Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / tty / vt / keyboard.c
blob804355da46f5a095d5e4d87306071e08dab1f66e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
6 * Some additional features added by Christoph Niemann (ChN), March 1993
8 * Loadable keymaps by Risto Kankkunen, May 1993
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <linux/consolemap.h>
29 #include <linux/init.h>
30 #include <linux/input.h>
31 #include <linux/jiffies.h>
32 #include <linux/kbd_diacr.h>
33 #include <linux/kbd_kern.h>
34 #include <linux/leds.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/nospec.h>
38 #include <linux/notifier.h>
39 #include <linux/reboot.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/signal.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/tty_flip.h>
46 #include <linux/tty.h>
47 #include <linux/uaccess.h>
48 #include <linux/vt_kern.h>
50 #include <asm/irq_regs.h>
53 * Exported functions/variables
56 #define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
58 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59 #include <asm/kbdleds.h>
60 #else
61 static inline int kbd_defleds(void)
63 return 0;
65 #endif
67 #define KBD_DEFLOCK 0
70 * Handler Tables.
73 #define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
79 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81 static k_handler_fn K_HANDLERS;
82 static k_handler_fn *k_handler[16] = { K_HANDLERS };
84 #define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
91 typedef void (fn_handler_fn)(struct vc_data *vc);
92 static fn_handler_fn FN_HANDLERS;
93 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96 * Variables exported for vt_ioctl.c
99 struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
107 * Internal Data.
110 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111 static struct kbd_struct *kbd = kbd_table;
113 /* maximum values each key_handler can handle */
114 static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
132 static const int NR_TYPES = ARRAY_SIZE(max_vals);
134 static void kbd_bh(struct tasklet_struct *unused);
135 static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
137 static struct input_handler kbd_handler;
138 static DEFINE_SPINLOCK(kbd_event_lock);
139 static DEFINE_SPINLOCK(led_lock);
140 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141 static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143 static bool dead_key_next;
145 /* Handles a number being assembled on the number pad */
146 static bool npadch_active;
147 static unsigned int npadch_value;
149 static unsigned int diacr;
150 static bool rep; /* flag telling character repeat */
152 static int shift_state = 0;
154 static unsigned int ledstate = -1U; /* undefined */
155 static unsigned char ledioctl;
156 static bool vt_switch;
159 * Notifier list for console keyboard events
161 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
163 int register_keyboard_notifier(struct notifier_block *nb)
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
167 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
169 int unregister_keyboard_notifier(struct notifier_block *nb)
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
173 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
185 struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
190 static int getkeycode_helper(struct input_handle *handle, void *data)
192 struct getset_keycode_data *d = data;
194 d->error = input_get_keycode(handle->dev, &d->ke);
196 return d->error == 0; /* stop as soon as we successfully get one */
199 static int getkeycode(unsigned int scancode)
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
207 .error = -ENODEV,
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
214 return d.error ?: d.ke.keycode;
217 static int setkeycode_helper(struct input_handle *handle, void *data)
219 struct getset_keycode_data *d = data;
221 d->error = input_set_keycode(handle->dev, &d->ke);
223 return d->error == 0; /* stop as soon as we successfully set one */
226 static int setkeycode(unsigned int scancode, unsigned int keycode)
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
234 .error = -ENODEV,
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
241 return d.error;
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
249 static int kd_sound_helper(struct input_handle *handle, void *data)
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
264 return 0;
267 static void kd_nosound(struct timer_list *unused)
269 static unsigned int zero;
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
274 static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
276 void kd_mksound(unsigned int hz, unsigned int ticks)
278 del_timer_sync(&kd_mksound_timer);
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
285 EXPORT_SYMBOL(kd_mksound);
288 * Setting the keyboard rate.
291 static int kbd_rate_helper(struct input_handle *handle, void *data)
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
296 if (test_bit(EV_REP, dev->evbit)) {
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
309 return 0;
312 int kbd_rate(struct kbd_repeat *rpt)
314 struct kbd_repeat data[2] = { *rpt };
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
319 return 0;
323 * Helper Functions.
325 static void put_queue(struct vc_data *vc, int ch)
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
331 static void puts_queue(struct vc_data *vc, const char *cp)
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
337 static void applkey(struct vc_data *vc, int key, char mode)
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
352 static void to_utf8(struct vc_data *vc, uint c)
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
379 /* FIXME: review locking for vt.c callers */
380 static void set_leds(void)
382 tasklet_schedule(&keyboard_tasklet);
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
392 static void do_compute_shiftstate(void)
394 unsigned int k, sym, val;
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
408 shift_down[val]++;
409 shift_state |= BIT(val);
413 /* We still have to export this method to vt.c */
414 void vt_set_leds_compute_shiftstate(void)
416 unsigned long flags;
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
423 vt_switch = true;
424 set_leds();
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
438 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
440 unsigned int d = diacr;
441 unsigned int i;
443 diacr = 0;
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
465 return ch;
469 * Special function handlers
471 static void fn_enter(struct vc_data *vc)
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
481 diacr = 0;
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
489 static void fn_caps_toggle(struct vc_data *vc)
491 if (rep)
492 return;
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
497 static void fn_caps_on(struct vc_data *vc)
499 if (rep)
500 return;
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
505 static void fn_show_ptregs(struct vc_data *vc)
507 struct pt_regs *regs = get_irq_regs();
509 if (regs)
510 show_regs(regs);
513 static void fn_hold(struct vc_data *vc)
515 struct tty_struct *tty = vc->port.tty;
517 if (rep || !tty)
518 return;
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
531 static void fn_num(struct vc_data *vc)
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
545 static void fn_bare_num(struct vc_data *vc)
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
551 static void fn_lastcons(struct vc_data *vc)
553 /* switch to the last used console, ChN */
554 set_console(last_console);
557 static void fn_dec_console(struct vc_data *vc)
559 int i, cur = fg_console;
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
571 set_console(i);
574 static void fn_inc_console(struct vc_data *vc)
576 int i, cur = fg_console;
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
588 set_console(i);
591 static void fn_send_intr(struct vc_data *vc)
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
597 static void fn_scroll_forw(struct vc_data *vc)
599 scrollfront(vc, 0);
602 static void fn_scroll_back(struct vc_data *vc)
604 scrollback(vc);
607 static void fn_show_mem(struct vc_data *vc)
609 show_mem();
612 static void fn_show_state(struct vc_data *vc)
614 show_state();
617 static void fn_boot_it(struct vc_data *vc)
619 ctrl_alt_del();
622 static void fn_compose(struct vc_data *vc)
624 dead_key_next = true;
627 static void fn_spawn_con(struct vc_data *vc)
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
635 spin_unlock(&vt_spawn_con.lock);
638 static void fn_SAK(struct vc_data *vc)
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
644 static void fn_null(struct vc_data *vc)
646 do_compute_shiftstate();
650 * Special key handlers
652 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
656 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
670 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
672 pr_err("k_lowercase was called - impossible\n");
675 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
677 if (up_flag)
678 return; /* no action, if this is a key release */
680 if (diacr)
681 value = handle_diacr(vc, value);
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
702 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
704 if (up_flag)
705 return;
707 diacr = (diacr ? handle_diacr(vc, value) : value);
710 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
715 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
717 k_deadunicode(vc, value, up_flag);
721 * Obsolete - for backwards compatibility only
723 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
755 k_deadunicode(vc, ret_diacr[value], up_flag);
758 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
760 if (up_flag)
761 return;
763 set_console(value);
766 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
768 if (up_flag)
769 return;
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
779 } else
780 pr_err("k_fn called with value=%d\n", value);
783 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
785 static const char cur_chars[] = "BDCA";
787 if (up_flag)
788 return;
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
793 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
798 if (up_flag)
799 return; /* no action, if this is a key release */
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
852 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
854 int old_state = shift_state;
856 if (rep)
857 return;
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
868 if (up_flag) {
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
893 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
895 if (up_flag)
896 return;
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
905 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
907 unsigned int base;
909 if (up_flag)
910 return;
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
926 npadch_value = npadch_value * base + value;
929 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
931 if (up_flag || rep)
932 return;
934 chg_vc_kbd_lock(kbd, value);
937 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
951 /* by default, 300ms interval for combination release */
952 static unsigned brl_timeout = 300;
953 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954 module_param(brl_timeout, uint, 0644);
956 static unsigned brl_nbchords = 1;
957 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958 module_param(brl_nbchords, uint, 0644);
960 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
962 static unsigned long chords;
963 static unsigned committed;
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
978 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
994 if (value > 8)
995 return;
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1018 pressed &= ~BIT(value - 1);
1022 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1024 struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1029 static int kbd_led_trigger_activate(struct led_classdev *cdev)
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_set_brightness(cdev, ledstate & trigger->mask ? LED_FULL : LED_OFF);
1037 tasklet_enable(&keyboard_tasklet);
1039 return 0;
1042 #define KBD_LED_TRIGGER(_led_bit, _name) { \
1043 .trigger = { \
1044 .name = _name, \
1045 .activate = kbd_led_trigger_activate, \
1046 }, \
1047 .mask = BIT(_led_bit), \
1050 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1051 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1053 static struct kbd_led_trigger kbd_led_triggers[] = {
1054 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1055 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1056 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1057 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1059 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1060 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1061 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1069 static void kbd_propagate_led_state(unsigned int old_state,
1070 unsigned int new_state)
1072 struct kbd_led_trigger *trigger;
1073 unsigned int changed = old_state ^ new_state;
1074 int i;
1076 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1077 trigger = &kbd_led_triggers[i];
1079 if (changed & trigger->mask)
1080 led_trigger_event(&trigger->trigger,
1081 new_state & trigger->mask ?
1082 LED_FULL : LED_OFF);
1086 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1088 unsigned int led_state = *(unsigned int *)data;
1090 if (test_bit(EV_LED, handle->dev->evbit))
1091 kbd_propagate_led_state(~led_state, led_state);
1093 return 0;
1096 static void kbd_init_leds(void)
1098 int error;
1099 int i;
1101 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1102 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1103 if (error)
1104 pr_err("error %d while registering trigger %s\n",
1105 error, kbd_led_triggers[i].trigger.name);
1109 #else
1111 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1113 unsigned int leds = *(unsigned int *)data;
1115 if (test_bit(EV_LED, handle->dev->evbit)) {
1116 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1117 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1118 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1119 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122 return 0;
1125 static void kbd_propagate_led_state(unsigned int old_state,
1126 unsigned int new_state)
1128 input_handler_for_each_handle(&kbd_handler, &new_state,
1129 kbd_update_leds_helper);
1132 static void kbd_init_leds(void)
1136 #endif
1139 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1140 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1141 * or (iii) specified bits of specified words in kernel memory.
1143 static unsigned char getledstate(void)
1145 return ledstate & 0xff;
1148 void setledstate(struct kbd_struct *kb, unsigned int led)
1150 unsigned long flags;
1151 spin_lock_irqsave(&led_lock, flags);
1152 if (!(led & ~7)) {
1153 ledioctl = led;
1154 kb->ledmode = LED_SHOW_IOCTL;
1155 } else
1156 kb->ledmode = LED_SHOW_FLAGS;
1158 set_leds();
1159 spin_unlock_irqrestore(&led_lock, flags);
1162 static inline unsigned char getleds(void)
1164 struct kbd_struct *kb = kbd_table + fg_console;
1166 if (kb->ledmode == LED_SHOW_IOCTL)
1167 return ledioctl;
1169 return kb->ledflagstate;
1173 * vt_get_leds - helper for braille console
1174 * @console: console to read
1175 * @flag: flag we want to check
1177 * Check the status of a keyboard led flag and report it back
1179 int vt_get_leds(unsigned int console, int flag)
1181 struct kbd_struct *kb = &kbd_table[console];
1182 int ret;
1183 unsigned long flags;
1185 spin_lock_irqsave(&led_lock, flags);
1186 ret = vc_kbd_led(kb, flag);
1187 spin_unlock_irqrestore(&led_lock, flags);
1189 return ret;
1191 EXPORT_SYMBOL_GPL(vt_get_leds);
1194 * vt_set_led_state - set LED state of a console
1195 * @console: console to set
1196 * @leds: LED bits
1198 * Set the LEDs on a console. This is a wrapper for the VT layer
1199 * so that we can keep kbd knowledge internal
1201 void vt_set_led_state(unsigned int console, int leds)
1203 struct kbd_struct *kb = &kbd_table[console];
1204 setledstate(kb, leds);
1208 * vt_kbd_con_start - Keyboard side of console start
1209 * @console: console
1211 * Handle console start. This is a wrapper for the VT layer
1212 * so that we can keep kbd knowledge internal
1214 * FIXME: We eventually need to hold the kbd lock here to protect
1215 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1216 * and start_tty under the kbd_event_lock, while normal tty paths
1217 * don't hold the lock. We probably need to split out an LED lock
1218 * but not during an -rc release!
1220 void vt_kbd_con_start(unsigned int console)
1222 struct kbd_struct *kb = &kbd_table[console];
1223 unsigned long flags;
1224 spin_lock_irqsave(&led_lock, flags);
1225 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1226 set_leds();
1227 spin_unlock_irqrestore(&led_lock, flags);
1231 * vt_kbd_con_stop - Keyboard side of console stop
1232 * @console: console
1234 * Handle console stop. This is a wrapper for the VT layer
1235 * so that we can keep kbd knowledge internal
1237 void vt_kbd_con_stop(unsigned int console)
1239 struct kbd_struct *kb = &kbd_table[console];
1240 unsigned long flags;
1241 spin_lock_irqsave(&led_lock, flags);
1242 set_vc_kbd_led(kb, VC_SCROLLOCK);
1243 set_leds();
1244 spin_unlock_irqrestore(&led_lock, flags);
1248 * This is the tasklet that updates LED state of LEDs using standard
1249 * keyboard triggers. The reason we use tasklet is that we need to
1250 * handle the scenario when keyboard handler is not registered yet
1251 * but we already getting updates from the VT to update led state.
1253 static void kbd_bh(struct tasklet_struct *unused)
1255 unsigned int leds;
1256 unsigned long flags;
1258 spin_lock_irqsave(&led_lock, flags);
1259 leds = getleds();
1260 leds |= (unsigned int)kbd->lockstate << 8;
1261 spin_unlock_irqrestore(&led_lock, flags);
1263 if (vt_switch) {
1264 ledstate = ~leds;
1265 vt_switch = false;
1268 if (leds != ledstate) {
1269 kbd_propagate_led_state(ledstate, leds);
1270 ledstate = leds;
1274 #if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1275 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1276 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1277 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1279 static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1281 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1282 return false;
1284 return dev->id.bustype == BUS_I8042 &&
1285 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288 static const unsigned short x86_keycodes[256] =
1289 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1290 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1291 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1292 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1293 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1294 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1295 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1296 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1297 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1298 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1299 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1300 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1301 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1302 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1303 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1305 #ifdef CONFIG_SPARC
1306 static int sparc_l1_a_state;
1307 extern void sun_do_break(void);
1308 #endif
1310 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1311 unsigned char up_flag)
1313 int code;
1315 switch (keycode) {
1317 case KEY_PAUSE:
1318 put_queue(vc, 0xe1);
1319 put_queue(vc, 0x1d | up_flag);
1320 put_queue(vc, 0x45 | up_flag);
1321 break;
1323 case KEY_HANGEUL:
1324 if (!up_flag)
1325 put_queue(vc, 0xf2);
1326 break;
1328 case KEY_HANJA:
1329 if (!up_flag)
1330 put_queue(vc, 0xf1);
1331 break;
1333 case KEY_SYSRQ:
1335 * Real AT keyboards (that's what we're trying
1336 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1337 * pressing PrtSc/SysRq alone, but simply 0x54
1338 * when pressing Alt+PrtSc/SysRq.
1340 if (test_bit(KEY_LEFTALT, key_down) ||
1341 test_bit(KEY_RIGHTALT, key_down)) {
1342 put_queue(vc, 0x54 | up_flag);
1343 } else {
1344 put_queue(vc, 0xe0);
1345 put_queue(vc, 0x2a | up_flag);
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x37 | up_flag);
1349 break;
1351 default:
1352 if (keycode > 255)
1353 return -1;
1355 code = x86_keycodes[keycode];
1356 if (!code)
1357 return -1;
1359 if (code & 0x100)
1360 put_queue(vc, 0xe0);
1361 put_queue(vc, (code & 0x7f) | up_flag);
1363 break;
1366 return 0;
1369 #else
1371 static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1373 return false;
1376 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1378 if (keycode > 127)
1379 return -1;
1381 put_queue(vc, keycode | up_flag);
1382 return 0;
1384 #endif
1386 static void kbd_rawcode(unsigned char data)
1388 struct vc_data *vc = vc_cons[fg_console].d;
1390 kbd = &kbd_table[vc->vc_num];
1391 if (kbd->kbdmode == VC_RAW)
1392 put_queue(vc, data);
1395 static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1397 struct vc_data *vc = vc_cons[fg_console].d;
1398 unsigned short keysym, *key_map;
1399 unsigned char type;
1400 bool raw_mode;
1401 struct tty_struct *tty;
1402 int shift_final;
1403 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1404 int rc;
1406 tty = vc->port.tty;
1408 if (tty && (!tty->driver_data)) {
1409 /* No driver data? Strange. Okay we fix it then. */
1410 tty->driver_data = vc;
1413 kbd = &kbd_table[vc->vc_num];
1415 #ifdef CONFIG_SPARC
1416 if (keycode == KEY_STOP)
1417 sparc_l1_a_state = down;
1418 #endif
1420 rep = (down == 2);
1422 raw_mode = (kbd->kbdmode == VC_RAW);
1423 if (raw_mode && !hw_raw)
1424 if (emulate_raw(vc, keycode, !down << 7))
1425 if (keycode < BTN_MISC && printk_ratelimit())
1426 pr_warn("can't emulate rawmode for keycode %d\n",
1427 keycode);
1429 #ifdef CONFIG_SPARC
1430 if (keycode == KEY_A && sparc_l1_a_state) {
1431 sparc_l1_a_state = false;
1432 sun_do_break();
1434 #endif
1436 if (kbd->kbdmode == VC_MEDIUMRAW) {
1438 * This is extended medium raw mode, with keys above 127
1439 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1440 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1441 * interfere with anything else. The two bytes after 0 will
1442 * always have the up flag set not to interfere with older
1443 * applications. This allows for 16384 different keycodes,
1444 * which should be enough.
1446 if (keycode < 128) {
1447 put_queue(vc, keycode | (!down << 7));
1448 } else {
1449 put_queue(vc, !down << 7);
1450 put_queue(vc, (keycode >> 7) | BIT(7));
1451 put_queue(vc, keycode | BIT(7));
1453 raw_mode = true;
1456 assign_bit(keycode, key_down, down);
1458 if (rep &&
1459 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1460 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1462 * Don't repeat a key if the input buffers are not empty and the
1463 * characters get aren't echoed locally. This makes key repeat
1464 * usable with slow applications and under heavy loads.
1466 return;
1469 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1470 param.ledstate = kbd->ledflagstate;
1471 key_map = key_maps[shift_final];
1473 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1474 KBD_KEYCODE, &param);
1475 if (rc == NOTIFY_STOP || !key_map) {
1476 atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_UNBOUND_KEYCODE, &param);
1478 do_compute_shiftstate();
1479 kbd->slockstate = 0;
1480 return;
1483 if (keycode < NR_KEYS)
1484 keysym = key_map[keycode];
1485 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1486 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1487 else
1488 return;
1490 type = KTYP(keysym);
1492 if (type < 0xf0) {
1493 param.value = keysym;
1494 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1495 KBD_UNICODE, &param);
1496 if (rc != NOTIFY_STOP)
1497 if (down && !raw_mode)
1498 k_unicode(vc, keysym, !down);
1499 return;
1502 type -= 0xf0;
1504 if (type == KT_LETTER) {
1505 type = KT_LATIN;
1506 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1507 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1508 if (key_map)
1509 keysym = key_map[keycode];
1513 param.value = keysym;
1514 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1515 KBD_KEYSYM, &param);
1516 if (rc == NOTIFY_STOP)
1517 return;
1519 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1520 return;
1522 (*k_handler[type])(vc, keysym & 0xff, !down);
1524 param.ledstate = kbd->ledflagstate;
1525 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1527 if (type != KT_SLOCK)
1528 kbd->slockstate = 0;
1531 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1532 unsigned int event_code, int value)
1534 /* We are called with interrupts disabled, just take the lock */
1535 spin_lock(&kbd_event_lock);
1537 if (event_type == EV_MSC && event_code == MSC_RAW &&
1538 kbd_is_hw_raw(handle->dev))
1539 kbd_rawcode(value);
1540 if (event_type == EV_KEY && event_code <= KEY_MAX)
1541 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1543 spin_unlock(&kbd_event_lock);
1545 tasklet_schedule(&keyboard_tasklet);
1546 do_poke_blanked_console = 1;
1547 schedule_console_callback();
1550 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1552 if (test_bit(EV_SND, dev->evbit))
1553 return true;
1555 if (test_bit(EV_KEY, dev->evbit)) {
1556 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1557 BTN_MISC)
1558 return true;
1559 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1560 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1561 return true;
1564 return false;
1568 * When a keyboard (or other input device) is found, the kbd_connect
1569 * function is called. The function then looks at the device, and if it
1570 * likes it, it can open it and get events from it. In this (kbd_connect)
1571 * function, we should decide which VT to bind that keyboard to initially.
1573 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1574 const struct input_device_id *id)
1576 struct input_handle *handle;
1577 int error;
1579 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1580 if (!handle)
1581 return -ENOMEM;
1583 handle->dev = dev;
1584 handle->handler = handler;
1585 handle->name = "kbd";
1587 error = input_register_handle(handle);
1588 if (error)
1589 goto err_free_handle;
1591 error = input_open_device(handle);
1592 if (error)
1593 goto err_unregister_handle;
1595 return 0;
1597 err_unregister_handle:
1598 input_unregister_handle(handle);
1599 err_free_handle:
1600 kfree(handle);
1601 return error;
1604 static void kbd_disconnect(struct input_handle *handle)
1606 input_close_device(handle);
1607 input_unregister_handle(handle);
1608 kfree(handle);
1612 * Start keyboard handler on the new keyboard by refreshing LED state to
1613 * match the rest of the system.
1615 static void kbd_start(struct input_handle *handle)
1617 tasklet_disable(&keyboard_tasklet);
1619 if (ledstate != -1U)
1620 kbd_update_leds_helper(handle, &ledstate);
1622 tasklet_enable(&keyboard_tasklet);
1625 static const struct input_device_id kbd_ids[] = {
1627 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1628 .evbit = { BIT_MASK(EV_KEY) },
1632 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1633 .evbit = { BIT_MASK(EV_SND) },
1636 { }, /* Terminating entry */
1639 MODULE_DEVICE_TABLE(input, kbd_ids);
1641 static struct input_handler kbd_handler = {
1642 .event = kbd_event,
1643 .match = kbd_match,
1644 .connect = kbd_connect,
1645 .disconnect = kbd_disconnect,
1646 .start = kbd_start,
1647 .name = "kbd",
1648 .id_table = kbd_ids,
1651 int __init kbd_init(void)
1653 int i;
1654 int error;
1656 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1657 kbd_table[i].ledflagstate = kbd_defleds();
1658 kbd_table[i].default_ledflagstate = kbd_defleds();
1659 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1660 kbd_table[i].lockstate = KBD_DEFLOCK;
1661 kbd_table[i].slockstate = 0;
1662 kbd_table[i].modeflags = KBD_DEFMODE;
1663 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666 kbd_init_leds();
1668 error = input_register_handler(&kbd_handler);
1669 if (error)
1670 return error;
1672 tasklet_enable(&keyboard_tasklet);
1673 tasklet_schedule(&keyboard_tasklet);
1675 return 0;
1678 /* Ioctl support code */
1681 * vt_do_diacrit - diacritical table updates
1682 * @cmd: ioctl request
1683 * @udp: pointer to user data for ioctl
1684 * @perm: permissions check computed by caller
1686 * Update the diacritical tables atomically and safely. Lock them
1687 * against simultaneous keypresses
1689 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1691 unsigned long flags;
1692 int asize;
1693 int ret = 0;
1695 switch (cmd) {
1696 case KDGKBDIACR:
1698 struct kbdiacrs __user *a = udp;
1699 struct kbdiacr *dia;
1700 int i;
1702 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1703 GFP_KERNEL);
1704 if (!dia)
1705 return -ENOMEM;
1707 /* Lock the diacriticals table, make a copy and then
1708 copy it after we unlock */
1709 spin_lock_irqsave(&kbd_event_lock, flags);
1711 asize = accent_table_size;
1712 for (i = 0; i < asize; i++) {
1713 dia[i].diacr = conv_uni_to_8bit(
1714 accent_table[i].diacr);
1715 dia[i].base = conv_uni_to_8bit(
1716 accent_table[i].base);
1717 dia[i].result = conv_uni_to_8bit(
1718 accent_table[i].result);
1720 spin_unlock_irqrestore(&kbd_event_lock, flags);
1722 if (put_user(asize, &a->kb_cnt))
1723 ret = -EFAULT;
1724 else if (copy_to_user(a->kbdiacr, dia,
1725 asize * sizeof(struct kbdiacr)))
1726 ret = -EFAULT;
1727 kfree(dia);
1728 return ret;
1730 case KDGKBDIACRUC:
1732 struct kbdiacrsuc __user *a = udp;
1733 void *buf;
1735 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1736 GFP_KERNEL);
1737 if (buf == NULL)
1738 return -ENOMEM;
1740 /* Lock the diacriticals table, make a copy and then
1741 copy it after we unlock */
1742 spin_lock_irqsave(&kbd_event_lock, flags);
1744 asize = accent_table_size;
1745 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1747 spin_unlock_irqrestore(&kbd_event_lock, flags);
1749 if (put_user(asize, &a->kb_cnt))
1750 ret = -EFAULT;
1751 else if (copy_to_user(a->kbdiacruc, buf,
1752 asize*sizeof(struct kbdiacruc)))
1753 ret = -EFAULT;
1754 kfree(buf);
1755 return ret;
1758 case KDSKBDIACR:
1760 struct kbdiacrs __user *a = udp;
1761 struct kbdiacr *dia = NULL;
1762 unsigned int ct;
1763 int i;
1765 if (!perm)
1766 return -EPERM;
1767 if (get_user(ct, &a->kb_cnt))
1768 return -EFAULT;
1769 if (ct >= MAX_DIACR)
1770 return -EINVAL;
1772 if (ct) {
1773 dia = memdup_array_user(a->kbdiacr,
1774 ct, sizeof(struct kbdiacr));
1775 if (IS_ERR(dia))
1776 return PTR_ERR(dia);
1779 spin_lock_irqsave(&kbd_event_lock, flags);
1780 accent_table_size = ct;
1781 for (i = 0; i < ct; i++) {
1782 accent_table[i].diacr =
1783 conv_8bit_to_uni(dia[i].diacr);
1784 accent_table[i].base =
1785 conv_8bit_to_uni(dia[i].base);
1786 accent_table[i].result =
1787 conv_8bit_to_uni(dia[i].result);
1789 spin_unlock_irqrestore(&kbd_event_lock, flags);
1790 kfree(dia);
1791 return 0;
1794 case KDSKBDIACRUC:
1796 struct kbdiacrsuc __user *a = udp;
1797 unsigned int ct;
1798 void *buf = NULL;
1800 if (!perm)
1801 return -EPERM;
1803 if (get_user(ct, &a->kb_cnt))
1804 return -EFAULT;
1806 if (ct >= MAX_DIACR)
1807 return -EINVAL;
1809 if (ct) {
1810 buf = memdup_array_user(a->kbdiacruc,
1811 ct, sizeof(struct kbdiacruc));
1812 if (IS_ERR(buf))
1813 return PTR_ERR(buf);
1815 spin_lock_irqsave(&kbd_event_lock, flags);
1816 if (ct)
1817 memcpy(accent_table, buf,
1818 ct * sizeof(struct kbdiacruc));
1819 accent_table_size = ct;
1820 spin_unlock_irqrestore(&kbd_event_lock, flags);
1821 kfree(buf);
1822 return 0;
1825 return ret;
1829 * vt_do_kdskbmode - set keyboard mode ioctl
1830 * @console: the console to use
1831 * @arg: the requested mode
1833 * Update the keyboard mode bits while holding the correct locks.
1834 * Return 0 for success or an error code.
1836 int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1838 struct kbd_struct *kb = &kbd_table[console];
1839 int ret = 0;
1840 unsigned long flags;
1842 spin_lock_irqsave(&kbd_event_lock, flags);
1843 switch(arg) {
1844 case K_RAW:
1845 kb->kbdmode = VC_RAW;
1846 break;
1847 case K_MEDIUMRAW:
1848 kb->kbdmode = VC_MEDIUMRAW;
1849 break;
1850 case K_XLATE:
1851 kb->kbdmode = VC_XLATE;
1852 do_compute_shiftstate();
1853 break;
1854 case K_UNICODE:
1855 kb->kbdmode = VC_UNICODE;
1856 do_compute_shiftstate();
1857 break;
1858 case K_OFF:
1859 kb->kbdmode = VC_OFF;
1860 break;
1861 default:
1862 ret = -EINVAL;
1864 spin_unlock_irqrestore(&kbd_event_lock, flags);
1865 return ret;
1869 * vt_do_kdskbmeta - set keyboard meta state
1870 * @console: the console to use
1871 * @arg: the requested meta state
1873 * Update the keyboard meta bits while holding the correct locks.
1874 * Return 0 for success or an error code.
1876 int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1878 struct kbd_struct *kb = &kbd_table[console];
1879 int ret = 0;
1880 unsigned long flags;
1882 spin_lock_irqsave(&kbd_event_lock, flags);
1883 switch(arg) {
1884 case K_METABIT:
1885 clr_vc_kbd_mode(kb, VC_META);
1886 break;
1887 case K_ESCPREFIX:
1888 set_vc_kbd_mode(kb, VC_META);
1889 break;
1890 default:
1891 ret = -EINVAL;
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 return ret;
1897 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1898 int perm)
1900 struct kbkeycode tmp;
1901 int kc = 0;
1903 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1904 return -EFAULT;
1905 switch (cmd) {
1906 case KDGETKEYCODE:
1907 kc = getkeycode(tmp.scancode);
1908 if (kc >= 0)
1909 kc = put_user(kc, &user_kbkc->keycode);
1910 break;
1911 case KDSETKEYCODE:
1912 if (!perm)
1913 return -EPERM;
1914 kc = setkeycode(tmp.scancode, tmp.keycode);
1915 break;
1917 return kc;
1920 static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1921 unsigned char map)
1923 unsigned short *key_map, val;
1924 unsigned long flags;
1926 /* Ensure another thread doesn't free it under us */
1927 spin_lock_irqsave(&kbd_event_lock, flags);
1928 key_map = key_maps[map];
1929 if (key_map) {
1930 val = U(key_map[idx]);
1931 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1932 val = K_HOLE;
1933 } else
1934 val = idx ? K_HOLE : K_NOSUCHMAP;
1935 spin_unlock_irqrestore(&kbd_event_lock, flags);
1937 return val;
1940 static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1941 unsigned char map, unsigned short val)
1943 unsigned long flags;
1944 unsigned short *key_map, *new_map, oldval;
1946 if (!idx && val == K_NOSUCHMAP) {
1947 spin_lock_irqsave(&kbd_event_lock, flags);
1948 /* deallocate map */
1949 key_map = key_maps[map];
1950 if (map && key_map) {
1951 key_maps[map] = NULL;
1952 if (key_map[0] == U(K_ALLOCATED)) {
1953 kfree(key_map);
1954 keymap_count--;
1957 spin_unlock_irqrestore(&kbd_event_lock, flags);
1959 return 0;
1962 if (KTYP(val) < NR_TYPES) {
1963 if (KVAL(val) > max_vals[KTYP(val)])
1964 return -EINVAL;
1965 } else if (kbdmode != VC_UNICODE)
1966 return -EINVAL;
1968 /* ++Geert: non-PC keyboards may generate keycode zero */
1969 #if !defined(__mc68000__) && !defined(__powerpc__)
1970 /* assignment to entry 0 only tests validity of args */
1971 if (!idx)
1972 return 0;
1973 #endif
1975 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1976 if (!new_map)
1977 return -ENOMEM;
1979 spin_lock_irqsave(&kbd_event_lock, flags);
1980 key_map = key_maps[map];
1981 if (key_map == NULL) {
1982 int j;
1984 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1985 !capable(CAP_SYS_RESOURCE)) {
1986 spin_unlock_irqrestore(&kbd_event_lock, flags);
1987 kfree(new_map);
1988 return -EPERM;
1990 key_maps[map] = new_map;
1991 key_map = new_map;
1992 key_map[0] = U(K_ALLOCATED);
1993 for (j = 1; j < NR_KEYS; j++)
1994 key_map[j] = U(K_HOLE);
1995 keymap_count++;
1996 } else
1997 kfree(new_map);
1999 oldval = U(key_map[idx]);
2000 if (val == oldval)
2001 goto out;
2003 /* Attention Key */
2004 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2005 spin_unlock_irqrestore(&kbd_event_lock, flags);
2006 return -EPERM;
2009 key_map[idx] = U(val);
2010 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2011 do_compute_shiftstate();
2012 out:
2013 spin_unlock_irqrestore(&kbd_event_lock, flags);
2015 return 0;
2018 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2019 unsigned int console)
2021 struct kbd_struct *kb = &kbd_table[console];
2022 struct kbentry kbe;
2024 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2025 return -EFAULT;
2027 switch (cmd) {
2028 case KDGKBENT:
2029 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2030 kbe.kb_table),
2031 &user_kbe->kb_value);
2032 case KDSKBENT:
2033 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2034 return -EPERM;
2035 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2036 kbe.kb_value);
2038 return 0;
2041 static char *vt_kdskbsent(char *kbs, unsigned char cur)
2043 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2044 char *cur_f = func_table[cur];
2046 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2047 strcpy(cur_f, kbs);
2048 return kbs;
2051 func_table[cur] = kbs;
2053 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2058 unsigned char kb_func;
2059 unsigned long flags;
2060 char *kbs;
2061 int ret;
2063 if (get_user(kb_func, &user_kdgkb->kb_func))
2064 return -EFAULT;
2066 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2068 switch (cmd) {
2069 case KDGKBSENT: {
2070 /* size should have been a struct member */
2071 ssize_t len = sizeof(user_kdgkb->kb_string);
2073 kbs = kmalloc(len, GFP_KERNEL);
2074 if (!kbs)
2075 return -ENOMEM;
2077 spin_lock_irqsave(&func_buf_lock, flags);
2078 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2079 spin_unlock_irqrestore(&func_buf_lock, flags);
2081 if (len < 0) {
2082 ret = -ENOSPC;
2083 break;
2085 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2086 -EFAULT : 0;
2087 break;
2089 case KDSKBSENT:
2090 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2091 return -EPERM;
2093 kbs = strndup_user(user_kdgkb->kb_string,
2094 sizeof(user_kdgkb->kb_string));
2095 if (IS_ERR(kbs))
2096 return PTR_ERR(kbs);
2098 spin_lock_irqsave(&func_buf_lock, flags);
2099 kbs = vt_kdskbsent(kbs, kb_func);
2100 spin_unlock_irqrestore(&func_buf_lock, flags);
2102 ret = 0;
2103 break;
2106 kfree(kbs);
2108 return ret;
2111 int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2113 struct kbd_struct *kb = &kbd_table[console];
2114 unsigned long flags;
2115 unsigned char ucval;
2117 switch(cmd) {
2118 /* the ioctls below read/set the flags usually shown in the leds */
2119 /* don't use them - they will go away without warning */
2120 case KDGKBLED:
2121 spin_lock_irqsave(&kbd_event_lock, flags);
2122 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2123 spin_unlock_irqrestore(&kbd_event_lock, flags);
2124 return put_user(ucval, (char __user *)arg);
2126 case KDSKBLED:
2127 if (!perm)
2128 return -EPERM;
2129 if (arg & ~0x77)
2130 return -EINVAL;
2131 spin_lock_irqsave(&led_lock, flags);
2132 kb->ledflagstate = (arg & 7);
2133 kb->default_ledflagstate = ((arg >> 4) & 7);
2134 set_leds();
2135 spin_unlock_irqrestore(&led_lock, flags);
2136 return 0;
2138 /* the ioctls below only set the lights, not the functions */
2139 /* for those, see KDGKBLED and KDSKBLED above */
2140 case KDGETLED:
2141 ucval = getledstate();
2142 return put_user(ucval, (char __user *)arg);
2144 case KDSETLED:
2145 if (!perm)
2146 return -EPERM;
2147 setledstate(kb, arg);
2148 return 0;
2150 return -ENOIOCTLCMD;
2153 int vt_do_kdgkbmode(unsigned int console)
2155 struct kbd_struct *kb = &kbd_table[console];
2156 /* This is a spot read so needs no locking */
2157 switch (kb->kbdmode) {
2158 case VC_RAW:
2159 return K_RAW;
2160 case VC_MEDIUMRAW:
2161 return K_MEDIUMRAW;
2162 case VC_UNICODE:
2163 return K_UNICODE;
2164 case VC_OFF:
2165 return K_OFF;
2166 default:
2167 return K_XLATE;
2172 * vt_do_kdgkbmeta - report meta status
2173 * @console: console to report
2175 * Report the meta flag status of this console
2177 int vt_do_kdgkbmeta(unsigned int console)
2179 struct kbd_struct *kb = &kbd_table[console];
2180 /* Again a spot read so no locking */
2181 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2185 * vt_reset_unicode - reset the unicode status
2186 * @console: console being reset
2188 * Restore the unicode console state to its default
2190 void vt_reset_unicode(unsigned int console)
2192 unsigned long flags;
2194 spin_lock_irqsave(&kbd_event_lock, flags);
2195 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2196 spin_unlock_irqrestore(&kbd_event_lock, flags);
2200 * vt_get_shift_state - shift bit state
2202 * Report the shift bits from the keyboard state. We have to export
2203 * this to support some oddities in the vt layer.
2205 int vt_get_shift_state(void)
2207 /* Don't lock as this is a transient report */
2208 return shift_state;
2212 * vt_reset_keyboard - reset keyboard state
2213 * @console: console to reset
2215 * Reset the keyboard bits for a console as part of a general console
2216 * reset event
2218 void vt_reset_keyboard(unsigned int console)
2220 struct kbd_struct *kb = &kbd_table[console];
2221 unsigned long flags;
2223 spin_lock_irqsave(&kbd_event_lock, flags);
2224 set_vc_kbd_mode(kb, VC_REPEAT);
2225 clr_vc_kbd_mode(kb, VC_CKMODE);
2226 clr_vc_kbd_mode(kb, VC_APPLIC);
2227 clr_vc_kbd_mode(kb, VC_CRLF);
2228 kb->lockstate = 0;
2229 kb->slockstate = 0;
2230 spin_lock(&led_lock);
2231 kb->ledmode = LED_SHOW_FLAGS;
2232 kb->ledflagstate = kb->default_ledflagstate;
2233 spin_unlock(&led_lock);
2234 /* do not do set_leds here because this causes an endless tasklet loop
2235 when the keyboard hasn't been initialized yet */
2236 spin_unlock_irqrestore(&kbd_event_lock, flags);
2240 * vt_get_kbd_mode_bit - read keyboard status bits
2241 * @console: console to read from
2242 * @bit: mode bit to read
2244 * Report back a vt mode bit. We do this without locking so the
2245 * caller must be sure that there are no synchronization needs
2248 int vt_get_kbd_mode_bit(unsigned int console, int bit)
2250 struct kbd_struct *kb = &kbd_table[console];
2251 return vc_kbd_mode(kb, bit);
2255 * vt_set_kbd_mode_bit - read keyboard status bits
2256 * @console: console to read from
2257 * @bit: mode bit to read
2259 * Set a vt mode bit. We do this without locking so the
2260 * caller must be sure that there are no synchronization needs
2263 void vt_set_kbd_mode_bit(unsigned int console, int bit)
2265 struct kbd_struct *kb = &kbd_table[console];
2266 unsigned long flags;
2268 spin_lock_irqsave(&kbd_event_lock, flags);
2269 set_vc_kbd_mode(kb, bit);
2270 spin_unlock_irqrestore(&kbd_event_lock, flags);
2274 * vt_clr_kbd_mode_bit - read keyboard status bits
2275 * @console: console to read from
2276 * @bit: mode bit to read
2278 * Report back a vt mode bit. We do this without locking so the
2279 * caller must be sure that there are no synchronization needs
2282 void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2284 struct kbd_struct *kb = &kbd_table[console];
2285 unsigned long flags;
2287 spin_lock_irqsave(&kbd_event_lock, flags);
2288 clr_vc_kbd_mode(kb, bit);
2289 spin_unlock_irqrestore(&kbd_event_lock, flags);