1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 * Copyright (C) 2004-2013 Synopsys, Inc.
12 * This file contains the structures, constants, and interfaces for the
13 * Host Contoller Driver (HCD)
15 * The Host Controller Driver (HCD) is responsible for translating requests
16 * from the USB Driver into the appropriate actions on the DWC_otg controller.
17 * It isolates the USBD from the specifics of the controller by providing an
24 * struct dwc2_host_chan - Software host channel descriptor
26 * @hc_num: Host channel number, used for register address lookup
27 * @dev_addr: Address of the device
28 * @ep_num: Endpoint of the device
29 * @ep_is_in: Endpoint direction
30 * @speed: Device speed. One of the following values:
34 * @ep_type: Endpoint type. One of the following values:
35 * - USB_ENDPOINT_XFER_CONTROL: 0
36 * - USB_ENDPOINT_XFER_ISOC: 1
37 * - USB_ENDPOINT_XFER_BULK: 2
38 * - USB_ENDPOINT_XFER_INTR: 3
39 * @max_packet: Max packet size in bytes
40 * @data_pid_start: PID for initial transaction.
44 * 3: MDATA (non-Control EP),
46 * @multi_count: Number of additional periodic transactions per
48 * @xfer_buf: Pointer to current transfer buffer position
49 * @xfer_dma: DMA address of xfer_buf
50 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
52 * @xfer_len: Total number of bytes to transfer
53 * @xfer_count: Number of bytes transferred so far
54 * @start_pkt_count: Packet count at start of transfer
55 * @xfer_started: True if the transfer has been started
56 * @do_ping: True if a PING request should be issued on this channel
57 * @error_state: True if the error count for this transaction is non-zero
58 * @halt_on_queue: True if this channel should be halted the next time a
59 * request is queued for the channel. This is necessary in
60 * slave mode if no request queue space is available when
61 * an attempt is made to halt the channel.
62 * @halt_pending: True if the host channel has been halted, but the core
63 * is not finished flushing queued requests
64 * @do_split: Enable split for the channel
65 * @complete_split: Enable complete split
66 * @hub_addr: Address of high speed hub for the split
67 * @hub_port: Port of the low/full speed device for the split
68 * @xact_pos: Split transaction position. One of the following values:
69 * - DWC2_HCSPLT_XACTPOS_MID
70 * - DWC2_HCSPLT_XACTPOS_BEGIN
71 * - DWC2_HCSPLT_XACTPOS_END
72 * - DWC2_HCSPLT_XACTPOS_ALL
73 * @requests: Number of requests issued for this channel since it was
74 * assigned to the current transfer (not counting PINGs)
75 * @schinfo: Scheduling micro-frame bitmap
76 * @ntd: Number of transfer descriptors for the transfer
77 * @halt_status: Reason for halting the host channel
78 * @hcint: Contents of the HCINT register when the interrupt came
79 * @qh: QH for the transfer being processed by this channel
80 * @hc_list_entry: For linking to list of host channels
81 * @desc_list_addr: Current QH's descriptor list DMA address
82 * @desc_list_sz: Current QH's descriptor list size
83 * @split_order_list_entry: List entry for keeping track of the order of splits
85 * This structure represents the state of a single host channel when acting in
86 * host mode. It contains the data items needed to transfer packets to an
87 * endpoint via a host channel.
89 struct dwc2_host_chan
{
97 unsigned max_packet
:11;
98 unsigned data_pid_start
:2;
99 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
100 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
101 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
102 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
103 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
105 unsigned multi_count
:2;
109 dma_addr_t align_buf
;
123 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
124 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
125 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
126 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
131 enum dwc2_halt_status halt_status
;
134 struct list_head hc_list_entry
;
135 dma_addr_t desc_list_addr
;
137 struct list_head split_order_list_entry
;
140 struct dwc2_hcd_pipe_info
{
149 struct dwc2_hcd_iso_packet_desc
{
158 struct dwc2_hcd_urb
{
160 struct dwc2_qtd
*qtd
;
164 dma_addr_t setup_dma
;
172 struct dwc2_hcd_pipe_info pipe_info
;
173 struct dwc2_hcd_iso_packet_desc iso_descs
[];
176 /* Phases for control transfers */
177 enum dwc2_control_phase
{
183 /* Transaction types */
184 enum dwc2_transaction_type
{
185 DWC2_TRANSACTION_NONE
,
186 DWC2_TRANSACTION_PERIODIC
,
187 DWC2_TRANSACTION_NON_PERIODIC
,
188 DWC2_TRANSACTION_ALL
,
191 /* The number of elements per LS bitmap (per port on multi_tt) */
192 #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
196 * struct dwc2_tt - dwc2 data associated with a usb_tt
198 * @refcount: Number of Queue Heads (QHs) holding a reference.
199 * @usb_tt: Pointer back to the official usb_tt.
200 * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
201 * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
202 * elements (so sizeof(long) times that in bytes).
204 * This structure is stored in the hcpriv of the official usb_tt.
208 struct usb_tt
*usb_tt
;
209 unsigned long periodic_bitmaps
[];
213 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
215 * @start_schedule_us: The start time on the main bus schedule. Note that
216 * the main bus schedule is tightly packed and this
217 * time should be interpreted as tightly packed (so
218 * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
219 * instead of 125 us).
220 * @duration_us: How long this transfer goes.
223 struct dwc2_hs_transfer_time
{
224 u32 start_schedule_us
;
229 * struct dwc2_qh - Software queue head structure
231 * @hsotg: The HCD state structure for the DWC OTG controller
232 * @ep_type: Endpoint type. One of the following values:
233 * - USB_ENDPOINT_XFER_CONTROL
234 * - USB_ENDPOINT_XFER_BULK
235 * - USB_ENDPOINT_XFER_INT
236 * - USB_ENDPOINT_XFER_ISOC
237 * @ep_is_in: Endpoint direction
238 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
239 * @maxp_mult: Multiplier for maxp
240 * @dev_speed: Device speed. One of the following values:
244 * @data_toggle: Determines the PID of the next data packet for
245 * non-controltransfers. Ignored for control transfers.
246 * One of the following values:
247 * - DWC2_HC_PID_DATA0
248 * - DWC2_HC_PID_DATA1
249 * @ping_state: Ping state
250 * @do_split: Full/low speed endpoint on high-speed hub requires split
251 * @td_first: Index of first activated isochronous transfer descriptor
252 * @td_last: Index of last activated isochronous transfer descriptor
253 * @host_us: Bandwidth in microseconds per transfer as seen by host
254 * @device_us: Bandwidth in microseconds per transfer as seen by device
255 * @host_interval: Interval between transfers as seen by the host. If
256 * the host is high speed and the device is low speed this
257 * will be 8 times device interval.
258 * @device_interval: Interval between transfers as seen by the device.
260 * @next_active_frame: (Micro)frame _before_ we next need to put something on
261 * the bus. We'll move the qh to active here. If the
262 * host is in high speed mode this will be a uframe. If
263 * the host is in low speed mode this will be a full frame.
264 * @start_active_frame: If we are partway through a split transfer, this will be
265 * what next_active_frame was when we started. Otherwise
266 * it should always be the same as next_active_frame.
267 * @num_hs_transfers: Number of transfers in hs_transfers.
268 * Normally this is 1 but can be more than one for splits.
269 * Always >= 1 unless the host is in low/full speed mode.
270 * @hs_transfers: Transfers that are scheduled as seen by the high speed
271 * bus. Not used if host is in low or full speed mode (but
272 * note that it IS USED if the device is low or full speed
273 * as long as the HOST is in high speed mode).
274 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
275 * schedule that's being used by this device. This
276 * will be on the periodic_bitmap in a
277 * "struct dwc2_tt". Not used if this device is high
278 * speed. Note that this is in "schedule slice" which
280 * @ntd: Actual number of transfer descriptors in a list
281 * @dw_align_buf: Used instead of original buffer if its physical address
282 * is not dword-aligned
283 * @dw_align_buf_dma: DMA address for dw_align_buf
284 * @qtd_list: List of QTDs for this QH
285 * @channel: Host channel currently processing transfers for this QH
286 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
288 * @desc_list: List of transfer descriptors
289 * @desc_list_dma: Physical address of desc_list
290 * @desc_list_sz: Size of descriptors list
291 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
292 * descriptor and indicates original XferSize value for the
294 * @unreserve_timer: Timer for releasing periodic reservation.
295 * @wait_timer: Timer used to wait before re-queuing.
296 * @dwc_tt: Pointer to our tt info (or NULL if no tt).
297 * @ttport: Port number within our tt.
298 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
299 * @unreserve_pending: True if we planned to unreserve but haven't yet.
300 * @schedule_low_speed: True if we have a low/full speed component (either the
301 * host is in low/full speed mode or do_split).
302 * @want_wait: We should wait before re-queuing; only matters for non-
303 * periodic transfers and is ignored for periodic ones.
304 * @wait_timer_cancel: Set to true to cancel the wait_timer.
306 * @tt_buffer_dirty: True if EP's TT buffer is not clean.
307 * A Queue Head (QH) holds the static characteristics of an endpoint and
308 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
309 * be entered in either the non-periodic or periodic schedule.
312 struct dwc2_hsotg
*hsotg
;
327 u16 next_active_frame
;
328 u16 start_active_frame
;
329 s16 num_hs_transfers
;
330 struct dwc2_hs_transfer_time hs_transfers
[DWC2_HS_SCHEDULE_UFRAMES
];
331 u32 ls_start_schedule_slice
;
334 dma_addr_t dw_align_buf_dma
;
335 struct list_head qtd_list
;
336 struct dwc2_host_chan
*channel
;
337 struct list_head qh_list_entry
;
338 struct dwc2_dma_desc
*desc_list
;
339 dma_addr_t desc_list_dma
;
342 struct timer_list unreserve_timer
;
343 struct hrtimer wait_timer
;
344 struct dwc2_tt
*dwc_tt
;
346 unsigned tt_buffer_dirty
:1;
347 unsigned unreserve_pending
:1;
348 unsigned schedule_low_speed
:1;
349 unsigned want_wait
:1;
350 unsigned wait_timer_cancel
:1;
354 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
356 * @control_phase: Current phase for control transfers (Setup, Data, or
358 * @in_process: Indicates if this QTD is currently processed by HW
359 * @data_toggle: Determines the PID of the next data packet for the
360 * data phase of control transfers. Ignored for other
361 * transfer types. One of the following values:
362 * - DWC2_HC_PID_DATA0
363 * - DWC2_HC_PID_DATA1
364 * @complete_split: Keeps track of the current split type for FS/LS
365 * endpoints on a HS Hub
366 * @isoc_split_pos: Position of the ISOC split in full/low speed
367 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
368 * transfer. A frame descriptor describes the buffer
369 * position and length of the data to be transferred in the
370 * next scheduled (micro)frame of an isochronous transfer.
371 * It also holds status for that transaction. The frame
373 * @isoc_split_offset: Position of the ISOC split in the buffer for the
375 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
376 * @error_count: Holds the number of bus errors that have occurred for
377 * a transaction within this transfer
378 * @n_desc: Number of DMA descriptors for this QTD
379 * @isoc_frame_index_last: Last activated frame (packet) index, used in
380 * descriptor DMA mode only
381 * @num_naks: Number of NAKs received on this QTD.
382 * @urb: URB for this transfer
383 * @qh: Queue head for this QTD
384 * @qtd_list_entry: For linking to the QH's list of QTDs
385 * @isoc_td_first: Index of first activated isochronous transfer
386 * descriptor in Descriptor DMA mode
387 * @isoc_td_last: Index of last activated isochronous transfer
388 * descriptor in Descriptor DMA mode
390 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
391 * interrupt, or isochronous transfer. A single QTD is created for each URB
392 * (of one of these types) submitted to the HCD. The transfer associated with
393 * a QTD may require one or multiple transactions.
395 * A QTD is linked to a Queue Head, which is entered in either the
396 * non-periodic or periodic schedule for execution. When a QTD is chosen for
397 * execution, some or all of its transactions may be executed. After
398 * execution, the state of the QTD is updated. The QTD may be retired if all
399 * its transactions are complete or if an error occurred. Otherwise, it
400 * remains in the schedule so more transactions can be executed later.
403 enum dwc2_control_phase control_phase
;
408 u16 isoc_frame_index
;
409 u16 isoc_split_offset
;
412 u32 ssplit_out_xfer_count
;
415 u16 isoc_frame_index_last
;
417 struct dwc2_hcd_urb
*urb
;
419 struct list_head qtd_list_entry
;
423 struct hc_xfer_info
{
424 struct dwc2_hsotg
*hsotg
;
425 struct dwc2_host_chan
*chan
;
429 u32
dwc2_calc_frame_interval(struct dwc2_hsotg
*hsotg
);
431 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
432 static inline struct usb_hcd
*dwc2_hsotg_to_hcd(struct dwc2_hsotg
*hsotg
)
434 return (struct usb_hcd
*)hsotg
->priv
;
438 * Inline used to disable one channel interrupt. Channel interrupts are
439 * disabled when the channel is halted or released by the interrupt handler.
440 * There is no need to handle further interrupts of that type until the
441 * channel is re-assigned. In fact, subsequent handling may cause crashes
442 * because the channel structures are cleaned up when the channel is released.
444 static inline void disable_hc_int(struct dwc2_hsotg
*hsotg
, int chnum
, u32 intr
)
446 u32 mask
= dwc2_readl(hsotg
, HCINTMSK(chnum
));
449 dwc2_writel(hsotg
, mask
, HCINTMSK(chnum
));
452 void dwc2_hc_cleanup(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
);
453 void dwc2_hc_halt(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
,
454 enum dwc2_halt_status halt_status
);
455 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg
*hsotg
,
456 struct dwc2_host_chan
*chan
);
459 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
460 * are read as 1, they won't clear when written back.
462 static inline u32
dwc2_read_hprt0(struct dwc2_hsotg
*hsotg
)
464 u32 hprt0
= dwc2_readl(hsotg
, HPRT0
);
466 hprt0
&= ~(HPRT0_ENA
| HPRT0_CONNDET
| HPRT0_ENACHG
| HPRT0_OVRCURRCHG
);
470 static inline u8
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info
*pipe
)
475 static inline u8
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info
*pipe
)
477 return pipe
->pipe_type
;
480 static inline u16
dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info
*pipe
)
485 static inline u16
dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info
*pipe
)
487 return pipe
->maxp_mult
;
490 static inline u8
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info
*pipe
)
492 return pipe
->dev_addr
;
495 static inline u8
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info
*pipe
)
497 return pipe
->pipe_type
== USB_ENDPOINT_XFER_ISOC
;
500 static inline u8
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info
*pipe
)
502 return pipe
->pipe_type
== USB_ENDPOINT_XFER_INT
;
505 static inline u8
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info
*pipe
)
507 return pipe
->pipe_type
== USB_ENDPOINT_XFER_BULK
;
510 static inline u8
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info
*pipe
)
512 return pipe
->pipe_type
== USB_ENDPOINT_XFER_CONTROL
;
515 static inline u8
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info
*pipe
)
517 return pipe
->pipe_dir
== USB_DIR_IN
;
520 static inline u8
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info
*pipe
)
522 return !dwc2_hcd_is_pipe_in(pipe
);
525 int dwc2_hcd_init(struct dwc2_hsotg
*hsotg
);
526 void dwc2_hcd_remove(struct dwc2_hsotg
*hsotg
);
528 /* Transaction Execution Functions */
529 enum dwc2_transaction_type
dwc2_hcd_select_transactions(
530 struct dwc2_hsotg
*hsotg
);
531 void dwc2_hcd_queue_transactions(struct dwc2_hsotg
*hsotg
,
532 enum dwc2_transaction_type tr_type
);
534 /* Schedule Queue Functions */
535 /* Implemented in hcd_queue.c */
536 struct dwc2_qh
*dwc2_hcd_qh_create(struct dwc2_hsotg
*hsotg
,
537 struct dwc2_hcd_urb
*urb
,
539 void dwc2_hcd_qh_free(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
540 int dwc2_hcd_qh_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
541 void dwc2_hcd_qh_unlink(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
542 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
545 void dwc2_hcd_qtd_init(struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
);
546 int dwc2_hcd_qtd_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
549 /* Unlinks and frees a QTD */
550 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg
*hsotg
,
551 struct dwc2_qtd
*qtd
,
554 list_del(&qtd
->qtd_list_entry
);
558 /* Descriptor DMA support functions */
559 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg
*hsotg
,
561 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg
*hsotg
,
562 struct dwc2_host_chan
*chan
, int chnum
,
563 enum dwc2_halt_status halt_status
);
565 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
567 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
569 /* Check if QH is non-periodic */
570 #define dwc2_qh_is_non_per(_qh_ptr_) \
571 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
572 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
574 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
575 static inline bool dbg_hc(struct dwc2_host_chan
*hc
) { return true; }
576 static inline bool dbg_qh(struct dwc2_qh
*qh
) { return true; }
577 static inline bool dbg_urb(struct urb
*urb
) { return true; }
578 static inline bool dbg_perio(void) { return true; }
579 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
580 static inline bool dbg_hc(struct dwc2_host_chan
*hc
)
582 return hc
->ep_type
== USB_ENDPOINT_XFER_BULK
||
583 hc
->ep_type
== USB_ENDPOINT_XFER_CONTROL
;
586 static inline bool dbg_qh(struct dwc2_qh
*qh
)
588 return qh
->ep_type
== USB_ENDPOINT_XFER_BULK
||
589 qh
->ep_type
== USB_ENDPOINT_XFER_CONTROL
;
592 static inline bool dbg_urb(struct urb
*urb
)
594 return usb_pipetype(urb
->pipe
) == PIPE_BULK
||
595 usb_pipetype(urb
->pipe
) == PIPE_CONTROL
;
598 static inline bool dbg_perio(void) { return false; }
602 * Returns true if frame1 index is greater than frame2 index. The comparison
603 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
604 * frame number when the max index frame number is reached.
606 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1
, u16 fr_idx2
)
608 u16 diff
= fr_idx1
- fr_idx2
;
609 u16 sign
= diff
& (FRLISTEN_64_SIZE
>> 1);
611 return diff
&& !sign
;
615 * Returns true if frame1 is less than or equal to frame2. The comparison is
616 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
617 * frame number when the max frame number is reached.
619 static inline int dwc2_frame_num_le(u16 frame1
, u16 frame2
)
621 return ((frame2
- frame1
) & HFNUM_MAX_FRNUM
) <= (HFNUM_MAX_FRNUM
>> 1);
625 * Returns true if frame1 is greater than frame2. The comparison is done
626 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
627 * number when the max frame number is reached.
629 static inline int dwc2_frame_num_gt(u16 frame1
, u16 frame2
)
631 return (frame1
!= frame2
) &&
632 ((frame1
- frame2
) & HFNUM_MAX_FRNUM
) < (HFNUM_MAX_FRNUM
>> 1);
636 * Increments frame by the amount specified by inc. The addition is done
637 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
639 static inline u16
dwc2_frame_num_inc(u16 frame
, u16 inc
)
641 return (frame
+ inc
) & HFNUM_MAX_FRNUM
;
644 static inline u16
dwc2_frame_num_dec(u16 frame
, u16 dec
)
646 return (frame
+ HFNUM_MAX_FRNUM
+ 1 - dec
) & HFNUM_MAX_FRNUM
;
649 static inline u16
dwc2_full_frame_num(u16 frame
)
651 return (frame
& HFNUM_MAX_FRNUM
) >> 3;
654 static inline u16
dwc2_micro_frame_num(u16 frame
)
660 * Returns the Core Interrupt Status register contents, ANDed with the Core
661 * Interrupt Mask register contents
663 static inline u32
dwc2_read_core_intr(struct dwc2_hsotg
*hsotg
)
665 return dwc2_readl(hsotg
, GINTSTS
) &
666 dwc2_readl(hsotg
, GINTMSK
);
669 static inline u32
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb
*dwc2_urb
)
671 return dwc2_urb
->status
;
674 static inline u32
dwc2_hcd_urb_get_actual_length(
675 struct dwc2_hcd_urb
*dwc2_urb
)
677 return dwc2_urb
->actual_length
;
680 static inline u32
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb
*dwc2_urb
)
682 return dwc2_urb
->error_count
;
685 static inline void dwc2_hcd_urb_set_iso_desc_params(
686 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
, u32 offset
,
689 dwc2_urb
->iso_descs
[desc_num
].offset
= offset
;
690 dwc2_urb
->iso_descs
[desc_num
].length
= length
;
693 static inline u32
dwc2_hcd_urb_get_iso_desc_status(
694 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
)
696 return dwc2_urb
->iso_descs
[desc_num
].status
;
699 static inline u32
dwc2_hcd_urb_get_iso_desc_actual_length(
700 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
)
702 return dwc2_urb
->iso_descs
[desc_num
].actual_length
;
705 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg
*hsotg
,
706 struct usb_host_endpoint
*ep
)
708 struct dwc2_qh
*qh
= ep
->hcpriv
;
710 if (qh
&& !list_empty(&qh
->qh_list_entry
))
716 static inline u16
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg
*hsotg
,
717 struct usb_host_endpoint
*ep
)
719 struct dwc2_qh
*qh
= ep
->hcpriv
;
729 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg
*hsotg
,
730 struct dwc2_host_chan
*chan
, int chnum
,
731 struct dwc2_qtd
*qtd
);
736 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
738 * @hsotg: The DWC2 HCD
740 * Returns IRQ_HANDLED if interrupt is handled
741 * Return IRQ_NONE if interrupt is not handled
743 irqreturn_t
dwc2_handle_hcd_intr(struct dwc2_hsotg
*hsotg
);
746 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
748 * @hsotg: The DWC2 HCD
750 void dwc2_hcd_stop(struct dwc2_hsotg
*hsotg
);
753 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
756 * @hsotg: The DWC2 HCD
758 int dwc2_hcd_is_b_host(struct dwc2_hsotg
*hsotg
);
761 * dwc2_hcd_dump_state() - Dumps hsotg state
763 * @hsotg: The DWC2 HCD
765 * NOTE: This function will be removed once the peripheral controller code
766 * is integrated and the driver is stable
768 void dwc2_hcd_dump_state(struct dwc2_hsotg
*hsotg
);
773 #define URB_GIVEBACK_ASAP 0x1
774 #define URB_SEND_ZERO_PACKET 0x2
776 /* Host driver callbacks */
777 struct dwc2_tt
*dwc2_host_get_tt_info(struct dwc2_hsotg
*hsotg
,
778 void *context
, gfp_t mem_flags
,
781 void dwc2_host_put_tt_info(struct dwc2_hsotg
*hsotg
,
782 struct dwc2_tt
*dwc_tt
);
783 int dwc2_host_get_speed(struct dwc2_hsotg
*hsotg
, void *context
);
784 void dwc2_host_complete(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
787 #endif /* __DWC2_HCD_H__ */