1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2001-2004 by David Brownell
6 /* this file is part of ehci-hcd.c */
8 /*-------------------------------------------------------------------------*/
11 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
13 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
14 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
15 * buffers needed for the larger number). We use one QH per endpoint, queue
16 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
18 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
19 * interrupts) needs careful scheduling. Performance improvements can be
20 * an ongoing challenge. That's in "ehci-sched.c".
22 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
23 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
24 * (b) special fields in qh entries or (c) split iso entries. TTs will
25 * buffer low/full speed data so the host collects it at high speed.
28 /*-------------------------------------------------------------------------*/
30 /* fill a qtd, returning how much of the buffer we were able to queue up */
33 qtd_fill(struct ehci_hcd
*ehci
, struct ehci_qtd
*qtd
, dma_addr_t buf
,
34 size_t len
, int token
, int maxpacket
)
40 /* one buffer entry per 4K ... first might be short or unaligned */
41 qtd
->hw_buf
[0] = cpu_to_hc32(ehci
, (u32
)addr
);
42 qtd
->hw_buf_hi
[0] = cpu_to_hc32(ehci
, (u32
)(addr
>> 32));
43 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
44 if (likely (len
< count
)) /* ... iff needed */
50 /* per-qtd limit: from 16K to 20K (best alignment) */
51 for (i
= 1; count
< len
&& i
< 5; i
++) {
53 qtd
->hw_buf
[i
] = cpu_to_hc32(ehci
, (u32
)addr
);
54 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(ehci
,
57 if ((count
+ 0x1000) < len
)
63 /* short packets may only terminate transfers */
65 count
-= (count
% maxpacket
);
67 qtd
->hw_token
= cpu_to_hc32(ehci
, (count
<< 16) | token
);
73 /*-------------------------------------------------------------------------*/
76 qh_update (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
78 struct ehci_qh_hw
*hw
= qh
->hw
;
80 /* writes to an active overlay are unsafe */
81 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
83 hw
->hw_qtd_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
84 hw
->hw_alt_next
= EHCI_LIST_END(ehci
);
86 /* Except for control endpoints, we make hardware maintain data
87 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
88 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
91 if (!(hw
->hw_info1
& cpu_to_hc32(ehci
, QH_TOGGLE_CTL
))) {
92 unsigned is_out
, epnum
;
95 epnum
= (hc32_to_cpup(ehci
, &hw
->hw_info1
) >> 8) & 0x0f;
96 if (unlikely(!usb_gettoggle(qh
->ps
.udev
, epnum
, is_out
))) {
97 hw
->hw_token
&= ~cpu_to_hc32(ehci
, QTD_TOGGLE
);
98 usb_settoggle(qh
->ps
.udev
, epnum
, is_out
, 1);
102 hw
->hw_token
&= cpu_to_hc32(ehci
, QTD_TOGGLE
| QTD_STS_PING
);
105 /* if it weren't for a common silicon quirk (writing the dummy into the qh
106 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
107 * recovery (including urb dequeue) would need software changes to a QH...
110 qh_refresh (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
112 struct ehci_qtd
*qtd
;
114 qtd
= list_entry(qh
->qtd_list
.next
, struct ehci_qtd
, qtd_list
);
117 * first qtd may already be partially processed.
118 * If we come here during unlink, the QH overlay region
119 * might have reference to the just unlinked qtd. The
120 * qtd is updated in qh_completions(). Update the QH
123 if (qh
->hw
->hw_token
& ACTIVE_BIT(ehci
)) {
124 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
125 if (qh
->should_be_inactive
)
126 ehci_warn(ehci
, "qh %p should be inactive!\n", qh
);
128 qh_update(ehci
, qh
, qtd
);
130 qh
->should_be_inactive
= 0;
133 /*-------------------------------------------------------------------------*/
135 static void qh_link_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
137 static void ehci_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
138 struct usb_host_endpoint
*ep
)
140 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
141 struct ehci_qh
*qh
= ep
->hcpriv
;
144 spin_lock_irqsave(&ehci
->lock
, flags
);
146 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
147 && ehci
->rh_state
== EHCI_RH_RUNNING
)
148 qh_link_async(ehci
, qh
);
149 spin_unlock_irqrestore(&ehci
->lock
, flags
);
152 static void ehci_clear_tt_buffer(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
,
153 struct urb
*urb
, u32 token
)
156 /* If an async split transaction gets an error or is unlinked,
157 * the TT buffer may be left in an indeterminate state. We
158 * have to clear the TT buffer.
160 * Note: this routine is never called for Isochronous transfers.
162 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
163 #ifdef CONFIG_DYNAMIC_DEBUG
164 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
166 "clear tt buffer port %d, a%d ep%d t%08x\n",
167 urb
->dev
->ttport
, urb
->dev
->devnum
,
168 usb_pipeendpoint(urb
->pipe
), token
);
169 #endif /* CONFIG_DYNAMIC_DEBUG */
170 if (!ehci_is_TDI(ehci
)
171 || urb
->dev
->tt
->hub
!=
172 ehci_to_hcd(ehci
)->self
.root_hub
) {
173 if (usb_hub_clear_tt_buffer(urb
) == 0)
177 /* REVISIT ARC-derived cores don't clear the root
178 * hub TT buffer in this way...
184 static int qtd_copy_status (
185 struct ehci_hcd
*ehci
,
191 int status
= -EINPROGRESS
;
193 /* count IN/OUT bytes, not SETUP (even short packets) */
194 if (likely(QTD_PID(token
) != PID_CODE_SETUP
))
195 urb
->actual_length
+= length
- QTD_LENGTH (token
);
197 /* don't modify error codes */
198 if (unlikely(urb
->unlinked
))
201 /* force cleanup after short read; not always an error */
202 if (unlikely (IS_SHORT_READ (token
)))
205 /* serious "can't proceed" faults reported by the hardware */
206 if (token
& QTD_STS_HALT
) {
207 if (token
& QTD_STS_BABBLE
) {
208 /* FIXME "must" disable babbling device's port too */
211 * When MMF is active and PID Code is IN, queue is halted.
212 * EHCI Specification, Table 4-13.
214 } else if ((token
& QTD_STS_MMF
) &&
215 (QTD_PID(token
) == PID_CODE_IN
)) {
217 /* CERR nonzero + halt --> stall */
218 } else if (QTD_CERR(token
)) {
221 /* In theory, more than one of the following bits can be set
222 * since they are sticky and the transaction is retried.
223 * Which to test first is rather arbitrary.
225 } else if (token
& QTD_STS_MMF
) {
226 /* fs/ls interrupt xfer missed the complete-split */
228 } else if (token
& QTD_STS_DBE
) {
229 status
= (QTD_PID(token
) == PID_CODE_IN
) /* IN ? */
230 ? -ENOSR
/* hc couldn't read data */
231 : -ECOMM
; /* hc couldn't write data */
232 } else if (token
& QTD_STS_XACT
) {
233 /* timeout, bad CRC, wrong PID, etc */
234 ehci_dbg(ehci
, "devpath %s ep%d%s 3strikes\n",
236 usb_pipeendpoint(urb
->pipe
),
237 usb_pipein(urb
->pipe
) ? "in" : "out");
239 } else { /* unknown */
248 ehci_urb_done(struct ehci_hcd
*ehci
, struct urb
*urb
, int status
)
250 if (usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
251 /* ... update hc-wide periodic stats */
252 ehci_to_hcd(ehci
)->self
.bandwidth_int_reqs
--;
255 if (unlikely(urb
->unlinked
)) {
256 INCR(ehci
->stats
.unlink
);
258 /* report non-error and short read status as zero */
259 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
261 INCR(ehci
->stats
.complete
);
264 #ifdef EHCI_URB_TRACE
266 "%s %s urb %p ep%d%s status %d len %d/%d\n",
267 __func__
, urb
->dev
->devpath
, urb
,
268 usb_pipeendpoint (urb
->pipe
),
269 usb_pipein (urb
->pipe
) ? "in" : "out",
271 urb
->actual_length
, urb
->transfer_buffer_length
);
274 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
275 usb_hcd_giveback_urb(ehci_to_hcd(ehci
), urb
, status
);
278 static int qh_schedule (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
281 * Process and free completed qtds for a qh, returning URBs to drivers.
282 * Chases up to qh->hw_current. Returns nonzero if the caller should
286 qh_completions (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
288 struct ehci_qtd
*last
, *end
= qh
->dummy
;
289 struct list_head
*entry
, *tmp
;
293 struct ehci_qh_hw
*hw
= qh
->hw
;
295 /* completions (or tasks on other cpus) must never clobber HALT
296 * till we've gone through and cleaned everything up, even when
297 * they add urbs to this qh's queue or mark them for unlinking.
299 * NOTE: unlinking expects to be done in queue order.
301 * It's a bug for qh->qh_state to be anything other than
302 * QH_STATE_IDLE, unless our caller is scan_async() or
305 state
= qh
->qh_state
;
306 qh
->qh_state
= QH_STATE_COMPLETING
;
307 stopped
= (state
== QH_STATE_IDLE
);
311 last_status
= -EINPROGRESS
;
312 qh
->dequeue_during_giveback
= 0;
314 /* remove de-activated QTDs from front of queue.
315 * after faults (including short reads), cleanup this urb
316 * then let the queue advance.
317 * if queue is stopped, handles unlinks.
319 list_for_each_safe (entry
, tmp
, &qh
->qtd_list
) {
320 struct ehci_qtd
*qtd
;
324 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
327 /* clean up any state from previous QTD ...*/
329 if (likely (last
->urb
!= urb
)) {
330 ehci_urb_done(ehci
, last
->urb
, last_status
);
331 last_status
= -EINPROGRESS
;
333 ehci_qtd_free (ehci
, last
);
337 /* ignore urbs submitted during completions we reported */
341 /* hardware copies qtd out of qh overlay */
343 token
= hc32_to_cpu(ehci
, qtd
->hw_token
);
345 /* always clean up qtds the hc de-activated */
347 if ((token
& QTD_STS_ACTIVE
) == 0) {
349 /* Report Data Buffer Error: non-fatal but useful */
350 if (token
& QTD_STS_DBE
)
352 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
354 usb_endpoint_num(&urb
->ep
->desc
),
355 usb_endpoint_dir_in(&urb
->ep
->desc
) ? "in" : "out",
356 urb
->transfer_buffer_length
,
360 /* on STALL, error, and short reads this urb must
361 * complete and all its qtds must be recycled.
363 if ((token
& QTD_STS_HALT
) != 0) {
365 /* retry transaction errors until we
366 * reach the software xacterr limit
368 if ((token
& QTD_STS_XACT
) &&
369 QTD_CERR(token
) == 0 &&
370 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
373 "detected XactErr len %zu/%zu retry %d\n",
374 qtd
->length
- QTD_LENGTH(token
), qtd
->length
, qh
->xacterrs
);
376 /* reset the token in the qtd and the
377 * qh overlay (which still contains
378 * the qtd) so that we pick up from
381 token
&= ~QTD_STS_HALT
;
382 token
|= QTD_STS_ACTIVE
|
383 (EHCI_TUNE_CERR
<< 10);
384 qtd
->hw_token
= cpu_to_hc32(ehci
,
387 hw
->hw_token
= cpu_to_hc32(ehci
,
392 qh
->unlink_reason
|= QH_UNLINK_HALTED
;
394 /* magic dummy for some short reads; qh won't advance.
395 * that silicon quirk can kick in with this dummy too.
397 * other short reads won't stop the queue, including
398 * control transfers (status stage handles that) or
399 * most other single-qtd reads ... the queue stops if
400 * URB_SHORT_NOT_OK was set so the driver submitting
401 * the urbs could clean it up.
403 } else if (IS_SHORT_READ (token
)
404 && !(qtd
->hw_alt_next
405 & EHCI_LIST_END(ehci
))) {
407 qh
->unlink_reason
|= QH_UNLINK_SHORT_READ
;
410 /* stop scanning when we reach qtds the hc is using */
411 } else if (likely (!stopped
412 && ehci
->rh_state
>= EHCI_RH_RUNNING
)) {
415 /* scan the whole queue for unlinks whenever it stops */
419 /* cancel everything if we halt, suspend, etc */
420 if (ehci
->rh_state
< EHCI_RH_RUNNING
) {
421 last_status
= -ESHUTDOWN
;
422 qh
->unlink_reason
|= QH_UNLINK_SHUTDOWN
;
425 /* this qtd is active; skip it unless a previous qtd
426 * for its urb faulted, or its urb was canceled.
428 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
432 * If this was the active qtd when the qh was unlinked
433 * and the overlay's token is active, then the overlay
434 * hasn't been written back to the qtd yet so use its
435 * token instead of the qtd's. After the qtd is
436 * processed and removed, the overlay won't be valid
439 if (state
== QH_STATE_IDLE
&&
440 qh
->qtd_list
.next
== &qtd
->qtd_list
&&
441 (hw
->hw_token
& ACTIVE_BIT(ehci
))) {
442 token
= hc32_to_cpu(ehci
, hw
->hw_token
);
443 hw
->hw_token
&= ~ACTIVE_BIT(ehci
);
444 qh
->should_be_inactive
= 1;
446 /* An unlink may leave an incomplete
447 * async transaction in the TT buffer.
448 * We have to clear it.
450 ehci_clear_tt_buffer(ehci
, qh
, urb
, token
);
454 /* unless we already know the urb's status, collect qtd status
455 * and update count of bytes transferred. in common short read
456 * cases with only one data qtd (including control transfers),
457 * queue processing won't halt. but with two or more qtds (for
458 * example, with a 32 KB transfer), when the first qtd gets a
459 * short read the second must be removed by hand.
461 if (last_status
== -EINPROGRESS
) {
462 last_status
= qtd_copy_status(ehci
, urb
,
464 if (last_status
== -EREMOTEIO
466 & EHCI_LIST_END(ehci
)))
467 last_status
= -EINPROGRESS
;
469 /* As part of low/full-speed endpoint-halt processing
470 * we must clear the TT buffer (11.17.5).
472 if (unlikely(last_status
!= -EINPROGRESS
&&
473 last_status
!= -EREMOTEIO
)) {
474 /* The TT's in some hubs malfunction when they
475 * receive this request following a STALL (they
476 * stop sending isochronous packets). Since a
477 * STALL can't leave the TT buffer in a busy
478 * state (if you believe Figures 11-48 - 11-51
479 * in the USB 2.0 spec), we won't clear the TT
480 * buffer in this case. Strictly speaking this
481 * is a violation of the spec.
483 if (last_status
!= -EPIPE
)
484 ehci_clear_tt_buffer(ehci
, qh
, urb
,
489 /* if we're removing something not at the queue head,
490 * patch the hardware queue pointer.
492 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
493 last
= list_entry (qtd
->qtd_list
.prev
,
494 struct ehci_qtd
, qtd_list
);
495 last
->hw_next
= qtd
->hw_next
;
498 /* remove qtd; it's recycled after possible urb completion */
499 list_del (&qtd
->qtd_list
);
502 /* reinit the xacterr counter for the next qtd */
506 /* last urb's completion might still need calling */
507 if (likely (last
!= NULL
)) {
508 ehci_urb_done(ehci
, last
->urb
, last_status
);
509 ehci_qtd_free (ehci
, last
);
512 /* Do we need to rescan for URBs dequeued during a giveback? */
513 if (unlikely(qh
->dequeue_during_giveback
)) {
514 /* If the QH is already unlinked, do the rescan now. */
515 if (state
== QH_STATE_IDLE
)
518 /* Otherwise the caller must unlink the QH. */
521 /* restore original state; caller must unlink or relink */
522 qh
->qh_state
= state
;
524 /* be sure the hardware's done with the qh before refreshing
525 * it after fault cleanup, or recovering from silicon wrongly
526 * overlaying the dummy qtd (which reduces DMA chatter).
528 * We won't refresh a QH that's linked (after the HC
529 * stopped the queue). That avoids a race:
530 * - HC reads first part of QH;
531 * - CPU updates that first part and the token;
532 * - HC reads rest of that QH, including token
533 * Result: HC gets an inconsistent image, and then
534 * DMAs to/from the wrong memory (corrupting it).
536 * That should be rare for interrupt transfers,
537 * except maybe high bandwidth ...
539 if (stopped
!= 0 || hw
->hw_qtd_next
== EHCI_LIST_END(ehci
))
540 qh
->unlink_reason
|= QH_UNLINK_DUMMY_OVERLAY
;
542 /* Let the caller know if the QH needs to be unlinked. */
543 return qh
->unlink_reason
;
546 /*-------------------------------------------------------------------------*/
549 * reverse of qh_urb_transaction: free a list of TDs.
550 * used for cleanup after errors, before HC sees an URB's TDs.
552 static void qtd_list_free (
553 struct ehci_hcd
*ehci
,
555 struct list_head
*qtd_list
557 struct list_head
*entry
, *temp
;
559 list_for_each_safe (entry
, temp
, qtd_list
) {
560 struct ehci_qtd
*qtd
;
562 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
563 list_del (&qtd
->qtd_list
);
564 ehci_qtd_free (ehci
, qtd
);
569 * create a list of filled qtds for this URB; won't link into qh.
571 static struct list_head
*
573 struct ehci_hcd
*ehci
,
575 struct list_head
*head
,
578 struct ehci_qtd
*qtd
, *qtd_prev
;
580 int len
, this_sg_len
, maxpacket
;
584 struct scatterlist
*sg
;
587 * URBs map to sequences of QTDs: one logical transaction
589 qtd
= ehci_qtd_alloc (ehci
, flags
);
592 list_add_tail (&qtd
->qtd_list
, head
);
595 token
= QTD_STS_ACTIVE
;
596 token
|= (EHCI_TUNE_CERR
<< 10);
597 /* for split transactions, SplitXState initialized to zero */
599 len
= urb
->transfer_buffer_length
;
600 is_input
= usb_pipein (urb
->pipe
);
601 if (usb_pipecontrol (urb
->pipe
)) {
603 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
604 sizeof (struct usb_ctrlrequest
),
605 token
| (PID_CODE_SETUP
<< 8), 8);
607 /* ... and always at least one more pid */
610 qtd
= ehci_qtd_alloc (ehci
, flags
);
614 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
615 list_add_tail (&qtd
->qtd_list
, head
);
617 /* for zero length DATA stages, STATUS is always IN */
619 token
|= (PID_CODE_IN
<< 8);
623 * data transfer stage: buffer setup
625 i
= urb
->num_mapped_sgs
;
626 if (len
> 0 && i
> 0) {
628 buf
= sg_dma_address(sg
);
630 /* urb->transfer_buffer_length may be smaller than the
631 * size of the scatterlist (or vice versa)
633 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
636 buf
= urb
->transfer_dma
;
641 token
|= (PID_CODE_IN
<< 8);
642 /* else it's already initted to "out" pid (0 << 8) */
644 maxpacket
= usb_endpoint_maxp(&urb
->ep
->desc
);
647 * buffer gets wrapped in one or more qtds;
648 * last one may be "short" (including zero len)
649 * and may serve as a control status ack
652 unsigned int this_qtd_len
;
654 this_qtd_len
= qtd_fill(ehci
, qtd
, buf
, this_sg_len
, token
,
656 this_sg_len
-= this_qtd_len
;
661 * short reads advance to a "magic" dummy instead of the next
662 * qtd ... that forces the queue to stop, for manual cleanup.
663 * (this will usually be overridden later.)
666 qtd
->hw_alt_next
= ehci
->async
->hw
->hw_alt_next
;
668 /* qh makes control packets use qtd toggle; maybe switch it */
669 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
672 if (likely(this_sg_len
<= 0)) {
673 if (--i
<= 0 || len
<= 0)
676 buf
= sg_dma_address(sg
);
677 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
681 qtd
= ehci_qtd_alloc (ehci
, flags
);
685 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
686 list_add_tail (&qtd
->qtd_list
, head
);
690 * unless the caller requires manual cleanup after short reads,
691 * have the alt_next mechanism keep the queue running after the
692 * last data qtd (the only one, for control and most other cases).
694 if (likely ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
695 || usb_pipecontrol (urb
->pipe
)))
696 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
699 * control requests may need a terminating data "status" ack;
700 * other OUT ones may need a terminating short packet
703 if (likely (urb
->transfer_buffer_length
!= 0)) {
706 if (usb_pipecontrol (urb
->pipe
)) {
708 token
^= (PID_CODE_IN
<< 8); /* "in" <--> "out" */
709 token
|= QTD_TOGGLE
; /* force DATA1 */
710 } else if (usb_pipeout(urb
->pipe
)
711 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
712 && !(urb
->transfer_buffer_length
% maxpacket
)) {
717 qtd
= ehci_qtd_alloc (ehci
, flags
);
721 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
722 list_add_tail (&qtd
->qtd_list
, head
);
724 /* never any data in such packets */
725 qtd_fill(ehci
, qtd
, 0, 0, token
, 0);
729 /* by default, enable interrupt on urb completion */
730 if (likely (!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
731 qtd
->hw_token
|= cpu_to_hc32(ehci
, QTD_IOC
);
735 qtd_list_free (ehci
, urb
, head
);
739 /*-------------------------------------------------------------------------*/
741 // Would be best to create all qh's from config descriptors,
742 // when each interface/altsetting is established. Unlink
743 // any previous qh and cancel its urbs first; endpoints are
744 // implicitly reset then (data toggle too).
745 // That'd mean updating how usbcore talks to HCDs. (2.7?)
749 * Each QH holds a qtd list; a QH is used for everything except iso.
751 * For interrupt urbs, the scheduler must set the microframe scheduling
752 * mask(s) each time the QH gets scheduled. For highspeed, that's
753 * just one microframe in the s-mask. For split interrupt transactions
754 * there are additional complications: c-mask, maybe FSTNs.
756 static struct ehci_qh
*
758 struct ehci_hcd
*ehci
,
762 struct ehci_qh
*qh
= ehci_qh_alloc (ehci
, flags
);
763 struct usb_host_endpoint
*ep
;
764 u32 info1
= 0, info2
= 0;
768 struct usb_tt
*tt
= urb
->dev
->tt
;
769 struct ehci_qh_hw
*hw
;
775 * init endpoint/device data for this QH
777 info1
|= usb_pipeendpoint (urb
->pipe
) << 8;
778 info1
|= usb_pipedevice (urb
->pipe
) << 0;
780 is_input
= usb_pipein (urb
->pipe
);
781 type
= usb_pipetype (urb
->pipe
);
782 ep
= usb_pipe_endpoint (urb
->dev
, urb
->pipe
);
783 maxp
= usb_endpoint_maxp (&ep
->desc
);
784 mult
= usb_endpoint_maxp_mult (&ep
->desc
);
786 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
787 * acts like up to 3KB, but is built from smaller packets.
790 ehci_dbg(ehci
, "bogus qh maxpacket %d\n", maxp
);
794 /* Compute interrupt scheduling parameters just once, and save.
795 * - allowing for high bandwidth, how many nsec/uframe are used?
796 * - split transactions need a second CSPLIT uframe; same question
797 * - splits also need a schedule gap (for full/low speed I/O)
798 * - qh has a polling interval
800 * For control/bulk requests, the HC or TT handles these.
802 if (type
== PIPE_INTERRUPT
) {
805 qh
->ps
.usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
806 is_input
, 0, mult
* maxp
));
807 qh
->ps
.phase
= NO_FRAME
;
809 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
813 if (urb
->interval
> 1 && urb
->interval
< 8) {
814 /* NOTE interval 2 or 4 uframes could work.
815 * But interval 1 scheduling is simpler, and
816 * includes high bandwidth.
819 } else if (urb
->interval
> ehci
->periodic_size
<< 3) {
820 urb
->interval
= ehci
->periodic_size
<< 3;
822 qh
->ps
.period
= urb
->interval
>> 3;
824 /* period for bandwidth allocation */
825 tmp
= min_t(unsigned, EHCI_BANDWIDTH_SIZE
,
826 1 << (urb
->ep
->desc
.bInterval
- 1));
828 /* Allow urb->interval to override */
829 qh
->ps
.bw_uperiod
= min_t(unsigned, tmp
, urb
->interval
);
830 qh
->ps
.bw_period
= qh
->ps
.bw_uperiod
>> 3;
834 /* gap is f(FS/LS transfer times) */
835 qh
->gap_uf
= 1 + usb_calc_bus_time (urb
->dev
->speed
,
836 is_input
, 0, maxp
) / (125 * 1000);
838 /* FIXME this just approximates SPLIT/CSPLIT times */
839 if (is_input
) { // SPLIT, gap, CSPLIT+DATA
840 qh
->ps
.c_usecs
= qh
->ps
.usecs
+ HS_USECS(0);
841 qh
->ps
.usecs
= HS_USECS(1);
842 } else { // SPLIT+DATA, gap, CSPLIT
843 qh
->ps
.usecs
+= HS_USECS(1);
844 qh
->ps
.c_usecs
= HS_USECS(0);
847 think_time
= tt
? tt
->think_time
: 0;
848 qh
->ps
.tt_usecs
= NS_TO_US(think_time
+
849 usb_calc_bus_time (urb
->dev
->speed
,
851 if (urb
->interval
> ehci
->periodic_size
)
852 urb
->interval
= ehci
->periodic_size
;
853 qh
->ps
.period
= urb
->interval
;
855 /* period for bandwidth allocation */
856 tmp
= min_t(unsigned, EHCI_BANDWIDTH_FRAMES
,
857 urb
->ep
->desc
.bInterval
);
858 tmp
= rounddown_pow_of_two(tmp
);
860 /* Allow urb->interval to override */
861 qh
->ps
.bw_period
= min_t(unsigned, tmp
, urb
->interval
);
862 qh
->ps
.bw_uperiod
= qh
->ps
.bw_period
<< 3;
866 /* support for tt scheduling, and access to toggles */
867 qh
->ps
.udev
= urb
->dev
;
871 switch (urb
->dev
->speed
) {
873 info1
|= QH_LOW_SPEED
;
877 /* EPS 0 means "full" */
878 if (type
!= PIPE_INTERRUPT
)
879 info1
|= (EHCI_TUNE_RL_TT
<< 28);
880 if (type
== PIPE_CONTROL
) {
881 info1
|= QH_CONTROL_EP
; /* for TT */
882 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
886 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
888 /* Some Freescale processors have an erratum in which the
889 * port number in the queue head was 0..N-1 instead of 1..N.
891 if (ehci_has_fsl_portno_bug(ehci
))
892 info2
|= (urb
->dev
->ttport
-1) << 23;
894 info2
|= urb
->dev
->ttport
<< 23;
896 /* set the address of the TT; for TDI's integrated
897 * root hub tt, leave it zeroed.
899 if (tt
&& tt
->hub
!= ehci_to_hcd(ehci
)->self
.root_hub
)
900 info2
|= tt
->hub
->devnum
<< 16;
902 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
906 case USB_SPEED_HIGH
: /* no TT involved */
907 info1
|= QH_HIGH_SPEED
;
908 if (type
== PIPE_CONTROL
) {
909 info1
|= (EHCI_TUNE_RL_HS
<< 28);
910 info1
|= 64 << 16; /* usb2 fixed maxpacket */
911 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
912 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
913 } else if (type
== PIPE_BULK
) {
914 info1
|= (EHCI_TUNE_RL_HS
<< 28);
915 /* The USB spec says that high speed bulk endpoints
916 * always use 512 byte maxpacket. But some device
917 * vendors decided to ignore that, and MSFT is happy
918 * to help them do so. So now people expect to use
919 * such nonconformant devices with Linux too; sigh.
922 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
923 } else { /* PIPE_INTERRUPT */
929 ehci_dbg(ehci
, "bogus dev %p speed %d\n", urb
->dev
,
932 qh_destroy(ehci
, qh
);
936 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
938 /* init as live, toggle clear */
939 qh
->qh_state
= QH_STATE_IDLE
;
941 hw
->hw_info1
= cpu_to_hc32(ehci
, info1
);
942 hw
->hw_info2
= cpu_to_hc32(ehci
, info2
);
943 qh
->is_out
= !is_input
;
944 usb_settoggle (urb
->dev
, usb_pipeendpoint (urb
->pipe
), !is_input
, 1);
948 /*-------------------------------------------------------------------------*/
950 static void enable_async(struct ehci_hcd
*ehci
)
952 if (ehci
->async_count
++)
955 /* Stop waiting to turn off the async schedule */
956 ehci
->enabled_hrtimer_events
&= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC
);
958 /* Don't start the schedule until ASS is 0 */
960 turn_on_io_watchdog(ehci
);
963 static void disable_async(struct ehci_hcd
*ehci
)
965 if (--ehci
->async_count
)
968 /* The async schedule and unlink lists are supposed to be empty */
969 WARN_ON(ehci
->async
->qh_next
.qh
|| !list_empty(&ehci
->async_unlink
) ||
970 !list_empty(&ehci
->async_idle
));
972 /* Don't turn off the schedule until ASS is 1 */
976 /* move qh (and its qtds) onto async queue; maybe enable queue. */
978 static void qh_link_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
980 __hc32 dma
= QH_NEXT(ehci
, qh
->qh_dma
);
981 struct ehci_qh
*head
;
983 /* Don't link a QH if there's a Clear-TT-Buffer pending */
984 if (unlikely(qh
->clearing_tt
))
987 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
989 /* clear halt and/or toggle; and maybe recover from silicon quirk */
990 qh_refresh(ehci
, qh
);
992 /* splice right after start */
994 qh
->qh_next
= head
->qh_next
;
995 qh
->hw
->hw_next
= head
->hw
->hw_next
;
998 head
->qh_next
.qh
= qh
;
999 head
->hw
->hw_next
= dma
;
1001 qh
->qh_state
= QH_STATE_LINKED
;
1003 qh
->unlink_reason
= 0;
1004 /* qtd completions reported later by interrupt */
1009 /*-------------------------------------------------------------------------*/
1012 * For control/bulk/interrupt, return QH with these TDs appended.
1013 * Allocates and initializes the QH if necessary.
1014 * Returns null if it can't allocate a QH it needs to.
1015 * If the QH has TDs (urbs) already, that's great.
1017 static struct ehci_qh
*qh_append_tds (
1018 struct ehci_hcd
*ehci
,
1020 struct list_head
*qtd_list
,
1025 struct ehci_qh
*qh
= NULL
;
1026 __hc32 qh_addr_mask
= cpu_to_hc32(ehci
, 0x7f);
1028 qh
= (struct ehci_qh
*) *ptr
;
1029 if (unlikely (qh
== NULL
)) {
1030 /* can't sleep here, we have ehci->lock... */
1031 qh
= qh_make (ehci
, urb
, GFP_ATOMIC
);
1034 if (likely (qh
!= NULL
)) {
1035 struct ehci_qtd
*qtd
;
1037 if (unlikely (list_empty (qtd_list
)))
1040 qtd
= list_entry (qtd_list
->next
, struct ehci_qtd
,
1043 /* control qh may need patching ... */
1044 if (unlikely (epnum
== 0)) {
1046 /* usb_reset_device() briefly reverts to address 0 */
1047 if (usb_pipedevice (urb
->pipe
) == 0)
1048 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
1051 /* just one way to queue requests: swap with the dummy qtd.
1052 * only hc or qh_refresh() ever modify the overlay.
1054 if (likely (qtd
!= NULL
)) {
1055 struct ehci_qtd
*dummy
;
1059 /* to avoid racing the HC, use the dummy td instead of
1060 * the first td of our list (becomes new dummy). both
1061 * tds stay deactivated until we're done, when the
1062 * HC is allowed to fetch the old dummy (4.10.2).
1064 token
= qtd
->hw_token
;
1065 qtd
->hw_token
= HALT_BIT(ehci
);
1069 dma
= dummy
->qtd_dma
;
1071 dummy
->qtd_dma
= dma
;
1073 list_del (&qtd
->qtd_list
);
1074 list_add (&dummy
->qtd_list
, qtd_list
);
1075 list_splice_tail(qtd_list
, &qh
->qtd_list
);
1077 ehci_qtd_init(ehci
, qtd
, qtd
->qtd_dma
);
1080 /* hc must see the new dummy at list end */
1082 qtd
= list_entry (qh
->qtd_list
.prev
,
1083 struct ehci_qtd
, qtd_list
);
1084 qtd
->hw_next
= QTD_NEXT(ehci
, dma
);
1086 /* let the hc process these next qtds */
1088 dummy
->hw_token
= token
;
1096 /*-------------------------------------------------------------------------*/
1100 struct ehci_hcd
*ehci
,
1102 struct list_head
*qtd_list
,
1106 unsigned long flags
;
1107 struct ehci_qh
*qh
= NULL
;
1110 epnum
= urb
->ep
->desc
.bEndpointAddress
;
1112 #ifdef EHCI_URB_TRACE
1114 struct ehci_qtd
*qtd
;
1115 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
1117 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1118 __func__
, urb
->dev
->devpath
, urb
,
1119 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
1120 urb
->transfer_buffer_length
,
1121 qtd
, urb
->ep
->hcpriv
);
1125 spin_lock_irqsave (&ehci
->lock
, flags
);
1126 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci
)))) {
1130 rc
= usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci
), urb
);
1134 qh
= qh_append_tds(ehci
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
1135 if (unlikely(qh
== NULL
)) {
1136 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
1141 /* Control/bulk operations through TTs don't need scheduling,
1142 * the HC and TT handle it when the TT has a buffer ready.
1144 if (likely (qh
->qh_state
== QH_STATE_IDLE
))
1145 qh_link_async(ehci
, qh
);
1147 spin_unlock_irqrestore (&ehci
->lock
, flags
);
1148 if (unlikely (qh
== NULL
))
1149 qtd_list_free (ehci
, urb
, qtd_list
);
1153 /*-------------------------------------------------------------------------*/
1154 #ifdef CONFIG_USB_HCD_TEST_MODE
1156 * This function creates the qtds and submits them for the
1157 * SINGLE_STEP_SET_FEATURE Test.
1158 * This is done in two parts: first SETUP req for GetDesc is sent then
1159 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1161 * is_setup : i/p argument decides which of the two stage needs to be
1162 * performed; TRUE - SETUP and FALSE - IN+STATUS
1163 * Returns 0 if success
1165 static int ehci_submit_single_step_set_feature(
1166 struct usb_hcd
*hcd
,
1170 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
1171 struct list_head qtd_list
;
1172 struct list_head
*head
;
1174 struct ehci_qtd
*qtd
, *qtd_prev
;
1179 INIT_LIST_HEAD(&qtd_list
);
1182 /* URBs map to sequences of QTDs: one logical transaction */
1183 qtd
= ehci_qtd_alloc(ehci
, GFP_KERNEL
);
1186 list_add_tail(&qtd
->qtd_list
, head
);
1189 token
= QTD_STS_ACTIVE
;
1190 token
|= (EHCI_TUNE_CERR
<< 10);
1192 len
= urb
->transfer_buffer_length
;
1194 * Check if the request is to perform just the SETUP stage (getDesc)
1195 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1196 * 15 secs after the setup
1199 /* SETUP pid, and interrupt after SETUP completion */
1200 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
1201 sizeof(struct usb_ctrlrequest
),
1202 QTD_IOC
| token
| (PID_CODE_SETUP
<< 8), 8);
1204 submit_async(ehci
, urb
, &qtd_list
, GFP_ATOMIC
);
1205 return 0; /*Return now; we shall come back after 15 seconds*/
1209 * IN: data transfer stage: buffer setup : start the IN txn phase for
1210 * the get_Desc SETUP which was sent 15seconds back
1212 token
^= QTD_TOGGLE
; /*We need to start IN with DATA-1 Pid-sequence*/
1213 buf
= urb
->transfer_dma
;
1215 token
|= (PID_CODE_IN
<< 8); /*This is IN stage*/
1217 maxpacket
= usb_endpoint_maxp(&urb
->ep
->desc
);
1219 qtd_fill(ehci
, qtd
, buf
, len
, token
, maxpacket
);
1222 * Our IN phase shall always be a short read; so keep the queue running
1223 * and let it advance to the next qtd which zero length OUT status
1225 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
1227 /* STATUS stage for GetDesc control request */
1228 token
^= (PID_CODE_IN
<< 8); /* "in" <--> "out" */
1229 token
|= QTD_TOGGLE
; /* force DATA1 */
1232 qtd
= ehci_qtd_alloc(ehci
, GFP_ATOMIC
);
1236 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
1237 list_add_tail(&qtd
->qtd_list
, head
);
1239 /* Interrupt after STATUS completion */
1240 qtd_fill(ehci
, qtd
, 0, 0, token
| QTD_IOC
, 0);
1242 submit_async(ehci
, urb
, &qtd_list
, GFP_KERNEL
);
1247 qtd_list_free(ehci
, urb
, head
);
1250 #endif /* CONFIG_USB_HCD_TEST_MODE */
1252 /*-------------------------------------------------------------------------*/
1254 static void single_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1256 struct ehci_qh
*prev
;
1258 /* Add to the end of the list of QHs waiting for the next IAAD */
1259 qh
->qh_state
= QH_STATE_UNLINK_WAIT
;
1260 list_add_tail(&qh
->unlink_node
, &ehci
->async_unlink
);
1262 /* Unlink it from the schedule */
1264 while (prev
->qh_next
.qh
!= qh
)
1265 prev
= prev
->qh_next
.qh
;
1267 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
1268 prev
->qh_next
= qh
->qh_next
;
1269 if (ehci
->qh_scan_next
== qh
)
1270 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1273 static void start_iaa_cycle(struct ehci_hcd
*ehci
)
1275 /* If the controller isn't running, we don't have to wait for it */
1276 if (unlikely(ehci
->rh_state
< EHCI_RH_RUNNING
)) {
1277 end_unlink_async(ehci
);
1279 /* Otherwise start a new IAA cycle if one isn't already running */
1280 } else if (ehci
->rh_state
== EHCI_RH_RUNNING
&&
1281 !ehci
->iaa_in_progress
) {
1283 /* Make sure the unlinks are all visible to the hardware */
1286 ehci_writel(ehci
, ehci
->command
| CMD_IAAD
,
1287 &ehci
->regs
->command
);
1288 ehci_readl(ehci
, &ehci
->regs
->command
);
1289 ehci
->iaa_in_progress
= true;
1290 ehci_enable_event(ehci
, EHCI_HRTIMER_IAA_WATCHDOG
, true);
1294 static void end_iaa_cycle(struct ehci_hcd
*ehci
)
1296 if (ehci
->has_synopsys_hc_bug
)
1297 ehci_writel(ehci
, (u32
) ehci
->async
->qh_dma
,
1298 &ehci
->regs
->async_next
);
1300 /* The current IAA cycle has ended */
1301 ehci
->iaa_in_progress
= false;
1303 end_unlink_async(ehci
);
1306 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1308 static void end_unlink_async(struct ehci_hcd
*ehci
)
1313 if (list_empty(&ehci
->async_unlink
))
1315 qh
= list_first_entry(&ehci
->async_unlink
, struct ehci_qh
,
1316 unlink_node
); /* QH whose IAA cycle just ended */
1319 * If async_unlinking is set then this routine is already running,
1320 * either on the stack or on another CPU.
1322 early_exit
= ehci
->async_unlinking
;
1324 /* If the controller isn't running, process all the waiting QHs */
1325 if (ehci
->rh_state
< EHCI_RH_RUNNING
)
1326 list_splice_tail_init(&ehci
->async_unlink
, &ehci
->async_idle
);
1329 * Intel (?) bug: The HC can write back the overlay region even
1330 * after the IAA interrupt occurs. In self-defense, always go
1331 * through two IAA cycles for each QH.
1333 else if (qh
->qh_state
== QH_STATE_UNLINK
) {
1335 * Second IAA cycle has finished. Process only the first
1336 * waiting QH (NVIDIA (?) bug).
1338 list_move_tail(&qh
->unlink_node
, &ehci
->async_idle
);
1342 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1343 * after the IAA interrupt occurs. To prevent problems, QHs that
1344 * may still be active will wait until 2 ms have passed with no
1345 * change to the hw_current and hw_token fields (this delay occurs
1346 * between the two IAA cycles).
1348 * The EHCI spec (4.8.2) says that active QHs must not be removed
1349 * from the async schedule and recommends waiting until the QH
1350 * goes inactive. This is ridiculous because the QH will _never_
1351 * become inactive if the endpoint NAKs indefinitely.
1354 /* Some reasons for unlinking guarantee the QH can't be active */
1355 else if (qh
->unlink_reason
& (QH_UNLINK_HALTED
|
1356 QH_UNLINK_SHORT_READ
| QH_UNLINK_DUMMY_OVERLAY
))
1359 /* The QH can't be active if the queue was and still is empty... */
1360 else if ((qh
->unlink_reason
& QH_UNLINK_QUEUE_EMPTY
) &&
1361 list_empty(&qh
->qtd_list
))
1364 /* ... or if the QH has halted */
1365 else if (qh
->hw
->hw_token
& cpu_to_hc32(ehci
, QTD_STS_HALT
))
1368 /* Otherwise we have to wait until the QH stops changing */
1370 __hc32 qh_current
, qh_token
;
1372 qh_current
= qh
->hw
->hw_current
;
1373 qh_token
= qh
->hw
->hw_token
;
1374 if (qh_current
!= ehci
->old_current
||
1375 qh_token
!= ehci
->old_token
) {
1376 ehci
->old_current
= qh_current
;
1377 ehci
->old_token
= qh_token
;
1378 ehci_enable_event(ehci
,
1379 EHCI_HRTIMER_ACTIVE_UNLINK
, true);
1383 qh
->qh_state
= QH_STATE_UNLINK
;
1386 ehci
->old_current
= ~0; /* Prepare for next QH */
1388 /* Start a new IAA cycle if any QHs are waiting for it */
1389 if (!list_empty(&ehci
->async_unlink
))
1390 start_iaa_cycle(ehci
);
1393 * Don't allow nesting or concurrent calls,
1394 * or wait for the second IAA cycle for the next QH.
1399 /* Process the idle QHs */
1400 ehci
->async_unlinking
= true;
1401 while (!list_empty(&ehci
->async_idle
)) {
1402 qh
= list_first_entry(&ehci
->async_idle
, struct ehci_qh
,
1404 list_del(&qh
->unlink_node
);
1406 qh
->qh_state
= QH_STATE_IDLE
;
1407 qh
->qh_next
.qh
= NULL
;
1409 if (!list_empty(&qh
->qtd_list
))
1410 qh_completions(ehci
, qh
);
1411 if (!list_empty(&qh
->qtd_list
) &&
1412 ehci
->rh_state
== EHCI_RH_RUNNING
)
1413 qh_link_async(ehci
, qh
);
1414 disable_async(ehci
);
1416 ehci
->async_unlinking
= false;
1419 static void start_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
1421 static void unlink_empty_async(struct ehci_hcd
*ehci
)
1424 struct ehci_qh
*qh_to_unlink
= NULL
;
1427 /* Find the last async QH which has been empty for a timer cycle */
1428 for (qh
= ehci
->async
->qh_next
.qh
; qh
; qh
= qh
->qh_next
.qh
) {
1429 if (list_empty(&qh
->qtd_list
) &&
1430 qh
->qh_state
== QH_STATE_LINKED
) {
1432 if (qh
->unlink_cycle
!= ehci
->async_unlink_cycle
)
1437 /* If nothing else is being unlinked, unlink the last empty QH */
1438 if (list_empty(&ehci
->async_unlink
) && qh_to_unlink
) {
1439 qh_to_unlink
->unlink_reason
|= QH_UNLINK_QUEUE_EMPTY
;
1440 start_unlink_async(ehci
, qh_to_unlink
);
1444 /* Other QHs will be handled later */
1446 ehci_enable_event(ehci
, EHCI_HRTIMER_ASYNC_UNLINKS
, true);
1447 ++ehci
->async_unlink_cycle
;
1453 /* The root hub is suspended; unlink all the async QHs */
1454 static void unlink_empty_async_suspended(struct ehci_hcd
*ehci
)
1458 while (ehci
->async
->qh_next
.qh
) {
1459 qh
= ehci
->async
->qh_next
.qh
;
1460 WARN_ON(!list_empty(&qh
->qtd_list
));
1461 single_unlink_async(ehci
, qh
);
1467 /* makes sure the async qh will become idle */
1468 /* caller must own ehci->lock */
1470 static void start_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1472 /* If the QH isn't linked then there's nothing we can do. */
1473 if (qh
->qh_state
!= QH_STATE_LINKED
)
1476 single_unlink_async(ehci
, qh
);
1477 start_iaa_cycle(ehci
);
1480 /*-------------------------------------------------------------------------*/
1482 static void scan_async (struct ehci_hcd
*ehci
)
1485 bool check_unlinks_later
= false;
1487 ehci
->qh_scan_next
= ehci
->async
->qh_next
.qh
;
1488 while (ehci
->qh_scan_next
) {
1489 qh
= ehci
->qh_scan_next
;
1490 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1492 /* clean any finished work for this qh */
1493 if (!list_empty(&qh
->qtd_list
)) {
1497 * Unlinks could happen here; completion reporting
1498 * drops the lock. That's why ehci->qh_scan_next
1499 * always holds the next qh to scan; if the next qh
1500 * gets unlinked then ehci->qh_scan_next is adjusted
1501 * in single_unlink_async().
1503 temp
= qh_completions(ehci
, qh
);
1504 if (unlikely(temp
)) {
1505 start_unlink_async(ehci
, qh
);
1506 } else if (list_empty(&qh
->qtd_list
)
1507 && qh
->qh_state
== QH_STATE_LINKED
) {
1508 qh
->unlink_cycle
= ehci
->async_unlink_cycle
;
1509 check_unlinks_later
= true;
1515 * Unlink empty entries, reducing DMA usage as well
1516 * as HCD schedule-scanning costs. Delay for any qh
1517 * we just scanned, there's a not-unusual case that it
1518 * doesn't stay idle for long.
1520 if (check_unlinks_later
&& ehci
->rh_state
== EHCI_RH_RUNNING
&&
1521 !(ehci
->enabled_hrtimer_events
&
1522 BIT(EHCI_HRTIMER_ASYNC_UNLINKS
))) {
1523 ehci_enable_event(ehci
, EHCI_HRTIMER_ASYNC_UNLINKS
, true);
1524 ++ehci
->async_unlink_cycle
;