1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
35 #include <linux/iopoll.h>
37 #include <asm/byteorder.h>
39 #include <linux/unaligned.h>
43 static const char hcd_name
[] = "fotg210_hcd";
45 #undef FOTG210_URB_TRACE
48 /* magic numbers that can affect system performance */
49 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
50 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
51 #define FOTG210_TUNE_RL_TT 0
52 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
53 #define FOTG210_TUNE_MULT_TT 1
55 /* Some drivers think it's safe to schedule isochronous transfers more than 256
56 * ms into the future (partly as a result of an old bug in the scheduling
57 * code). In an attempt to avoid trouble, we will use a minimum scheduling
58 * length of 512 frames instead of 256.
60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
62 /* Initial IRQ latency: faster than hw default */
63 static int log2_irq_thresh
; /* 0 to 6 */
64 module_param(log2_irq_thresh
, int, S_IRUGO
);
65 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
67 /* initial park setting: slower than hw default */
69 module_param(park
, uint
, S_IRUGO
);
70 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
72 /* for link power management(LPM) feature */
73 static unsigned int hird
;
74 module_param(hird
, int, S_IRUGO
);
75 MODULE_PARM_DESC(hird
, "host initiated resume duration, +1 for each 75us");
77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
79 #include "fotg210-hcd.h"
81 #define fotg210_dbg(fotg210, fmt, args...) \
82 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_err(fotg210, fmt, args...) \
84 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_info(fotg210, fmt, args...) \
86 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87 #define fotg210_warn(fotg210, fmt, args...) \
88 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
90 /* check the values in the HCSPARAMS register (host controller _Structural_
91 * parameters) see EHCI spec, Table 2-4 for each value
93 static void dbg_hcs_params(struct fotg210_hcd
*fotg210
, char *label
)
95 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
97 fotg210_dbg(fotg210
, "%s hcs_params 0x%x ports=%d\n", label
, params
,
101 /* check the values in the HCCPARAMS register (host controller _Capability_
102 * parameters) see EHCI Spec, Table 2-5 for each value
104 static void dbg_hcc_params(struct fotg210_hcd
*fotg210
, char *label
)
106 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
108 fotg210_dbg(fotg210
, "%s hcc_params %04x uframes %s%s\n", label
,
110 HCC_PGM_FRAMELISTLEN(params
) ? "256/512/1024" : "1024",
111 HCC_CANPARK(params
) ? " park" : "");
114 static void __maybe_unused
115 dbg_qtd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
)
117 fotg210_dbg(fotg210
, "%s td %p n%08x %08x t%08x p0=%08x\n", label
, qtd
,
118 hc32_to_cpup(fotg210
, &qtd
->hw_next
),
119 hc32_to_cpup(fotg210
, &qtd
->hw_alt_next
),
120 hc32_to_cpup(fotg210
, &qtd
->hw_token
),
121 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[0]));
123 fotg210_dbg(fotg210
, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
124 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[1]),
125 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[2]),
126 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[3]),
127 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[4]));
130 static void __maybe_unused
131 dbg_qh(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
133 struct fotg210_qh_hw
*hw
= qh
->hw
;
135 fotg210_dbg(fotg210
, "%s qh %p n%08x info %x %x qtd %x\n", label
, qh
,
136 hw
->hw_next
, hw
->hw_info1
, hw
->hw_info2
,
139 dbg_qtd("overlay", fotg210
, (struct fotg210_qtd
*) &hw
->hw_qtd_next
);
142 static void __maybe_unused
143 dbg_itd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
145 fotg210_dbg(fotg210
, "%s[%d] itd %p, next %08x, urb %p\n", label
,
146 itd
->frame
, itd
, hc32_to_cpu(fotg210
, itd
->hw_next
),
150 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151 hc32_to_cpu(fotg210
, itd
->hw_transaction
[0]),
152 hc32_to_cpu(fotg210
, itd
->hw_transaction
[1]),
153 hc32_to_cpu(fotg210
, itd
->hw_transaction
[2]),
154 hc32_to_cpu(fotg210
, itd
->hw_transaction
[3]),
155 hc32_to_cpu(fotg210
, itd
->hw_transaction
[4]),
156 hc32_to_cpu(fotg210
, itd
->hw_transaction
[5]),
157 hc32_to_cpu(fotg210
, itd
->hw_transaction
[6]),
158 hc32_to_cpu(fotg210
, itd
->hw_transaction
[7]));
161 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210
, itd
->hw_bufp
[0]),
163 hc32_to_cpu(fotg210
, itd
->hw_bufp
[1]),
164 hc32_to_cpu(fotg210
, itd
->hw_bufp
[2]),
165 hc32_to_cpu(fotg210
, itd
->hw_bufp
[3]),
166 hc32_to_cpu(fotg210
, itd
->hw_bufp
[4]),
167 hc32_to_cpu(fotg210
, itd
->hw_bufp
[5]),
168 hc32_to_cpu(fotg210
, itd
->hw_bufp
[6]));
170 fotg210_dbg(fotg210
, " index: %d %d %d %d %d %d %d %d\n",
171 itd
->index
[0], itd
->index
[1], itd
->index
[2],
172 itd
->index
[3], itd
->index
[4], itd
->index
[5],
173 itd
->index
[6], itd
->index
[7]);
176 static int __maybe_unused
177 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
179 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180 label
, label
[0] ? " " : "", status
,
181 (status
& STS_ASS
) ? " Async" : "",
182 (status
& STS_PSS
) ? " Periodic" : "",
183 (status
& STS_RECL
) ? " Recl" : "",
184 (status
& STS_HALT
) ? " Halt" : "",
185 (status
& STS_IAA
) ? " IAA" : "",
186 (status
& STS_FATAL
) ? " FATAL" : "",
187 (status
& STS_FLR
) ? " FLR" : "",
188 (status
& STS_PCD
) ? " PCD" : "",
189 (status
& STS_ERR
) ? " ERR" : "",
190 (status
& STS_INT
) ? " INT" : "");
193 static int __maybe_unused
194 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
196 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
197 label
, label
[0] ? " " : "", enable
,
198 (enable
& STS_IAA
) ? " IAA" : "",
199 (enable
& STS_FATAL
) ? " FATAL" : "",
200 (enable
& STS_FLR
) ? " FLR" : "",
201 (enable
& STS_PCD
) ? " PCD" : "",
202 (enable
& STS_ERR
) ? " ERR" : "",
203 (enable
& STS_INT
) ? " INT" : "");
206 static const char *const fls_strings
[] = { "1024", "512", "256", "??" };
208 static int dbg_command_buf(char *buf
, unsigned len
, const char *label
,
211 return scnprintf(buf
, len
,
212 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213 label
, label
[0] ? " " : "", command
,
214 (command
& CMD_PARK
) ? " park" : "(park)",
215 CMD_PARK_CNT(command
),
216 (command
>> 16) & 0x3f,
217 (command
& CMD_IAAD
) ? " IAAD" : "",
218 (command
& CMD_ASE
) ? " Async" : "",
219 (command
& CMD_PSE
) ? " Periodic" : "",
220 fls_strings
[(command
>> 2) & 0x3],
221 (command
& CMD_RESET
) ? " Reset" : "",
222 (command
& CMD_RUN
) ? "RUN" : "HALT");
225 static char *dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
,
230 /* signaling state */
231 switch (status
& (3 << 10)) {
237 break; /* low speed */
246 scnprintf(buf
, len
, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247 label
, label
[0] ? " " : "", port
, status
,
248 status
>> 25, /*device address */
250 (status
& PORT_RESET
) ? " RESET" : "",
251 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
252 (status
& PORT_RESUME
) ? " RESUME" : "",
253 (status
& PORT_PEC
) ? " PEC" : "",
254 (status
& PORT_PE
) ? " PE" : "",
255 (status
& PORT_CSC
) ? " CSC" : "",
256 (status
& PORT_CONNECT
) ? " CONNECT" : "");
261 /* functions have the "wrong" filename when they're output... */
262 #define dbg_status(fotg210, label, status) { \
264 dbg_status_buf(_buf, sizeof(_buf), label, status); \
265 fotg210_dbg(fotg210, "%s\n", _buf); \
268 #define dbg_cmd(fotg210, label, command) { \
270 dbg_command_buf(_buf, sizeof(_buf), label, command); \
271 fotg210_dbg(fotg210, "%s\n", _buf); \
274 #define dbg_port(fotg210, label, port, status) { \
276 fotg210_dbg(fotg210, "%s\n", \
277 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
280 /* troubleshooting help: expose state in debugfs */
281 static int debug_async_open(struct inode
*, struct file
*);
282 static int debug_periodic_open(struct inode
*, struct file
*);
283 static int debug_registers_open(struct inode
*, struct file
*);
284 static int debug_async_open(struct inode
*, struct file
*);
286 static ssize_t
debug_output(struct file
*, char __user
*, size_t, loff_t
*);
287 static int debug_close(struct inode
*, struct file
*);
289 static const struct file_operations debug_async_fops
= {
290 .owner
= THIS_MODULE
,
291 .open
= debug_async_open
,
292 .read
= debug_output
,
293 .release
= debug_close
,
294 .llseek
= default_llseek
,
296 static const struct file_operations debug_periodic_fops
= {
297 .owner
= THIS_MODULE
,
298 .open
= debug_periodic_open
,
299 .read
= debug_output
,
300 .release
= debug_close
,
301 .llseek
= default_llseek
,
303 static const struct file_operations debug_registers_fops
= {
304 .owner
= THIS_MODULE
,
305 .open
= debug_registers_open
,
306 .read
= debug_output
,
307 .release
= debug_close
,
308 .llseek
= default_llseek
,
311 static struct dentry
*fotg210_debug_root
;
313 struct debug_buffer
{
314 ssize_t (*fill_func
)(struct debug_buffer
*); /* fill method */
316 struct mutex mutex
; /* protect filling of buffer */
317 size_t count
; /* number of characters filled into buffer */
322 static inline char speed_char(u32 scratch
)
324 switch (scratch
& (3 << 12)) {
339 static inline char token_mark(struct fotg210_hcd
*fotg210
, __hc32 token
)
341 __u32 v
= hc32_to_cpu(fotg210
, token
);
343 if (v
& QTD_STS_ACTIVE
)
345 if (v
& QTD_STS_HALT
)
347 if (!IS_SHORT_READ(v
))
349 /* tries to advance through hw_alt_next */
353 static void qh_lines(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
,
354 char **nextp
, unsigned *sizep
)
358 struct fotg210_qtd
*td
;
360 unsigned size
= *sizep
;
363 __le32 list_end
= FOTG210_LIST_END(fotg210
);
364 struct fotg210_qh_hw
*hw
= qh
->hw
;
366 if (hw
->hw_qtd_next
== list_end
) /* NEC does this */
369 mark
= token_mark(fotg210
, hw
->hw_token
);
370 if (mark
== '/') { /* qh_alt_next controls qh advance? */
371 if ((hw
->hw_alt_next
& QTD_MASK(fotg210
)) ==
372 fotg210
->async
->hw
->hw_alt_next
)
373 mark
= '#'; /* blocked */
374 else if (hw
->hw_alt_next
== list_end
)
375 mark
= '.'; /* use hw_qtd_next */
376 /* else alt_next points to some other qtd */
378 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
379 hw_curr
= (mark
== '*') ? hc32_to_cpup(fotg210
, &hw
->hw_current
) : 0;
380 temp
= scnprintf(next
, size
,
381 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382 qh
, scratch
& 0x007f,
384 (scratch
>> 8) & 0x000f,
385 scratch
, hc32_to_cpup(fotg210
, &hw
->hw_info2
),
386 hc32_to_cpup(fotg210
, &hw
->hw_token
), mark
,
387 (cpu_to_hc32(fotg210
, QTD_TOGGLE
) & hw
->hw_token
)
389 (hc32_to_cpup(fotg210
, &hw
->hw_alt_next
) >> 1) & 0x0f);
393 /* hc may be modifying the list as we read it ... */
394 list_for_each_entry(td
, &qh
->qtd_list
, qtd_list
) {
395 scratch
= hc32_to_cpup(fotg210
, &td
->hw_token
);
397 if (hw_curr
== td
->qtd_dma
)
399 else if (hw
->hw_qtd_next
== cpu_to_hc32(fotg210
, td
->qtd_dma
))
401 else if (QTD_LENGTH(scratch
)) {
402 if (td
->hw_alt_next
== fotg210
->async
->hw
->hw_alt_next
)
404 else if (td
->hw_alt_next
!= list_end
)
407 temp
= scnprintf(next
, size
,
408 "\n\t%p%c%s len=%d %08x urb %p",
409 td
, mark
, ({ char *tmp
;
410 switch ((scratch
>>8)&0x03) {
424 (scratch
>> 16) & 0x7fff,
431 temp
= scnprintf(next
, size
, "\n");
440 static ssize_t
fill_async_buffer(struct debug_buffer
*buf
)
443 struct fotg210_hcd
*fotg210
;
447 struct fotg210_qh
*qh
;
449 hcd
= bus_to_hcd(buf
->bus
);
450 fotg210
= hcd_to_fotg210(hcd
);
451 next
= buf
->output_buf
;
452 size
= buf
->alloc_size
;
456 /* dumps a snapshot of the async schedule.
457 * usually empty except for long-term bulk reads, or head.
458 * one QH per line, and TDs we know about
460 spin_lock_irqsave(&fotg210
->lock
, flags
);
461 for (qh
= fotg210
->async
->qh_next
.qh
; size
> 0 && qh
;
463 qh_lines(fotg210
, qh
, &next
, &size
);
464 if (fotg210
->async_unlink
&& size
> 0) {
465 temp
= scnprintf(next
, size
, "\nunlink =\n");
469 for (qh
= fotg210
->async_unlink
; size
> 0 && qh
;
470 qh
= qh
->unlink_next
)
471 qh_lines(fotg210
, qh
, &next
, &size
);
473 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
475 return strlen(buf
->output_buf
);
478 /* count tds, get ep direction */
479 static unsigned output_buf_tds_dir(char *buf
, struct fotg210_hcd
*fotg210
,
480 struct fotg210_qh_hw
*hw
, struct fotg210_qh
*qh
, unsigned size
)
482 u32 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
483 struct fotg210_qtd
*qtd
;
487 /* count tds, get ep direction */
488 list_for_each_entry(qtd
, &qh
->qtd_list
, qtd_list
) {
490 switch ((hc32_to_cpu(fotg210
, qtd
->hw_token
) >> 8) & 0x03) {
500 return scnprintf(buf
, size
, "(%c%d ep%d%s [%d/%d] q%d p%d)",
501 speed_char(scratch
), scratch
& 0x007f,
502 (scratch
>> 8) & 0x000f, type
, qh
->usecs
,
503 qh
->c_usecs
, temp
, (scratch
>> 16) & 0x7ff);
506 #define DBG_SCHED_LIMIT 64
507 static ssize_t
fill_periodic_buffer(struct debug_buffer
*buf
)
510 struct fotg210_hcd
*fotg210
;
512 union fotg210_shadow p
, *seen
;
513 unsigned temp
, size
, seen_count
;
518 seen
= kmalloc_array(DBG_SCHED_LIMIT
, sizeof(*seen
), GFP_ATOMIC
);
524 hcd
= bus_to_hcd(buf
->bus
);
525 fotg210
= hcd_to_fotg210(hcd
);
526 next
= buf
->output_buf
;
527 size
= buf
->alloc_size
;
529 temp
= scnprintf(next
, size
, "size = %d\n", fotg210
->periodic_size
);
533 /* dump a snapshot of the periodic schedule.
534 * iso changes, interrupt usually doesn't.
536 spin_lock_irqsave(&fotg210
->lock
, flags
);
537 for (i
= 0; i
< fotg210
->periodic_size
; i
++) {
538 p
= fotg210
->pshadow
[i
];
542 tag
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[i
]);
544 temp
= scnprintf(next
, size
, "%4d: ", i
);
549 struct fotg210_qh_hw
*hw
;
551 switch (hc32_to_cpu(fotg210
, tag
)) {
554 temp
= scnprintf(next
, size
, " qh%d-%04x/%p",
556 hc32_to_cpup(fotg210
,
559 & (QH_CMASK
| QH_SMASK
),
563 /* don't repeat what follows this qh */
564 for (temp
= 0; temp
< seen_count
; temp
++) {
565 if (seen
[temp
].ptr
!= p
.ptr
)
567 if (p
.qh
->qh_next
.ptr
) {
568 temp
= scnprintf(next
, size
,
575 /* show more info the first time around */
576 if (temp
== seen_count
) {
577 temp
= output_buf_tds_dir(next
,
581 if (seen_count
< DBG_SCHED_LIMIT
)
582 seen
[seen_count
++].qh
= p
.qh
;
585 tag
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
589 temp
= scnprintf(next
, size
,
591 p
.fstn
->hw_prev
, p
.fstn
);
592 tag
= Q_NEXT_TYPE(fotg210
, p
.fstn
->hw_next
);
593 p
= p
.fstn
->fstn_next
;
596 temp
= scnprintf(next
, size
,
598 tag
= Q_NEXT_TYPE(fotg210
, p
.itd
->hw_next
);
606 temp
= scnprintf(next
, size
, "\n");
610 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
613 return buf
->alloc_size
- size
;
615 #undef DBG_SCHED_LIMIT
617 static const char *rh_state_string(struct fotg210_hcd
*fotg210
)
619 switch (fotg210
->rh_state
) {
620 case FOTG210_RH_HALTED
:
622 case FOTG210_RH_SUSPENDED
:
624 case FOTG210_RH_RUNNING
:
626 case FOTG210_RH_STOPPING
:
632 static ssize_t
fill_registers_buffer(struct debug_buffer
*buf
)
635 struct fotg210_hcd
*fotg210
;
637 unsigned temp
, size
, i
;
638 char *next
, scratch
[80];
639 static const char fmt
[] = "%*s\n";
640 static const char label
[] = "";
642 hcd
= bus_to_hcd(buf
->bus
);
643 fotg210
= hcd_to_fotg210(hcd
);
644 next
= buf
->output_buf
;
645 size
= buf
->alloc_size
;
647 spin_lock_irqsave(&fotg210
->lock
, flags
);
649 if (!HCD_HW_ACCESSIBLE(hcd
)) {
650 size
= scnprintf(next
, size
,
651 "bus %s, device %s\n"
653 "SUSPENDED(no register access)\n",
654 hcd
->self
.controller
->bus
->name
,
655 dev_name(hcd
->self
.controller
),
660 /* Capability Registers */
661 i
= HC_VERSION(fotg210
, fotg210_readl(fotg210
,
662 &fotg210
->caps
->hc_capbase
));
663 temp
= scnprintf(next
, size
,
664 "bus %s, device %s\n"
666 "EHCI %x.%02x, rh state %s\n",
667 hcd
->self
.controller
->bus
->name
,
668 dev_name(hcd
->self
.controller
),
670 i
>> 8, i
& 0x0ff, rh_state_string(fotg210
));
674 /* FIXME interpret both types of params */
675 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
676 temp
= scnprintf(next
, size
, "structural params 0x%08x\n", i
);
680 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
681 temp
= scnprintf(next
, size
, "capability params 0x%08x\n", i
);
685 /* Operational Registers */
686 temp
= dbg_status_buf(scratch
, sizeof(scratch
), label
,
687 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
688 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
692 temp
= dbg_command_buf(scratch
, sizeof(scratch
), label
,
693 fotg210_readl(fotg210
, &fotg210
->regs
->command
));
694 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
698 temp
= dbg_intr_buf(scratch
, sizeof(scratch
), label
,
699 fotg210_readl(fotg210
, &fotg210
->regs
->intr_enable
));
700 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
704 temp
= scnprintf(next
, size
, "uframe %04x\n",
705 fotg210_read_frame_index(fotg210
));
709 if (fotg210
->async_unlink
) {
710 temp
= scnprintf(next
, size
, "async unlink qh %p\n",
711 fotg210
->async_unlink
);
717 temp
= scnprintf(next
, size
,
718 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
719 fotg210
->stats
.normal
, fotg210
->stats
.error
,
720 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
724 temp
= scnprintf(next
, size
, "complete %ld unlink %ld\n",
725 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
731 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
733 return buf
->alloc_size
- size
;
736 static struct debug_buffer
737 *alloc_buffer(struct usb_bus
*bus
, ssize_t (*fill_func
)(struct debug_buffer
*))
739 struct debug_buffer
*buf
;
741 buf
= kzalloc(sizeof(struct debug_buffer
), GFP_KERNEL
);
745 buf
->fill_func
= fill_func
;
746 mutex_init(&buf
->mutex
);
747 buf
->alloc_size
= PAGE_SIZE
;
753 static int fill_buffer(struct debug_buffer
*buf
)
757 if (!buf
->output_buf
)
758 buf
->output_buf
= vmalloc(buf
->alloc_size
);
760 if (!buf
->output_buf
) {
765 ret
= buf
->fill_func(buf
);
776 static ssize_t
debug_output(struct file
*file
, char __user
*user_buf
,
777 size_t len
, loff_t
*offset
)
779 struct debug_buffer
*buf
= file
->private_data
;
782 mutex_lock(&buf
->mutex
);
783 if (buf
->count
== 0) {
784 ret
= fill_buffer(buf
);
786 mutex_unlock(&buf
->mutex
);
790 mutex_unlock(&buf
->mutex
);
792 ret
= simple_read_from_buffer(user_buf
, len
, offset
,
793 buf
->output_buf
, buf
->count
);
800 static int debug_close(struct inode
*inode
, struct file
*file
)
802 struct debug_buffer
*buf
= file
->private_data
;
805 vfree(buf
->output_buf
);
811 static int debug_async_open(struct inode
*inode
, struct file
*file
)
813 file
->private_data
= alloc_buffer(inode
->i_private
, fill_async_buffer
);
815 return file
->private_data
? 0 : -ENOMEM
;
818 static int debug_periodic_open(struct inode
*inode
, struct file
*file
)
820 struct debug_buffer
*buf
;
822 buf
= alloc_buffer(inode
->i_private
, fill_periodic_buffer
);
826 buf
->alloc_size
= (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE
;
827 file
->private_data
= buf
;
831 static int debug_registers_open(struct inode
*inode
, struct file
*file
)
833 file
->private_data
= alloc_buffer(inode
->i_private
,
834 fill_registers_buffer
);
836 return file
->private_data
? 0 : -ENOMEM
;
839 static inline void create_debug_files(struct fotg210_hcd
*fotg210
)
841 struct usb_bus
*bus
= &fotg210_to_hcd(fotg210
)->self
;
844 root
= debugfs_create_dir(bus
->bus_name
, fotg210_debug_root
);
846 debugfs_create_file("async", S_IRUGO
, root
, bus
, &debug_async_fops
);
847 debugfs_create_file("periodic", S_IRUGO
, root
, bus
,
848 &debug_periodic_fops
);
849 debugfs_create_file("registers", S_IRUGO
, root
, bus
,
850 &debug_registers_fops
);
853 static inline void remove_debug_files(struct fotg210_hcd
*fotg210
)
855 struct usb_bus
*bus
= &fotg210_to_hcd(fotg210
)->self
;
857 debugfs_lookup_and_remove(bus
->bus_name
, fotg210_debug_root
);
860 /* handshake - spin reading hc until handshake completes or fails
861 * @ptr: address of hc register to be read
862 * @mask: bits to look at in result of read
863 * @done: value of those bits when handshake succeeds
864 * @usec: timeout in microseconds
866 * Returns negative errno, or zero on success
868 * Success happens when the "mask" bits have the specified value (hardware
869 * handshake done). There are two failure modes: "usec" have passed (major
870 * hardware flakeout), or the register reads as all-ones (hardware removed).
872 * That last failure should_only happen in cases like physical cardbus eject
873 * before driver shutdown. But it also seems to be caused by bugs in cardbus
874 * bridge shutdown: shutting down the bridge before the devices using it.
876 static int handshake(struct fotg210_hcd
*fotg210
, void __iomem
*ptr
,
877 u32 mask
, u32 done
, int usec
)
882 ret
= readl_poll_timeout_atomic(ptr
, result
,
883 ((result
& mask
) == done
||
884 result
== U32_MAX
), 1, usec
);
885 if (result
== U32_MAX
) /* card removed */
891 /* Force HC to halt state from unknown (EHCI spec section 2.3).
892 * Must be called with interrupts enabled and the lock not held.
894 static int fotg210_halt(struct fotg210_hcd
*fotg210
)
898 spin_lock_irq(&fotg210
->lock
);
900 /* disable any irqs left enabled by previous code */
901 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
904 * This routine gets called during probe before fotg210->command
905 * has been initialized, so we can't rely on its value.
907 fotg210
->command
&= ~CMD_RUN
;
908 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
909 temp
&= ~(CMD_RUN
| CMD_IAAD
);
910 fotg210_writel(fotg210
, temp
, &fotg210
->regs
->command
);
912 spin_unlock_irq(&fotg210
->lock
);
913 synchronize_irq(fotg210_to_hcd(fotg210
)->irq
);
915 return handshake(fotg210
, &fotg210
->regs
->status
,
916 STS_HALT
, STS_HALT
, 16 * 125);
919 /* Reset a non-running (STS_HALT == 1) controller.
920 * Must be called with interrupts enabled and the lock not held.
922 static int fotg210_reset(struct fotg210_hcd
*fotg210
)
925 u32 command
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
927 /* If the EHCI debug controller is active, special care must be
928 * taken before and after a host controller reset
930 if (fotg210
->debug
&& !dbgp_reset_prep(fotg210_to_hcd(fotg210
)))
931 fotg210
->debug
= NULL
;
933 command
|= CMD_RESET
;
934 dbg_cmd(fotg210
, "reset", command
);
935 fotg210_writel(fotg210
, command
, &fotg210
->regs
->command
);
936 fotg210
->rh_state
= FOTG210_RH_HALTED
;
937 fotg210
->next_statechange
= jiffies
;
938 retval
= handshake(fotg210
, &fotg210
->regs
->command
,
939 CMD_RESET
, 0, 250 * 1000);
945 dbgp_external_startup(fotg210_to_hcd(fotg210
));
947 fotg210
->port_c_suspend
= fotg210
->suspended_ports
=
948 fotg210
->resuming_ports
= 0;
952 /* Idle the controller (turn off the schedules).
953 * Must be called with interrupts enabled and the lock not held.
955 static void fotg210_quiesce(struct fotg210_hcd
*fotg210
)
959 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
962 /* wait for any schedule enables/disables to take effect */
963 temp
= (fotg210
->command
<< 10) & (STS_ASS
| STS_PSS
);
964 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, temp
,
967 /* then disable anything that's still active */
968 spin_lock_irq(&fotg210
->lock
);
969 fotg210
->command
&= ~(CMD_ASE
| CMD_PSE
);
970 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
971 spin_unlock_irq(&fotg210
->lock
);
973 /* hardware can take 16 microframes to turn off ... */
974 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, 0,
978 static void end_unlink_async(struct fotg210_hcd
*fotg210
);
979 static void unlink_empty_async(struct fotg210_hcd
*fotg210
);
980 static void fotg210_work(struct fotg210_hcd
*fotg210
);
981 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
982 struct fotg210_qh
*qh
);
983 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
985 /* Set a bit in the USBCMD register */
986 static void fotg210_set_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
988 fotg210
->command
|= bit
;
989 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
991 /* unblock posted write */
992 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
995 /* Clear a bit in the USBCMD register */
996 static void fotg210_clear_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
998 fotg210
->command
&= ~bit
;
999 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1001 /* unblock posted write */
1002 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1005 /* EHCI timer support... Now using hrtimers.
1007 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1008 * the timer routine runs, it checks each possible event; events that are
1009 * currently enabled and whose expiration time has passed get handled.
1010 * The set of enabled events is stored as a collection of bitflags in
1011 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1012 * increasing delay values (ranging between 1 ms and 100 ms).
1014 * Rather than implementing a sorted list or tree of all pending events,
1015 * we keep track only of the lowest-numbered pending event, in
1016 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1017 * expiration time is set to the timeout value for this event.
1019 * As a result, events might not get handled right away; the actual delay
1020 * could be anywhere up to twice the requested delay. This doesn't
1021 * matter, because none of the events are especially time-critical. The
1022 * ones that matter most all have a delay of 1 ms, so they will be
1023 * handled after 2 ms at most, which is okay. In addition to this, we
1024 * allow for an expiration range of 1 ms.
1027 /* Delay lengths for the hrtimer event types.
1028 * Keep this list sorted by delay length, in the same order as
1029 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1031 static unsigned event_delays_ns
[] = {
1032 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_ASS */
1033 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_PSS */
1034 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_DEAD */
1035 1125 * NSEC_PER_USEC
, /* FOTG210_HRTIMER_UNLINK_INTR */
1036 2 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_FREE_ITDS */
1037 6 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1038 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1039 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1040 15 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1041 100 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1044 /* Enable a pending hrtimer event */
1045 static void fotg210_enable_event(struct fotg210_hcd
*fotg210
, unsigned event
,
1048 ktime_t
*timeout
= &fotg210
->hr_timeouts
[event
];
1051 *timeout
= ktime_add(ktime_get(), event_delays_ns
[event
]);
1052 fotg210
->enabled_hrtimer_events
|= (1 << event
);
1054 /* Track only the lowest-numbered pending event */
1055 if (event
< fotg210
->next_hrtimer_event
) {
1056 fotg210
->next_hrtimer_event
= event
;
1057 hrtimer_start_range_ns(&fotg210
->hrtimer
, *timeout
,
1058 NSEC_PER_MSEC
, HRTIMER_MODE_ABS
);
1063 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1064 static void fotg210_poll_ASS(struct fotg210_hcd
*fotg210
)
1066 unsigned actual
, want
;
1068 /* Don't enable anything if the controller isn't running (e.g., died) */
1069 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1072 want
= (fotg210
->command
& CMD_ASE
) ? STS_ASS
: 0;
1073 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_ASS
;
1075 if (want
!= actual
) {
1077 /* Poll again later, but give up after about 20 ms */
1078 if (fotg210
->ASS_poll_count
++ < 20) {
1079 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_ASS
,
1083 fotg210_dbg(fotg210
, "Waited too long for the async schedule status (%x/%x), giving up\n",
1086 fotg210
->ASS_poll_count
= 0;
1088 /* The status is up-to-date; restart or stop the schedule as needed */
1089 if (want
== 0) { /* Stopped */
1090 if (fotg210
->async_count
> 0)
1091 fotg210_set_command_bit(fotg210
, CMD_ASE
);
1093 } else { /* Running */
1094 if (fotg210
->async_count
== 0) {
1096 /* Turn off the schedule after a while */
1097 fotg210_enable_event(fotg210
,
1098 FOTG210_HRTIMER_DISABLE_ASYNC
,
1104 /* Turn off the async schedule after a brief delay */
1105 static void fotg210_disable_ASE(struct fotg210_hcd
*fotg210
)
1107 fotg210_clear_command_bit(fotg210
, CMD_ASE
);
1111 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1112 static void fotg210_poll_PSS(struct fotg210_hcd
*fotg210
)
1114 unsigned actual
, want
;
1116 /* Don't do anything if the controller isn't running (e.g., died) */
1117 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1120 want
= (fotg210
->command
& CMD_PSE
) ? STS_PSS
: 0;
1121 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_PSS
;
1123 if (want
!= actual
) {
1125 /* Poll again later, but give up after about 20 ms */
1126 if (fotg210
->PSS_poll_count
++ < 20) {
1127 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_PSS
,
1131 fotg210_dbg(fotg210
, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1134 fotg210
->PSS_poll_count
= 0;
1136 /* The status is up-to-date; restart or stop the schedule as needed */
1137 if (want
== 0) { /* Stopped */
1138 if (fotg210
->periodic_count
> 0)
1139 fotg210_set_command_bit(fotg210
, CMD_PSE
);
1141 } else { /* Running */
1142 if (fotg210
->periodic_count
== 0) {
1144 /* Turn off the schedule after a while */
1145 fotg210_enable_event(fotg210
,
1146 FOTG210_HRTIMER_DISABLE_PERIODIC
,
1152 /* Turn off the periodic schedule after a brief delay */
1153 static void fotg210_disable_PSE(struct fotg210_hcd
*fotg210
)
1155 fotg210_clear_command_bit(fotg210
, CMD_PSE
);
1159 /* Poll the STS_HALT status bit; see when a dead controller stops */
1160 static void fotg210_handle_controller_death(struct fotg210_hcd
*fotg210
)
1162 if (!(fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_HALT
)) {
1164 /* Give up after a few milliseconds */
1165 if (fotg210
->died_poll_count
++ < 5) {
1166 /* Try again later */
1167 fotg210_enable_event(fotg210
,
1168 FOTG210_HRTIMER_POLL_DEAD
, true);
1171 fotg210_warn(fotg210
, "Waited too long for the controller to stop, giving up\n");
1174 /* Clean up the mess */
1175 fotg210
->rh_state
= FOTG210_RH_HALTED
;
1176 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
1177 fotg210_work(fotg210
);
1178 end_unlink_async(fotg210
);
1180 /* Not in process context, so don't try to reset the controller */
1184 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1185 static void fotg210_handle_intr_unlinks(struct fotg210_hcd
*fotg210
)
1187 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
1190 * Process all the QHs on the intr_unlink list that were added
1191 * before the current unlink cycle began. The list is in
1192 * temporal order, so stop when we reach the first entry in the
1193 * current cycle. But if the root hub isn't running then
1194 * process all the QHs on the list.
1196 fotg210
->intr_unlinking
= true;
1197 while (fotg210
->intr_unlink
) {
1198 struct fotg210_qh
*qh
= fotg210
->intr_unlink
;
1200 if (!stopped
&& qh
->unlink_cycle
== fotg210
->intr_unlink_cycle
)
1202 fotg210
->intr_unlink
= qh
->unlink_next
;
1203 qh
->unlink_next
= NULL
;
1204 end_unlink_intr(fotg210
, qh
);
1207 /* Handle remaining entries later */
1208 if (fotg210
->intr_unlink
) {
1209 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
1211 ++fotg210
->intr_unlink_cycle
;
1213 fotg210
->intr_unlinking
= false;
1217 /* Start another free-iTDs/siTDs cycle */
1218 static void start_free_itds(struct fotg210_hcd
*fotg210
)
1220 if (!(fotg210
->enabled_hrtimer_events
&
1221 BIT(FOTG210_HRTIMER_FREE_ITDS
))) {
1222 fotg210
->last_itd_to_free
= list_entry(
1223 fotg210
->cached_itd_list
.prev
,
1224 struct fotg210_itd
, itd_list
);
1225 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_FREE_ITDS
, true);
1229 /* Wait for controller to stop using old iTDs and siTDs */
1230 static void end_free_itds(struct fotg210_hcd
*fotg210
)
1232 struct fotg210_itd
*itd
, *n
;
1234 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
1235 fotg210
->last_itd_to_free
= NULL
;
1237 list_for_each_entry_safe(itd
, n
, &fotg210
->cached_itd_list
, itd_list
) {
1238 list_del(&itd
->itd_list
);
1239 dma_pool_free(fotg210
->itd_pool
, itd
, itd
->itd_dma
);
1240 if (itd
== fotg210
->last_itd_to_free
)
1244 if (!list_empty(&fotg210
->cached_itd_list
))
1245 start_free_itds(fotg210
);
1249 /* Handle lost (or very late) IAA interrupts */
1250 static void fotg210_iaa_watchdog(struct fotg210_hcd
*fotg210
)
1252 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1256 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1257 * So we need this watchdog, but must protect it against both
1258 * (a) SMP races against real IAA firing and retriggering, and
1259 * (b) clean HC shutdown, when IAA watchdog was pending.
1261 if (fotg210
->async_iaa
) {
1264 /* If we get here, IAA is *REALLY* late. It's barely
1265 * conceivable that the system is so busy that CMD_IAAD
1266 * is still legitimately set, so let's be sure it's
1267 * clear before we read STS_IAA. (The HC should clear
1268 * CMD_IAAD when it sets STS_IAA.)
1270 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1273 * If IAA is set here it either legitimately triggered
1274 * after the watchdog timer expired (_way_ late, so we'll
1275 * still count it as lost) ... or a silicon erratum:
1276 * - VIA seems to set IAA without triggering the IRQ;
1277 * - IAAD potentially cleared without setting IAA.
1279 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
1280 if ((status
& STS_IAA
) || !(cmd
& CMD_IAAD
)) {
1281 INCR(fotg210
->stats
.lost_iaa
);
1282 fotg210_writel(fotg210
, STS_IAA
,
1283 &fotg210
->regs
->status
);
1286 fotg210_dbg(fotg210
, "IAA watchdog: status %x cmd %x\n",
1288 end_unlink_async(fotg210
);
1293 /* Enable the I/O watchdog, if appropriate */
1294 static void turn_on_io_watchdog(struct fotg210_hcd
*fotg210
)
1296 /* Not needed if the controller isn't running or it's already enabled */
1297 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
||
1298 (fotg210
->enabled_hrtimer_events
&
1299 BIT(FOTG210_HRTIMER_IO_WATCHDOG
)))
1303 * Isochronous transfers always need the watchdog.
1304 * For other sorts we use it only if the flag is set.
1306 if (fotg210
->isoc_count
> 0 || (fotg210
->need_io_watchdog
&&
1307 fotg210
->async_count
+ fotg210
->intr_count
> 0))
1308 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IO_WATCHDOG
,
1313 /* Handler functions for the hrtimer event types.
1314 * Keep this array in the same order as the event types indexed by
1315 * enum fotg210_hrtimer_event in fotg210.h.
1317 static void (*event_handlers
[])(struct fotg210_hcd
*) = {
1318 fotg210_poll_ASS
, /* FOTG210_HRTIMER_POLL_ASS */
1319 fotg210_poll_PSS
, /* FOTG210_HRTIMER_POLL_PSS */
1320 fotg210_handle_controller_death
, /* FOTG210_HRTIMER_POLL_DEAD */
1321 fotg210_handle_intr_unlinks
, /* FOTG210_HRTIMER_UNLINK_INTR */
1322 end_free_itds
, /* FOTG210_HRTIMER_FREE_ITDS */
1323 unlink_empty_async
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1324 fotg210_iaa_watchdog
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1325 fotg210_disable_PSE
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1326 fotg210_disable_ASE
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1327 fotg210_work
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1330 static enum hrtimer_restart
fotg210_hrtimer_func(struct hrtimer
*t
)
1332 struct fotg210_hcd
*fotg210
=
1333 container_of(t
, struct fotg210_hcd
, hrtimer
);
1335 unsigned long events
;
1336 unsigned long flags
;
1339 spin_lock_irqsave(&fotg210
->lock
, flags
);
1341 events
= fotg210
->enabled_hrtimer_events
;
1342 fotg210
->enabled_hrtimer_events
= 0;
1343 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
1346 * Check each pending event. If its time has expired, handle
1347 * the event; otherwise re-enable it.
1350 for_each_set_bit(e
, &events
, FOTG210_HRTIMER_NUM_EVENTS
) {
1351 if (ktime_compare(now
, fotg210
->hr_timeouts
[e
]) >= 0)
1352 event_handlers
[e
](fotg210
);
1354 fotg210_enable_event(fotg210
, e
, false);
1357 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1358 return HRTIMER_NORESTART
;
1361 #define fotg210_bus_suspend NULL
1362 #define fotg210_bus_resume NULL
1364 static int check_reset_complete(struct fotg210_hcd
*fotg210
, int index
,
1365 u32 __iomem
*status_reg
, int port_status
)
1367 if (!(port_status
& PORT_CONNECT
))
1370 /* if reset finished and it's still not enabled -- handoff */
1371 if (!(port_status
& PORT_PE
))
1372 /* with integrated TT, there's nobody to hand it to! */
1373 fotg210_dbg(fotg210
, "Failed to enable port %d on root hub TT\n",
1376 fotg210_dbg(fotg210
, "port %d reset complete, port enabled\n",
1383 /* build "status change" packet (one or two bytes) from HC registers */
1385 static int fotg210_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
1387 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1391 unsigned long flags
;
1393 /* init status to no-changes */
1396 /* Inform the core about resumes-in-progress by returning
1397 * a non-zero value even if there are no status changes.
1399 status
= fotg210
->resuming_ports
;
1401 mask
= PORT_CSC
| PORT_PEC
;
1402 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1404 /* no hub change reports (bit 0) for now (power, ...) */
1406 /* port N changes (bit N)? */
1407 spin_lock_irqsave(&fotg210
->lock
, flags
);
1409 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->port_status
);
1412 * Return status information even for ports with OWNER set.
1413 * Otherwise hub_wq wouldn't see the disconnect event when a
1414 * high-speed device is switched over to the companion
1415 * controller by the user.
1418 if ((temp
& mask
) != 0 || test_bit(0, &fotg210
->port_c_suspend
) ||
1419 (fotg210
->reset_done
[0] &&
1420 time_after_eq(jiffies
, fotg210
->reset_done
[0]))) {
1424 /* FIXME autosuspend idle root hubs */
1425 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1426 return status
? retval
: 0;
1429 static void fotg210_hub_descriptor(struct fotg210_hcd
*fotg210
,
1430 struct usb_hub_descriptor
*desc
)
1432 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1435 desc
->bDescriptorType
= USB_DT_HUB
;
1436 desc
->bPwrOn2PwrGood
= 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1437 desc
->bHubContrCurrent
= 0;
1439 desc
->bNbrPorts
= ports
;
1440 temp
= 1 + (ports
/ 8);
1441 desc
->bDescLength
= 7 + 2 * temp
;
1443 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1444 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
1445 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
1447 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
1448 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
1449 desc
->wHubCharacteristics
= cpu_to_le16(temp
);
1452 static int fotg210_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
,
1453 u16 wIndex
, char *buf
, u16 wLength
)
1455 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1456 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1457 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
1458 u32 temp
, temp1
, status
;
1459 unsigned long flags
;
1464 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1465 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1466 * (track current state ourselves) ... blink for diagnostics,
1467 * power, "this is the one", etc. EHCI spec supports this.
1470 spin_lock_irqsave(&fotg210
->lock
, flags
);
1472 case ClearHubFeature
:
1474 case C_HUB_LOCAL_POWER
:
1475 case C_HUB_OVER_CURRENT
:
1476 /* no hub-wide feature/status flags */
1482 case ClearPortFeature
:
1483 if (!wIndex
|| wIndex
> ports
)
1486 temp
= fotg210_readl(fotg210
, status_reg
);
1487 temp
&= ~PORT_RWC_BITS
;
1490 * Even if OWNER is set, so the port is owned by the
1491 * companion controller, hub_wq needs to be able to clear
1492 * the port-change status bits (especially
1493 * USB_PORT_STAT_C_CONNECTION).
1497 case USB_PORT_FEAT_ENABLE
:
1498 fotg210_writel(fotg210
, temp
& ~PORT_PE
, status_reg
);
1500 case USB_PORT_FEAT_C_ENABLE
:
1501 fotg210_writel(fotg210
, temp
| PORT_PEC
, status_reg
);
1503 case USB_PORT_FEAT_SUSPEND
:
1504 if (temp
& PORT_RESET
)
1506 if (!(temp
& PORT_SUSPEND
))
1508 if ((temp
& PORT_PE
) == 0)
1511 /* resume signaling for 20 msec */
1512 fotg210_writel(fotg210
, temp
| PORT_RESUME
, status_reg
);
1513 fotg210
->reset_done
[wIndex
] = jiffies
1514 + msecs_to_jiffies(USB_RESUME_TIMEOUT
);
1516 case USB_PORT_FEAT_C_SUSPEND
:
1517 clear_bit(wIndex
, &fotg210
->port_c_suspend
);
1519 case USB_PORT_FEAT_C_CONNECTION
:
1520 fotg210_writel(fotg210
, temp
| PORT_CSC
, status_reg
);
1522 case USB_PORT_FEAT_C_OVER_CURRENT
:
1523 fotg210_writel(fotg210
, temp
| OTGISR_OVC
,
1524 &fotg210
->regs
->otgisr
);
1526 case USB_PORT_FEAT_C_RESET
:
1527 /* GetPortStatus clears reset */
1532 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1534 case GetHubDescriptor
:
1535 fotg210_hub_descriptor(fotg210
, (struct usb_hub_descriptor
*)
1539 /* no hub-wide feature/status flags */
1541 /*cpu_to_le32s ((u32 *) buf); */
1544 if (!wIndex
|| wIndex
> ports
)
1548 temp
= fotg210_readl(fotg210
, status_reg
);
1550 /* wPortChange bits */
1551 if (temp
& PORT_CSC
)
1552 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
1553 if (temp
& PORT_PEC
)
1554 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
1556 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1557 if (temp1
& OTGISR_OVC
)
1558 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
1560 /* whoever resumes must GetPortStatus to complete it!! */
1561 if (temp
& PORT_RESUME
) {
1563 /* Remote Wakeup received? */
1564 if (!fotg210
->reset_done
[wIndex
]) {
1565 /* resume signaling for 20 msec */
1566 fotg210
->reset_done
[wIndex
] = jiffies
1567 + msecs_to_jiffies(20);
1568 /* check the port again */
1569 mod_timer(&fotg210_to_hcd(fotg210
)->rh_timer
,
1570 fotg210
->reset_done
[wIndex
]);
1573 /* resume completed? */
1574 else if (time_after_eq(jiffies
,
1575 fotg210
->reset_done
[wIndex
])) {
1576 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1577 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1578 fotg210
->reset_done
[wIndex
] = 0;
1580 /* stop resume signaling */
1581 temp
= fotg210_readl(fotg210
, status_reg
);
1582 fotg210_writel(fotg210
, temp
&
1583 ~(PORT_RWC_BITS
| PORT_RESUME
),
1585 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1586 retval
= handshake(fotg210
, status_reg
,
1587 PORT_RESUME
, 0, 2000);/* 2ms */
1589 fotg210_err(fotg210
,
1590 "port %d resume error %d\n",
1591 wIndex
+ 1, retval
);
1594 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
1598 /* whoever resets must GetPortStatus to complete it!! */
1599 if ((temp
& PORT_RESET
) && time_after_eq(jiffies
,
1600 fotg210
->reset_done
[wIndex
])) {
1601 status
|= USB_PORT_STAT_C_RESET
<< 16;
1602 fotg210
->reset_done
[wIndex
] = 0;
1603 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1605 /* force reset to complete */
1606 fotg210_writel(fotg210
,
1607 temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
1609 /* REVISIT: some hardware needs 550+ usec to clear
1610 * this bit; seems too long to spin routinely...
1612 retval
= handshake(fotg210
, status_reg
,
1613 PORT_RESET
, 0, 1000);
1615 fotg210_err(fotg210
, "port %d reset error %d\n",
1616 wIndex
+ 1, retval
);
1620 /* see what we found out */
1621 temp
= check_reset_complete(fotg210
, wIndex
, status_reg
,
1622 fotg210_readl(fotg210
, status_reg
));
1624 /* restart schedule */
1625 fotg210
->command
|= CMD_RUN
;
1626 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1629 if (!(temp
& (PORT_RESUME
|PORT_RESET
))) {
1630 fotg210
->reset_done
[wIndex
] = 0;
1631 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1634 /* transfer dedicated ports to the companion hc */
1635 if ((temp
& PORT_CONNECT
) &&
1636 test_bit(wIndex
, &fotg210
->companion_ports
)) {
1637 temp
&= ~PORT_RWC_BITS
;
1638 fotg210_writel(fotg210
, temp
, status_reg
);
1639 fotg210_dbg(fotg210
, "port %d --> companion\n",
1641 temp
= fotg210_readl(fotg210
, status_reg
);
1645 * Even if OWNER is set, there's no harm letting hub_wq
1646 * see the wPortStatus values (they should all be 0 except
1647 * for PORT_POWER anyway).
1650 if (temp
& PORT_CONNECT
) {
1651 status
|= USB_PORT_STAT_CONNECTION
;
1652 status
|= fotg210_port_speed(fotg210
, temp
);
1655 status
|= USB_PORT_STAT_ENABLE
;
1657 /* maybe the port was unsuspended without our knowledge */
1658 if (temp
& (PORT_SUSPEND
|PORT_RESUME
)) {
1659 status
|= USB_PORT_STAT_SUSPEND
;
1660 } else if (test_bit(wIndex
, &fotg210
->suspended_ports
)) {
1661 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1662 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1663 fotg210
->reset_done
[wIndex
] = 0;
1665 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1668 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1669 if (temp1
& OTGISR_OVC
)
1670 status
|= USB_PORT_STAT_OVERCURRENT
;
1671 if (temp
& PORT_RESET
)
1672 status
|= USB_PORT_STAT_RESET
;
1673 if (test_bit(wIndex
, &fotg210
->port_c_suspend
))
1674 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
1676 if (status
& ~0xffff) /* only if wPortChange is interesting */
1677 dbg_port(fotg210
, "GetStatus", wIndex
+ 1, temp
);
1678 put_unaligned_le32(status
, buf
);
1682 case C_HUB_LOCAL_POWER
:
1683 case C_HUB_OVER_CURRENT
:
1684 /* no hub-wide feature/status flags */
1690 case SetPortFeature
:
1691 selector
= wIndex
>> 8;
1694 if (!wIndex
|| wIndex
> ports
)
1697 temp
= fotg210_readl(fotg210
, status_reg
);
1698 temp
&= ~PORT_RWC_BITS
;
1700 case USB_PORT_FEAT_SUSPEND
:
1701 if ((temp
& PORT_PE
) == 0
1702 || (temp
& PORT_RESET
) != 0)
1705 /* After above check the port must be connected.
1706 * Set appropriate bit thus could put phy into low power
1707 * mode if we have hostpc feature
1709 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1711 set_bit(wIndex
, &fotg210
->suspended_ports
);
1713 case USB_PORT_FEAT_RESET
:
1714 if (temp
& PORT_RESUME
)
1716 /* line status bits may report this as low speed,
1717 * which can be fine if this root hub has a
1718 * transaction translator built in.
1720 fotg210_dbg(fotg210
, "port %d reset\n", wIndex
+ 1);
1725 * caller must wait, then call GetPortStatus
1726 * usb 2.0 spec says 50 ms resets on root
1728 fotg210
->reset_done
[wIndex
] = jiffies
1729 + msecs_to_jiffies(50);
1730 fotg210_writel(fotg210
, temp
, status_reg
);
1733 /* For downstream facing ports (these): one hub port is put
1734 * into test mode according to USB2 11.24.2.13, then the hub
1735 * must be reset (which for root hub now means rmmod+modprobe,
1736 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1737 * about the EHCI-specific stuff.
1739 case USB_PORT_FEAT_TEST
:
1740 if (!selector
|| selector
> 5)
1742 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1743 fotg210_quiesce(fotg210
);
1744 spin_lock_irqsave(&fotg210
->lock
, flags
);
1746 /* Put all enabled ports into suspend */
1747 temp
= fotg210_readl(fotg210
, status_reg
) &
1750 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1753 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1754 fotg210_halt(fotg210
);
1755 spin_lock_irqsave(&fotg210
->lock
, flags
);
1757 temp
= fotg210_readl(fotg210
, status_reg
);
1758 temp
|= selector
<< 16;
1759 fotg210_writel(fotg210
, temp
, status_reg
);
1765 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1770 /* "stall" on error */
1773 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1777 static void __maybe_unused
fotg210_relinquish_port(struct usb_hcd
*hcd
,
1783 static int __maybe_unused
fotg210_port_handed_over(struct usb_hcd
*hcd
,
1789 /* There's basically three types of memory:
1790 * - data used only by the HCD ... kmalloc is fine
1791 * - async and periodic schedules, shared by HC and HCD ... these
1792 * need to use dma_pool or dma_alloc_coherent
1793 * - driver buffers, read/written by HC ... single shot DMA mapped
1795 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1796 * No memory seen by this driver is pageable.
1799 /* Allocate the key transfer structures from the previously allocated pool */
1800 static inline void fotg210_qtd_init(struct fotg210_hcd
*fotg210
,
1801 struct fotg210_qtd
*qtd
, dma_addr_t dma
)
1803 memset(qtd
, 0, sizeof(*qtd
));
1805 qtd
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
1806 qtd
->hw_next
= FOTG210_LIST_END(fotg210
);
1807 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
1808 INIT_LIST_HEAD(&qtd
->qtd_list
);
1811 static struct fotg210_qtd
*fotg210_qtd_alloc(struct fotg210_hcd
*fotg210
,
1814 struct fotg210_qtd
*qtd
;
1817 qtd
= dma_pool_alloc(fotg210
->qtd_pool
, flags
, &dma
);
1819 fotg210_qtd_init(fotg210
, qtd
, dma
);
1824 static inline void fotg210_qtd_free(struct fotg210_hcd
*fotg210
,
1825 struct fotg210_qtd
*qtd
)
1827 dma_pool_free(fotg210
->qtd_pool
, qtd
, qtd
->qtd_dma
);
1831 static void qh_destroy(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
1833 /* clean qtds first, and know this is not linked */
1834 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1835 fotg210_dbg(fotg210
, "unused qh not empty!\n");
1839 fotg210_qtd_free(fotg210
, qh
->dummy
);
1840 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1844 static struct fotg210_qh
*fotg210_qh_alloc(struct fotg210_hcd
*fotg210
,
1847 struct fotg210_qh
*qh
;
1850 qh
= kzalloc(sizeof(*qh
), GFP_ATOMIC
);
1853 qh
->hw
= (struct fotg210_qh_hw
*)
1854 dma_pool_zalloc(fotg210
->qh_pool
, flags
, &dma
);
1858 INIT_LIST_HEAD(&qh
->qtd_list
);
1860 /* dummy td enables safe urb queuing */
1861 qh
->dummy
= fotg210_qtd_alloc(fotg210
, flags
);
1862 if (qh
->dummy
== NULL
) {
1863 fotg210_dbg(fotg210
, "no dummy td\n");
1869 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1875 /* The queue heads and transfer descriptors are managed from pools tied
1876 * to each of the "per device" structures.
1877 * This is the initialisation and cleanup code.
1880 static void fotg210_mem_cleanup(struct fotg210_hcd
*fotg210
)
1883 qh_destroy(fotg210
, fotg210
->async
);
1884 fotg210
->async
= NULL
;
1887 qh_destroy(fotg210
, fotg210
->dummy
);
1888 fotg210
->dummy
= NULL
;
1890 /* DMA consistent memory and pools */
1891 dma_pool_destroy(fotg210
->qtd_pool
);
1892 fotg210
->qtd_pool
= NULL
;
1894 dma_pool_destroy(fotg210
->qh_pool
);
1895 fotg210
->qh_pool
= NULL
;
1897 dma_pool_destroy(fotg210
->itd_pool
);
1898 fotg210
->itd_pool
= NULL
;
1900 if (fotg210
->periodic
)
1901 dma_free_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1902 fotg210
->periodic_size
* sizeof(u32
),
1903 fotg210
->periodic
, fotg210
->periodic_dma
);
1904 fotg210
->periodic
= NULL
;
1906 /* shadow periodic table */
1907 kfree(fotg210
->pshadow
);
1908 fotg210
->pshadow
= NULL
;
1911 /* remember to add cleanup code (above) if you add anything here */
1912 static int fotg210_mem_init(struct fotg210_hcd
*fotg210
, gfp_t flags
)
1916 /* QTDs for control/bulk/intr transfers */
1917 fotg210
->qtd_pool
= dma_pool_create("fotg210_qtd",
1918 fotg210_to_hcd(fotg210
)->self
.controller
,
1919 sizeof(struct fotg210_qtd
),
1920 32 /* byte alignment (for hw parts) */,
1921 4096 /* can't cross 4K */);
1922 if (!fotg210
->qtd_pool
)
1925 /* QHs for control/bulk/intr transfers */
1926 fotg210
->qh_pool
= dma_pool_create("fotg210_qh",
1927 fotg210_to_hcd(fotg210
)->self
.controller
,
1928 sizeof(struct fotg210_qh_hw
),
1929 32 /* byte alignment (for hw parts) */,
1930 4096 /* can't cross 4K */);
1931 if (!fotg210
->qh_pool
)
1934 fotg210
->async
= fotg210_qh_alloc(fotg210
, flags
);
1935 if (!fotg210
->async
)
1938 /* ITD for high speed ISO transfers */
1939 fotg210
->itd_pool
= dma_pool_create("fotg210_itd",
1940 fotg210_to_hcd(fotg210
)->self
.controller
,
1941 sizeof(struct fotg210_itd
),
1942 64 /* byte alignment (for hw parts) */,
1943 4096 /* can't cross 4K */);
1944 if (!fotg210
->itd_pool
)
1947 /* Hardware periodic table */
1949 dma_alloc_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1950 fotg210
->periodic_size
* sizeof(__le32
),
1951 &fotg210
->periodic_dma
, 0);
1952 if (fotg210
->periodic
== NULL
)
1955 for (i
= 0; i
< fotg210
->periodic_size
; i
++)
1956 fotg210
->periodic
[i
] = FOTG210_LIST_END(fotg210
);
1958 /* software shadow of hardware table */
1959 fotg210
->pshadow
= kcalloc(fotg210
->periodic_size
, sizeof(void *),
1961 if (fotg210
->pshadow
!= NULL
)
1965 fotg210_dbg(fotg210
, "couldn't init memory\n");
1966 fotg210_mem_cleanup(fotg210
);
1969 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1971 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1972 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1973 * buffers needed for the larger number). We use one QH per endpoint, queue
1974 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1976 * ISO traffic uses "ISO TD" (itd) records, and (along with
1977 * interrupts) needs careful scheduling. Performance improvements can be
1978 * an ongoing challenge. That's in "ehci-sched.c".
1980 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1981 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1982 * (b) special fields in qh entries or (c) split iso entries. TTs will
1983 * buffer low/full speed data so the host collects it at high speed.
1986 /* fill a qtd, returning how much of the buffer we were able to queue up */
1987 static int qtd_fill(struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
,
1988 dma_addr_t buf
, size_t len
, int token
, int maxpacket
)
1993 /* one buffer entry per 4K ... first might be short or unaligned */
1994 qtd
->hw_buf
[0] = cpu_to_hc32(fotg210
, (u32
)addr
);
1995 qtd
->hw_buf_hi
[0] = cpu_to_hc32(fotg210
, (u32
)(addr
>> 32));
1996 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
1997 if (likely(len
< count
)) /* ... iff needed */
2003 /* per-qtd limit: from 16K to 20K (best alignment) */
2004 for (i
= 1; count
< len
&& i
< 5; i
++) {
2006 qtd
->hw_buf
[i
] = cpu_to_hc32(fotg210
, (u32
)addr
);
2007 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(fotg210
,
2010 if ((count
+ 0x1000) < len
)
2016 /* short packets may only terminate transfers */
2018 count
-= (count
% maxpacket
);
2020 qtd
->hw_token
= cpu_to_hc32(fotg210
, (count
<< 16) | token
);
2021 qtd
->length
= count
;
2026 static inline void qh_update(struct fotg210_hcd
*fotg210
,
2027 struct fotg210_qh
*qh
, struct fotg210_qtd
*qtd
)
2029 struct fotg210_qh_hw
*hw
= qh
->hw
;
2031 /* writes to an active overlay are unsafe */
2032 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2034 hw
->hw_qtd_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2035 hw
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2037 /* Except for control endpoints, we make hardware maintain data
2038 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2039 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2042 if (!(hw
->hw_info1
& cpu_to_hc32(fotg210
, QH_TOGGLE_CTL
))) {
2043 unsigned is_out
, epnum
;
2045 is_out
= qh
->is_out
;
2046 epnum
= (hc32_to_cpup(fotg210
, &hw
->hw_info1
) >> 8) & 0x0f;
2047 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
2048 hw
->hw_token
&= ~cpu_to_hc32(fotg210
, QTD_TOGGLE
);
2049 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
2053 hw
->hw_token
&= cpu_to_hc32(fotg210
, QTD_TOGGLE
| QTD_STS_PING
);
2056 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2057 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2058 * recovery (including urb dequeue) would need software changes to a QH...
2060 static void qh_refresh(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2062 struct fotg210_qtd
*qtd
;
2064 if (list_empty(&qh
->qtd_list
))
2067 qtd
= list_entry(qh
->qtd_list
.next
,
2068 struct fotg210_qtd
, qtd_list
);
2070 * first qtd may already be partially processed.
2071 * If we come here during unlink, the QH overlay region
2072 * might have reference to the just unlinked qtd. The
2073 * qtd is updated in qh_completions(). Update the QH
2076 if (cpu_to_hc32(fotg210
, qtd
->qtd_dma
) == qh
->hw
->hw_current
) {
2077 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
2083 qh_update(fotg210
, qh
, qtd
);
2086 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2088 static void fotg210_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
2089 struct usb_host_endpoint
*ep
)
2091 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
2092 struct fotg210_qh
*qh
= ep
->hcpriv
;
2093 unsigned long flags
;
2095 spin_lock_irqsave(&fotg210
->lock
, flags
);
2096 qh
->clearing_tt
= 0;
2097 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
2098 && fotg210
->rh_state
== FOTG210_RH_RUNNING
)
2099 qh_link_async(fotg210
, qh
);
2100 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
2103 static void fotg210_clear_tt_buffer(struct fotg210_hcd
*fotg210
,
2104 struct fotg210_qh
*qh
, struct urb
*urb
, u32 token
)
2107 /* If an async split transaction gets an error or is unlinked,
2108 * the TT buffer may be left in an indeterminate state. We
2109 * have to clear the TT buffer.
2111 * Note: this routine is never called for Isochronous transfers.
2113 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
2114 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
2117 "clear tt buffer port %d, a%d ep%d t%08x\n",
2118 urb
->dev
->ttport
, urb
->dev
->devnum
,
2119 usb_pipeendpoint(urb
->pipe
), token
);
2121 if (urb
->dev
->tt
->hub
!=
2122 fotg210_to_hcd(fotg210
)->self
.root_hub
) {
2123 if (usb_hub_clear_tt_buffer(urb
) == 0)
2124 qh
->clearing_tt
= 1;
2129 static int qtd_copy_status(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2130 size_t length
, u32 token
)
2132 int status
= -EINPROGRESS
;
2134 /* count IN/OUT bytes, not SETUP (even short packets) */
2135 if (likely(QTD_PID(token
) != 2))
2136 urb
->actual_length
+= length
- QTD_LENGTH(token
);
2138 /* don't modify error codes */
2139 if (unlikely(urb
->unlinked
))
2142 /* force cleanup after short read; not always an error */
2143 if (unlikely(IS_SHORT_READ(token
)))
2144 status
= -EREMOTEIO
;
2146 /* serious "can't proceed" faults reported by the hardware */
2147 if (token
& QTD_STS_HALT
) {
2148 if (token
& QTD_STS_BABBLE
) {
2149 /* FIXME "must" disable babbling device's port too */
2150 status
= -EOVERFLOW
;
2151 /* CERR nonzero + halt --> stall */
2152 } else if (QTD_CERR(token
)) {
2155 /* In theory, more than one of the following bits can be set
2156 * since they are sticky and the transaction is retried.
2157 * Which to test first is rather arbitrary.
2159 } else if (token
& QTD_STS_MMF
) {
2160 /* fs/ls interrupt xfer missed the complete-split */
2162 } else if (token
& QTD_STS_DBE
) {
2163 status
= (QTD_PID(token
) == 1) /* IN ? */
2164 ? -ENOSR
/* hc couldn't read data */
2165 : -ECOMM
; /* hc couldn't write data */
2166 } else if (token
& QTD_STS_XACT
) {
2167 /* timeout, bad CRC, wrong PID, etc */
2168 fotg210_dbg(fotg210
, "devpath %s ep%d%s 3strikes\n",
2170 usb_pipeendpoint(urb
->pipe
),
2171 usb_pipein(urb
->pipe
) ? "in" : "out");
2173 } else { /* unknown */
2177 fotg210_dbg(fotg210
,
2178 "dev%d ep%d%s qtd token %08x --> status %d\n",
2179 usb_pipedevice(urb
->pipe
),
2180 usb_pipeendpoint(urb
->pipe
),
2181 usb_pipein(urb
->pipe
) ? "in" : "out",
2188 static void fotg210_urb_done(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2190 __releases(fotg210
->lock
)
2191 __acquires(fotg210
->lock
)
2193 if (likely(urb
->hcpriv
!= NULL
)) {
2194 struct fotg210_qh
*qh
= (struct fotg210_qh
*) urb
->hcpriv
;
2196 /* S-mask in a QH means it's an interrupt urb */
2197 if ((qh
->hw
->hw_info2
& cpu_to_hc32(fotg210
, QH_SMASK
)) != 0) {
2199 /* ... update hc-wide periodic stats (for usbfs) */
2200 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
--;
2204 if (unlikely(urb
->unlinked
)) {
2205 INCR(fotg210
->stats
.unlink
);
2207 /* report non-error and short read status as zero */
2208 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
2210 INCR(fotg210
->stats
.complete
);
2213 #ifdef FOTG210_URB_TRACE
2214 fotg210_dbg(fotg210
,
2215 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2216 __func__
, urb
->dev
->devpath
, urb
,
2217 usb_pipeendpoint(urb
->pipe
),
2218 usb_pipein(urb
->pipe
) ? "in" : "out",
2220 urb
->actual_length
, urb
->transfer_buffer_length
);
2223 /* complete() can reenter this HCD */
2224 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
2225 spin_unlock(&fotg210
->lock
);
2226 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210
), urb
, status
);
2227 spin_lock(&fotg210
->lock
);
2230 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2232 /* Process and free completed qtds for a qh, returning URBs to drivers.
2233 * Chases up to qh->hw_current. Returns number of completions called,
2234 * indicating how much "real" work we did.
2236 static unsigned qh_completions(struct fotg210_hcd
*fotg210
,
2237 struct fotg210_qh
*qh
)
2239 struct fotg210_qtd
*last
, *end
= qh
->dummy
;
2240 struct fotg210_qtd
*qtd
, *tmp
;
2245 struct fotg210_qh_hw
*hw
= qh
->hw
;
2247 if (unlikely(list_empty(&qh
->qtd_list
)))
2250 /* completions (or tasks on other cpus) must never clobber HALT
2251 * till we've gone through and cleaned everything up, even when
2252 * they add urbs to this qh's queue or mark them for unlinking.
2254 * NOTE: unlinking expects to be done in queue order.
2256 * It's a bug for qh->qh_state to be anything other than
2257 * QH_STATE_IDLE, unless our caller is scan_async() or
2260 state
= qh
->qh_state
;
2261 qh
->qh_state
= QH_STATE_COMPLETING
;
2262 stopped
= (state
== QH_STATE_IDLE
);
2266 last_status
= -EINPROGRESS
;
2267 qh
->needs_rescan
= 0;
2269 /* remove de-activated QTDs from front of queue.
2270 * after faults (including short reads), cleanup this urb
2271 * then let the queue advance.
2272 * if queue is stopped, handles unlinks.
2274 list_for_each_entry_safe(qtd
, tmp
, &qh
->qtd_list
, qtd_list
) {
2280 /* clean up any state from previous QTD ...*/
2282 if (likely(last
->urb
!= urb
)) {
2283 fotg210_urb_done(fotg210
, last
->urb
,
2286 last_status
= -EINPROGRESS
;
2288 fotg210_qtd_free(fotg210
, last
);
2292 /* ignore urbs submitted during completions we reported */
2296 /* hardware copies qtd out of qh overlay */
2298 token
= hc32_to_cpu(fotg210
, qtd
->hw_token
);
2300 /* always clean up qtds the hc de-activated */
2302 if ((token
& QTD_STS_ACTIVE
) == 0) {
2304 /* Report Data Buffer Error: non-fatal but useful */
2305 if (token
& QTD_STS_DBE
)
2306 fotg210_dbg(fotg210
,
2307 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2308 urb
, usb_endpoint_num(&urb
->ep
->desc
),
2309 usb_endpoint_dir_in(&urb
->ep
->desc
)
2311 urb
->transfer_buffer_length
, qtd
, qh
);
2313 /* on STALL, error, and short reads this urb must
2314 * complete and all its qtds must be recycled.
2316 if ((token
& QTD_STS_HALT
) != 0) {
2318 /* retry transaction errors until we
2319 * reach the software xacterr limit
2321 if ((token
& QTD_STS_XACT
) &&
2322 QTD_CERR(token
) == 0 &&
2323 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
2325 fotg210_dbg(fotg210
,
2326 "detected XactErr len %zu/%zu retry %d\n",
2327 qtd
->length
- QTD_LENGTH(token
),
2331 /* reset the token in the qtd and the
2332 * qh overlay (which still contains
2333 * the qtd) so that we pick up from
2336 token
&= ~QTD_STS_HALT
;
2337 token
|= QTD_STS_ACTIVE
|
2338 (FOTG210_TUNE_CERR
<< 10);
2339 qtd
->hw_token
= cpu_to_hc32(fotg210
,
2342 hw
->hw_token
= cpu_to_hc32(fotg210
,
2348 /* magic dummy for some short reads; qh won't advance.
2349 * that silicon quirk can kick in with this dummy too.
2351 * other short reads won't stop the queue, including
2352 * control transfers (status stage handles that) or
2353 * most other single-qtd reads ... the queue stops if
2354 * URB_SHORT_NOT_OK was set so the driver submitting
2355 * the urbs could clean it up.
2357 } else if (IS_SHORT_READ(token
) &&
2358 !(qtd
->hw_alt_next
&
2359 FOTG210_LIST_END(fotg210
))) {
2363 /* stop scanning when we reach qtds the hc is using */
2364 } else if (likely(!stopped
2365 && fotg210
->rh_state
>= FOTG210_RH_RUNNING
)) {
2368 /* scan the whole queue for unlinks whenever it stops */
2372 /* cancel everything if we halt, suspend, etc */
2373 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
2374 last_status
= -ESHUTDOWN
;
2376 /* this qtd is active; skip it unless a previous qtd
2377 * for its urb faulted, or its urb was canceled.
2379 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
2382 /* qh unlinked; token in overlay may be most current */
2383 if (state
== QH_STATE_IDLE
&&
2384 cpu_to_hc32(fotg210
, qtd
->qtd_dma
)
2385 == hw
->hw_current
) {
2386 token
= hc32_to_cpu(fotg210
, hw
->hw_token
);
2388 /* An unlink may leave an incomplete
2389 * async transaction in the TT buffer.
2390 * We have to clear it.
2392 fotg210_clear_tt_buffer(fotg210
, qh
, urb
,
2397 /* unless we already know the urb's status, collect qtd status
2398 * and update count of bytes transferred. in common short read
2399 * cases with only one data qtd (including control transfers),
2400 * queue processing won't halt. but with two or more qtds (for
2401 * example, with a 32 KB transfer), when the first qtd gets a
2402 * short read the second must be removed by hand.
2404 if (last_status
== -EINPROGRESS
) {
2405 last_status
= qtd_copy_status(fotg210
, urb
,
2406 qtd
->length
, token
);
2407 if (last_status
== -EREMOTEIO
&&
2409 FOTG210_LIST_END(fotg210
)))
2410 last_status
= -EINPROGRESS
;
2412 /* As part of low/full-speed endpoint-halt processing
2413 * we must clear the TT buffer (11.17.5).
2415 if (unlikely(last_status
!= -EINPROGRESS
&&
2416 last_status
!= -EREMOTEIO
)) {
2417 /* The TT's in some hubs malfunction when they
2418 * receive this request following a STALL (they
2419 * stop sending isochronous packets). Since a
2420 * STALL can't leave the TT buffer in a busy
2421 * state (if you believe Figures 11-48 - 11-51
2422 * in the USB 2.0 spec), we won't clear the TT
2423 * buffer in this case. Strictly speaking this
2424 * is a violation of the spec.
2426 if (last_status
!= -EPIPE
)
2427 fotg210_clear_tt_buffer(fotg210
, qh
,
2432 /* if we're removing something not at the queue head,
2433 * patch the hardware queue pointer.
2435 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
2436 last
= list_entry(qtd
->qtd_list
.prev
,
2437 struct fotg210_qtd
, qtd_list
);
2438 last
->hw_next
= qtd
->hw_next
;
2441 /* remove qtd; it's recycled after possible urb completion */
2442 list_del(&qtd
->qtd_list
);
2445 /* reinit the xacterr counter for the next qtd */
2449 /* last urb's completion might still need calling */
2450 if (likely(last
!= NULL
)) {
2451 fotg210_urb_done(fotg210
, last
->urb
, last_status
);
2453 fotg210_qtd_free(fotg210
, last
);
2456 /* Do we need to rescan for URBs dequeued during a giveback? */
2457 if (unlikely(qh
->needs_rescan
)) {
2458 /* If the QH is already unlinked, do the rescan now. */
2459 if (state
== QH_STATE_IDLE
)
2462 /* Otherwise we have to wait until the QH is fully unlinked.
2463 * Our caller will start an unlink if qh->needs_rescan is
2464 * set. But if an unlink has already started, nothing needs
2467 if (state
!= QH_STATE_LINKED
)
2468 qh
->needs_rescan
= 0;
2471 /* restore original state; caller must unlink or relink */
2472 qh
->qh_state
= state
;
2474 /* be sure the hardware's done with the qh before refreshing
2475 * it after fault cleanup, or recovering from silicon wrongly
2476 * overlaying the dummy qtd (which reduces DMA chatter).
2478 if (stopped
!= 0 || hw
->hw_qtd_next
== FOTG210_LIST_END(fotg210
)) {
2481 qh_refresh(fotg210
, qh
);
2483 case QH_STATE_LINKED
:
2484 /* We won't refresh a QH that's linked (after the HC
2485 * stopped the queue). That avoids a race:
2486 * - HC reads first part of QH;
2487 * - CPU updates that first part and the token;
2488 * - HC reads rest of that QH, including token
2489 * Result: HC gets an inconsistent image, and then
2490 * DMAs to/from the wrong memory (corrupting it).
2492 * That should be rare for interrupt transfers,
2493 * except maybe high bandwidth ...
2496 /* Tell the caller to start an unlink */
2497 qh
->needs_rescan
= 1;
2499 /* otherwise, unlink already started */
2506 /* reverse of qh_urb_transaction: free a list of TDs.
2507 * used for cleanup after errors, before HC sees an URB's TDs.
2509 static void qtd_list_free(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2510 struct list_head
*head
)
2512 struct fotg210_qtd
*qtd
, *temp
;
2514 list_for_each_entry_safe(qtd
, temp
, head
, qtd_list
) {
2515 list_del(&qtd
->qtd_list
);
2516 fotg210_qtd_free(fotg210
, qtd
);
2520 /* create a list of filled qtds for this URB; won't link into qh.
2522 static struct list_head
*qh_urb_transaction(struct fotg210_hcd
*fotg210
,
2523 struct urb
*urb
, struct list_head
*head
, gfp_t flags
)
2525 struct fotg210_qtd
*qtd
, *qtd_prev
;
2527 int len
, this_sg_len
, maxpacket
;
2531 struct scatterlist
*sg
;
2534 * URBs map to sequences of QTDs: one logical transaction
2536 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2539 list_add_tail(&qtd
->qtd_list
, head
);
2542 token
= QTD_STS_ACTIVE
;
2543 token
|= (FOTG210_TUNE_CERR
<< 10);
2544 /* for split transactions, SplitXState initialized to zero */
2546 len
= urb
->transfer_buffer_length
;
2547 is_input
= usb_pipein(urb
->pipe
);
2548 if (usb_pipecontrol(urb
->pipe
)) {
2550 qtd_fill(fotg210
, qtd
, urb
->setup_dma
,
2551 sizeof(struct usb_ctrlrequest
),
2552 token
| (2 /* "setup" */ << 8), 8);
2554 /* ... and always at least one more pid */
2555 token
^= QTD_TOGGLE
;
2557 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2561 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2562 list_add_tail(&qtd
->qtd_list
, head
);
2564 /* for zero length DATA stages, STATUS is always IN */
2566 token
|= (1 /* "in" */ << 8);
2570 * data transfer stage: buffer setup
2572 i
= urb
->num_mapped_sgs
;
2573 if (len
> 0 && i
> 0) {
2575 buf
= sg_dma_address(sg
);
2577 /* urb->transfer_buffer_length may be smaller than the
2578 * size of the scatterlist (or vice versa)
2580 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2583 buf
= urb
->transfer_dma
;
2588 token
|= (1 /* "in" */ << 8);
2589 /* else it's already initted to "out" pid (0 << 8) */
2591 maxpacket
= usb_maxpacket(urb
->dev
, urb
->pipe
);
2594 * buffer gets wrapped in one or more qtds;
2595 * last one may be "short" (including zero len)
2596 * and may serve as a control status ack
2601 this_qtd_len
= qtd_fill(fotg210
, qtd
, buf
, this_sg_len
, token
,
2603 this_sg_len
-= this_qtd_len
;
2604 len
-= this_qtd_len
;
2605 buf
+= this_qtd_len
;
2608 * short reads advance to a "magic" dummy instead of the next
2609 * qtd ... that forces the queue to stop, for manual cleanup.
2610 * (this will usually be overridden later.)
2613 qtd
->hw_alt_next
= fotg210
->async
->hw
->hw_alt_next
;
2615 /* qh makes control packets use qtd toggle; maybe switch it */
2616 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
2617 token
^= QTD_TOGGLE
;
2619 if (likely(this_sg_len
<= 0)) {
2620 if (--i
<= 0 || len
<= 0)
2623 buf
= sg_dma_address(sg
);
2624 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2628 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2632 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2633 list_add_tail(&qtd
->qtd_list
, head
);
2637 * unless the caller requires manual cleanup after short reads,
2638 * have the alt_next mechanism keep the queue running after the
2639 * last data qtd (the only one, for control and most other cases).
2641 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0 ||
2642 usb_pipecontrol(urb
->pipe
)))
2643 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2646 * control requests may need a terminating data "status" ack;
2647 * other OUT ones may need a terminating short packet
2650 if (likely(urb
->transfer_buffer_length
!= 0)) {
2653 if (usb_pipecontrol(urb
->pipe
)) {
2655 token
^= 0x0100; /* "in" <--> "out" */
2656 token
|= QTD_TOGGLE
; /* force DATA1 */
2657 } else if (usb_pipeout(urb
->pipe
)
2658 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
2659 && !(urb
->transfer_buffer_length
% maxpacket
)) {
2664 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2668 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2669 list_add_tail(&qtd
->qtd_list
, head
);
2671 /* never any data in such packets */
2672 qtd_fill(fotg210
, qtd
, 0, 0, token
, 0);
2676 /* by default, enable interrupt on urb completion */
2677 if (likely(!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
2678 qtd
->hw_token
|= cpu_to_hc32(fotg210
, QTD_IOC
);
2682 qtd_list_free(fotg210
, urb
, head
);
2686 /* Would be best to create all qh's from config descriptors,
2687 * when each interface/altsetting is established. Unlink
2688 * any previous qh and cancel its urbs first; endpoints are
2689 * implicitly reset then (data toggle too).
2690 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2694 /* Each QH holds a qtd list; a QH is used for everything except iso.
2696 * For interrupt urbs, the scheduler must set the microframe scheduling
2697 * mask(s) each time the QH gets scheduled. For highspeed, that's
2698 * just one microframe in the s-mask. For split interrupt transactions
2699 * there are additional complications: c-mask, maybe FSTNs.
2701 static struct fotg210_qh
*qh_make(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2704 struct fotg210_qh
*qh
= fotg210_qh_alloc(fotg210
, flags
);
2705 struct usb_host_endpoint
*ep
;
2706 u32 info1
= 0, info2
= 0;
2710 struct usb_tt
*tt
= urb
->dev
->tt
;
2711 struct fotg210_qh_hw
*hw
;
2717 * init endpoint/device data for this QH
2719 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
2720 info1
|= usb_pipedevice(urb
->pipe
) << 0;
2722 is_input
= usb_pipein(urb
->pipe
);
2723 type
= usb_pipetype(urb
->pipe
);
2724 ep
= usb_pipe_endpoint(urb
->dev
, urb
->pipe
);
2725 maxp
= usb_endpoint_maxp(&ep
->desc
);
2726 mult
= usb_endpoint_maxp_mult(&ep
->desc
);
2728 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2729 * acts like up to 3KB, but is built from smaller packets.
2732 fotg210_dbg(fotg210
, "bogus qh maxpacket %d\n", maxp
);
2736 /* Compute interrupt scheduling parameters just once, and save.
2737 * - allowing for high bandwidth, how many nsec/uframe are used?
2738 * - split transactions need a second CSPLIT uframe; same question
2739 * - splits also need a schedule gap (for full/low speed I/O)
2740 * - qh has a polling interval
2742 * For control/bulk requests, the HC or TT handles these.
2744 if (type
== PIPE_INTERRUPT
) {
2745 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
2746 is_input
, 0, mult
* maxp
));
2747 qh
->start
= NO_FRAME
;
2749 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
2753 qh
->period
= urb
->interval
>> 3;
2754 if (qh
->period
== 0 && urb
->interval
!= 1) {
2755 /* NOTE interval 2 or 4 uframes could work.
2756 * But interval 1 scheduling is simpler, and
2757 * includes high bandwidth.
2760 } else if (qh
->period
> fotg210
->periodic_size
) {
2761 qh
->period
= fotg210
->periodic_size
;
2762 urb
->interval
= qh
->period
<< 3;
2767 /* gap is f(FS/LS transfer times) */
2768 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
2769 is_input
, 0, maxp
) / (125 * 1000);
2771 /* FIXME this just approximates SPLIT/CSPLIT times */
2772 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
2773 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
2774 qh
->usecs
= HS_USECS(1);
2775 } else { /* SPLIT+DATA, gap, CSPLIT */
2776 qh
->usecs
+= HS_USECS(1);
2777 qh
->c_usecs
= HS_USECS(0);
2780 think_time
= tt
? tt
->think_time
: 0;
2781 qh
->tt_usecs
= NS_TO_US(think_time
+
2782 usb_calc_bus_time(urb
->dev
->speed
,
2783 is_input
, 0, maxp
));
2784 qh
->period
= urb
->interval
;
2785 if (qh
->period
> fotg210
->periodic_size
) {
2786 qh
->period
= fotg210
->periodic_size
;
2787 urb
->interval
= qh
->period
;
2792 /* support for tt scheduling, and access to toggles */
2796 switch (urb
->dev
->speed
) {
2798 info1
|= QH_LOW_SPEED
;
2801 case USB_SPEED_FULL
:
2802 /* EPS 0 means "full" */
2803 if (type
!= PIPE_INTERRUPT
)
2804 info1
|= (FOTG210_TUNE_RL_TT
<< 28);
2805 if (type
== PIPE_CONTROL
) {
2806 info1
|= QH_CONTROL_EP
; /* for TT */
2807 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2809 info1
|= maxp
<< 16;
2811 info2
|= (FOTG210_TUNE_MULT_TT
<< 30);
2813 /* Some Freescale processors have an erratum in which the
2814 * port number in the queue head was 0..N-1 instead of 1..N.
2816 if (fotg210_has_fsl_portno_bug(fotg210
))
2817 info2
|= (urb
->dev
->ttport
-1) << 23;
2819 info2
|= urb
->dev
->ttport
<< 23;
2821 /* set the address of the TT; for TDI's integrated
2822 * root hub tt, leave it zeroed.
2824 if (tt
&& tt
->hub
!= fotg210_to_hcd(fotg210
)->self
.root_hub
)
2825 info2
|= tt
->hub
->devnum
<< 16;
2827 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2831 case USB_SPEED_HIGH
: /* no TT involved */
2832 info1
|= QH_HIGH_SPEED
;
2833 if (type
== PIPE_CONTROL
) {
2834 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2835 info1
|= 64 << 16; /* usb2 fixed maxpacket */
2836 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2837 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2838 } else if (type
== PIPE_BULK
) {
2839 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2840 /* The USB spec says that high speed bulk endpoints
2841 * always use 512 byte maxpacket. But some device
2842 * vendors decided to ignore that, and MSFT is happy
2843 * to help them do so. So now people expect to use
2844 * such nonconformant devices with Linux too; sigh.
2846 info1
|= maxp
<< 16;
2847 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2848 } else { /* PIPE_INTERRUPT */
2849 info1
|= maxp
<< 16;
2850 info2
|= mult
<< 30;
2854 fotg210_dbg(fotg210
, "bogus dev %p speed %d\n", urb
->dev
,
2857 qh_destroy(fotg210
, qh
);
2861 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2863 /* init as live, toggle clear, advance to dummy */
2864 qh
->qh_state
= QH_STATE_IDLE
;
2866 hw
->hw_info1
= cpu_to_hc32(fotg210
, info1
);
2867 hw
->hw_info2
= cpu_to_hc32(fotg210
, info2
);
2868 qh
->is_out
= !is_input
;
2869 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
2870 qh_refresh(fotg210
, qh
);
2874 static void enable_async(struct fotg210_hcd
*fotg210
)
2876 if (fotg210
->async_count
++)
2879 /* Stop waiting to turn off the async schedule */
2880 fotg210
->enabled_hrtimer_events
&= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC
);
2882 /* Don't start the schedule until ASS is 0 */
2883 fotg210_poll_ASS(fotg210
);
2884 turn_on_io_watchdog(fotg210
);
2887 static void disable_async(struct fotg210_hcd
*fotg210
)
2889 if (--fotg210
->async_count
)
2892 /* The async schedule and async_unlink list are supposed to be empty */
2893 WARN_ON(fotg210
->async
->qh_next
.qh
|| fotg210
->async_unlink
);
2895 /* Don't turn off the schedule until ASS is 1 */
2896 fotg210_poll_ASS(fotg210
);
2899 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2901 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2903 __hc32 dma
= QH_NEXT(fotg210
, qh
->qh_dma
);
2904 struct fotg210_qh
*head
;
2906 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2907 if (unlikely(qh
->clearing_tt
))
2910 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2912 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2913 qh_refresh(fotg210
, qh
);
2915 /* splice right after start */
2916 head
= fotg210
->async
;
2917 qh
->qh_next
= head
->qh_next
;
2918 qh
->hw
->hw_next
= head
->hw
->hw_next
;
2921 head
->qh_next
.qh
= qh
;
2922 head
->hw
->hw_next
= dma
;
2925 qh
->qh_state
= QH_STATE_LINKED
;
2926 /* qtd completions reported later by interrupt */
2928 enable_async(fotg210
);
2931 /* For control/bulk/interrupt, return QH with these TDs appended.
2932 * Allocates and initializes the QH if necessary.
2933 * Returns null if it can't allocate a QH it needs to.
2934 * If the QH has TDs (urbs) already, that's great.
2936 static struct fotg210_qh
*qh_append_tds(struct fotg210_hcd
*fotg210
,
2937 struct urb
*urb
, struct list_head
*qtd_list
,
2938 int epnum
, void **ptr
)
2940 struct fotg210_qh
*qh
= NULL
;
2941 __hc32 qh_addr_mask
= cpu_to_hc32(fotg210
, 0x7f);
2943 qh
= (struct fotg210_qh
*) *ptr
;
2944 if (unlikely(qh
== NULL
)) {
2945 /* can't sleep here, we have fotg210->lock... */
2946 qh
= qh_make(fotg210
, urb
, GFP_ATOMIC
);
2949 if (likely(qh
!= NULL
)) {
2950 struct fotg210_qtd
*qtd
;
2952 if (unlikely(list_empty(qtd_list
)))
2955 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
,
2958 /* control qh may need patching ... */
2959 if (unlikely(epnum
== 0)) {
2960 /* usb_reset_device() briefly reverts to address 0 */
2961 if (usb_pipedevice(urb
->pipe
) == 0)
2962 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
2965 /* just one way to queue requests: swap with the dummy qtd.
2966 * only hc or qh_refresh() ever modify the overlay.
2968 if (likely(qtd
!= NULL
)) {
2969 struct fotg210_qtd
*dummy
;
2973 /* to avoid racing the HC, use the dummy td instead of
2974 * the first td of our list (becomes new dummy). both
2975 * tds stay deactivated until we're done, when the
2976 * HC is allowed to fetch the old dummy (4.10.2).
2978 token
= qtd
->hw_token
;
2979 qtd
->hw_token
= HALT_BIT(fotg210
);
2983 dma
= dummy
->qtd_dma
;
2985 dummy
->qtd_dma
= dma
;
2987 list_del(&qtd
->qtd_list
);
2988 list_add(&dummy
->qtd_list
, qtd_list
);
2989 list_splice_tail(qtd_list
, &qh
->qtd_list
);
2991 fotg210_qtd_init(fotg210
, qtd
, qtd
->qtd_dma
);
2994 /* hc must see the new dummy at list end */
2996 qtd
= list_entry(qh
->qtd_list
.prev
,
2997 struct fotg210_qtd
, qtd_list
);
2998 qtd
->hw_next
= QTD_NEXT(fotg210
, dma
);
3000 /* let the hc process these next qtds */
3002 dummy
->hw_token
= token
;
3010 static int submit_async(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3011 struct list_head
*qtd_list
, gfp_t mem_flags
)
3014 unsigned long flags
;
3015 struct fotg210_qh
*qh
= NULL
;
3018 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3020 #ifdef FOTG210_URB_TRACE
3022 struct fotg210_qtd
*qtd
;
3024 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
, qtd_list
);
3025 fotg210_dbg(fotg210
,
3026 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3027 __func__
, urb
->dev
->devpath
, urb
,
3028 epnum
& 0x0f, (epnum
& USB_DIR_IN
)
3030 urb
->transfer_buffer_length
,
3031 qtd
, urb
->ep
->hcpriv
);
3035 spin_lock_irqsave(&fotg210
->lock
, flags
);
3036 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3040 rc
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3044 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3045 if (unlikely(qh
== NULL
)) {
3046 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3051 /* Control/bulk operations through TTs don't need scheduling,
3052 * the HC and TT handle it when the TT has a buffer ready.
3054 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
3055 qh_link_async(fotg210
, qh
);
3057 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3058 if (unlikely(qh
== NULL
))
3059 qtd_list_free(fotg210
, urb
, qtd_list
);
3063 static void single_unlink_async(struct fotg210_hcd
*fotg210
,
3064 struct fotg210_qh
*qh
)
3066 struct fotg210_qh
*prev
;
3068 /* Add to the end of the list of QHs waiting for the next IAAD */
3069 qh
->qh_state
= QH_STATE_UNLINK
;
3070 if (fotg210
->async_unlink
)
3071 fotg210
->async_unlink_last
->unlink_next
= qh
;
3073 fotg210
->async_unlink
= qh
;
3074 fotg210
->async_unlink_last
= qh
;
3076 /* Unlink it from the schedule */
3077 prev
= fotg210
->async
;
3078 while (prev
->qh_next
.qh
!= qh
)
3079 prev
= prev
->qh_next
.qh
;
3081 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
3082 prev
->qh_next
= qh
->qh_next
;
3083 if (fotg210
->qh_scan_next
== qh
)
3084 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3087 static void start_iaa_cycle(struct fotg210_hcd
*fotg210
, bool nested
)
3090 * Do nothing if an IAA cycle is already running or
3091 * if one will be started shortly.
3093 if (fotg210
->async_iaa
|| fotg210
->async_unlinking
)
3096 /* Do all the waiting QHs at once */
3097 fotg210
->async_iaa
= fotg210
->async_unlink
;
3098 fotg210
->async_unlink
= NULL
;
3100 /* If the controller isn't running, we don't have to wait for it */
3101 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
)) {
3102 if (!nested
) /* Avoid recursion */
3103 end_unlink_async(fotg210
);
3105 /* Otherwise start a new IAA cycle */
3106 } else if (likely(fotg210
->rh_state
== FOTG210_RH_RUNNING
)) {
3107 /* Make sure the unlinks are all visible to the hardware */
3110 fotg210_writel(fotg210
, fotg210
->command
| CMD_IAAD
,
3111 &fotg210
->regs
->command
);
3112 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
3113 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IAA_WATCHDOG
,
3118 /* the async qh for the qtds being unlinked are now gone from the HC */
3120 static void end_unlink_async(struct fotg210_hcd
*fotg210
)
3122 struct fotg210_qh
*qh
;
3124 /* Process the idle QHs */
3126 fotg210
->async_unlinking
= true;
3127 while (fotg210
->async_iaa
) {
3128 qh
= fotg210
->async_iaa
;
3129 fotg210
->async_iaa
= qh
->unlink_next
;
3130 qh
->unlink_next
= NULL
;
3132 qh
->qh_state
= QH_STATE_IDLE
;
3133 qh
->qh_next
.qh
= NULL
;
3135 qh_completions(fotg210
, qh
);
3136 if (!list_empty(&qh
->qtd_list
) &&
3137 fotg210
->rh_state
== FOTG210_RH_RUNNING
)
3138 qh_link_async(fotg210
, qh
);
3139 disable_async(fotg210
);
3141 fotg210
->async_unlinking
= false;
3143 /* Start a new IAA cycle if any QHs are waiting for it */
3144 if (fotg210
->async_unlink
) {
3145 start_iaa_cycle(fotg210
, true);
3146 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
))
3151 static void unlink_empty_async(struct fotg210_hcd
*fotg210
)
3153 struct fotg210_qh
*qh
, *next
;
3154 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
3155 bool check_unlinks_later
= false;
3157 /* Unlink all the async QHs that have been empty for a timer cycle */
3158 next
= fotg210
->async
->qh_next
.qh
;
3161 next
= qh
->qh_next
.qh
;
3163 if (list_empty(&qh
->qtd_list
) &&
3164 qh
->qh_state
== QH_STATE_LINKED
) {
3165 if (!stopped
&& qh
->unlink_cycle
==
3166 fotg210
->async_unlink_cycle
)
3167 check_unlinks_later
= true;
3169 single_unlink_async(fotg210
, qh
);
3173 /* Start a new IAA cycle if any QHs are waiting for it */
3174 if (fotg210
->async_unlink
)
3175 start_iaa_cycle(fotg210
, false);
3177 /* QHs that haven't been empty for long enough will be handled later */
3178 if (check_unlinks_later
) {
3179 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_ASYNC_UNLINKS
,
3181 ++fotg210
->async_unlink_cycle
;
3185 /* makes sure the async qh will become idle */
3186 /* caller must own fotg210->lock */
3188 static void start_unlink_async(struct fotg210_hcd
*fotg210
,
3189 struct fotg210_qh
*qh
)
3192 * If the QH isn't linked then there's nothing we can do
3193 * unless we were called during a giveback, in which case
3194 * qh_completions() has to deal with it.
3196 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3197 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3198 qh
->needs_rescan
= 1;
3202 single_unlink_async(fotg210
, qh
);
3203 start_iaa_cycle(fotg210
, false);
3206 static void scan_async(struct fotg210_hcd
*fotg210
)
3208 struct fotg210_qh
*qh
;
3209 bool check_unlinks_later
= false;
3211 fotg210
->qh_scan_next
= fotg210
->async
->qh_next
.qh
;
3212 while (fotg210
->qh_scan_next
) {
3213 qh
= fotg210
->qh_scan_next
;
3214 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3216 /* clean any finished work for this qh */
3217 if (!list_empty(&qh
->qtd_list
)) {
3221 * Unlinks could happen here; completion reporting
3222 * drops the lock. That's why fotg210->qh_scan_next
3223 * always holds the next qh to scan; if the next qh
3224 * gets unlinked then fotg210->qh_scan_next is adjusted
3225 * in single_unlink_async().
3227 temp
= qh_completions(fotg210
, qh
);
3228 if (qh
->needs_rescan
) {
3229 start_unlink_async(fotg210
, qh
);
3230 } else if (list_empty(&qh
->qtd_list
)
3231 && qh
->qh_state
== QH_STATE_LINKED
) {
3232 qh
->unlink_cycle
= fotg210
->async_unlink_cycle
;
3233 check_unlinks_later
= true;
3234 } else if (temp
!= 0)
3240 * Unlink empty entries, reducing DMA usage as well
3241 * as HCD schedule-scanning costs. Delay for any qh
3242 * we just scanned, there's a not-unusual case that it
3243 * doesn't stay idle for long.
3245 if (check_unlinks_later
&& fotg210
->rh_state
== FOTG210_RH_RUNNING
&&
3246 !(fotg210
->enabled_hrtimer_events
&
3247 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS
))) {
3248 fotg210_enable_event(fotg210
,
3249 FOTG210_HRTIMER_ASYNC_UNLINKS
, true);
3250 ++fotg210
->async_unlink_cycle
;
3253 /* EHCI scheduled transaction support: interrupt, iso, split iso
3254 * These are called "periodic" transactions in the EHCI spec.
3256 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3257 * with the "asynchronous" transaction support (control/bulk transfers).
3258 * The only real difference is in how interrupt transfers are scheduled.
3260 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3261 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3262 * pre-calculated schedule data to make appending to the queue be quick.
3264 static int fotg210_get_frame(struct usb_hcd
*hcd
);
3266 /* periodic_next_shadow - return "next" pointer on shadow list
3267 * @periodic: host pointer to qh/itd
3268 * @tag: hardware tag for type of this record
3270 static union fotg210_shadow
*periodic_next_shadow(struct fotg210_hcd
*fotg210
,
3271 union fotg210_shadow
*periodic
, __hc32 tag
)
3273 switch (hc32_to_cpu(fotg210
, tag
)) {
3275 return &periodic
->qh
->qh_next
;
3277 return &periodic
->fstn
->fstn_next
;
3279 return &periodic
->itd
->itd_next
;
3283 static __hc32
*shadow_next_periodic(struct fotg210_hcd
*fotg210
,
3284 union fotg210_shadow
*periodic
, __hc32 tag
)
3286 switch (hc32_to_cpu(fotg210
, tag
)) {
3287 /* our fotg210_shadow.qh is actually software part */
3289 return &periodic
->qh
->hw
->hw_next
;
3290 /* others are hw parts */
3292 return periodic
->hw_next
;
3296 /* caller must hold fotg210->lock */
3297 static void periodic_unlink(struct fotg210_hcd
*fotg210
, unsigned frame
,
3300 union fotg210_shadow
*prev_p
= &fotg210
->pshadow
[frame
];
3301 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3302 union fotg210_shadow here
= *prev_p
;
3304 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3305 while (here
.ptr
&& here
.ptr
!= ptr
) {
3306 prev_p
= periodic_next_shadow(fotg210
, prev_p
,
3307 Q_NEXT_TYPE(fotg210
, *hw_p
));
3308 hw_p
= shadow_next_periodic(fotg210
, &here
,
3309 Q_NEXT_TYPE(fotg210
, *hw_p
));
3312 /* an interrupt entry (at list end) could have been shared */
3316 /* update shadow and hardware lists ... the old "next" pointers
3317 * from ptr may still be in use, the caller updates them.
3319 *prev_p
= *periodic_next_shadow(fotg210
, &here
,
3320 Q_NEXT_TYPE(fotg210
, *hw_p
));
3322 *hw_p
= *shadow_next_periodic(fotg210
, &here
,
3323 Q_NEXT_TYPE(fotg210
, *hw_p
));
3326 /* how many of the uframe's 125 usecs are allocated? */
3327 static unsigned short periodic_usecs(struct fotg210_hcd
*fotg210
,
3328 unsigned frame
, unsigned uframe
)
3330 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3331 union fotg210_shadow
*q
= &fotg210
->pshadow
[frame
];
3333 struct fotg210_qh_hw
*hw
;
3336 switch (hc32_to_cpu(fotg210
, Q_NEXT_TYPE(fotg210
, *hw_p
))) {
3339 /* is it in the S-mask? */
3340 if (hw
->hw_info2
& cpu_to_hc32(fotg210
, 1 << uframe
))
3341 usecs
+= q
->qh
->usecs
;
3342 /* ... or C-mask? */
3343 if (hw
->hw_info2
& cpu_to_hc32(fotg210
,
3345 usecs
+= q
->qh
->c_usecs
;
3346 hw_p
= &hw
->hw_next
;
3347 q
= &q
->qh
->qh_next
;
3349 /* case Q_TYPE_FSTN: */
3351 /* for "save place" FSTNs, count the relevant INTR
3352 * bandwidth from the previous frame
3354 if (q
->fstn
->hw_prev
!= FOTG210_LIST_END(fotg210
))
3355 fotg210_dbg(fotg210
, "ignoring FSTN cost ...\n");
3357 hw_p
= &q
->fstn
->hw_next
;
3358 q
= &q
->fstn
->fstn_next
;
3361 if (q
->itd
->hw_transaction
[uframe
])
3362 usecs
+= q
->itd
->stream
->usecs
;
3363 hw_p
= &q
->itd
->hw_next
;
3364 q
= &q
->itd
->itd_next
;
3368 if (usecs
> fotg210
->uframe_periodic_max
)
3369 fotg210_err(fotg210
, "uframe %d sched overrun: %d usecs\n",
3370 frame
* 8 + uframe
, usecs
);
3374 static int same_tt(struct usb_device
*dev1
, struct usb_device
*dev2
)
3376 if (!dev1
->tt
|| !dev2
->tt
)
3378 if (dev1
->tt
!= dev2
->tt
)
3380 if (dev1
->tt
->multi
)
3381 return dev1
->ttport
== dev2
->ttport
;
3386 /* return true iff the device's transaction translator is available
3387 * for a periodic transfer starting at the specified frame, using
3388 * all the uframes in the mask.
3390 static int tt_no_collision(struct fotg210_hcd
*fotg210
, unsigned period
,
3391 struct usb_device
*dev
, unsigned frame
, u32 uf_mask
)
3393 if (period
== 0) /* error */
3396 /* note bandwidth wastage: split never follows csplit
3397 * (different dev or endpoint) until the next uframe.
3398 * calling convention doesn't make that distinction.
3400 for (; frame
< fotg210
->periodic_size
; frame
+= period
) {
3401 union fotg210_shadow here
;
3403 struct fotg210_qh_hw
*hw
;
3405 here
= fotg210
->pshadow
[frame
];
3406 type
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[frame
]);
3408 switch (hc32_to_cpu(fotg210
, type
)) {
3410 type
= Q_NEXT_TYPE(fotg210
, here
.itd
->hw_next
);
3411 here
= here
.itd
->itd_next
;
3415 if (same_tt(dev
, here
.qh
->dev
)) {
3418 mask
= hc32_to_cpu(fotg210
,
3420 /* "knows" no gap is needed */
3425 type
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
3426 here
= here
.qh
->qh_next
;
3428 /* case Q_TYPE_FSTN: */
3430 fotg210_dbg(fotg210
,
3431 "periodic frame %d bogus type %d\n",
3435 /* collision or error */
3444 static void enable_periodic(struct fotg210_hcd
*fotg210
)
3446 if (fotg210
->periodic_count
++)
3449 /* Stop waiting to turn off the periodic schedule */
3450 fotg210
->enabled_hrtimer_events
&=
3451 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC
);
3453 /* Don't start the schedule until PSS is 0 */
3454 fotg210_poll_PSS(fotg210
);
3455 turn_on_io_watchdog(fotg210
);
3458 static void disable_periodic(struct fotg210_hcd
*fotg210
)
3460 if (--fotg210
->periodic_count
)
3463 /* Don't turn off the schedule until PSS is 1 */
3464 fotg210_poll_PSS(fotg210
);
3467 /* periodic schedule slots have iso tds (normal or split) first, then a
3468 * sparse tree for active interrupt transfers.
3470 * this just links in a qh; caller guarantees uframe masks are set right.
3471 * no FSTN support (yet; fotg210 0.96+)
3473 static void qh_link_periodic(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3476 unsigned period
= qh
->period
;
3478 dev_dbg(&qh
->dev
->dev
,
3479 "link qh%d-%04x/%p start %d [%d/%d us]\n", period
,
3480 hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3481 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3484 /* high bandwidth, or otherwise every microframe */
3488 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
) {
3489 union fotg210_shadow
*prev
= &fotg210
->pshadow
[i
];
3490 __hc32
*hw_p
= &fotg210
->periodic
[i
];
3491 union fotg210_shadow here
= *prev
;
3494 /* skip the iso nodes at list head */
3496 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
3497 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
3499 prev
= periodic_next_shadow(fotg210
, prev
, type
);
3500 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
3504 /* sorting each branch by period (slow-->fast)
3505 * enables sharing interior tree nodes
3507 while (here
.ptr
&& qh
!= here
.qh
) {
3508 if (qh
->period
> here
.qh
->period
)
3510 prev
= &here
.qh
->qh_next
;
3511 hw_p
= &here
.qh
->hw
->hw_next
;
3514 /* link in this qh, unless some earlier pass did that */
3515 if (qh
!= here
.qh
) {
3518 qh
->hw
->hw_next
= *hw_p
;
3521 *hw_p
= QH_NEXT(fotg210
, qh
->qh_dma
);
3524 qh
->qh_state
= QH_STATE_LINKED
;
3527 /* update per-qh bandwidth for usbfs */
3528 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
+= qh
->period
3529 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3532 list_add(&qh
->intr_node
, &fotg210
->intr_qh_list
);
3534 /* maybe enable periodic schedule processing */
3535 ++fotg210
->intr_count
;
3536 enable_periodic(fotg210
);
3539 static void qh_unlink_periodic(struct fotg210_hcd
*fotg210
,
3540 struct fotg210_qh
*qh
)
3546 * If qh is for a low/full-speed device, simply unlinking it
3547 * could interfere with an ongoing split transaction. To unlink
3548 * it safely would require setting the QH_INACTIVATE bit and
3549 * waiting at least one frame, as described in EHCI 4.12.2.5.
3551 * We won't bother with any of this. Instead, we assume that the
3552 * only reason for unlinking an interrupt QH while the current URB
3553 * is still active is to dequeue all the URBs (flush the whole
3556 * If rebalancing the periodic schedule is ever implemented, this
3557 * approach will no longer be valid.
3560 /* high bandwidth, or otherwise part of every microframe */
3561 period
= qh
->period
;
3565 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
)
3566 periodic_unlink(fotg210
, i
, qh
);
3568 /* update per-qh bandwidth for usbfs */
3569 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
-= qh
->period
3570 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3573 dev_dbg(&qh
->dev
->dev
,
3574 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3575 qh
->period
, hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3576 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3579 /* qh->qh_next still "live" to HC */
3580 qh
->qh_state
= QH_STATE_UNLINK
;
3581 qh
->qh_next
.ptr
= NULL
;
3583 if (fotg210
->qh_scan_next
== qh
)
3584 fotg210
->qh_scan_next
= list_entry(qh
->intr_node
.next
,
3585 struct fotg210_qh
, intr_node
);
3586 list_del(&qh
->intr_node
);
3589 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
3590 struct fotg210_qh
*qh
)
3592 /* If the QH isn't linked then there's nothing we can do
3593 * unless we were called during a giveback, in which case
3594 * qh_completions() has to deal with it.
3596 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3597 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3598 qh
->needs_rescan
= 1;
3602 qh_unlink_periodic(fotg210
, qh
);
3604 /* Make sure the unlinks are visible before starting the timer */
3608 * The EHCI spec doesn't say how long it takes the controller to
3609 * stop accessing an unlinked interrupt QH. The timer delay is
3610 * 9 uframes; presumably that will be long enough.
3612 qh
->unlink_cycle
= fotg210
->intr_unlink_cycle
;
3614 /* New entries go at the end of the intr_unlink list */
3615 if (fotg210
->intr_unlink
)
3616 fotg210
->intr_unlink_last
->unlink_next
= qh
;
3618 fotg210
->intr_unlink
= qh
;
3619 fotg210
->intr_unlink_last
= qh
;
3621 if (fotg210
->intr_unlinking
)
3622 ; /* Avoid recursive calls */
3623 else if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
3624 fotg210_handle_intr_unlinks(fotg210
);
3625 else if (fotg210
->intr_unlink
== qh
) {
3626 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
3628 ++fotg210
->intr_unlink_cycle
;
3632 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3634 struct fotg210_qh_hw
*hw
= qh
->hw
;
3637 qh
->qh_state
= QH_STATE_IDLE
;
3638 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3640 qh_completions(fotg210
, qh
);
3642 /* reschedule QH iff another request is queued */
3643 if (!list_empty(&qh
->qtd_list
) &&
3644 fotg210
->rh_state
== FOTG210_RH_RUNNING
) {
3645 rc
= qh_schedule(fotg210
, qh
);
3647 /* An error here likely indicates handshake failure
3648 * or no space left in the schedule. Neither fault
3649 * should happen often ...
3651 * FIXME kill the now-dysfunctional queued urbs
3654 fotg210_err(fotg210
, "can't reschedule qh %p, err %d\n",
3658 /* maybe turn off periodic schedule */
3659 --fotg210
->intr_count
;
3660 disable_periodic(fotg210
);
3663 static int check_period(struct fotg210_hcd
*fotg210
, unsigned frame
,
3664 unsigned uframe
, unsigned period
, unsigned usecs
)
3668 /* complete split running into next frame?
3669 * given FSTN support, we could sometimes check...
3674 /* convert "usecs we need" to "max already claimed" */
3675 usecs
= fotg210
->uframe_periodic_max
- usecs
;
3677 /* we "know" 2 and 4 uframe intervals were rejected; so
3678 * for period 0, check _every_ microframe in the schedule.
3680 if (unlikely(period
== 0)) {
3682 for (uframe
= 0; uframe
< 7; uframe
++) {
3683 claimed
= periodic_usecs(fotg210
, frame
,
3685 if (claimed
> usecs
)
3688 } while ((frame
+= 1) < fotg210
->periodic_size
);
3690 /* just check the specified uframe, at that period */
3693 claimed
= periodic_usecs(fotg210
, frame
, uframe
);
3694 if (claimed
> usecs
)
3696 } while ((frame
+= period
) < fotg210
->periodic_size
);
3703 static int check_intr_schedule(struct fotg210_hcd
*fotg210
, unsigned frame
,
3704 unsigned uframe
, const struct fotg210_qh
*qh
, __hc32
*c_maskp
)
3706 int retval
= -ENOSPC
;
3709 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
3712 if (!check_period(fotg210
, frame
, uframe
, qh
->period
, qh
->usecs
))
3720 /* Make sure this tt's buffer is also available for CSPLITs.
3721 * We pessimize a bit; probably the typical full speed case
3722 * doesn't need the second CSPLIT.
3724 * NOTE: both SPLIT and CSPLIT could be checked in just
3727 mask
= 0x03 << (uframe
+ qh
->gap_uf
);
3728 *c_maskp
= cpu_to_hc32(fotg210
, mask
<< 8);
3730 mask
|= 1 << uframe
;
3731 if (tt_no_collision(fotg210
, qh
->period
, qh
->dev
, frame
, mask
)) {
3732 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
+ 1,
3733 qh
->period
, qh
->c_usecs
))
3735 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
,
3736 qh
->period
, qh
->c_usecs
))
3744 /* "first fit" scheduling policy used the first time through,
3745 * or when the previous schedule slot can't be re-used.
3747 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3752 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
3753 struct fotg210_qh_hw
*hw
= qh
->hw
;
3755 qh_refresh(fotg210
, qh
);
3756 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3759 /* reuse the previous schedule slots, if we can */
3760 if (frame
< qh
->period
) {
3761 uframe
= ffs(hc32_to_cpup(fotg210
, &hw
->hw_info2
) & QH_SMASK
);
3762 status
= check_intr_schedule(fotg210
, frame
, --uframe
,
3770 /* else scan the schedule to find a group of slots such that all
3771 * uframes have enough periodic bandwidth available.
3774 /* "normal" case, uframing flexible except with splits */
3778 for (i
= qh
->period
; status
&& i
> 0; --i
) {
3779 frame
= ++fotg210
->random_frame
% qh
->period
;
3780 for (uframe
= 0; uframe
< 8; uframe
++) {
3781 status
= check_intr_schedule(fotg210
,
3789 /* qh->period == 0 means every uframe */
3792 status
= check_intr_schedule(fotg210
, 0, 0, qh
,
3799 /* reset S-frame and (maybe) C-frame masks */
3800 hw
->hw_info2
&= cpu_to_hc32(fotg210
, ~(QH_CMASK
| QH_SMASK
));
3801 hw
->hw_info2
|= qh
->period
3802 ? cpu_to_hc32(fotg210
, 1 << uframe
)
3803 : cpu_to_hc32(fotg210
, QH_SMASK
);
3804 hw
->hw_info2
|= c_mask
;
3806 fotg210_dbg(fotg210
, "reused qh %p schedule\n", qh
);
3808 /* stuff into the periodic schedule */
3809 qh_link_periodic(fotg210
, qh
);
3814 static int intr_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3815 struct list_head
*qtd_list
, gfp_t mem_flags
)
3818 unsigned long flags
;
3819 struct fotg210_qh
*qh
;
3821 struct list_head empty
;
3823 /* get endpoint and transfer/schedule data */
3824 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3826 spin_lock_irqsave(&fotg210
->lock
, flags
);
3828 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3829 status
= -ESHUTDOWN
;
3830 goto done_not_linked
;
3832 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3833 if (unlikely(status
))
3834 goto done_not_linked
;
3836 /* get qh and force any scheduling errors */
3837 INIT_LIST_HEAD(&empty
);
3838 qh
= qh_append_tds(fotg210
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
3843 if (qh
->qh_state
== QH_STATE_IDLE
) {
3844 status
= qh_schedule(fotg210
, qh
);
3849 /* then queue the urb's tds to the qh */
3850 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3853 /* ... update usbfs periodic stats */
3854 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
++;
3857 if (unlikely(status
))
3858 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3860 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3862 qtd_list_free(fotg210
, urb
, qtd_list
);
3867 static void scan_intr(struct fotg210_hcd
*fotg210
)
3869 struct fotg210_qh
*qh
;
3871 list_for_each_entry_safe(qh
, fotg210
->qh_scan_next
,
3872 &fotg210
->intr_qh_list
, intr_node
) {
3874 /* clean any finished work for this qh */
3875 if (!list_empty(&qh
->qtd_list
)) {
3879 * Unlinks could happen here; completion reporting
3880 * drops the lock. That's why fotg210->qh_scan_next
3881 * always holds the next qh to scan; if the next qh
3882 * gets unlinked then fotg210->qh_scan_next is adjusted
3883 * in qh_unlink_periodic().
3885 temp
= qh_completions(fotg210
, qh
);
3886 if (unlikely(qh
->needs_rescan
||
3887 (list_empty(&qh
->qtd_list
) &&
3888 qh
->qh_state
== QH_STATE_LINKED
)))
3889 start_unlink_intr(fotg210
, qh
);
3896 /* fotg210_iso_stream ops work with both ITD and SITD */
3898 static struct fotg210_iso_stream
*iso_stream_alloc(gfp_t mem_flags
)
3900 struct fotg210_iso_stream
*stream
;
3902 stream
= kzalloc(sizeof(*stream
), mem_flags
);
3903 if (likely(stream
!= NULL
)) {
3904 INIT_LIST_HEAD(&stream
->td_list
);
3905 INIT_LIST_HEAD(&stream
->free_list
);
3906 stream
->next_uframe
= -1;
3911 static void iso_stream_init(struct fotg210_hcd
*fotg210
,
3912 struct fotg210_iso_stream
*stream
, struct usb_device
*dev
,
3913 int pipe
, unsigned interval
)
3916 unsigned epnum
, maxp
;
3920 struct usb_host_endpoint
*ep
;
3923 * this might be a "high bandwidth" highspeed endpoint,
3924 * as encoded in the ep descriptor's wMaxPacket field
3926 epnum
= usb_pipeendpoint(pipe
);
3927 is_input
= usb_pipein(pipe
) ? USB_DIR_IN
: 0;
3928 ep
= usb_pipe_endpoint(dev
, pipe
);
3929 maxp
= usb_endpoint_maxp(&ep
->desc
);
3935 multi
= usb_endpoint_maxp_mult(&ep
->desc
);
3939 stream
->buf0
= cpu_to_hc32(fotg210
, (epnum
<< 8) | dev
->devnum
);
3940 stream
->buf1
= cpu_to_hc32(fotg210
, buf1
);
3941 stream
->buf2
= cpu_to_hc32(fotg210
, multi
);
3943 /* usbfs wants to report the average usecs per frame tied up
3944 * when transfers on this endpoint are scheduled ...
3946 if (dev
->speed
== USB_SPEED_FULL
) {
3948 stream
->usecs
= NS_TO_US(usb_calc_bus_time(dev
->speed
,
3949 is_input
, 1, maxp
));
3952 stream
->highspeed
= 1;
3953 stream
->usecs
= HS_USECS_ISO(maxp
);
3955 bandwidth
= stream
->usecs
* 8;
3956 bandwidth
/= interval
;
3958 stream
->bandwidth
= bandwidth
;
3960 stream
->bEndpointAddress
= is_input
| epnum
;
3961 stream
->interval
= interval
;
3962 stream
->maxp
= maxp
;
3965 static struct fotg210_iso_stream
*iso_stream_find(struct fotg210_hcd
*fotg210
,
3969 struct fotg210_iso_stream
*stream
;
3970 struct usb_host_endpoint
*ep
;
3971 unsigned long flags
;
3973 epnum
= usb_pipeendpoint(urb
->pipe
);
3974 if (usb_pipein(urb
->pipe
))
3975 ep
= urb
->dev
->ep_in
[epnum
];
3977 ep
= urb
->dev
->ep_out
[epnum
];
3979 spin_lock_irqsave(&fotg210
->lock
, flags
);
3980 stream
= ep
->hcpriv
;
3982 if (unlikely(stream
== NULL
)) {
3983 stream
= iso_stream_alloc(GFP_ATOMIC
);
3984 if (likely(stream
!= NULL
)) {
3985 ep
->hcpriv
= stream
;
3987 iso_stream_init(fotg210
, stream
, urb
->dev
, urb
->pipe
,
3991 /* if dev->ep[epnum] is a QH, hw is set */
3992 } else if (unlikely(stream
->hw
!= NULL
)) {
3993 fotg210_dbg(fotg210
, "dev %s ep%d%s, not iso??\n",
3994 urb
->dev
->devpath
, epnum
,
3995 usb_pipein(urb
->pipe
) ? "in" : "out");
3999 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4003 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4005 static struct fotg210_iso_sched
*iso_sched_alloc(unsigned packets
,
4008 struct fotg210_iso_sched
*iso_sched
;
4010 iso_sched
= kzalloc(struct_size(iso_sched
, packet
, packets
), mem_flags
);
4011 if (likely(iso_sched
!= NULL
))
4012 INIT_LIST_HEAD(&iso_sched
->td_list
);
4017 static inline void itd_sched_init(struct fotg210_hcd
*fotg210
,
4018 struct fotg210_iso_sched
*iso_sched
,
4019 struct fotg210_iso_stream
*stream
, struct urb
*urb
)
4022 dma_addr_t dma
= urb
->transfer_dma
;
4024 /* how many uframes are needed for these transfers */
4025 iso_sched
->span
= urb
->number_of_packets
* stream
->interval
;
4027 /* figure out per-uframe itd fields that we'll need later
4028 * when we fit new itds into the schedule.
4030 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4031 struct fotg210_iso_packet
*uframe
= &iso_sched
->packet
[i
];
4036 length
= urb
->iso_frame_desc
[i
].length
;
4037 buf
= dma
+ urb
->iso_frame_desc
[i
].offset
;
4039 trans
= FOTG210_ISOC_ACTIVE
;
4040 trans
|= buf
& 0x0fff;
4041 if (unlikely(((i
+ 1) == urb
->number_of_packets
))
4042 && !(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4043 trans
|= FOTG210_ITD_IOC
;
4044 trans
|= length
<< 16;
4045 uframe
->transaction
= cpu_to_hc32(fotg210
, trans
);
4047 /* might need to cross a buffer page within a uframe */
4048 uframe
->bufp
= (buf
& ~(u64
)0x0fff);
4050 if (unlikely((uframe
->bufp
!= (buf
& ~(u64
)0x0fff))))
4055 static void iso_sched_free(struct fotg210_iso_stream
*stream
,
4056 struct fotg210_iso_sched
*iso_sched
)
4060 /* caller must hold fotg210->lock!*/
4061 list_splice(&iso_sched
->td_list
, &stream
->free_list
);
4065 static int itd_urb_transaction(struct fotg210_iso_stream
*stream
,
4066 struct fotg210_hcd
*fotg210
, struct urb
*urb
, gfp_t mem_flags
)
4068 struct fotg210_itd
*itd
;
4072 struct fotg210_iso_sched
*sched
;
4073 unsigned long flags
;
4075 sched
= iso_sched_alloc(urb
->number_of_packets
, mem_flags
);
4076 if (unlikely(sched
== NULL
))
4079 itd_sched_init(fotg210
, sched
, stream
, urb
);
4081 if (urb
->interval
< 8)
4082 num_itds
= 1 + (sched
->span
+ 7) / 8;
4084 num_itds
= urb
->number_of_packets
;
4086 /* allocate/init ITDs */
4087 spin_lock_irqsave(&fotg210
->lock
, flags
);
4088 for (i
= 0; i
< num_itds
; i
++) {
4091 * Use iTDs from the free list, but not iTDs that may
4092 * still be in use by the hardware.
4094 if (likely(!list_empty(&stream
->free_list
))) {
4095 itd
= list_first_entry(&stream
->free_list
,
4096 struct fotg210_itd
, itd_list
);
4097 if (itd
->frame
== fotg210
->now_frame
)
4099 list_del(&itd
->itd_list
);
4100 itd_dma
= itd
->itd_dma
;
4103 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4104 itd
= dma_pool_alloc(fotg210
->itd_pool
, mem_flags
,
4106 spin_lock_irqsave(&fotg210
->lock
, flags
);
4108 iso_sched_free(stream
, sched
);
4109 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4114 memset(itd
, 0, sizeof(*itd
));
4115 itd
->itd_dma
= itd_dma
;
4116 list_add(&itd
->itd_list
, &sched
->td_list
);
4118 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4120 /* temporarily store schedule info in hcpriv */
4121 urb
->hcpriv
= sched
;
4122 urb
->error_count
= 0;
4126 static inline int itd_slot_ok(struct fotg210_hcd
*fotg210
, u32 mod
, u32 uframe
,
4127 u8 usecs
, u32 period
)
4131 /* can't commit more than uframe_periodic_max usec */
4132 if (periodic_usecs(fotg210
, uframe
>> 3, uframe
& 0x7)
4133 > (fotg210
->uframe_periodic_max
- usecs
))
4136 /* we know urb->interval is 2^N uframes */
4138 } while (uframe
< mod
);
4142 /* This scheduler plans almost as far into the future as it has actual
4143 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4144 * "as small as possible" to be cache-friendlier.) That limits the size
4145 * transfers you can stream reliably; avoid more than 64 msec per urb.
4146 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4147 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4148 * and other factors); or more than about 230 msec total (for portability,
4149 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4152 #define SCHEDULE_SLOP 80 /* microframes */
4154 static int iso_stream_schedule(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4155 struct fotg210_iso_stream
*stream
)
4157 u32 now
, next
, start
, period
, span
;
4159 unsigned mod
= fotg210
->periodic_size
<< 3;
4160 struct fotg210_iso_sched
*sched
= urb
->hcpriv
;
4162 period
= urb
->interval
;
4165 if (span
> mod
- SCHEDULE_SLOP
) {
4166 fotg210_dbg(fotg210
, "iso request %p too long\n", urb
);
4171 now
= fotg210_read_frame_index(fotg210
) & (mod
- 1);
4173 /* Typical case: reuse current schedule, stream is still active.
4174 * Hopefully there are no gaps from the host falling behind
4175 * (irq delays etc), but if there are we'll take the next
4176 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4178 if (likely(!list_empty(&stream
->td_list
))) {
4181 /* For high speed devices, allow scheduling within the
4182 * isochronous scheduling threshold. For full speed devices
4183 * and Intel PCI-based controllers, don't (work around for
4186 if (!stream
->highspeed
&& fotg210
->fs_i_thresh
)
4187 next
= now
+ fotg210
->i_thresh
;
4191 /* Fell behind (by up to twice the slop amount)?
4192 * We decide based on the time of the last currently-scheduled
4193 * slot, not the time of the next available slot.
4195 excess
= (stream
->next_uframe
- period
- next
) & (mod
- 1);
4196 if (excess
>= mod
- 2 * SCHEDULE_SLOP
)
4197 start
= next
+ excess
- mod
+ period
*
4198 DIV_ROUND_UP(mod
- excess
, period
);
4200 start
= next
+ excess
+ period
;
4201 if (start
- now
>= mod
) {
4202 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4203 urb
, start
- now
- period
, period
,
4210 /* need to schedule; when's the next (u)frame we could start?
4211 * this is bigger than fotg210->i_thresh allows; scheduling itself
4212 * isn't free, the slop should handle reasonably slow cpus. it
4213 * can also help high bandwidth if the dma and irq loads don't
4214 * jump until after the queue is primed.
4219 start
= SCHEDULE_SLOP
+ (now
& ~0x07);
4221 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4223 /* find a uframe slot with enough bandwidth.
4224 * Early uframes are more precious because full-speed
4225 * iso IN transfers can't use late uframes,
4226 * and therefore they should be allocated last.
4232 /* check schedule: enough space? */
4233 if (itd_slot_ok(fotg210
, mod
, start
,
4234 stream
->usecs
, period
))
4236 } while (start
> next
&& !done
);
4238 /* no room in the schedule */
4240 fotg210_dbg(fotg210
, "iso resched full %p (now %d max %d)\n",
4241 urb
, now
, now
+ mod
);
4247 /* Tried to schedule too far into the future? */
4248 if (unlikely(start
- now
+ span
- period
>=
4249 mod
- 2 * SCHEDULE_SLOP
)) {
4250 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4251 urb
, start
- now
, span
- period
,
4252 mod
- 2 * SCHEDULE_SLOP
);
4257 stream
->next_uframe
= start
& (mod
- 1);
4259 /* report high speed start in uframes; full speed, in frames */
4260 urb
->start_frame
= stream
->next_uframe
;
4261 if (!stream
->highspeed
)
4262 urb
->start_frame
>>= 3;
4264 /* Make sure scan_isoc() sees these */
4265 if (fotg210
->isoc_count
== 0)
4266 fotg210
->next_frame
= now
>> 3;
4270 iso_sched_free(stream
, sched
);
4275 static inline void itd_init(struct fotg210_hcd
*fotg210
,
4276 struct fotg210_iso_stream
*stream
, struct fotg210_itd
*itd
)
4280 /* it's been recently zeroed */
4281 itd
->hw_next
= FOTG210_LIST_END(fotg210
);
4282 itd
->hw_bufp
[0] = stream
->buf0
;
4283 itd
->hw_bufp
[1] = stream
->buf1
;
4284 itd
->hw_bufp
[2] = stream
->buf2
;
4286 for (i
= 0; i
< 8; i
++)
4289 /* All other fields are filled when scheduling */
4292 static inline void itd_patch(struct fotg210_hcd
*fotg210
,
4293 struct fotg210_itd
*itd
, struct fotg210_iso_sched
*iso_sched
,
4294 unsigned index
, u16 uframe
)
4296 struct fotg210_iso_packet
*uf
= &iso_sched
->packet
[index
];
4297 unsigned pg
= itd
->pg
;
4300 itd
->index
[uframe
] = index
;
4302 itd
->hw_transaction
[uframe
] = uf
->transaction
;
4303 itd
->hw_transaction
[uframe
] |= cpu_to_hc32(fotg210
, pg
<< 12);
4304 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, uf
->bufp
& ~(u32
)0);
4305 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(uf
->bufp
>> 32));
4307 /* iso_frame_desc[].offset must be strictly increasing */
4308 if (unlikely(uf
->cross
)) {
4309 u64 bufp
= uf
->bufp
+ 4096;
4312 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, bufp
& ~(u32
)0);
4313 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(bufp
>> 32));
4317 static inline void itd_link(struct fotg210_hcd
*fotg210
, unsigned frame
,
4318 struct fotg210_itd
*itd
)
4320 union fotg210_shadow
*prev
= &fotg210
->pshadow
[frame
];
4321 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
4322 union fotg210_shadow here
= *prev
;
4325 /* skip any iso nodes which might belong to previous microframes */
4327 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4328 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
4330 prev
= periodic_next_shadow(fotg210
, prev
, type
);
4331 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
4335 itd
->itd_next
= here
;
4336 itd
->hw_next
= *hw_p
;
4340 *hw_p
= cpu_to_hc32(fotg210
, itd
->itd_dma
| Q_TYPE_ITD
);
4343 /* fit urb's itds into the selected schedule slot; activate as needed */
4344 static void itd_link_urb(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4345 unsigned mod
, struct fotg210_iso_stream
*stream
)
4348 unsigned next_uframe
, uframe
, frame
;
4349 struct fotg210_iso_sched
*iso_sched
= urb
->hcpriv
;
4350 struct fotg210_itd
*itd
;
4352 next_uframe
= stream
->next_uframe
& (mod
- 1);
4354 if (unlikely(list_empty(&stream
->td_list
))) {
4355 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4356 += stream
->bandwidth
;
4357 fotg210_dbg(fotg210
,
4358 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4359 urb
->dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4360 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out",
4362 next_uframe
>> 3, next_uframe
& 0x7);
4365 /* fill iTDs uframe by uframe */
4366 for (packet
= 0, itd
= NULL
; packet
< urb
->number_of_packets
;) {
4368 /* ASSERT: we have all necessary itds */
4370 /* ASSERT: no itds for this endpoint in this uframe */
4372 itd
= list_entry(iso_sched
->td_list
.next
,
4373 struct fotg210_itd
, itd_list
);
4374 list_move_tail(&itd
->itd_list
, &stream
->td_list
);
4375 itd
->stream
= stream
;
4377 itd_init(fotg210
, stream
, itd
);
4380 uframe
= next_uframe
& 0x07;
4381 frame
= next_uframe
>> 3;
4383 itd_patch(fotg210
, itd
, iso_sched
, packet
, uframe
);
4385 next_uframe
+= stream
->interval
;
4386 next_uframe
&= mod
- 1;
4389 /* link completed itds into the schedule */
4390 if (((next_uframe
>> 3) != frame
)
4391 || packet
== urb
->number_of_packets
) {
4392 itd_link(fotg210
, frame
& (fotg210
->periodic_size
- 1),
4397 stream
->next_uframe
= next_uframe
;
4399 /* don't need that schedule data any more */
4400 iso_sched_free(stream
, iso_sched
);
4403 ++fotg210
->isoc_count
;
4404 enable_periodic(fotg210
);
4407 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4408 FOTG210_ISOC_XACTERR)
4410 /* Process and recycle a completed ITD. Return true iff its urb completed,
4411 * and hence its completion callback probably added things to the hardware
4414 * Note that we carefully avoid recycling this descriptor until after any
4415 * completion callback runs, so that it won't be reused quickly. That is,
4416 * assuming (a) no more than two urbs per frame on this endpoint, and also
4417 * (b) only this endpoint's completions submit URBs. It seems some silicon
4418 * corrupts things if you reuse completed descriptors very quickly...
4420 static bool itd_complete(struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
4422 struct urb
*urb
= itd
->urb
;
4423 struct usb_iso_packet_descriptor
*desc
;
4427 struct fotg210_iso_stream
*stream
= itd
->stream
;
4428 struct usb_device
*dev
;
4429 bool retval
= false;
4431 /* for each uframe with a packet */
4432 for (uframe
= 0; uframe
< 8; uframe
++) {
4433 if (likely(itd
->index
[uframe
] == -1))
4435 urb_index
= itd
->index
[uframe
];
4436 desc
= &urb
->iso_frame_desc
[urb_index
];
4438 t
= hc32_to_cpup(fotg210
, &itd
->hw_transaction
[uframe
]);
4439 itd
->hw_transaction
[uframe
] = 0;
4441 /* report transfer status */
4442 if (unlikely(t
& ISO_ERRS
)) {
4444 if (t
& FOTG210_ISOC_BUF_ERR
)
4445 desc
->status
= usb_pipein(urb
->pipe
)
4446 ? -ENOSR
/* hc couldn't read */
4447 : -ECOMM
; /* hc couldn't write */
4448 else if (t
& FOTG210_ISOC_BABBLE
)
4449 desc
->status
= -EOVERFLOW
;
4450 else /* (t & FOTG210_ISOC_XACTERR) */
4451 desc
->status
= -EPROTO
;
4453 /* HC need not update length with this error */
4454 if (!(t
& FOTG210_ISOC_BABBLE
)) {
4455 desc
->actual_length
= FOTG210_ITD_LENGTH(t
);
4456 urb
->actual_length
+= desc
->actual_length
;
4458 } else if (likely((t
& FOTG210_ISOC_ACTIVE
) == 0)) {
4460 desc
->actual_length
= FOTG210_ITD_LENGTH(t
);
4461 urb
->actual_length
+= desc
->actual_length
;
4463 /* URB was too late */
4464 desc
->status
= -EXDEV
;
4468 /* handle completion now? */
4469 if (likely((urb_index
+ 1) != urb
->number_of_packets
))
4472 /* ASSERT: it's really the last itd for this urb
4473 * list_for_each_entry (itd, &stream->td_list, itd_list)
4474 * BUG_ON (itd->urb == urb);
4477 /* give urb back to the driver; completion often (re)submits */
4479 fotg210_urb_done(fotg210
, urb
, 0);
4483 --fotg210
->isoc_count
;
4484 disable_periodic(fotg210
);
4486 if (unlikely(list_is_singular(&stream
->td_list
))) {
4487 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4488 -= stream
->bandwidth
;
4489 fotg210_dbg(fotg210
,
4490 "deschedule devp %s ep%d%s-iso\n",
4491 dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4492 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out");
4498 /* Add to the end of the free list for later reuse */
4499 list_move_tail(&itd
->itd_list
, &stream
->free_list
);
4501 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4502 if (list_empty(&stream
->td_list
)) {
4503 list_splice_tail_init(&stream
->free_list
,
4504 &fotg210
->cached_itd_list
);
4505 start_free_itds(fotg210
);
4511 static int itd_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4514 int status
= -EINVAL
;
4515 unsigned long flags
;
4516 struct fotg210_iso_stream
*stream
;
4518 /* Get iso_stream head */
4519 stream
= iso_stream_find(fotg210
, urb
);
4520 if (unlikely(stream
== NULL
)) {
4521 fotg210_dbg(fotg210
, "can't get iso stream\n");
4524 if (unlikely(urb
->interval
!= stream
->interval
&&
4525 fotg210_port_speed(fotg210
, 0) ==
4526 USB_PORT_STAT_HIGH_SPEED
)) {
4527 fotg210_dbg(fotg210
, "can't change iso interval %d --> %d\n",
4528 stream
->interval
, urb
->interval
);
4532 #ifdef FOTG210_URB_TRACE
4533 fotg210_dbg(fotg210
,
4534 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4535 __func__
, urb
->dev
->devpath
, urb
,
4536 usb_pipeendpoint(urb
->pipe
),
4537 usb_pipein(urb
->pipe
) ? "in" : "out",
4538 urb
->transfer_buffer_length
,
4539 urb
->number_of_packets
, urb
->interval
,
4543 /* allocate ITDs w/o locking anything */
4544 status
= itd_urb_transaction(stream
, fotg210
, urb
, mem_flags
);
4545 if (unlikely(status
< 0)) {
4546 fotg210_dbg(fotg210
, "can't init itds\n");
4550 /* schedule ... need to lock */
4551 spin_lock_irqsave(&fotg210
->lock
, flags
);
4552 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
4553 status
= -ESHUTDOWN
;
4554 goto done_not_linked
;
4556 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
4557 if (unlikely(status
))
4558 goto done_not_linked
;
4559 status
= iso_stream_schedule(fotg210
, urb
, stream
);
4560 if (likely(status
== 0))
4561 itd_link_urb(fotg210
, urb
, fotg210
->periodic_size
<< 3, stream
);
4563 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
4565 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4570 static inline int scan_frame_queue(struct fotg210_hcd
*fotg210
, unsigned frame
,
4571 unsigned now_frame
, bool live
)
4575 union fotg210_shadow q
, *q_p
;
4578 /* scan each element in frame's queue for completions */
4579 q_p
= &fotg210
->pshadow
[frame
];
4580 hw_p
= &fotg210
->periodic
[frame
];
4582 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4586 switch (hc32_to_cpu(fotg210
, type
)) {
4588 /* If this ITD is still active, leave it for
4589 * later processing ... check the next entry.
4590 * No need to check for activity unless the
4593 if (frame
== now_frame
&& live
) {
4595 for (uf
= 0; uf
< 8; uf
++) {
4596 if (q
.itd
->hw_transaction
[uf
] &
4597 ITD_ACTIVE(fotg210
))
4601 q_p
= &q
.itd
->itd_next
;
4602 hw_p
= &q
.itd
->hw_next
;
4603 type
= Q_NEXT_TYPE(fotg210
,
4610 /* Take finished ITDs out of the schedule
4611 * and process them: recycle, maybe report
4612 * URB completion. HC won't cache the
4613 * pointer for much longer, if at all.
4615 *q_p
= q
.itd
->itd_next
;
4616 *hw_p
= q
.itd
->hw_next
;
4617 type
= Q_NEXT_TYPE(fotg210
, q
.itd
->hw_next
);
4619 modified
= itd_complete(fotg210
, q
.itd
);
4623 fotg210_dbg(fotg210
, "corrupt type %d frame %d shadow %p\n",
4624 type
, frame
, q
.ptr
);
4628 /* End of the iTDs and siTDs */
4633 /* assume completion callbacks modify the queue */
4634 if (unlikely(modified
&& fotg210
->isoc_count
> 0))
4640 static void scan_isoc(struct fotg210_hcd
*fotg210
)
4642 unsigned uf
, now_frame
, frame
, ret
;
4643 unsigned fmask
= fotg210
->periodic_size
- 1;
4647 * When running, scan from last scan point up to "now"
4648 * else clean up by scanning everything that's left.
4649 * Touches as few pages as possible: cache-friendly.
4651 if (fotg210
->rh_state
>= FOTG210_RH_RUNNING
) {
4652 uf
= fotg210_read_frame_index(fotg210
);
4653 now_frame
= (uf
>> 3) & fmask
;
4656 now_frame
= (fotg210
->next_frame
- 1) & fmask
;
4659 fotg210
->now_frame
= now_frame
;
4661 frame
= fotg210
->next_frame
;
4665 ret
= scan_frame_queue(fotg210
, frame
,
4668 /* Stop when we have reached the current frame */
4669 if (frame
== now_frame
)
4671 frame
= (frame
+ 1) & fmask
;
4673 fotg210
->next_frame
= now_frame
;
4676 /* Display / Set uframe_periodic_max
4678 static ssize_t
uframe_periodic_max_show(struct device
*dev
,
4679 struct device_attribute
*attr
, char *buf
)
4681 struct fotg210_hcd
*fotg210
;
4683 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4684 return sysfs_emit(buf
, "%d\n", fotg210
->uframe_periodic_max
);
4687 static ssize_t
uframe_periodic_max_store(struct device
*dev
,
4688 struct device_attribute
*attr
, const char *buf
, size_t count
)
4690 struct fotg210_hcd
*fotg210
;
4691 unsigned uframe_periodic_max
;
4692 unsigned frame
, uframe
;
4693 unsigned short allocated_max
;
4694 unsigned long flags
;
4697 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4699 ret
= kstrtouint(buf
, 0, &uframe_periodic_max
);
4703 if (uframe_periodic_max
< 100 || uframe_periodic_max
>= 125) {
4704 fotg210_info(fotg210
, "rejecting invalid request for uframe_periodic_max=%u\n",
4705 uframe_periodic_max
);
4712 * lock, so that our checking does not race with possible periodic
4713 * bandwidth allocation through submitting new urbs.
4715 spin_lock_irqsave(&fotg210
->lock
, flags
);
4718 * for request to decrease max periodic bandwidth, we have to check
4719 * every microframe in the schedule to see whether the decrease is
4722 if (uframe_periodic_max
< fotg210
->uframe_periodic_max
) {
4725 for (frame
= 0; frame
< fotg210
->periodic_size
; ++frame
)
4726 for (uframe
= 0; uframe
< 7; ++uframe
)
4727 allocated_max
= max(allocated_max
,
4728 periodic_usecs(fotg210
, frame
,
4731 if (allocated_max
> uframe_periodic_max
) {
4732 fotg210_info(fotg210
,
4733 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4734 allocated_max
, uframe_periodic_max
);
4739 /* increasing is always ok */
4741 fotg210_info(fotg210
,
4742 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4743 100 * uframe_periodic_max
/125, uframe_periodic_max
);
4745 if (uframe_periodic_max
!= 100)
4746 fotg210_warn(fotg210
, "max periodic bandwidth set is non-standard\n");
4748 fotg210
->uframe_periodic_max
= uframe_periodic_max
;
4752 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4756 static DEVICE_ATTR_RW(uframe_periodic_max
);
4758 static inline int create_sysfs_files(struct fotg210_hcd
*fotg210
)
4760 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4762 return device_create_file(controller
, &dev_attr_uframe_periodic_max
);
4765 static inline void remove_sysfs_files(struct fotg210_hcd
*fotg210
)
4767 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4769 device_remove_file(controller
, &dev_attr_uframe_periodic_max
);
4771 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4772 * The firmware seems to think that powering off is a wakeup event!
4773 * This routine turns off remote wakeup and everything else, on all ports.
4775 static void fotg210_turn_off_all_ports(struct fotg210_hcd
*fotg210
)
4777 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
4779 fotg210_writel(fotg210
, PORT_RWC_BITS
, status_reg
);
4782 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4783 * Must be called with interrupts enabled and the lock not held.
4785 static void fotg210_silence_controller(struct fotg210_hcd
*fotg210
)
4787 fotg210_halt(fotg210
);
4789 spin_lock_irq(&fotg210
->lock
);
4790 fotg210
->rh_state
= FOTG210_RH_HALTED
;
4791 fotg210_turn_off_all_ports(fotg210
);
4792 spin_unlock_irq(&fotg210
->lock
);
4795 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4796 * This forcibly disables dma and IRQs, helping kexec and other cases
4797 * where the next system software may expect clean state.
4799 static void fotg210_shutdown(struct usb_hcd
*hcd
)
4801 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4803 spin_lock_irq(&fotg210
->lock
);
4804 fotg210
->shutdown
= true;
4805 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
4806 fotg210
->enabled_hrtimer_events
= 0;
4807 spin_unlock_irq(&fotg210
->lock
);
4809 fotg210_silence_controller(fotg210
);
4811 hrtimer_cancel(&fotg210
->hrtimer
);
4814 /* fotg210_work is called from some interrupts, timers, and so on.
4815 * it calls driver completion functions, after dropping fotg210->lock.
4817 static void fotg210_work(struct fotg210_hcd
*fotg210
)
4819 /* another CPU may drop fotg210->lock during a schedule scan while
4820 * it reports urb completions. this flag guards against bogus
4821 * attempts at re-entrant schedule scanning.
4823 if (fotg210
->scanning
) {
4824 fotg210
->need_rescan
= true;
4827 fotg210
->scanning
= true;
4830 fotg210
->need_rescan
= false;
4831 if (fotg210
->async_count
)
4832 scan_async(fotg210
);
4833 if (fotg210
->intr_count
> 0)
4835 if (fotg210
->isoc_count
> 0)
4837 if (fotg210
->need_rescan
)
4839 fotg210
->scanning
= false;
4841 /* the IO watchdog guards against hardware or driver bugs that
4842 * misplace IRQs, and should let us run completely without IRQs.
4843 * such lossage has been observed on both VT6202 and VT8235.
4845 turn_on_io_watchdog(fotg210
);
4848 /* Called when the fotg210_hcd module is removed.
4850 static void fotg210_stop(struct usb_hcd
*hcd
)
4852 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4854 fotg210_dbg(fotg210
, "stop\n");
4856 /* no more interrupts ... */
4858 spin_lock_irq(&fotg210
->lock
);
4859 fotg210
->enabled_hrtimer_events
= 0;
4860 spin_unlock_irq(&fotg210
->lock
);
4862 fotg210_quiesce(fotg210
);
4863 fotg210_silence_controller(fotg210
);
4864 fotg210_reset(fotg210
);
4866 hrtimer_cancel(&fotg210
->hrtimer
);
4867 remove_sysfs_files(fotg210
);
4868 remove_debug_files(fotg210
);
4870 /* root hub is shut down separately (first, when possible) */
4871 spin_lock_irq(&fotg210
->lock
);
4872 end_free_itds(fotg210
);
4873 spin_unlock_irq(&fotg210
->lock
);
4874 fotg210_mem_cleanup(fotg210
);
4876 #ifdef FOTG210_STATS
4877 fotg210_dbg(fotg210
, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4878 fotg210
->stats
.normal
, fotg210
->stats
.error
,
4879 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
4880 fotg210_dbg(fotg210
, "complete %ld unlink %ld\n",
4881 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
4884 dbg_status(fotg210
, "fotg210_stop completed",
4885 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
4888 /* one-time init, only for memory state */
4889 static int hcd_fotg210_init(struct usb_hcd
*hcd
)
4891 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4895 struct fotg210_qh_hw
*hw
;
4897 spin_lock_init(&fotg210
->lock
);
4900 * keep io watchdog by default, those good HCDs could turn off it later
4902 fotg210
->need_io_watchdog
= 1;
4904 hrtimer_init(&fotg210
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
4905 fotg210
->hrtimer
.function
= fotg210_hrtimer_func
;
4906 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
4908 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
4911 * by default set standard 80% (== 100 usec/uframe) max periodic
4912 * bandwidth as required by USB 2.0
4914 fotg210
->uframe_periodic_max
= 100;
4917 * hw default: 1K periodic list heads, one per frame.
4918 * periodic_size can shrink by USBCMD update if hcc_params allows.
4920 fotg210
->periodic_size
= DEFAULT_I_TDPS
;
4921 INIT_LIST_HEAD(&fotg210
->intr_qh_list
);
4922 INIT_LIST_HEAD(&fotg210
->cached_itd_list
);
4924 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4925 /* periodic schedule size can be smaller than default */
4926 switch (FOTG210_TUNE_FLS
) {
4928 fotg210
->periodic_size
= 1024;
4931 fotg210
->periodic_size
= 512;
4934 fotg210
->periodic_size
= 256;
4940 retval
= fotg210_mem_init(fotg210
, GFP_KERNEL
);
4944 /* controllers may cache some of the periodic schedule ... */
4945 fotg210
->i_thresh
= 2;
4948 * dedicate a qh for the async ring head, since we couldn't unlink
4949 * a 'real' qh without stopping the async schedule [4.8]. use it
4950 * as the 'reclamation list head' too.
4951 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4952 * from automatically advancing to the next td after short reads.
4954 fotg210
->async
->qh_next
.qh
= NULL
;
4955 hw
= fotg210
->async
->hw
;
4956 hw
->hw_next
= QH_NEXT(fotg210
, fotg210
->async
->qh_dma
);
4957 hw
->hw_info1
= cpu_to_hc32(fotg210
, QH_HEAD
);
4958 hw
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
4959 hw
->hw_qtd_next
= FOTG210_LIST_END(fotg210
);
4960 fotg210
->async
->qh_state
= QH_STATE_LINKED
;
4961 hw
->hw_alt_next
= QTD_NEXT(fotg210
, fotg210
->async
->dummy
->qtd_dma
);
4963 /* clear interrupt enables, set irq latency */
4964 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
4965 log2_irq_thresh
= 0;
4966 temp
= 1 << (16 + log2_irq_thresh
);
4967 if (HCC_CANPARK(hcc_params
)) {
4968 /* HW default park == 3, on hardware that supports it (like
4969 * NVidia and ALI silicon), maximizes throughput on the async
4970 * schedule by avoiding QH fetches between transfers.
4972 * With fast usb storage devices and NForce2, "park" seems to
4973 * make problems: throughput reduction (!), data errors...
4976 park
= min_t(unsigned, park
, 3);
4980 fotg210_dbg(fotg210
, "park %d\n", park
);
4982 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4983 /* periodic schedule size can be smaller than default */
4985 temp
|= (FOTG210_TUNE_FLS
<< 2);
4987 fotg210
->command
= temp
;
4989 /* Accept arbitrarily long scatter-gather lists */
4990 if (!hcd
->localmem_pool
)
4991 hcd
->self
.sg_tablesize
= ~0;
4995 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
4996 static int fotg210_run(struct usb_hcd
*hcd
)
4998 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5001 hcd
->uses_new_polling
= 1;
5003 /* EHCI spec section 4.1 */
5005 fotg210_writel(fotg210
, fotg210
->periodic_dma
,
5006 &fotg210
->regs
->frame_list
);
5007 fotg210_writel(fotg210
, (u32
)fotg210
->async
->qh_dma
,
5008 &fotg210
->regs
->async_next
);
5011 * hcc_params controls whether fotg210->regs->segment must (!!!)
5012 * be used; it constrains QH/ITD/SITD and QTD locations.
5013 * dma_pool consistent memory always uses segment zero.
5014 * streaming mappings for I/O buffers, like dma_map_single(),
5015 * can return segments above 4GB, if the device allows.
5017 * NOTE: the dma mask is visible through dev->dma_mask, so
5018 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5019 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5020 * host side drivers though.
5022 fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
5025 * Philips, Intel, and maybe others need CMD_RUN before the
5026 * root hub will detect new devices (why?); NEC doesn't
5028 fotg210
->command
&= ~(CMD_IAAD
|CMD_PSE
|CMD_ASE
|CMD_RESET
);
5029 fotg210
->command
|= CMD_RUN
;
5030 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
5031 dbg_cmd(fotg210
, "init", fotg210
->command
);
5034 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5035 * are explicitly handed to companion controller(s), so no TT is
5036 * involved with the root hub. (Except where one is integrated,
5037 * and there's no companion controller unless maybe for USB OTG.)
5039 * Turning on the CF flag will transfer ownership of all ports
5040 * from the companions to the EHCI controller. If any of the
5041 * companions are in the middle of a port reset at the time, it
5042 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5043 * guarantees that no resets are in progress. After we set CF,
5044 * a short delay lets the hardware catch up; new resets shouldn't
5045 * be started before the port switching actions could complete.
5047 down_write(&ehci_cf_port_reset_rwsem
);
5048 fotg210
->rh_state
= FOTG210_RH_RUNNING
;
5049 /* unblock posted writes */
5050 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5051 usleep_range(5000, 10000);
5052 up_write(&ehci_cf_port_reset_rwsem
);
5053 fotg210
->last_periodic_enable
= ktime_get_real();
5055 temp
= HC_VERSION(fotg210
,
5056 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5057 fotg210_info(fotg210
,
5058 "USB %x.%x started, EHCI %x.%02x\n",
5059 ((fotg210
->sbrn
& 0xf0) >> 4), (fotg210
->sbrn
& 0x0f),
5060 temp
>> 8, temp
& 0xff);
5062 fotg210_writel(fotg210
, INTR_MASK
,
5063 &fotg210
->regs
->intr_enable
); /* Turn On Interrupts */
5065 /* GRR this is run-once init(), being done every time the HC starts.
5066 * So long as they're part of class devices, we can't do it init()
5067 * since the class device isn't created that early.
5069 create_debug_files(fotg210
);
5070 create_sysfs_files(fotg210
);
5075 static int fotg210_setup(struct usb_hcd
*hcd
)
5077 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5080 fotg210
->regs
= (void __iomem
*)fotg210
->caps
+
5082 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5083 dbg_hcs_params(fotg210
, "reset");
5084 dbg_hcc_params(fotg210
, "reset");
5086 /* cache this readonly data; minimize chip reads */
5087 fotg210
->hcs_params
= fotg210_readl(fotg210
,
5088 &fotg210
->caps
->hcs_params
);
5090 fotg210
->sbrn
= HCD_USB2
;
5092 /* data structure init */
5093 retval
= hcd_fotg210_init(hcd
);
5097 retval
= fotg210_halt(fotg210
);
5101 fotg210_reset(fotg210
);
5106 static irqreturn_t
fotg210_irq(struct usb_hcd
*hcd
)
5108 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5109 u32 status
, masked_status
, pcd_status
= 0, cmd
;
5112 spin_lock(&fotg210
->lock
);
5114 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
5116 /* e.g. cardbus physical eject */
5117 if (status
== ~(u32
) 0) {
5118 fotg210_dbg(fotg210
, "device removed\n");
5123 * We don't use STS_FLR, but some controllers don't like it to
5124 * remain on, so mask it out along with the other status bits.
5126 masked_status
= status
& (INTR_MASK
| STS_FLR
);
5129 if (!masked_status
||
5130 unlikely(fotg210
->rh_state
== FOTG210_RH_HALTED
)) {
5131 spin_unlock(&fotg210
->lock
);
5135 /* clear (just) interrupts */
5136 fotg210_writel(fotg210
, masked_status
, &fotg210
->regs
->status
);
5137 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5140 /* unrequested/ignored: Frame List Rollover */
5141 dbg_status(fotg210
, "irq", status
);
5143 /* INT, ERR, and IAA interrupt rates can be throttled */
5145 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5146 if (likely((status
& (STS_INT
|STS_ERR
)) != 0)) {
5147 if (likely((status
& STS_ERR
) == 0))
5148 INCR(fotg210
->stats
.normal
);
5150 INCR(fotg210
->stats
.error
);
5154 /* complete the unlinking of some qh [4.15.2.3] */
5155 if (status
& STS_IAA
) {
5157 /* Turn off the IAA watchdog */
5158 fotg210
->enabled_hrtimer_events
&=
5159 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG
);
5162 * Mild optimization: Allow another IAAD to reset the
5163 * hrtimer, if one occurs before the next expiration.
5164 * In theory we could always cancel the hrtimer, but
5165 * tests show that about half the time it will be reset
5166 * for some other event anyway.
5168 if (fotg210
->next_hrtimer_event
== FOTG210_HRTIMER_IAA_WATCHDOG
)
5169 ++fotg210
->next_hrtimer_event
;
5171 /* guard against (alleged) silicon errata */
5173 fotg210_dbg(fotg210
, "IAA with IAAD still set?\n");
5174 if (fotg210
->async_iaa
) {
5175 INCR(fotg210
->stats
.iaa
);
5176 end_unlink_async(fotg210
);
5178 fotg210_dbg(fotg210
, "IAA with nothing unlinked?\n");
5181 /* remote wakeup [4.3.1] */
5182 if (status
& STS_PCD
) {
5184 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
5186 /* kick root hub later */
5187 pcd_status
= status
;
5189 /* resume root hub? */
5190 if (fotg210
->rh_state
== FOTG210_RH_SUSPENDED
)
5191 usb_hcd_resume_root_hub(hcd
);
5193 pstatus
= fotg210_readl(fotg210
, status_reg
);
5195 if (test_bit(0, &fotg210
->suspended_ports
) &&
5196 ((pstatus
& PORT_RESUME
) ||
5197 !(pstatus
& PORT_SUSPEND
)) &&
5198 (pstatus
& PORT_PE
) &&
5199 fotg210
->reset_done
[0] == 0) {
5201 /* start 20 msec resume signaling from this port,
5202 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5203 * stop that signaling. Use 5 ms extra for safety,
5204 * like usb_port_resume() does.
5206 fotg210
->reset_done
[0] = jiffies
+ msecs_to_jiffies(25);
5207 set_bit(0, &fotg210
->resuming_ports
);
5208 fotg210_dbg(fotg210
, "port 1 remote wakeup\n");
5209 mod_timer(&hcd
->rh_timer
, fotg210
->reset_done
[0]);
5213 /* PCI errors [4.15.2.4] */
5214 if (unlikely((status
& STS_FATAL
) != 0)) {
5215 fotg210_err(fotg210
, "fatal error\n");
5216 dbg_cmd(fotg210
, "fatal", cmd
);
5217 dbg_status(fotg210
, "fatal", status
);
5221 /* Don't let the controller do anything more */
5222 fotg210
->shutdown
= true;
5223 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
5224 fotg210
->command
&= ~(CMD_RUN
| CMD_ASE
| CMD_PSE
);
5225 fotg210_writel(fotg210
, fotg210
->command
,
5226 &fotg210
->regs
->command
);
5227 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
5228 fotg210_handle_controller_death(fotg210
);
5230 /* Handle completions when the controller stops */
5235 fotg210_work(fotg210
);
5236 spin_unlock(&fotg210
->lock
);
5238 usb_hcd_poll_rh_status(hcd
);
5242 /* non-error returns are a promise to giveback() the urb later
5243 * we drop ownership so next owner (or urb unlink) can get it
5245 * urb + dev is in hcd.self.controller.urb_list
5246 * we're queueing TDs onto software and hardware lists
5248 * hcd-specific init for hcpriv hasn't been done yet
5250 * NOTE: control, bulk, and interrupt share the same code to append TDs
5251 * to a (possibly active) QH, and the same QH scanning code.
5253 static int fotg210_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
5256 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5257 struct list_head qtd_list
;
5259 INIT_LIST_HEAD(&qtd_list
);
5261 switch (usb_pipetype(urb
->pipe
)) {
5263 /* qh_completions() code doesn't handle all the fault cases
5264 * in multi-TD control transfers. Even 1KB is rare anyway.
5266 if (urb
->transfer_buffer_length
> (16 * 1024))
5269 /* case PIPE_BULK: */
5271 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5273 return submit_async(fotg210
, urb
, &qtd_list
, mem_flags
);
5275 case PIPE_INTERRUPT
:
5276 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5278 return intr_submit(fotg210
, urb
, &qtd_list
, mem_flags
);
5280 case PIPE_ISOCHRONOUS
:
5281 return itd_submit(fotg210
, urb
, mem_flags
);
5285 /* remove from hardware lists
5286 * completions normally happen asynchronously
5289 static int fotg210_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
5291 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5292 struct fotg210_qh
*qh
;
5293 unsigned long flags
;
5296 spin_lock_irqsave(&fotg210
->lock
, flags
);
5297 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
5301 switch (usb_pipetype(urb
->pipe
)) {
5302 /* case PIPE_CONTROL: */
5303 /* case PIPE_BULK:*/
5305 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5308 switch (qh
->qh_state
) {
5309 case QH_STATE_LINKED
:
5310 case QH_STATE_COMPLETING
:
5311 start_unlink_async(fotg210
, qh
);
5313 case QH_STATE_UNLINK
:
5314 case QH_STATE_UNLINK_WAIT
:
5315 /* already started */
5318 /* QH might be waiting for a Clear-TT-Buffer */
5319 qh_completions(fotg210
, qh
);
5324 case PIPE_INTERRUPT
:
5325 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5328 switch (qh
->qh_state
) {
5329 case QH_STATE_LINKED
:
5330 case QH_STATE_COMPLETING
:
5331 start_unlink_intr(fotg210
, qh
);
5334 qh_completions(fotg210
, qh
);
5337 fotg210_dbg(fotg210
, "bogus qh %p state %d\n",
5343 case PIPE_ISOCHRONOUS
:
5346 /* wait till next completion, do it then. */
5347 /* completion irqs can wait up to 1024 msec, */
5351 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5355 /* bulk qh holds the data toggle */
5357 static void fotg210_endpoint_disable(struct usb_hcd
*hcd
,
5358 struct usb_host_endpoint
*ep
)
5360 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5361 unsigned long flags
;
5362 struct fotg210_qh
*qh
, *tmp
;
5364 /* ASSERT: any requests/urbs are being unlinked */
5365 /* ASSERT: nobody can be submitting urbs for this any more */
5368 spin_lock_irqsave(&fotg210
->lock
, flags
);
5373 /* endpoints can be iso streams. for now, we don't
5374 * accelerate iso completions ... so spin a while.
5376 if (qh
->hw
== NULL
) {
5377 struct fotg210_iso_stream
*stream
= ep
->hcpriv
;
5379 if (!list_empty(&stream
->td_list
))
5382 /* BUG_ON(!list_empty(&stream->free_list)); */
5387 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
5388 qh
->qh_state
= QH_STATE_IDLE
;
5389 switch (qh
->qh_state
) {
5390 case QH_STATE_LINKED
:
5391 case QH_STATE_COMPLETING
:
5392 for (tmp
= fotg210
->async
->qh_next
.qh
;
5394 tmp
= tmp
->qh_next
.qh
)
5396 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5397 * may already be unlinked.
5400 start_unlink_async(fotg210
, qh
);
5402 case QH_STATE_UNLINK
: /* wait for hw to finish? */
5403 case QH_STATE_UNLINK_WAIT
:
5405 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5406 schedule_timeout_uninterruptible(1);
5408 case QH_STATE_IDLE
: /* fully unlinked */
5409 if (qh
->clearing_tt
)
5411 if (list_empty(&qh
->qtd_list
)) {
5412 qh_destroy(fotg210
, qh
);
5417 /* caller was supposed to have unlinked any requests;
5418 * that's not our job. just leak this memory.
5420 fotg210_err(fotg210
, "qh %p (#%02x) state %d%s\n",
5421 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
5422 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
5427 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5430 static void fotg210_endpoint_reset(struct usb_hcd
*hcd
,
5431 struct usb_host_endpoint
*ep
)
5433 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5434 struct fotg210_qh
*qh
;
5435 int eptype
= usb_endpoint_type(&ep
->desc
);
5436 int epnum
= usb_endpoint_num(&ep
->desc
);
5437 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
5438 unsigned long flags
;
5440 if (eptype
!= USB_ENDPOINT_XFER_BULK
&& eptype
!= USB_ENDPOINT_XFER_INT
)
5443 spin_lock_irqsave(&fotg210
->lock
, flags
);
5446 /* For Bulk and Interrupt endpoints we maintain the toggle state
5447 * in the hardware; the toggle bits in udev aren't used at all.
5448 * When an endpoint is reset by usb_clear_halt() we must reset
5449 * the toggle bit in the QH.
5452 usb_settoggle(qh
->dev
, epnum
, is_out
, 0);
5453 if (!list_empty(&qh
->qtd_list
)) {
5454 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5455 } else if (qh
->qh_state
== QH_STATE_LINKED
||
5456 qh
->qh_state
== QH_STATE_COMPLETING
) {
5458 /* The toggle value in the QH can't be updated
5459 * while the QH is active. Unlink it now;
5460 * re-linking will call qh_refresh().
5462 if (eptype
== USB_ENDPOINT_XFER_BULK
)
5463 start_unlink_async(fotg210
, qh
);
5465 start_unlink_intr(fotg210
, qh
);
5468 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5471 static int fotg210_get_frame(struct usb_hcd
*hcd
)
5473 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5475 return (fotg210_read_frame_index(fotg210
) >> 3) %
5476 fotg210
->periodic_size
;
5479 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5480 * because its registers (and irq) are shared between host/gadget/otg
5481 * functions and in order to facilitate role switching we cannot
5482 * give the fotg210 driver exclusive access to those.
5485 static const struct hc_driver fotg210_fotg210_hc_driver
= {
5486 .description
= hcd_name
,
5487 .product_desc
= "Faraday USB2.0 Host Controller",
5488 .hcd_priv_size
= sizeof(struct fotg210_hcd
),
5491 * generic hardware linkage
5494 .flags
= HCD_MEMORY
| HCD_DMA
| HCD_USB2
,
5497 * basic lifecycle operations
5499 .reset
= hcd_fotg210_init
,
5500 .start
= fotg210_run
,
5501 .stop
= fotg210_stop
,
5502 .shutdown
= fotg210_shutdown
,
5505 * managing i/o requests and associated device resources
5507 .urb_enqueue
= fotg210_urb_enqueue
,
5508 .urb_dequeue
= fotg210_urb_dequeue
,
5509 .endpoint_disable
= fotg210_endpoint_disable
,
5510 .endpoint_reset
= fotg210_endpoint_reset
,
5513 * scheduling support
5515 .get_frame_number
= fotg210_get_frame
,
5520 .hub_status_data
= fotg210_hub_status_data
,
5521 .hub_control
= fotg210_hub_control
,
5522 .bus_suspend
= fotg210_bus_suspend
,
5523 .bus_resume
= fotg210_bus_resume
,
5525 .relinquish_port
= fotg210_relinquish_port
,
5526 .port_handed_over
= fotg210_port_handed_over
,
5528 .clear_tt_buffer_complete
= fotg210_clear_tt_buffer_complete
,
5531 static void fotg210_init(struct fotg210_hcd
*fotg210
)
5535 iowrite32(GMIR_MDEV_INT
| GMIR_MOTG_INT
| GMIR_INT_POLARITY
,
5536 &fotg210
->regs
->gmir
);
5538 value
= ioread32(&fotg210
->regs
->otgcsr
);
5539 value
&= ~OTGCSR_A_BUS_DROP
;
5540 value
|= OTGCSR_A_BUS_REQ
;
5541 iowrite32(value
, &fotg210
->regs
->otgcsr
);
5545 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5547 * Allocates basic resources for this USB host controller, and
5548 * then invokes the start() method for the HCD associated with it
5549 * through the hotplug entry's driver_data.
5551 int fotg210_hcd_probe(struct platform_device
*pdev
, struct fotg210
*fotg
)
5553 struct device
*dev
= &pdev
->dev
;
5554 struct usb_hcd
*hcd
;
5557 struct fotg210_hcd
*fotg210
;
5562 pdev
->dev
.power
.power_state
= PMSG_ON
;
5564 irq
= platform_get_irq(pdev
, 0);
5568 hcd
= usb_create_hcd(&fotg210_fotg210_hc_driver
, dev
,
5571 retval
= dev_err_probe(dev
, -ENOMEM
, "failed to create hcd\n");
5572 goto fail_create_hcd
;
5577 hcd
->regs
= fotg
->base
;
5579 hcd
->rsrc_start
= fotg
->res
->start
;
5580 hcd
->rsrc_len
= resource_size(fotg
->res
);
5582 fotg210
= hcd_to_fotg210(hcd
);
5584 fotg210
->fotg
= fotg
;
5585 fotg210
->caps
= hcd
->regs
;
5587 retval
= fotg210_setup(hcd
);
5589 goto failed_put_hcd
;
5591 fotg210_init(fotg210
);
5593 retval
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
5595 dev_err_probe(dev
, retval
, "failed to add hcd\n");
5596 goto failed_put_hcd
;
5598 device_wakeup_enable(hcd
->self
.controller
);
5599 platform_set_drvdata(pdev
, hcd
);
5606 return dev_err_probe(dev
, retval
, "init %s fail\n", dev_name(dev
));
5610 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5611 * @dev: USB Host Controller being removed
5614 int fotg210_hcd_remove(struct platform_device
*pdev
)
5616 struct usb_hcd
*hcd
= platform_get_drvdata(pdev
);
5618 usb_remove_hcd(hcd
);
5624 int __init
fotg210_hcd_init(void)
5629 set_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5630 if (test_bit(USB_UHCI_LOADED
, &usb_hcds_loaded
) ||
5631 test_bit(USB_OHCI_LOADED
, &usb_hcds_loaded
))
5632 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5634 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5635 hcd_name
, sizeof(struct fotg210_qh
),
5636 sizeof(struct fotg210_qtd
),
5637 sizeof(struct fotg210_itd
));
5639 fotg210_debug_root
= debugfs_create_dir("fotg210", usb_debug_root
);
5644 void __exit
fotg210_hcd_cleanup(void)
5646 debugfs_remove(fotg210_debug_root
);
5647 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);