->scc
;
255 while (!(read_zsreg(zport
, R1
) & ALL_SNT
) && --loops
) {
256 zs_spin_unlock_cond_irq(&scc
->zlock
, irq
);
258 zs_spin_lock_cond_irq(&scc
->zlock
, irq
);
264 static void load_zsregs(struct zs_port
*zport
, u8
*regs
, int irq
)
266 /* Let the current transmission finish. */
267 zs_line_drain(zport
, irq
);
269 write_zsreg(zport
, R3
, regs
[3] & ~RxENABLE
);
270 write_zsreg(zport
, R5
, regs
[5] & ~TxENAB
);
271 write_zsreg(zport
, R4
, regs
[4]);
272 write_zsreg(zport
, R9
, regs
[9]);
273 write_zsreg(zport
, R1
, regs
[1]);
274 write_zsreg(zport
, R2
, regs
[2]);
275 write_zsreg(zport
, R10
, regs
[10]);
276 write_zsreg(zport
, R14
, regs
[14] & ~BRENABL
);
277 write_zsreg(zport
, R11
, regs
[11]);
278 write_zsreg(zport
, R12
, regs
[12]);
279 write_zsreg(zport
, R13
, regs
[13]);
280 write_zsreg(zport
, R14
, regs
[14]);
281 write_zsreg(zport
, R15
, regs
[15]);
282 if (regs
[3] & RxENABLE
)
283 write_zsreg(zport
, R3
, regs
[3]);
284 if (regs
[5] & TxENAB
)
285 write_zsreg(zport
, R5
, regs
[5]);
291 * Status handling routines.
295 * zs_tx_empty() -- get the transmitter empty status
297 * Purpose: Let user call ioctl() to get info when the UART physically
298 * is emptied. On bus types like RS485, the transmitter must
299 * release the bus after transmitting. This must be done when
300 * the transmit shift register is empty, not be done when the
301 * transmit holding register is empty. This functionality
302 * allows an RS485 driver to be written in user space.
304 static unsigned int zs_tx_empty(struct uart_port
*uport
)
306 struct zs_port
*zport
= to_zport(uport
);
307 struct zs_scc
*scc
= zport
->scc
;
311 spin_lock_irqsave(&scc
->zlock
, flags
);
312 status
= read_zsreg(zport
, R1
);
313 spin_unlock_irqrestore(&scc
->zlock
, flags
);
315 return status
& ALL_SNT
? TIOCSER_TEMT
: 0;
318 static unsigned int zs_raw_get_ab_mctrl(struct zs_port
*zport_a
,
319 struct zs_port
*zport_b
)
321 u8 status_a
, status_b
;
324 status_a
= read_zsreg(zport_a
, R0
);
325 status_b
= read_zsreg(zport_b
, R0
);
327 mctrl
= ((status_b
& CTS
) ? TIOCM_CTS
: 0) |
328 ((status_b
& DCD
) ? TIOCM_CAR
: 0) |
329 ((status_a
& DCD
) ? TIOCM_RNG
: 0) |
330 ((status_a
& SYNC_HUNT
) ? TIOCM_DSR
: 0);
335 static unsigned int zs_raw_get_mctrl(struct zs_port
*zport
)
337 struct zs_port
*zport_a
= &zport
->scc
->zport
[ZS_CHAN_A
];
339 return zport
!= zport_a
? zs_raw_get_ab_mctrl(zport_a
, zport
) : 0;
342 static unsigned int zs_raw_xor_mctrl(struct zs_port
*zport
)
344 struct zs_port
*zport_a
= &zport
->scc
->zport
[ZS_CHAN_A
];
345 unsigned int mmask
, mctrl
, delta
;
348 if (zport
== zport_a
)
351 mask_a
= zport_a
->regs
[15];
352 mask_b
= zport
->regs
[15];
354 mmask
= ((mask_b
& CTSIE
) ? TIOCM_CTS
: 0) |
355 ((mask_b
& DCDIE
) ? TIOCM_CAR
: 0) |
356 ((mask_a
& DCDIE
) ? TIOCM_RNG
: 0) |
357 ((mask_a
& SYNCIE
) ? TIOCM_DSR
: 0);
359 mctrl
= zport
->mctrl
;
362 mctrl
|= zs_raw_get_ab_mctrl(zport_a
, zport
) & mmask
;
365 delta
= mctrl
^ zport
->mctrl
;
367 zport
->mctrl
= mctrl
;
372 static unsigned int zs_get_mctrl(struct uart_port
*uport
)
374 struct zs_port
*zport
= to_zport(uport
);
375 struct zs_scc
*scc
= zport
->scc
;
378 spin_lock(&scc
->zlock
);
379 mctrl
= zs_raw_get_mctrl(zport
);
380 spin_unlock(&scc
->zlock
);
385 static void zs_set_mctrl(struct uart_port
*uport
, unsigned int mctrl
)
387 struct zs_port
*zport
= to_zport(uport
);
388 struct zs_scc
*scc
= zport
->scc
;
389 struct zs_port
*zport_a
= &scc
->zport
[ZS_CHAN_A
];
392 spin_lock(&scc
->zlock
);
393 if (zport
!= zport_a
) {
394 if (mctrl
& TIOCM_DTR
)
395 zport_a
->regs
[5] |= DTR
;
397 zport_a
->regs
[5] &= ~DTR
;
398 if (mctrl
& TIOCM_RTS
)
399 zport_a
->regs
[5] |= RTS
;
401 zport_a
->regs
[5] &= ~RTS
;
402 write_zsreg(zport_a
, R5
, zport_a
->regs
[5]);
405 /* Rarely modified, so don't poke at hardware unless necessary. */
406 oldloop
= zport
->regs
[14];
408 if (mctrl
& TIOCM_LOOP
)
412 if (newloop
!= oldloop
) {
413 zport
->regs
[14] = newloop
;
414 write_zsreg(zport
, R14
, zport
->regs
[14]);
416 spin_unlock(&scc
->zlock
);
419 static void zs_raw_stop_tx(struct zs_port
*zport
)
421 write_zsreg(zport
, R0
, RES_Tx_P
);
422 zport
->tx_stopped
= 1;
425 static void zs_stop_tx(struct uart_port
*uport
)
427 struct zs_port
*zport
= to_zport(uport
);
428 struct zs_scc
*scc
= zport
->scc
;
430 spin_lock(&scc
->zlock
);
431 zs_raw_stop_tx(zport
);
432 spin_unlock(&scc
->zlock
);
435 static void zs_raw_transmit_chars(struct zs_port
*);
437 static void zs_start_tx(struct uart_port
*uport
)
439 struct zs_port
*zport
= to_zport(uport
);
440 struct zs_scc
*scc
= zport
->scc
;
442 spin_lock(&scc
->zlock
);
443 if (zport
->tx_stopped
) {
444 zs_transmit_drain(zport
, 0);
445 zport
->tx_stopped
= 0;
446 zs_raw_transmit_chars(zport
);
448 spin_unlock(&scc
->zlock
);
451 static void zs_stop_rx(struct uart_port
*uport
)
453 struct zs_port
*zport
= to_zport(uport
);
454 struct zs_scc
*scc
= zport
->scc
;
455 struct zs_port
*zport_a
= &scc
->zport
[ZS_CHAN_A
];
457 spin_lock(&scc
->zlock
);
458 zport
->regs
[15] &= ~BRKIE
;
459 zport
->regs
[1] &= ~(RxINT_MASK
| TxINT_ENAB
);
460 zport
->regs
[1] |= RxINT_DISAB
;
462 if (zport
!= zport_a
) {
463 /* A-side DCD tracks RI and SYNC tracks DSR. */
464 zport_a
->regs
[15] &= ~(DCDIE
| SYNCIE
);
465 write_zsreg(zport_a
, R15
, zport_a
->regs
[15]);
466 if (!(zport_a
->regs
[15] & BRKIE
)) {
467 zport_a
->regs
[1] &= ~EXT_INT_ENAB
;
468 write_zsreg(zport_a
, R1
, zport_a
->regs
[1]);
471 /* This-side DCD tracks DCD and CTS tracks CTS. */
472 zport
->regs
[15] &= ~(DCDIE
| CTSIE
);
473 zport
->regs
[1] &= ~EXT_INT_ENAB
;
475 /* DCD tracks RI and SYNC tracks DSR for the B side. */
476 if (!(zport
->regs
[15] & (DCDIE
| SYNCIE
)))
477 zport
->regs
[1] &= ~EXT_INT_ENAB
;
480 write_zsreg(zport
, R15
, zport
->regs
[15]);
481 write_zsreg(zport
, R1
, zport
->regs
[1]);
482 spin_unlock(&scc
->zlock
);
485 static void zs_enable_ms(struct uart_port
*uport
)
487 struct zs_port
*zport
= to_zport(uport
);
488 struct zs_scc
*scc
= zport
->scc
;
489 struct zs_port
*zport_a
= &scc
->zport
[ZS_CHAN_A
];
491 if (zport
== zport_a
)
494 spin_lock(&scc
->zlock
);
496 /* Clear Ext interrupts if not being handled already. */
497 if (!(zport_a
->regs
[1] & EXT_INT_ENAB
))
498 write_zsreg(zport_a
, R0
, RES_EXT_INT
);
500 /* A-side DCD tracks RI and SYNC tracks DSR. */
501 zport_a
->regs
[1] |= EXT_INT_ENAB
;
502 zport_a
->regs
[15] |= DCDIE
| SYNCIE
;
504 /* This-side DCD tracks DCD and CTS tracks CTS. */
505 zport
->regs
[15] |= DCDIE
| CTSIE
;
507 zs_raw_xor_mctrl(zport
);
509 write_zsreg(zport_a
, R1
, zport_a
->regs
[1]);
510 write_zsreg(zport_a
, R15
, zport_a
->regs
[15]);
511 write_zsreg(zport
, R15
, zport
->regs
[15]);
512 spin_unlock(&scc
->zlock
);
515 static void zs_break_ctl(struct uart_port
*uport
, int break_state
)
517 struct zs_port
*zport
= to_zport(uport
);
518 struct zs_scc
*scc
= zport
->scc
;
521 spin_lock_irqsave(&scc
->zlock
, flags
);
522 if (break_state
== -1)
523 zport
->regs
[5] |= SND_BRK
;
525 zport
->regs
[5] &= ~SND_BRK
;
526 write_zsreg(zport
, R5
, zport
->regs
[5]);
527 spin_unlock_irqrestore(&scc
->zlock
, flags
);
532 * Interrupt handling routines.
534 #define Rx_BRK 0x0100 /* BREAK event software flag. */
535 #define Rx_SYS 0x0200 /* SysRq event software flag. */
537 static void zs_receive_chars(struct zs_port
*zport
)
539 struct uart_port
*uport
= &zport
->port
;
540 struct zs_scc
*scc
= zport
->scc
;
541 struct uart_icount
*icount
;
542 unsigned int avail
, status
;
546 for (count
= 16; count
; count
--) {
547 spin_lock(&scc
->zlock
);
548 avail
= read_zsreg(zport
, R0
) & Rx_CH_AV
;
549 spin_unlock(&scc
->zlock
);
553 spin_lock(&scc
->zlock
);
554 status
= read_zsreg(zport
, R1
) & (Rx_OVR
| FRM_ERR
| PAR_ERR
);
555 ch
= read_zsdata(zport
);
556 spin_unlock(&scc
->zlock
);
560 icount
= &uport
->icount
;
563 /* Handle the null char got when BREAK is removed. */
565 status
|= zport
->tty_break
;
566 if (unlikely(status
&
567 (Rx_OVR
| FRM_ERR
| PAR_ERR
| Rx_SYS
| Rx_BRK
))) {
568 zport
->tty_break
= 0;
570 /* Reset the error indication. */
571 if (status
& (Rx_OVR
| FRM_ERR
| PAR_ERR
)) {
572 spin_lock(&scc
->zlock
);
573 write_zsreg(zport
, R0
, ERR_RES
);
574 spin_unlock(&scc
->zlock
);
577 if (status
& (Rx_SYS
| Rx_BRK
)) {
579 /* SysRq discards the null char. */
582 } else if (status
& FRM_ERR
)
584 else if (status
& PAR_ERR
)
589 status
&= uport
->read_status_mask
;
592 else if (status
& FRM_ERR
)
594 else if (status
& PAR_ERR
)
598 if (uart_handle_sysrq_char(uport
, ch
))
601 uart_insert_char(uport
, status
, Rx_OVR
, ch
, flag
);
604 tty_flip_buffer_push(&uport
->state
->port
);
607 static void zs_raw_transmit_chars(struct zs_port
*zport
)
609 struct tty_port
*tport
= &zport
->port
.state
->port
;
612 /* XON/XOFF chars. */
613 if (zport
->port
.x_char
) {
614 write_zsdata(zport
, zport
->port
.x_char
);
615 zport
->port
.icount
.tx
++;
616 zport
->port
.x_char
= 0;
620 /* If nothing to do or stopped or hardware stopped. */
621 if (uart_tx_stopped(&zport
->port
) ||
622 !uart_fifo_get(&zport
->port
, &ch
)) {
623 zs_raw_stop_tx(zport
);
628 write_zsdata(zport
, ch
);
630 if (kfifo_len(&tport
->xmit_fifo
) < WAKEUP_CHARS
)
631 uart_write_wakeup(&zport
->port
);
633 /* Are we are done? */
634 if (kfifo_is_empty(&tport
->xmit_fifo
))
635 zs_raw_stop_tx(zport
);
638 static void zs_transmit_chars(struct zs_port
*zport
)
640 struct zs_scc
*scc
= zport
->scc
;
642 spin_lock(&scc
->zlock
);
643 zs_raw_transmit_chars(zport
);
644 spin_unlock(&scc
->zlock
);
647 static void zs_status_handle(struct zs_port
*zport
, struct zs_port
*zport_a
)
649 struct uart_port
*uport
= &zport
->port
;
650 struct zs_scc
*scc
= zport
->scc
;
654 spin_lock(&scc
->zlock
);
656 /* Get status from Read Register 0. */
657 status
= read_zsreg(zport
, R0
);
659 if (zport
->regs
[15] & BRKIE
) {
660 brk
= status
& BRK_ABRT
;
661 if (brk
&& !zport
->brk
) {
662 spin_unlock(&scc
->zlock
);
663 if (uart_handle_break(uport
))
664 zport
->tty_break
= Rx_SYS
;
666 zport
->tty_break
= Rx_BRK
;
667 spin_lock(&scc
->zlock
);
672 if (zport
!= zport_a
) {
673 delta
= zs_raw_xor_mctrl(zport
);
674 spin_unlock(&scc
->zlock
);
676 if (delta
& TIOCM_CTS
)
677 uart_handle_cts_change(uport
,
678 zport
->mctrl
& TIOCM_CTS
);
679 if (delta
& TIOCM_CAR
)
680 uart_handle_dcd_change(uport
,
681 zport
->mctrl
& TIOCM_CAR
);
682 if (delta
& TIOCM_RNG
)
684 if (delta
& TIOCM_DSR
)
688 wake_up_interruptible(&uport
->state
->port
.delta_msr_wait
);
690 spin_lock(&scc
->zlock
);
693 /* Clear the status condition... */
694 write_zsreg(zport
, R0
, RES_EXT_INT
);
696 spin_unlock(&scc
->zlock
);
700 * This is the Z85C30 driver's generic interrupt routine.
702 static irqreturn_t
zs_interrupt(int irq
, void *dev_id
)
704 struct zs_scc
*scc
= dev_id
;
705 struct zs_port
*zport_a
= &scc
->zport
[ZS_CHAN_A
];
706 struct zs_port
*zport_b
= &scc
->zport
[ZS_CHAN_B
];
707 irqreturn_t status
= IRQ_NONE
;
712 * NOTE: The read register 3, which holds the irq status,
713 * does so for both channels on each chip. Although
714 * the status value itself must be read from the A
715 * channel and is only valid when read from channel A.
716 * Yes... broken hardware...
718 for (count
= 16; count
; count
--) {
719 spin_lock(&scc
->zlock
);
720 zs_intreg
= read_zsreg(zport_a
, R3
);
721 spin_unlock(&scc
->zlock
);
726 * We do not like losing characters, so we prioritise
727 * interrupt sources a little bit differently than
728 * the SCC would, was it allowed to.
730 if (zs_intreg
& CHBRxIP
)
731 zs_receive_chars(zport_b
);
732 if (zs_intreg
& CHARxIP
)
733 zs_receive_chars(zport_a
);
734 if (zs_intreg
& CHBEXT
)
735 zs_status_handle(zport_b
, zport_a
);
736 if (zs_intreg
& CHAEXT
)
737 zs_status_handle(zport_a
, zport_a
);
738 if (zs_intreg
& CHBTxIP
)
739 zs_transmit_chars(zport_b
);
740 if (zs_intreg
& CHATxIP
)
741 zs_transmit_chars(zport_a
);
743 status
= IRQ_HANDLED
;
751 * Finally, routines used to initialize the serial port.
753 static int zs_startup(struct uart_port
*uport
)
755 struct zs_port
*zport
= to_zport(uport
);
756 struct zs_scc
*scc
= zport
->scc
;
761 irq_guard
= atomic_add_return(1, &scc
->irq_guard
);
762 if (irq_guard
== 1) {
763 ret
= request_irq(zport
->port
.irq
, zs_interrupt
,
764 IRQF_SHARED
, "scc", scc
);
766 atomic_add(-1, &scc
->irq_guard
);
767 printk(KERN_ERR
"zs: can't get irq %d\n",
773 spin_lock_irqsave(&scc
->zlock
, flags
);
775 /* Clear the receive FIFO. */
776 zs_receive_drain(zport
);
778 /* Clear the interrupt registers. */
779 write_zsreg(zport
, R0
, ERR_RES
);
780 write_zsreg(zport
, R0
, RES_Tx_P
);
781 /* But Ext only if not being handled already. */
782 if (!(zport
->regs
[1] & EXT_INT_ENAB
))
783 write_zsreg(zport
, R0
, RES_EXT_INT
);
785 /* Finally, enable sequencing and interrupts. */
786 zport
->regs
[1] &= ~RxINT_MASK
;
787 zport
->regs
[1] |= RxINT_ALL
| TxINT_ENAB
| EXT_INT_ENAB
;
788 zport
->regs
[3] |= RxENABLE
;
789 zport
->regs
[15] |= BRKIE
;
790 write_zsreg(zport
, R1
, zport
->regs
[1]);
791 write_zsreg(zport
, R3
, zport
->regs
[3]);
792 write_zsreg(zport
, R5
, zport
->regs
[5]);
793 write_zsreg(zport
, R15
, zport
->regs
[15]);
795 /* Record the current state of RR0. */
796 zport
->mctrl
= zs_raw_get_mctrl(zport
);
797 zport
->brk
= read_zsreg(zport
, R0
) & BRK_ABRT
;
799 zport
->tx_stopped
= 1;
801 spin_unlock_irqrestore(&scc
->zlock
, flags
);
806 static void zs_shutdown(struct uart_port
*uport
)
808 struct zs_port
*zport
= to_zport(uport
);
809 struct zs_scc
*scc
= zport
->scc
;
813 spin_lock_irqsave(&scc
->zlock
, flags
);
815 zport
->regs
[3] &= ~RxENABLE
;
816 write_zsreg(zport
, R5
, zport
->regs
[5]);
817 write_zsreg(zport
, R3
, zport
->regs
[3]);
819 spin_unlock_irqrestore(&scc
->zlock
, flags
);
821 irq_guard
= atomic_add_return(-1, &scc
->irq_guard
);
823 free_irq(zport
->port
.irq
, scc
);
827 static void zs_reset(struct zs_port
*zport
)
829 struct zs_scc
*scc
= zport
->scc
;
833 spin_lock_irqsave(&scc
->zlock
, flags
);
834 irq
= !irqs_disabled_flags(flags
);
835 if (!scc
->initialised
) {
836 /* Reset the pointer first, just in case... */
837 read_zsreg(zport
, R0
);
838 /* And let the current transmission finish. */
839 zs_line_drain(zport
, irq
);
840 write_zsreg(zport
, R9
, FHWRES
);
842 write_zsreg(zport
, R9
, 0);
843 scc
->initialised
= 1;
845 load_zsregs(zport
, zport
->regs
, irq
);
846 spin_unlock_irqrestore(&scc
->zlock
, flags
);
849 static void zs_set_termios(struct uart_port
*uport
, struct ktermios
*termios
,
850 const struct ktermios
*old_termios
)
852 struct zs_port
*zport
= to_zport(uport
);
853 struct zs_scc
*scc
= zport
->scc
;
854 struct zs_port
*zport_a
= &scc
->zport
[ZS_CHAN_A
];
856 unsigned int baud
, brg
;
859 spin_lock_irqsave(&scc
->zlock
, flags
);
860 irq
= !irqs_disabled_flags(flags
);
863 zport
->regs
[3] &= ~RxNBITS_MASK
;
864 zport
->regs
[5] &= ~TxNBITS_MASK
;
865 switch (termios
->c_cflag
& CSIZE
) {
867 zport
->regs
[3] |= Rx5
;
868 zport
->regs
[5] |= Tx5
;
871 zport
->regs
[3] |= Rx6
;
872 zport
->regs
[5] |= Tx6
;
875 zport
->regs
[3] |= Rx7
;
876 zport
->regs
[5] |= Tx7
;
880 zport
->regs
[3] |= Rx8
;
881 zport
->regs
[5] |= Tx8
;
885 /* Parity and stop bits. */
886 zport
->regs
[4] &= ~(XCLK_MASK
| SB_MASK
| PAR_ENA
| PAR_EVEN
);
887 if (termios
->c_cflag
& CSTOPB
)
888 zport
->regs
[4] |= SB2
;
890 zport
->regs
[4] |= SB1
;
891 if (termios
->c_cflag
& PARENB
)
892 zport
->regs
[4] |= PAR_ENA
;
893 if (!(termios
->c_cflag
& PARODD
))
894 zport
->regs
[4] |= PAR_EVEN
;
895 switch (zport
->clk_mode
) {
897 zport
->regs
[4] |= X64CLK
;
900 zport
->regs
[4] |= X32CLK
;
903 zport
->regs
[4] |= X16CLK
;
906 zport
->regs
[4] |= X1CLK
;
912 baud
= uart_get_baud_rate(uport
, termios
, old_termios
, 0,
913 uport
->uartclk
/ zport
->clk_mode
/ 4);
915 brg
= ZS_BPS_TO_BRG(baud
, uport
->uartclk
/ zport
->clk_mode
);
916 zport
->regs
[12] = brg
& 0xff;
917 zport
->regs
[13] = (brg
>> 8) & 0xff;
919 uart_update_timeout(uport
, termios
->c_cflag
, baud
);
921 uport
->read_status_mask
= Rx_OVR
;
922 if (termios
->c_iflag
& INPCK
)
923 uport
->read_status_mask
|= FRM_ERR
| PAR_ERR
;
924 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
925 uport
->read_status_mask
|= Rx_BRK
;
927 uport
->ignore_status_mask
= 0;
928 if (termios
->c_iflag
& IGNPAR
)
929 uport
->ignore_status_mask
|= FRM_ERR
| PAR_ERR
;
930 if (termios
->c_iflag
& IGNBRK
) {
931 uport
->ignore_status_mask
|= Rx_BRK
;
932 if (termios
->c_iflag
& IGNPAR
)
933 uport
->ignore_status_mask
|= Rx_OVR
;
936 if (termios
->c_cflag
& CREAD
)
937 zport
->regs
[3] |= RxENABLE
;
939 zport
->regs
[3] &= ~RxENABLE
;
941 if (zport
!= zport_a
) {
942 if (!(termios
->c_cflag
& CLOCAL
)) {
943 zport
->regs
[15] |= DCDIE
;
945 zport
->regs
[15] &= ~DCDIE
;
946 if (termios
->c_cflag
& CRTSCTS
) {
947 zport
->regs
[15] |= CTSIE
;
949 zport
->regs
[15] &= ~CTSIE
;
950 zs_raw_xor_mctrl(zport
);
953 /* Load up the new values. */
954 load_zsregs(zport
, zport
->regs
, irq
);
956 spin_unlock_irqrestore(&scc
->zlock
, flags
);
961 * Required solely so that the initial PROM-based console
962 * works undisturbed in parallel with this one.
964 static void zs_pm(struct uart_port
*uport
, unsigned int state
,
965 unsigned int oldstate
)
967 struct zs_port
*zport
= to_zport(uport
);
970 zport
->regs
[5] |= TxENAB
;
972 zport
->regs
[5] &= ~TxENAB
;
973 write_zsreg(zport
, R5
, zport
->regs
[5]);
977 static const char *zs_type(struct uart_port
*uport
)
982 static void zs_release_port(struct uart_port
*uport
)
984 iounmap(uport
->membase
);
985 uport
->membase
= NULL
;
986 release_mem_region(uport
->mapbase
, ZS_CHAN_IO_SIZE
);
989 static int zs_map_port(struct uart_port
*uport
)
992 uport
->membase
= ioremap(uport
->mapbase
,
994 if (!uport
->membase
) {
995 printk(KERN_ERR
"zs: Cannot map MMIO\n");
1001 static int zs_request_port(struct uart_port
*uport
)
1005 if (!request_mem_region(uport
->mapbase
, ZS_CHAN_IO_SIZE
, "scc")) {
1006 printk(KERN_ERR
"zs: Unable to reserve MMIO resource\n");
1009 ret
= zs_map_port(uport
);
1011 release_mem_region(uport
->mapbase
, ZS_CHAN_IO_SIZE
);
1017 static void zs_config_port(struct uart_port
*uport
, int flags
)
1019 struct zs_port
*zport
= to_zport(uport
);
1021 if (flags
& UART_CONFIG_TYPE
) {
1022 if (zs_request_port(uport
))
1025 uport
->type
= PORT_ZS
;
1031 static int zs_verify_port(struct uart_port
*uport
, struct serial_struct
*ser
)
1033 struct zs_port
*zport
= to_zport(uport
);
1036 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_ZS
)
1038 if (ser
->irq
!= uport
->irq
)
1040 if (ser
->baud_base
!= uport
->uartclk
/ zport
->clk_mode
/ 4)
1046 static const struct uart_ops zs_ops
= {
1047 .tx_empty
= zs_tx_empty
,
1048 .set_mctrl
= zs_set_mctrl
,
1049 .get_mctrl
= zs_get_mctrl
,
1050 .stop_tx
= zs_stop_tx
,
1051 .start_tx
= zs_start_tx
,
1052 .stop_rx
= zs_stop_rx
,
1053 .enable_ms
= zs_enable_ms
,
1054 .break_ctl
= zs_break_ctl
,
1055 .startup
= zs_startup
,
1056 .shutdown
= zs_shutdown
,
1057 .set_termios
= zs_set_termios
,
1060 .release_port
= zs_release_port
,
1061 .request_port
= zs_request_port
,
1062 .config_port
= zs_config_port
,
1063 .verify_port
= zs_verify_port
,
1067 * Initialize Z85C30 port structures.
1069 static int __init
zs_probe_sccs(void)
1072 struct zs_parms zs_parms
;
1073 int chip
, side
, irq
;
1080 irq
= dec_interrupt
[DEC_IRQ_SCC0
];
1082 zs_parms
.scc
[n_chips
] = IOASIC_SCC0
;
1083 zs_parms
.irq
[n_chips
] = dec_interrupt
[DEC_IRQ_SCC0
];
1086 irq
= dec_interrupt
[DEC_IRQ_SCC1
];
1088 zs_parms
.scc
[n_chips
] = IOASIC_SCC1
;
1089 zs_parms
.irq
[n_chips
] = dec_interrupt
[DEC_IRQ_SCC1
];
1097 for (chip
= 0; chip
< n_chips
; chip
++) {
1098 spin_lock_init(&zs_sccs
[chip
].zlock
);
1099 for (side
= 0; side
< ZS_NUM_CHAN
; side
++) {
1100 struct zs_port
*zport
= &zs_sccs
[chip
].zport
[side
];
1101 struct uart_port
*uport
= &zport
->port
;
1103 zport
->scc
= &zs_sccs
[chip
];
1104 zport
->clk_mode
= 16;
1106 uport
->has_sysrq
= IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE
);
1107 uport
->irq
= zs_parms
.irq
[chip
];
1108 uport
->uartclk
= ZS_CLOCK
;
1109 uport
->fifosize
= 1;
1110 uport
->iotype
= UPIO_MEM
;
1111 uport
->flags
= UPF_BOOT_AUTOCONF
;
1112 uport
->ops
= &zs_ops
;
1113 uport
->line
= chip
* ZS_NUM_CHAN
+ side
;
1114 uport
->mapbase
= dec_kn_slot_base
+
1115 zs_parms
.scc
[chip
] +
1116 (side
^ ZS_CHAN_B
) * ZS_CHAN_IO_SIZE
;
1118 for (i
= 0; i
< ZS_NUM_REGS
; i
++)
1119 zport
->regs
[i
] = zs_init_regs
[i
];
1127 #ifdef CONFIG_SERIAL_ZS_CONSOLE
1128 static void zs_console_putchar(struct uart_port
*uport
, unsigned char ch
)
1130 struct zs_port
*zport
= to_zport(uport
);
1131 struct zs_scc
*scc
= zport
->scc
;
1133 unsigned long flags
;
1135 spin_lock_irqsave(&scc
->zlock
, flags
);
1136 irq
= !irqs_disabled_flags(flags
);
1137 if (zs_transmit_drain(zport
, irq
))
1138 write_zsdata(zport
, ch
);
1139 spin_unlock_irqrestore(&scc
->zlock
, flags
);
1143 * Print a string to the serial port trying not to disturb
1144 * any possible real use of the port...
1146 static void zs_console_write(struct console
*co
, const char *s
,
1149 int chip
= co
->index
/ ZS_NUM_CHAN
, side
= co
->index
% ZS_NUM_CHAN
;
1150 struct zs_port
*zport
= &zs_sccs
[chip
].zport
[side
];
1151 struct zs_scc
*scc
= zport
->scc
;
1152 unsigned long flags
;
1156 /* Disable transmit interrupts and enable the transmitter. */
1157 spin_lock_irqsave(&scc
->zlock
, flags
);
1158 txint
= zport
->regs
[1];
1159 txenb
= zport
->regs
[5];
1160 if (txint
& TxINT_ENAB
) {
1161 zport
->regs
[1] = txint
& ~TxINT_ENAB
;
1162 write_zsreg(zport
, R1
, zport
->regs
[1]);
1164 if (!(txenb
& TxENAB
)) {
1165 zport
->regs
[5] = txenb
| TxENAB
;
1166 write_zsreg(zport
, R5
, zport
->regs
[5]);
1168 spin_unlock_irqrestore(&scc
->zlock
, flags
);
1170 uart_console_write(&zport
->port
, s
, count
, zs_console_putchar
);
1172 /* Restore transmit interrupts and the transmitter enable. */
1173 spin_lock_irqsave(&scc
->zlock
, flags
);
1174 irq
= !irqs_disabled_flags(flags
);
1175 zs_line_drain(zport
, irq
);
1176 if (!(txenb
& TxENAB
)) {
1177 zport
->regs
[5] &= ~TxENAB
;
1178 write_zsreg(zport
, R5
, zport
->regs
[5]);
1180 if (txint
& TxINT_ENAB
) {
1181 zport
->regs
[1] |= TxINT_ENAB
;
1182 write_zsreg(zport
, R1
, zport
->regs
[1]);
1184 /* Resume any transmission as the TxIP bit won't be set. */
1185 if (!zport
->tx_stopped
)
1186 zs_raw_transmit_chars(zport
);
1188 spin_unlock_irqrestore(&scc
->zlock
, flags
);
1192 * Setup serial console baud/bits/parity. We do two things here:
1193 * - construct a cflag setting for the first uart_open()
1194 * - initialise the serial port
1195 * Return non-zero if we didn't find a serial port.
1197 static int __init
zs_console_setup(struct console
*co
, char *options
)
1199 int chip
= co
->index
/ ZS_NUM_CHAN
, side
= co
->index
% ZS_NUM_CHAN
;
1200 struct zs_port
*zport
= &zs_sccs
[chip
].zport
[side
];
1201 struct uart_port
*uport
= &zport
->port
;
1208 ret
= zs_map_port(uport
);
1213 zs_pm(uport
, 0, -1);
1216 uart_parse_options(options
, &baud
, &parity
, &bits
, &flow
);
1217 return uart_set_options(uport
, co
, baud
, parity
, bits
, flow
);
1220 static struct uart_driver zs_reg
;
1221 static struct console zs_console
= {
1223 .write
= zs_console_write
,
1224 .device
= uart_console_device
,
1225 .setup
= zs_console_setup
,
1226 .flags
= CON_PRINTBUFFER
,
1234 static int __init
zs_serial_console_init(void)
1238 ret
= zs_probe_sccs();
1241 register_console(&zs_console
);
1246 console_initcall(zs_serial_console_init
);
1248 #define SERIAL_ZS_CONSOLE &zs_console
1250 #define SERIAL_ZS_CONSOLE NULL
1251 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1253 static struct uart_driver zs_reg
= {
1254 .owner
= THIS_MODULE
,
1255 .driver_name
= "serial",
1259 .nr
= ZS_NUM_SCCS
* ZS_NUM_CHAN
,
1260 .cons
= SERIAL_ZS_CONSOLE
,
1263 /* zs_init inits the driver. */
1264 static int __init
zs_init(void)
1268 pr_info("%s%s\n", zs_name
, zs_version
);
1270 /* Find out how many Z85C30 SCCs we have. */
1271 ret
= zs_probe_sccs();
1275 ret
= uart_register_driver(&zs_reg
);
1279 for (i
= 0; i
< ZS_NUM_SCCS
* ZS_NUM_CHAN
; i
++) {
1280 struct zs_scc
*scc
= &zs_sccs
[i
/ ZS_NUM_CHAN
];
1281 struct zs_port
*zport
= &scc
->zport
[i
% ZS_NUM_CHAN
];
1282 struct uart_port
*uport
= &zport
->port
;
1285 uart_add_one_port(&zs_reg
, uport
);
1291 static void __exit
zs_exit(void)
1295 for (i
= ZS_NUM_SCCS
* ZS_NUM_CHAN
- 1; i
>= 0; i
--) {
1296 struct zs_scc
*scc
= &zs_sccs
[i
/ ZS_NUM_CHAN
];
1297 struct zs_port
*zport
= &scc
->zport
[i
% ZS_NUM_CHAN
];
1298 struct uart_port
*uport
= &zport
->port
;
1301 uart_remove_one_port(&zs_reg
, uport
);
1304 uart_unregister_driver(&zs_reg
);
1307 module_init(zs_init
);
1308 module_exit(zs_exit
);