Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / usb / host / xhci.c
blob5ebde8cae4fc44cdb997b0f61314e309bda56c0d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/dmi.h>
21 #include <linux/dma-mapping.h>
23 #include "xhci.h"
24 #include "xhci-trace.h"
25 #include "xhci-debugfs.h"
26 #include "xhci-dbgcap.h"
28 #define DRIVER_AUTHOR "Sarah Sharp"
29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34 static int link_quirk;
35 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38 static unsigned long long quirks;
39 module_param(quirks, ullong, S_IRUGO);
40 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44 struct xhci_segment *seg;
46 if (!td || !td->start_seg)
47 return false;
49 xhci_for_each_ring_seg(ring->first_seg, seg) {
50 if (seg == td->start_seg)
51 return true;
54 return false;
58 * xhci_handshake - spin reading hc until handshake completes or fails
59 * @ptr: address of hc register to be read
60 * @mask: bits to look at in result of read
61 * @done: value of those bits when handshake succeeds
62 * @usec: timeout in microseconds
64 * Returns negative errno, or zero on success
66 * Success happens when the "mask" bits have the specified value (hardware
67 * handshake done). There are two failure modes: "usec" have passed (major
68 * hardware flakeout), or the register reads as all-ones (hardware removed).
70 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72 u32 result;
73 int ret;
75 ret = readl_poll_timeout_atomic(ptr, result,
76 (result & mask) == done ||
77 result == U32_MAX,
78 1, timeout_us);
79 if (result == U32_MAX) /* card removed */
80 return -ENODEV;
82 return ret;
86 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
87 * exit_state parameter, and bails out with an error immediately when xhc_state
88 * has exit_state flag set.
90 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
91 u32 mask, u32 done, int usec, unsigned int exit_state)
93 u32 result;
94 int ret;
96 ret = readl_poll_timeout_atomic(ptr, result,
97 (result & mask) == done ||
98 result == U32_MAX ||
99 xhci->xhc_state & exit_state,
100 1, usec);
102 if (result == U32_MAX || xhci->xhc_state & exit_state)
103 return -ENODEV;
105 return ret;
109 * Disable interrupts and begin the xHCI halting process.
111 void xhci_quiesce(struct xhci_hcd *xhci)
113 u32 halted;
114 u32 cmd;
115 u32 mask;
117 mask = ~(XHCI_IRQS);
118 halted = readl(&xhci->op_regs->status) & STS_HALT;
119 if (!halted)
120 mask &= ~CMD_RUN;
122 cmd = readl(&xhci->op_regs->command);
123 cmd &= mask;
124 writel(cmd, &xhci->op_regs->command);
128 * Force HC into halt state.
130 * Disable any IRQs and clear the run/stop bit.
131 * HC will complete any current and actively pipelined transactions, and
132 * should halt within 16 ms of the run/stop bit being cleared.
133 * Read HC Halted bit in the status register to see when the HC is finished.
135 int xhci_halt(struct xhci_hcd *xhci)
137 int ret;
139 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
140 xhci_quiesce(xhci);
142 ret = xhci_handshake(&xhci->op_regs->status,
143 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
144 if (ret) {
145 xhci_warn(xhci, "Host halt failed, %d\n", ret);
146 return ret;
149 xhci->xhc_state |= XHCI_STATE_HALTED;
150 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
152 return ret;
156 * Set the run bit and wait for the host to be running.
158 int xhci_start(struct xhci_hcd *xhci)
160 u32 temp;
161 int ret;
163 temp = readl(&xhci->op_regs->command);
164 temp |= (CMD_RUN);
165 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
166 temp);
167 writel(temp, &xhci->op_regs->command);
170 * Wait for the HCHalted Status bit to be 0 to indicate the host is
171 * running.
173 ret = xhci_handshake(&xhci->op_regs->status,
174 STS_HALT, 0, XHCI_MAX_HALT_USEC);
175 if (ret == -ETIMEDOUT)
176 xhci_err(xhci, "Host took too long to start, "
177 "waited %u microseconds.\n",
178 XHCI_MAX_HALT_USEC);
179 if (!ret) {
180 /* clear state flags. Including dying, halted or removing */
181 xhci->xhc_state = 0;
182 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
185 return ret;
189 * Reset a halted HC.
191 * This resets pipelines, timers, counters, state machines, etc.
192 * Transactions will be terminated immediately, and operational registers
193 * will be set to their defaults.
195 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
197 u32 command;
198 u32 state;
199 int ret;
201 state = readl(&xhci->op_regs->status);
203 if (state == ~(u32)0) {
204 xhci_warn(xhci, "Host not accessible, reset failed.\n");
205 return -ENODEV;
208 if ((state & STS_HALT) == 0) {
209 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
210 return 0;
213 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
214 command = readl(&xhci->op_regs->command);
215 command |= CMD_RESET;
216 writel(command, &xhci->op_regs->command);
218 /* Existing Intel xHCI controllers require a delay of 1 mS,
219 * after setting the CMD_RESET bit, and before accessing any
220 * HC registers. This allows the HC to complete the
221 * reset operation and be ready for HC register access.
222 * Without this delay, the subsequent HC register access,
223 * may result in a system hang very rarely.
225 if (xhci->quirks & XHCI_INTEL_HOST)
226 udelay(1000);
228 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
229 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
230 if (ret)
231 return ret;
233 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
234 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
236 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
237 "Wait for controller to be ready for doorbell rings");
239 * xHCI cannot write to any doorbells or operational registers other
240 * than status until the "Controller Not Ready" flag is cleared.
242 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
244 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
245 xhci->usb2_rhub.bus_state.suspended_ports = 0;
246 xhci->usb2_rhub.bus_state.resuming_ports = 0;
247 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
248 xhci->usb3_rhub.bus_state.suspended_ports = 0;
249 xhci->usb3_rhub.bus_state.resuming_ports = 0;
251 return ret;
254 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
256 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
257 struct iommu_domain *domain;
258 int err, i;
259 u64 val;
260 u32 intrs;
263 * Some Renesas controllers get into a weird state if they are
264 * reset while programmed with 64bit addresses (they will preserve
265 * the top half of the address in internal, non visible
266 * registers). You end up with half the address coming from the
267 * kernel, and the other half coming from the firmware. Also,
268 * changing the programming leads to extra accesses even if the
269 * controller is supposed to be halted. The controller ends up with
270 * a fatal fault, and is then ripe for being properly reset.
272 * Special care is taken to only apply this if the device is behind
273 * an iommu. Doing anything when there is no iommu is definitely
274 * unsafe...
276 domain = iommu_get_domain_for_dev(dev);
277 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
278 domain->type == IOMMU_DOMAIN_IDENTITY)
279 return;
281 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
283 /* Clear HSEIE so that faults do not get signaled */
284 val = readl(&xhci->op_regs->command);
285 val &= ~CMD_HSEIE;
286 writel(val, &xhci->op_regs->command);
288 /* Clear HSE (aka FATAL) */
289 val = readl(&xhci->op_regs->status);
290 val |= STS_FATAL;
291 writel(val, &xhci->op_regs->status);
293 /* Now zero the registers, and brace for impact */
294 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
295 if (upper_32_bits(val))
296 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
297 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
298 if (upper_32_bits(val))
299 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
301 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
302 ARRAY_SIZE(xhci->run_regs->ir_set));
304 for (i = 0; i < intrs; i++) {
305 struct xhci_intr_reg __iomem *ir;
307 ir = &xhci->run_regs->ir_set[i];
308 val = xhci_read_64(xhci, &ir->erst_base);
309 if (upper_32_bits(val))
310 xhci_write_64(xhci, 0, &ir->erst_base);
311 val= xhci_read_64(xhci, &ir->erst_dequeue);
312 if (upper_32_bits(val))
313 xhci_write_64(xhci, 0, &ir->erst_dequeue);
316 /* Wait for the fault to appear. It will be cleared on reset */
317 err = xhci_handshake(&xhci->op_regs->status,
318 STS_FATAL, STS_FATAL,
319 XHCI_MAX_HALT_USEC);
320 if (!err)
321 xhci_info(xhci, "Fault detected\n");
324 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
326 u32 iman;
328 if (!ir || !ir->ir_set)
329 return -EINVAL;
331 iman = readl(&ir->ir_set->irq_pending);
332 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
334 return 0;
337 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
339 u32 iman;
341 if (!ir || !ir->ir_set)
342 return -EINVAL;
344 iman = readl(&ir->ir_set->irq_pending);
345 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
347 return 0;
350 /* interrupt moderation interval imod_interval in nanoseconds */
351 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
352 u32 imod_interval)
354 u32 imod;
356 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
357 return -EINVAL;
359 imod = readl(&ir->ir_set->irq_control);
360 imod &= ~ER_IRQ_INTERVAL_MASK;
361 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
362 writel(imod, &ir->ir_set->irq_control);
364 return 0;
367 static void compliance_mode_recovery(struct timer_list *t)
369 struct xhci_hcd *xhci;
370 struct usb_hcd *hcd;
371 struct xhci_hub *rhub;
372 u32 temp;
373 int i;
375 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
376 rhub = &xhci->usb3_rhub;
377 hcd = rhub->hcd;
379 if (!hcd)
380 return;
382 for (i = 0; i < rhub->num_ports; i++) {
383 temp = readl(rhub->ports[i]->addr);
384 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
386 * Compliance Mode Detected. Letting USB Core
387 * handle the Warm Reset
389 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
390 "Compliance mode detected->port %d",
391 i + 1);
392 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
393 "Attempting compliance mode recovery");
395 if (hcd->state == HC_STATE_SUSPENDED)
396 usb_hcd_resume_root_hub(hcd);
398 usb_hcd_poll_rh_status(hcd);
402 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
403 mod_timer(&xhci->comp_mode_recovery_timer,
404 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
408 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
409 * that causes ports behind that hardware to enter compliance mode sometimes.
410 * The quirk creates a timer that polls every 2 seconds the link state of
411 * each host controller's port and recovers it by issuing a Warm reset
412 * if Compliance mode is detected, otherwise the port will become "dead" (no
413 * device connections or disconnections will be detected anymore). Becasue no
414 * status event is generated when entering compliance mode (per xhci spec),
415 * this quirk is needed on systems that have the failing hardware installed.
417 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
419 xhci->port_status_u0 = 0;
420 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
422 xhci->comp_mode_recovery_timer.expires = jiffies +
423 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
425 add_timer(&xhci->comp_mode_recovery_timer);
426 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
427 "Compliance mode recovery timer initialized");
431 * This function identifies the systems that have installed the SN65LVPE502CP
432 * USB3.0 re-driver and that need the Compliance Mode Quirk.
433 * Systems:
434 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
436 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
438 const char *dmi_product_name, *dmi_sys_vendor;
440 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
441 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
442 if (!dmi_product_name || !dmi_sys_vendor)
443 return false;
445 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
446 return false;
448 if (strstr(dmi_product_name, "Z420") ||
449 strstr(dmi_product_name, "Z620") ||
450 strstr(dmi_product_name, "Z820") ||
451 strstr(dmi_product_name, "Z1 Workstation"))
452 return true;
454 return false;
457 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
459 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
464 * Initialize memory for HCD and xHC (one-time init).
466 * Program the PAGESIZE register, initialize the device context array, create
467 * device contexts (?), set up a command ring segment (or two?), create event
468 * ring (one for now).
470 static int xhci_init(struct usb_hcd *hcd)
472 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
473 int retval;
475 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
476 spin_lock_init(&xhci->lock);
478 retval = xhci_mem_init(xhci, GFP_KERNEL);
479 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
481 /* Initializing Compliance Mode Recovery Data If Needed */
482 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
483 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
484 compliance_mode_recovery_timer_init(xhci);
487 return retval;
490 /*-------------------------------------------------------------------------*/
492 static int xhci_run_finished(struct xhci_hcd *xhci)
494 struct xhci_interrupter *ir = xhci->interrupters[0];
495 unsigned long flags;
496 u32 temp;
499 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
500 * Protect the short window before host is running with a lock
502 spin_lock_irqsave(&xhci->lock, flags);
504 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
505 temp = readl(&xhci->op_regs->command);
506 temp |= (CMD_EIE);
507 writel(temp, &xhci->op_regs->command);
509 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
510 xhci_enable_interrupter(ir);
512 if (xhci_start(xhci)) {
513 xhci_halt(xhci);
514 spin_unlock_irqrestore(&xhci->lock, flags);
515 return -ENODEV;
518 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
520 if (xhci->quirks & XHCI_NEC_HOST)
521 xhci_ring_cmd_db(xhci);
523 spin_unlock_irqrestore(&xhci->lock, flags);
525 return 0;
529 * Start the HC after it was halted.
531 * This function is called by the USB core when the HC driver is added.
532 * Its opposite is xhci_stop().
534 * xhci_init() must be called once before this function can be called.
535 * Reset the HC, enable device slot contexts, program DCBAAP, and
536 * set command ring pointer and event ring pointer.
538 * Setup MSI-X vectors and enable interrupts.
540 int xhci_run(struct usb_hcd *hcd)
542 u64 temp_64;
543 int ret;
544 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545 struct xhci_interrupter *ir = xhci->interrupters[0];
546 /* Start the xHCI host controller running only after the USB 2.0 roothub
547 * is setup.
550 hcd->uses_new_polling = 1;
551 if (hcd->msi_enabled)
552 ir->ip_autoclear = true;
554 if (!usb_hcd_is_primary_hcd(hcd))
555 return xhci_run_finished(xhci);
557 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
559 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
560 temp_64 &= ERST_PTR_MASK;
561 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
562 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
564 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
566 if (xhci->quirks & XHCI_NEC_HOST) {
567 struct xhci_command *command;
569 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
570 if (!command)
571 return -ENOMEM;
573 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
574 TRB_TYPE(TRB_NEC_GET_FW));
575 if (ret)
576 xhci_free_command(xhci, command);
578 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
579 "Finished %s for main hcd", __func__);
581 xhci_create_dbc_dev(xhci);
583 xhci_debugfs_init(xhci);
585 if (xhci_has_one_roothub(xhci))
586 return xhci_run_finished(xhci);
588 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
590 return 0;
592 EXPORT_SYMBOL_GPL(xhci_run);
595 * Stop xHCI driver.
597 * This function is called by the USB core when the HC driver is removed.
598 * Its opposite is xhci_run().
600 * Disable device contexts, disable IRQs, and quiesce the HC.
601 * Reset the HC, finish any completed transactions, and cleanup memory.
603 void xhci_stop(struct usb_hcd *hcd)
605 u32 temp;
606 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607 struct xhci_interrupter *ir = xhci->interrupters[0];
609 mutex_lock(&xhci->mutex);
611 /* Only halt host and free memory after both hcds are removed */
612 if (!usb_hcd_is_primary_hcd(hcd)) {
613 mutex_unlock(&xhci->mutex);
614 return;
617 xhci_remove_dbc_dev(xhci);
619 spin_lock_irq(&xhci->lock);
620 xhci->xhc_state |= XHCI_STATE_HALTED;
621 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
622 xhci_halt(xhci);
623 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
624 spin_unlock_irq(&xhci->lock);
626 /* Deleting Compliance Mode Recovery Timer */
627 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
628 (!(xhci_all_ports_seen_u0(xhci)))) {
629 del_timer_sync(&xhci->comp_mode_recovery_timer);
630 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
631 "%s: compliance mode recovery timer deleted",
632 __func__);
635 if (xhci->quirks & XHCI_AMD_PLL_FIX)
636 usb_amd_dev_put();
638 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 "// Disabling event ring interrupts");
640 temp = readl(&xhci->op_regs->status);
641 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
642 xhci_disable_interrupter(ir);
644 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
645 xhci_mem_cleanup(xhci);
646 xhci_debugfs_exit(xhci);
647 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
648 "xhci_stop completed - status = %x",
649 readl(&xhci->op_regs->status));
650 mutex_unlock(&xhci->mutex);
652 EXPORT_SYMBOL_GPL(xhci_stop);
655 * Shutdown HC (not bus-specific)
657 * This is called when the machine is rebooting or halting. We assume that the
658 * machine will be powered off, and the HC's internal state will be reset.
659 * Don't bother to free memory.
661 * This will only ever be called with the main usb_hcd (the USB3 roothub).
663 void xhci_shutdown(struct usb_hcd *hcd)
665 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
667 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
668 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
670 /* Don't poll the roothubs after shutdown. */
671 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
672 __func__, hcd->self.busnum);
673 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
674 del_timer_sync(&hcd->rh_timer);
676 if (xhci->shared_hcd) {
677 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
678 del_timer_sync(&xhci->shared_hcd->rh_timer);
681 spin_lock_irq(&xhci->lock);
682 xhci_halt(xhci);
685 * Workaround for spurious wakeps at shutdown with HSW, and for boot
686 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
688 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
689 xhci->quirks & XHCI_RESET_TO_DEFAULT)
690 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
692 spin_unlock_irq(&xhci->lock);
694 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 "xhci_shutdown completed - status = %x",
696 readl(&xhci->op_regs->status));
698 EXPORT_SYMBOL_GPL(xhci_shutdown);
700 #ifdef CONFIG_PM
701 static void xhci_save_registers(struct xhci_hcd *xhci)
703 struct xhci_interrupter *ir;
704 unsigned int i;
706 xhci->s3.command = readl(&xhci->op_regs->command);
707 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
708 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
709 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
711 /* save both primary and all secondary interrupters */
712 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
713 for (i = 0; i < xhci->max_interrupters; i++) {
714 ir = xhci->interrupters[i];
715 if (!ir)
716 continue;
718 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
719 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
720 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
721 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
722 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
726 static void xhci_restore_registers(struct xhci_hcd *xhci)
728 struct xhci_interrupter *ir;
729 unsigned int i;
731 writel(xhci->s3.command, &xhci->op_regs->command);
732 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
733 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
734 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
736 /* FIXME should we lock to protect against freeing of interrupters */
737 for (i = 0; i < xhci->max_interrupters; i++) {
738 ir = xhci->interrupters[i];
739 if (!ir)
740 continue;
742 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
743 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
744 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
745 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
746 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
750 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
752 u64 val_64;
754 /* step 2: initialize command ring buffer */
755 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
756 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
757 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
758 xhci->cmd_ring->dequeue) &
759 (u64) ~CMD_RING_RSVD_BITS) |
760 xhci->cmd_ring->cycle_state;
761 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 "// Setting command ring address to 0x%llx",
763 (long unsigned long) val_64);
764 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
768 * The whole command ring must be cleared to zero when we suspend the host.
770 * The host doesn't save the command ring pointer in the suspend well, so we
771 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
772 * aligned, because of the reserved bits in the command ring dequeue pointer
773 * register. Therefore, we can't just set the dequeue pointer back in the
774 * middle of the ring (TRBs are 16-byte aligned).
776 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
778 struct xhci_ring *ring;
779 struct xhci_segment *seg;
781 ring = xhci->cmd_ring;
782 xhci_for_each_ring_seg(ring->first_seg, seg)
783 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785 xhci_initialize_ring_info(ring);
787 * Reset the hardware dequeue pointer.
788 * Yes, this will need to be re-written after resume, but we're paranoid
789 * and want to make sure the hardware doesn't access bogus memory
790 * because, say, the BIOS or an SMI started the host without changing
791 * the command ring pointers.
793 xhci_set_cmd_ring_deq(xhci);
797 * Disable port wake bits if do_wakeup is not set.
799 * Also clear a possible internal port wake state left hanging for ports that
800 * detected termination but never successfully enumerated (trained to 0U).
801 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
802 * at enumeration clears this wake, force one here as well for unconnected ports
805 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
806 struct xhci_hub *rhub,
807 bool do_wakeup)
809 unsigned long flags;
810 u32 t1, t2, portsc;
811 int i;
813 spin_lock_irqsave(&xhci->lock, flags);
815 for (i = 0; i < rhub->num_ports; i++) {
816 portsc = readl(rhub->ports[i]->addr);
817 t1 = xhci_port_state_to_neutral(portsc);
818 t2 = t1;
820 /* clear wake bits if do_wake is not set */
821 if (!do_wakeup)
822 t2 &= ~PORT_WAKE_BITS;
824 /* Don't touch csc bit if connected or connect change is set */
825 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
826 t2 |= PORT_CSC;
828 if (t1 != t2) {
829 writel(t2, rhub->ports[i]->addr);
830 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
831 rhub->hcd->self.busnum, i + 1, portsc, t2);
834 spin_unlock_irqrestore(&xhci->lock, flags);
837 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
839 struct xhci_port **ports;
840 int port_index;
841 u32 status;
842 u32 portsc;
844 status = readl(&xhci->op_regs->status);
845 if (status & STS_EINT)
846 return true;
848 * Checking STS_EINT is not enough as there is a lag between a change
849 * bit being set and the Port Status Change Event that it generated
850 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
853 port_index = xhci->usb2_rhub.num_ports;
854 ports = xhci->usb2_rhub.ports;
855 while (port_index--) {
856 portsc = readl(ports[port_index]->addr);
857 if (portsc & PORT_CHANGE_MASK ||
858 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
859 return true;
861 port_index = xhci->usb3_rhub.num_ports;
862 ports = xhci->usb3_rhub.ports;
863 while (port_index--) {
864 portsc = readl(ports[port_index]->addr);
865 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
866 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
867 return true;
869 return false;
873 * Stop HC (not bus-specific)
875 * This is called when the machine transition into S3/S4 mode.
878 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
880 int rc = 0;
881 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
882 struct usb_hcd *hcd = xhci_to_hcd(xhci);
883 u32 command;
884 u32 res;
886 if (!hcd->state)
887 return 0;
889 if (hcd->state != HC_STATE_SUSPENDED ||
890 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
891 return -EINVAL;
893 /* Clear root port wake on bits if wakeup not allowed. */
894 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
895 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
897 if (!HCD_HW_ACCESSIBLE(hcd))
898 return 0;
900 xhci_dbc_suspend(xhci);
902 /* Don't poll the roothubs on bus suspend. */
903 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
904 __func__, hcd->self.busnum);
905 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
906 del_timer_sync(&hcd->rh_timer);
907 if (xhci->shared_hcd) {
908 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
909 del_timer_sync(&xhci->shared_hcd->rh_timer);
912 if (xhci->quirks & XHCI_SUSPEND_DELAY)
913 usleep_range(1000, 1500);
915 spin_lock_irq(&xhci->lock);
916 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
917 if (xhci->shared_hcd)
918 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
919 /* step 1: stop endpoint */
920 /* skipped assuming that port suspend has done */
922 /* step 2: clear Run/Stop bit */
923 command = readl(&xhci->op_regs->command);
924 command &= ~CMD_RUN;
925 writel(command, &xhci->op_regs->command);
927 /* Some chips from Fresco Logic need an extraordinary delay */
928 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
930 if (xhci_handshake(&xhci->op_regs->status,
931 STS_HALT, STS_HALT, delay)) {
932 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
933 spin_unlock_irq(&xhci->lock);
934 return -ETIMEDOUT;
936 xhci_clear_command_ring(xhci);
938 /* step 3: save registers */
939 xhci_save_registers(xhci);
941 /* step 4: set CSS flag */
942 command = readl(&xhci->op_regs->command);
943 command |= CMD_CSS;
944 writel(command, &xhci->op_regs->command);
945 xhci->broken_suspend = 0;
946 if (xhci_handshake(&xhci->op_regs->status,
947 STS_SAVE, 0, 20 * 1000)) {
949 * AMD SNPS xHC 3.0 occasionally does not clear the
950 * SSS bit of USBSTS and when driver tries to poll
951 * to see if the xHC clears BIT(8) which never happens
952 * and driver assumes that controller is not responding
953 * and times out. To workaround this, its good to check
954 * if SRE and HCE bits are not set (as per xhci
955 * Section 5.4.2) and bypass the timeout.
957 res = readl(&xhci->op_regs->status);
958 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
959 (((res & STS_SRE) == 0) &&
960 ((res & STS_HCE) == 0))) {
961 xhci->broken_suspend = 1;
962 } else {
963 xhci_warn(xhci, "WARN: xHC save state timeout\n");
964 spin_unlock_irq(&xhci->lock);
965 return -ETIMEDOUT;
968 spin_unlock_irq(&xhci->lock);
971 * Deleting Compliance Mode Recovery Timer because the xHCI Host
972 * is about to be suspended.
974 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
975 (!(xhci_all_ports_seen_u0(xhci)))) {
976 del_timer_sync(&xhci->comp_mode_recovery_timer);
977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
978 "%s: compliance mode recovery timer deleted",
979 __func__);
982 return rc;
984 EXPORT_SYMBOL_GPL(xhci_suspend);
987 * start xHC (not bus-specific)
989 * This is called when the machine transition from S3/S4 mode.
992 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
994 bool hibernated = (msg.event == PM_EVENT_RESTORE);
995 u32 command, temp = 0;
996 struct usb_hcd *hcd = xhci_to_hcd(xhci);
997 int retval = 0;
998 bool comp_timer_running = false;
999 bool pending_portevent = false;
1000 bool suspended_usb3_devs = false;
1001 bool reinit_xhc = false;
1003 if (!hcd->state)
1004 return 0;
1006 /* Wait a bit if either of the roothubs need to settle from the
1007 * transition into bus suspend.
1010 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1011 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1012 msleep(100);
1014 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1015 if (xhci->shared_hcd)
1016 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1018 spin_lock_irq(&xhci->lock);
1020 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1021 reinit_xhc = true;
1023 if (!reinit_xhc) {
1025 * Some controllers might lose power during suspend, so wait
1026 * for controller not ready bit to clear, just as in xHC init.
1028 retval = xhci_handshake(&xhci->op_regs->status,
1029 STS_CNR, 0, 10 * 1000 * 1000);
1030 if (retval) {
1031 xhci_warn(xhci, "Controller not ready at resume %d\n",
1032 retval);
1033 spin_unlock_irq(&xhci->lock);
1034 return retval;
1036 /* step 1: restore register */
1037 xhci_restore_registers(xhci);
1038 /* step 2: initialize command ring buffer */
1039 xhci_set_cmd_ring_deq(xhci);
1040 /* step 3: restore state and start state*/
1041 /* step 3: set CRS flag */
1042 command = readl(&xhci->op_regs->command);
1043 command |= CMD_CRS;
1044 writel(command, &xhci->op_regs->command);
1046 * Some controllers take up to 55+ ms to complete the controller
1047 * restore so setting the timeout to 100ms. Xhci specification
1048 * doesn't mention any timeout value.
1050 if (xhci_handshake(&xhci->op_regs->status,
1051 STS_RESTORE, 0, 100 * 1000)) {
1052 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1053 spin_unlock_irq(&xhci->lock);
1054 return -ETIMEDOUT;
1058 temp = readl(&xhci->op_regs->status);
1060 /* re-initialize the HC on Restore Error, or Host Controller Error */
1061 if ((temp & (STS_SRE | STS_HCE)) &&
1062 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1063 reinit_xhc = true;
1064 if (!xhci->broken_suspend)
1065 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1068 if (reinit_xhc) {
1069 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1070 !(xhci_all_ports_seen_u0(xhci))) {
1071 del_timer_sync(&xhci->comp_mode_recovery_timer);
1072 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1073 "Compliance Mode Recovery Timer deleted!");
1076 /* Let the USB core know _both_ roothubs lost power. */
1077 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1078 if (xhci->shared_hcd)
1079 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1081 xhci_dbg(xhci, "Stop HCD\n");
1082 xhci_halt(xhci);
1083 xhci_zero_64b_regs(xhci);
1084 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1085 spin_unlock_irq(&xhci->lock);
1086 if (retval)
1087 return retval;
1089 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1090 temp = readl(&xhci->op_regs->status);
1091 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1092 xhci_disable_interrupter(xhci->interrupters[0]);
1094 xhci_dbg(xhci, "cleaning up memory\n");
1095 xhci_mem_cleanup(xhci);
1096 xhci_debugfs_exit(xhci);
1097 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1098 readl(&xhci->op_regs->status));
1100 /* USB core calls the PCI reinit and start functions twice:
1101 * first with the primary HCD, and then with the secondary HCD.
1102 * If we don't do the same, the host will never be started.
1104 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1105 retval = xhci_init(hcd);
1106 if (retval)
1107 return retval;
1108 comp_timer_running = true;
1110 xhci_dbg(xhci, "Start the primary HCD\n");
1111 retval = xhci_run(hcd);
1112 if (!retval && xhci->shared_hcd) {
1113 xhci_dbg(xhci, "Start the secondary HCD\n");
1114 retval = xhci_run(xhci->shared_hcd);
1116 if (retval)
1117 return retval;
1119 * Resume roothubs unconditionally as PORTSC change bits are not
1120 * immediately visible after xHC reset
1122 hcd->state = HC_STATE_SUSPENDED;
1124 if (xhci->shared_hcd) {
1125 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1126 usb_hcd_resume_root_hub(xhci->shared_hcd);
1128 usb_hcd_resume_root_hub(hcd);
1130 goto done;
1133 /* step 4: set Run/Stop bit */
1134 command = readl(&xhci->op_regs->command);
1135 command |= CMD_RUN;
1136 writel(command, &xhci->op_regs->command);
1137 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1138 0, 250 * 1000);
1140 /* step 5: walk topology and initialize portsc,
1141 * portpmsc and portli
1143 /* this is done in bus_resume */
1145 /* step 6: restart each of the previously
1146 * Running endpoints by ringing their doorbells
1149 spin_unlock_irq(&xhci->lock);
1151 xhci_dbc_resume(xhci);
1153 if (retval == 0) {
1155 * Resume roothubs only if there are pending events.
1156 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1157 * the first wake signalling failed, give it that chance if
1158 * there are suspended USB 3 devices.
1160 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1161 xhci->usb3_rhub.bus_state.bus_suspended)
1162 suspended_usb3_devs = true;
1164 pending_portevent = xhci_pending_portevent(xhci);
1166 if (suspended_usb3_devs && !pending_portevent &&
1167 msg.event == PM_EVENT_AUTO_RESUME) {
1168 msleep(120);
1169 pending_portevent = xhci_pending_portevent(xhci);
1172 if (pending_portevent) {
1173 if (xhci->shared_hcd)
1174 usb_hcd_resume_root_hub(xhci->shared_hcd);
1175 usb_hcd_resume_root_hub(hcd);
1178 done:
1180 * If system is subject to the Quirk, Compliance Mode Timer needs to
1181 * be re-initialized Always after a system resume. Ports are subject
1182 * to suffer the Compliance Mode issue again. It doesn't matter if
1183 * ports have entered previously to U0 before system's suspension.
1185 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1186 compliance_mode_recovery_timer_init(xhci);
1188 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1189 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1191 /* Re-enable port polling. */
1192 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1193 __func__, hcd->self.busnum);
1194 if (xhci->shared_hcd) {
1195 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1196 usb_hcd_poll_rh_status(xhci->shared_hcd);
1198 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1199 usb_hcd_poll_rh_status(hcd);
1201 return retval;
1203 EXPORT_SYMBOL_GPL(xhci_resume);
1204 #endif /* CONFIG_PM */
1206 /*-------------------------------------------------------------------------*/
1208 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1210 void *temp;
1211 int ret = 0;
1212 unsigned int buf_len;
1213 enum dma_data_direction dir;
1215 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1216 buf_len = urb->transfer_buffer_length;
1218 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1219 dev_to_node(hcd->self.sysdev));
1220 if (!temp)
1221 return -ENOMEM;
1223 if (usb_urb_dir_out(urb))
1224 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1225 temp, buf_len, 0);
1227 urb->transfer_buffer = temp;
1228 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1229 urb->transfer_buffer,
1230 urb->transfer_buffer_length,
1231 dir);
1233 if (dma_mapping_error(hcd->self.sysdev,
1234 urb->transfer_dma)) {
1235 ret = -EAGAIN;
1236 kfree(temp);
1237 } else {
1238 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241 return ret;
1244 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1245 struct urb *urb)
1247 bool ret = false;
1248 unsigned int i;
1249 unsigned int len = 0;
1250 unsigned int trb_size;
1251 unsigned int max_pkt;
1252 struct scatterlist *sg;
1253 struct scatterlist *tail_sg;
1255 tail_sg = urb->sg;
1256 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1258 if (!urb->num_sgs)
1259 return ret;
1261 if (urb->dev->speed >= USB_SPEED_SUPER)
1262 trb_size = TRB_CACHE_SIZE_SS;
1263 else
1264 trb_size = TRB_CACHE_SIZE_HS;
1266 if (urb->transfer_buffer_length != 0 &&
1267 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1268 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1269 len = len + sg->length;
1270 if (i > trb_size - 2) {
1271 len = len - tail_sg->length;
1272 if (len < max_pkt) {
1273 ret = true;
1274 break;
1277 tail_sg = sg_next(tail_sg);
1281 return ret;
1284 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1286 unsigned int len;
1287 unsigned int buf_len;
1288 enum dma_data_direction dir;
1290 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1292 buf_len = urb->transfer_buffer_length;
1294 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1295 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1296 dma_unmap_single(hcd->self.sysdev,
1297 urb->transfer_dma,
1298 urb->transfer_buffer_length,
1299 dir);
1301 if (usb_urb_dir_in(urb)) {
1302 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1303 urb->transfer_buffer,
1304 buf_len,
1306 if (len != buf_len) {
1307 xhci_dbg(hcd_to_xhci(hcd),
1308 "Copy from tmp buf to urb sg list failed\n");
1309 urb->actual_length = len;
1312 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1313 kfree(urb->transfer_buffer);
1314 urb->transfer_buffer = NULL;
1318 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1319 * we'll copy the actual data into the TRB address register. This is limited to
1320 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1321 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1323 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1324 gfp_t mem_flags)
1326 struct xhci_hcd *xhci;
1328 xhci = hcd_to_xhci(hcd);
1330 if (xhci_urb_suitable_for_idt(urb))
1331 return 0;
1333 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1334 if (xhci_urb_temp_buffer_required(hcd, urb))
1335 return xhci_map_temp_buffer(hcd, urb);
1337 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1342 struct xhci_hcd *xhci;
1343 bool unmap_temp_buf = false;
1345 xhci = hcd_to_xhci(hcd);
1347 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1348 unmap_temp_buf = true;
1350 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1351 xhci_unmap_temp_buf(hcd, urb);
1352 else
1353 usb_hcd_unmap_urb_for_dma(hcd, urb);
1357 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1358 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1359 * value to right shift 1 for the bitmask.
1361 * Index = (epnum * 2) + direction - 1,
1362 * where direction = 0 for OUT, 1 for IN.
1363 * For control endpoints, the IN index is used (OUT index is unused), so
1364 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1366 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1368 unsigned int index;
1369 if (usb_endpoint_xfer_control(desc))
1370 index = (unsigned int) (usb_endpoint_num(desc)*2);
1371 else
1372 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1373 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1374 return index;
1376 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1378 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1379 * address from the XHCI endpoint index.
1381 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1383 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1384 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1385 return direction | number;
1388 /* Find the flag for this endpoint (for use in the control context). Use the
1389 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1390 * bit 1, etc.
1392 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1394 return 1 << (xhci_get_endpoint_index(desc) + 1);
1397 /* Compute the last valid endpoint context index. Basically, this is the
1398 * endpoint index plus one. For slot contexts with more than valid endpoint,
1399 * we find the most significant bit set in the added contexts flags.
1400 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1401 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1403 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1405 return fls(added_ctxs) - 1;
1408 /* Returns 1 if the arguments are OK;
1409 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1411 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1412 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1413 const char *func) {
1414 struct xhci_hcd *xhci;
1415 struct xhci_virt_device *virt_dev;
1417 if (!hcd || (check_ep && !ep) || !udev) {
1418 pr_debug("xHCI %s called with invalid args\n", func);
1419 return -EINVAL;
1421 if (!udev->parent) {
1422 pr_debug("xHCI %s called for root hub\n", func);
1423 return 0;
1426 xhci = hcd_to_xhci(hcd);
1427 if (check_virt_dev) {
1428 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1429 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1430 func);
1431 return -EINVAL;
1434 virt_dev = xhci->devs[udev->slot_id];
1435 if (virt_dev->udev != udev) {
1436 xhci_dbg(xhci, "xHCI %s called with udev and "
1437 "virt_dev does not match\n", func);
1438 return -EINVAL;
1442 if (xhci->xhc_state & XHCI_STATE_HALTED)
1443 return -ENODEV;
1445 return 1;
1448 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1449 struct usb_device *udev, struct xhci_command *command,
1450 bool ctx_change, bool must_succeed);
1453 * Full speed devices may have a max packet size greater than 8 bytes, but the
1454 * USB core doesn't know that until it reads the first 8 bytes of the
1455 * descriptor. If the usb_device's max packet size changes after that point,
1456 * we need to issue an evaluate context command and wait on it.
1458 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1460 struct xhci_input_control_ctx *ctrl_ctx;
1461 struct xhci_ep_ctx *ep_ctx;
1462 struct xhci_command *command;
1463 int max_packet_size;
1464 int hw_max_packet_size;
1465 int ret = 0;
1467 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1468 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1469 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1471 if (hw_max_packet_size == max_packet_size)
1472 return 0;
1474 switch (max_packet_size) {
1475 case 8: case 16: case 32: case 64: case 9:
1476 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1477 "Max Packet Size for ep 0 changed.");
1478 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1479 "Max packet size in usb_device = %d",
1480 max_packet_size);
1481 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1482 "Max packet size in xHCI HW = %d",
1483 hw_max_packet_size);
1484 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1485 "Issuing evaluate context command.");
1487 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1488 if (!command)
1489 return -ENOMEM;
1491 command->in_ctx = vdev->in_ctx;
1492 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1493 if (!ctrl_ctx) {
1494 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1495 __func__);
1496 ret = -ENOMEM;
1497 break;
1499 /* Set up the modified control endpoint 0 */
1500 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1502 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1503 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1504 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1505 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1507 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1508 ctrl_ctx->drop_flags = 0;
1510 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1511 true, false);
1512 /* Clean up the input context for later use by bandwidth functions */
1513 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1514 break;
1515 default:
1516 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1517 max_packet_size);
1518 return -EINVAL;
1521 kfree(command->completion);
1522 kfree(command);
1524 return ret;
1528 * non-error returns are a promise to giveback() the urb later
1529 * we drop ownership so next owner (or urb unlink) can get it
1531 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1533 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1534 unsigned long flags;
1535 int ret = 0;
1536 unsigned int slot_id, ep_index;
1537 unsigned int *ep_state;
1538 struct urb_priv *urb_priv;
1539 int num_tds;
1541 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1543 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1544 num_tds = urb->number_of_packets;
1545 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1546 urb->transfer_buffer_length > 0 &&
1547 urb->transfer_flags & URB_ZERO_PACKET &&
1548 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1549 num_tds = 2;
1550 else
1551 num_tds = 1;
1553 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1554 if (!urb_priv)
1555 return -ENOMEM;
1557 urb_priv->num_tds = num_tds;
1558 urb_priv->num_tds_done = 0;
1559 urb->hcpriv = urb_priv;
1561 trace_xhci_urb_enqueue(urb);
1563 spin_lock_irqsave(&xhci->lock, flags);
1565 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1566 true, true, __func__);
1567 if (ret <= 0) {
1568 ret = ret ? ret : -EINVAL;
1569 goto free_priv;
1572 slot_id = urb->dev->slot_id;
1574 if (!HCD_HW_ACCESSIBLE(hcd)) {
1575 ret = -ESHUTDOWN;
1576 goto free_priv;
1579 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1580 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1581 ret = -ENODEV;
1582 goto free_priv;
1585 if (xhci->xhc_state & XHCI_STATE_DYING) {
1586 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1587 urb->ep->desc.bEndpointAddress, urb);
1588 ret = -ESHUTDOWN;
1589 goto free_priv;
1592 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1594 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1595 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1596 *ep_state);
1597 ret = -EINVAL;
1598 goto free_priv;
1600 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1601 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1602 ret = -EINVAL;
1603 goto free_priv;
1606 switch (usb_endpoint_type(&urb->ep->desc)) {
1608 case USB_ENDPOINT_XFER_CONTROL:
1609 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1610 slot_id, ep_index);
1611 break;
1612 case USB_ENDPOINT_XFER_BULK:
1613 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1614 slot_id, ep_index);
1615 break;
1616 case USB_ENDPOINT_XFER_INT:
1617 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1618 slot_id, ep_index);
1619 break;
1620 case USB_ENDPOINT_XFER_ISOC:
1621 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1622 slot_id, ep_index);
1625 if (ret) {
1626 free_priv:
1627 xhci_urb_free_priv(urb_priv);
1628 urb->hcpriv = NULL;
1630 spin_unlock_irqrestore(&xhci->lock, flags);
1631 return ret;
1635 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1636 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1637 * should pick up where it left off in the TD, unless a Set Transfer Ring
1638 * Dequeue Pointer is issued.
1640 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1641 * the ring. Since the ring is a contiguous structure, they can't be physically
1642 * removed. Instead, there are two options:
1644 * 1) If the HC is in the middle of processing the URB to be canceled, we
1645 * simply move the ring's dequeue pointer past those TRBs using the Set
1646 * Transfer Ring Dequeue Pointer command. This will be the common case,
1647 * when drivers timeout on the last submitted URB and attempt to cancel.
1649 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1650 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1651 * HC will need to invalidate the any TRBs it has cached after the stop
1652 * endpoint command, as noted in the xHCI 0.95 errata.
1654 * 3) The TD may have completed by the time the Stop Endpoint Command
1655 * completes, so software needs to handle that case too.
1657 * This function should protect against the TD enqueueing code ringing the
1658 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1659 * It also needs to account for multiple cancellations on happening at the same
1660 * time for the same endpoint.
1662 * Note that this function can be called in any context, or so says
1663 * usb_hcd_unlink_urb()
1665 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1667 unsigned long flags;
1668 int ret, i;
1669 u32 temp;
1670 struct xhci_hcd *xhci;
1671 struct urb_priv *urb_priv;
1672 struct xhci_td *td;
1673 unsigned int ep_index;
1674 struct xhci_ring *ep_ring;
1675 struct xhci_virt_ep *ep;
1676 struct xhci_command *command;
1677 struct xhci_virt_device *vdev;
1679 xhci = hcd_to_xhci(hcd);
1680 spin_lock_irqsave(&xhci->lock, flags);
1682 trace_xhci_urb_dequeue(urb);
1684 /* Make sure the URB hasn't completed or been unlinked already */
1685 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1686 if (ret)
1687 goto done;
1689 /* give back URB now if we can't queue it for cancel */
1690 vdev = xhci->devs[urb->dev->slot_id];
1691 urb_priv = urb->hcpriv;
1692 if (!vdev || !urb_priv)
1693 goto err_giveback;
1695 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1696 ep = &vdev->eps[ep_index];
1697 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1698 if (!ep || !ep_ring)
1699 goto err_giveback;
1701 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1702 temp = readl(&xhci->op_regs->status);
1703 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1704 xhci_hc_died(xhci);
1705 goto done;
1709 * check ring is not re-allocated since URB was enqueued. If it is, then
1710 * make sure none of the ring related pointers in this URB private data
1711 * are touched, such as td_list, otherwise we overwrite freed data
1713 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1714 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1715 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1716 td = &urb_priv->td[i];
1717 if (!list_empty(&td->cancelled_td_list))
1718 list_del_init(&td->cancelled_td_list);
1720 goto err_giveback;
1723 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1724 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1725 "HC halted, freeing TD manually.");
1726 for (i = urb_priv->num_tds_done;
1727 i < urb_priv->num_tds;
1728 i++) {
1729 td = &urb_priv->td[i];
1730 if (!list_empty(&td->td_list))
1731 list_del_init(&td->td_list);
1732 if (!list_empty(&td->cancelled_td_list))
1733 list_del_init(&td->cancelled_td_list);
1735 goto err_giveback;
1738 i = urb_priv->num_tds_done;
1739 if (i < urb_priv->num_tds)
1740 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1741 "Cancel URB %p, dev %s, ep 0x%x, "
1742 "starting at offset 0x%llx",
1743 urb, urb->dev->devpath,
1744 urb->ep->desc.bEndpointAddress,
1745 (unsigned long long) xhci_trb_virt_to_dma(
1746 urb_priv->td[i].start_seg,
1747 urb_priv->td[i].start_trb));
1749 for (; i < urb_priv->num_tds; i++) {
1750 td = &urb_priv->td[i];
1751 /* TD can already be on cancelled list if ep halted on it */
1752 if (list_empty(&td->cancelled_td_list)) {
1753 td->cancel_status = TD_DIRTY;
1754 list_add_tail(&td->cancelled_td_list,
1755 &ep->cancelled_td_list);
1759 /* These completion handlers will sort out cancelled TDs for us */
1760 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1761 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1762 urb->dev->slot_id, ep_index, ep->ep_state);
1763 goto done;
1766 /* In this case no commands are pending but the endpoint is stopped */
1767 if (ep->ep_state & EP_CLEARING_TT) {
1768 /* and cancelled TDs can be given back right away */
1769 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1770 urb->dev->slot_id, ep_index, ep->ep_state);
1771 xhci_process_cancelled_tds(ep);
1772 } else {
1773 /* Otherwise, queue a new Stop Endpoint command */
1774 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1775 if (!command) {
1776 ret = -ENOMEM;
1777 goto done;
1779 ep->stop_time = jiffies;
1780 ep->ep_state |= EP_STOP_CMD_PENDING;
1781 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1782 ep_index, 0);
1783 xhci_ring_cmd_db(xhci);
1785 done:
1786 spin_unlock_irqrestore(&xhci->lock, flags);
1787 return ret;
1789 err_giveback:
1790 if (urb_priv)
1791 xhci_urb_free_priv(urb_priv);
1792 usb_hcd_unlink_urb_from_ep(hcd, urb);
1793 spin_unlock_irqrestore(&xhci->lock, flags);
1794 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1795 return ret;
1798 /* Drop an endpoint from a new bandwidth configuration for this device.
1799 * Only one call to this function is allowed per endpoint before
1800 * check_bandwidth() or reset_bandwidth() must be called.
1801 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1802 * add the endpoint to the schedule with possibly new parameters denoted by a
1803 * different endpoint descriptor in usb_host_endpoint.
1804 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1805 * not allowed.
1807 * The USB core will not allow URBs to be queued to an endpoint that is being
1808 * disabled, so there's no need for mutual exclusion to protect
1809 * the xhci->devs[slot_id] structure.
1811 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1812 struct usb_host_endpoint *ep)
1814 struct xhci_hcd *xhci;
1815 struct xhci_container_ctx *in_ctx, *out_ctx;
1816 struct xhci_input_control_ctx *ctrl_ctx;
1817 unsigned int ep_index;
1818 struct xhci_ep_ctx *ep_ctx;
1819 u32 drop_flag;
1820 u32 new_add_flags, new_drop_flags;
1821 int ret;
1823 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1824 if (ret <= 0)
1825 return ret;
1826 xhci = hcd_to_xhci(hcd);
1827 if (xhci->xhc_state & XHCI_STATE_DYING)
1828 return -ENODEV;
1830 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1831 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1832 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1833 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1834 __func__, drop_flag);
1835 return 0;
1838 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1839 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1840 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1841 if (!ctrl_ctx) {
1842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1843 __func__);
1844 return 0;
1847 ep_index = xhci_get_endpoint_index(&ep->desc);
1848 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1849 /* If the HC already knows the endpoint is disabled,
1850 * or the HCD has noted it is disabled, ignore this request
1852 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1853 le32_to_cpu(ctrl_ctx->drop_flags) &
1854 xhci_get_endpoint_flag(&ep->desc)) {
1855 /* Do not warn when called after a usb_device_reset */
1856 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1857 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1858 __func__, ep);
1859 return 0;
1862 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1863 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1865 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1866 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1868 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1870 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1872 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1873 (unsigned int) ep->desc.bEndpointAddress,
1874 udev->slot_id,
1875 (unsigned int) new_drop_flags,
1876 (unsigned int) new_add_flags);
1877 return 0;
1879 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1881 /* Add an endpoint to a new possible bandwidth configuration for this device.
1882 * Only one call to this function is allowed per endpoint before
1883 * check_bandwidth() or reset_bandwidth() must be called.
1884 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1885 * add the endpoint to the schedule with possibly new parameters denoted by a
1886 * different endpoint descriptor in usb_host_endpoint.
1887 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1888 * not allowed.
1890 * The USB core will not allow URBs to be queued to an endpoint until the
1891 * configuration or alt setting is installed in the device, so there's no need
1892 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1894 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1895 struct usb_host_endpoint *ep)
1897 struct xhci_hcd *xhci;
1898 struct xhci_container_ctx *in_ctx;
1899 unsigned int ep_index;
1900 struct xhci_input_control_ctx *ctrl_ctx;
1901 struct xhci_ep_ctx *ep_ctx;
1902 u32 added_ctxs;
1903 u32 new_add_flags, new_drop_flags;
1904 struct xhci_virt_device *virt_dev;
1905 int ret = 0;
1907 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1908 if (ret <= 0) {
1909 /* So we won't queue a reset ep command for a root hub */
1910 ep->hcpriv = NULL;
1911 return ret;
1913 xhci = hcd_to_xhci(hcd);
1914 if (xhci->xhc_state & XHCI_STATE_DYING)
1915 return -ENODEV;
1917 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1918 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1919 /* FIXME when we have to issue an evaluate endpoint command to
1920 * deal with ep0 max packet size changing once we get the
1921 * descriptors
1923 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1924 __func__, added_ctxs);
1925 return 0;
1928 virt_dev = xhci->devs[udev->slot_id];
1929 in_ctx = virt_dev->in_ctx;
1930 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1931 if (!ctrl_ctx) {
1932 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1933 __func__);
1934 return 0;
1937 ep_index = xhci_get_endpoint_index(&ep->desc);
1938 /* If this endpoint is already in use, and the upper layers are trying
1939 * to add it again without dropping it, reject the addition.
1941 if (virt_dev->eps[ep_index].ring &&
1942 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1943 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1944 "without dropping it.\n",
1945 (unsigned int) ep->desc.bEndpointAddress);
1946 return -EINVAL;
1949 /* If the HCD has already noted the endpoint is enabled,
1950 * ignore this request.
1952 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1953 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1954 __func__, ep);
1955 return 0;
1959 * Configuration and alternate setting changes must be done in
1960 * process context, not interrupt context (or so documenation
1961 * for usb_set_interface() and usb_set_configuration() claim).
1963 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1964 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1965 __func__, ep->desc.bEndpointAddress);
1966 return -ENOMEM;
1969 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1970 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1972 /* If xhci_endpoint_disable() was called for this endpoint, but the
1973 * xHC hasn't been notified yet through the check_bandwidth() call,
1974 * this re-adds a new state for the endpoint from the new endpoint
1975 * descriptors. We must drop and re-add this endpoint, so we leave the
1976 * drop flags alone.
1978 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1980 /* Store the usb_device pointer for later use */
1981 ep->hcpriv = udev;
1983 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1984 trace_xhci_add_endpoint(ep_ctx);
1986 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1987 (unsigned int) ep->desc.bEndpointAddress,
1988 udev->slot_id,
1989 (unsigned int) new_drop_flags,
1990 (unsigned int) new_add_flags);
1991 return 0;
1993 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1995 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1997 struct xhci_input_control_ctx *ctrl_ctx;
1998 struct xhci_ep_ctx *ep_ctx;
1999 struct xhci_slot_ctx *slot_ctx;
2000 int i;
2002 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2003 if (!ctrl_ctx) {
2004 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2005 __func__);
2006 return;
2009 /* When a device's add flag and drop flag are zero, any subsequent
2010 * configure endpoint command will leave that endpoint's state
2011 * untouched. Make sure we don't leave any old state in the input
2012 * endpoint contexts.
2014 ctrl_ctx->drop_flags = 0;
2015 ctrl_ctx->add_flags = 0;
2016 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2017 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2018 /* Endpoint 0 is always valid */
2019 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2020 for (i = 1; i < 31; i++) {
2021 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2022 ep_ctx->ep_info = 0;
2023 ep_ctx->ep_info2 = 0;
2024 ep_ctx->deq = 0;
2025 ep_ctx->tx_info = 0;
2029 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2030 struct usb_device *udev, u32 *cmd_status)
2032 int ret;
2034 switch (*cmd_status) {
2035 case COMP_COMMAND_ABORTED:
2036 case COMP_COMMAND_RING_STOPPED:
2037 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2038 ret = -ETIME;
2039 break;
2040 case COMP_RESOURCE_ERROR:
2041 dev_warn(&udev->dev,
2042 "Not enough host controller resources for new device state.\n");
2043 ret = -ENOMEM;
2044 /* FIXME: can we allocate more resources for the HC? */
2045 break;
2046 case COMP_BANDWIDTH_ERROR:
2047 case COMP_SECONDARY_BANDWIDTH_ERROR:
2048 dev_warn(&udev->dev,
2049 "Not enough bandwidth for new device state.\n");
2050 ret = -ENOSPC;
2051 /* FIXME: can we go back to the old state? */
2052 break;
2053 case COMP_TRB_ERROR:
2054 /* the HCD set up something wrong */
2055 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2056 "add flag = 1, "
2057 "and endpoint is not disabled.\n");
2058 ret = -EINVAL;
2059 break;
2060 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2061 dev_warn(&udev->dev,
2062 "ERROR: Incompatible device for endpoint configure command.\n");
2063 ret = -ENODEV;
2064 break;
2065 case COMP_SUCCESS:
2066 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2067 "Successful Endpoint Configure command");
2068 ret = 0;
2069 break;
2070 default:
2071 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2072 *cmd_status);
2073 ret = -EINVAL;
2074 break;
2076 return ret;
2079 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2080 struct usb_device *udev, u32 *cmd_status)
2082 int ret;
2084 switch (*cmd_status) {
2085 case COMP_COMMAND_ABORTED:
2086 case COMP_COMMAND_RING_STOPPED:
2087 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2088 ret = -ETIME;
2089 break;
2090 case COMP_PARAMETER_ERROR:
2091 dev_warn(&udev->dev,
2092 "WARN: xHCI driver setup invalid evaluate context command.\n");
2093 ret = -EINVAL;
2094 break;
2095 case COMP_SLOT_NOT_ENABLED_ERROR:
2096 dev_warn(&udev->dev,
2097 "WARN: slot not enabled for evaluate context command.\n");
2098 ret = -EINVAL;
2099 break;
2100 case COMP_CONTEXT_STATE_ERROR:
2101 dev_warn(&udev->dev,
2102 "WARN: invalid context state for evaluate context command.\n");
2103 ret = -EINVAL;
2104 break;
2105 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2106 dev_warn(&udev->dev,
2107 "ERROR: Incompatible device for evaluate context command.\n");
2108 ret = -ENODEV;
2109 break;
2110 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2111 /* Max Exit Latency too large error */
2112 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2113 ret = -EINVAL;
2114 break;
2115 case COMP_SUCCESS:
2116 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2117 "Successful evaluate context command");
2118 ret = 0;
2119 break;
2120 default:
2121 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2122 *cmd_status);
2123 ret = -EINVAL;
2124 break;
2126 return ret;
2129 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2130 struct xhci_input_control_ctx *ctrl_ctx)
2132 u32 valid_add_flags;
2133 u32 valid_drop_flags;
2135 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2136 * (bit 1). The default control endpoint is added during the Address
2137 * Device command and is never removed until the slot is disabled.
2139 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2140 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2142 /* Use hweight32 to count the number of ones in the add flags, or
2143 * number of endpoints added. Don't count endpoints that are changed
2144 * (both added and dropped).
2146 return hweight32(valid_add_flags) -
2147 hweight32(valid_add_flags & valid_drop_flags);
2150 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2151 struct xhci_input_control_ctx *ctrl_ctx)
2153 u32 valid_add_flags;
2154 u32 valid_drop_flags;
2156 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2157 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2159 return hweight32(valid_drop_flags) -
2160 hweight32(valid_add_flags & valid_drop_flags);
2164 * We need to reserve the new number of endpoints before the configure endpoint
2165 * command completes. We can't subtract the dropped endpoints from the number
2166 * of active endpoints until the command completes because we can oversubscribe
2167 * the host in this case:
2169 * - the first configure endpoint command drops more endpoints than it adds
2170 * - a second configure endpoint command that adds more endpoints is queued
2171 * - the first configure endpoint command fails, so the config is unchanged
2172 * - the second command may succeed, even though there isn't enough resources
2174 * Must be called with xhci->lock held.
2176 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2177 struct xhci_input_control_ctx *ctrl_ctx)
2179 u32 added_eps;
2181 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2182 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2183 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2184 "Not enough ep ctxs: "
2185 "%u active, need to add %u, limit is %u.",
2186 xhci->num_active_eps, added_eps,
2187 xhci->limit_active_eps);
2188 return -ENOMEM;
2190 xhci->num_active_eps += added_eps;
2191 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2192 "Adding %u ep ctxs, %u now active.", added_eps,
2193 xhci->num_active_eps);
2194 return 0;
2198 * The configure endpoint was failed by the xHC for some other reason, so we
2199 * need to revert the resources that failed configuration would have used.
2201 * Must be called with xhci->lock held.
2203 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2204 struct xhci_input_control_ctx *ctrl_ctx)
2206 u32 num_failed_eps;
2208 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2209 xhci->num_active_eps -= num_failed_eps;
2210 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211 "Removing %u failed ep ctxs, %u now active.",
2212 num_failed_eps,
2213 xhci->num_active_eps);
2217 * Now that the command has completed, clean up the active endpoint count by
2218 * subtracting out the endpoints that were dropped (but not changed).
2220 * Must be called with xhci->lock held.
2222 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2223 struct xhci_input_control_ctx *ctrl_ctx)
2225 u32 num_dropped_eps;
2227 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2228 xhci->num_active_eps -= num_dropped_eps;
2229 if (num_dropped_eps)
2230 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231 "Removing %u dropped ep ctxs, %u now active.",
2232 num_dropped_eps,
2233 xhci->num_active_eps);
2236 static unsigned int xhci_get_block_size(struct usb_device *udev)
2238 switch (udev->speed) {
2239 case USB_SPEED_LOW:
2240 case USB_SPEED_FULL:
2241 return FS_BLOCK;
2242 case USB_SPEED_HIGH:
2243 return HS_BLOCK;
2244 case USB_SPEED_SUPER:
2245 case USB_SPEED_SUPER_PLUS:
2246 return SS_BLOCK;
2247 case USB_SPEED_UNKNOWN:
2248 default:
2249 /* Should never happen */
2250 return 1;
2254 static unsigned int
2255 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2257 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2258 return LS_OVERHEAD;
2259 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2260 return FS_OVERHEAD;
2261 return HS_OVERHEAD;
2264 /* If we are changing a LS/FS device under a HS hub,
2265 * make sure (if we are activating a new TT) that the HS bus has enough
2266 * bandwidth for this new TT.
2268 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2269 struct xhci_virt_device *virt_dev,
2270 int old_active_eps)
2272 struct xhci_interval_bw_table *bw_table;
2273 struct xhci_tt_bw_info *tt_info;
2275 /* Find the bandwidth table for the root port this TT is attached to. */
2276 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2277 tt_info = virt_dev->tt_info;
2278 /* If this TT already had active endpoints, the bandwidth for this TT
2279 * has already been added. Removing all periodic endpoints (and thus
2280 * making the TT enactive) will only decrease the bandwidth used.
2282 if (old_active_eps)
2283 return 0;
2284 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2285 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2286 return -ENOMEM;
2287 return 0;
2289 /* Not sure why we would have no new active endpoints...
2291 * Maybe because of an Evaluate Context change for a hub update or a
2292 * control endpoint 0 max packet size change?
2293 * FIXME: skip the bandwidth calculation in that case.
2295 return 0;
2298 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2299 struct xhci_virt_device *virt_dev)
2301 unsigned int bw_reserved;
2303 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2304 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2305 return -ENOMEM;
2307 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2308 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2309 return -ENOMEM;
2311 return 0;
2315 * This algorithm is a very conservative estimate of the worst-case scheduling
2316 * scenario for any one interval. The hardware dynamically schedules the
2317 * packets, so we can't tell which microframe could be the limiting factor in
2318 * the bandwidth scheduling. This only takes into account periodic endpoints.
2320 * Obviously, we can't solve an NP complete problem to find the minimum worst
2321 * case scenario. Instead, we come up with an estimate that is no less than
2322 * the worst case bandwidth used for any one microframe, but may be an
2323 * over-estimate.
2325 * We walk the requirements for each endpoint by interval, starting with the
2326 * smallest interval, and place packets in the schedule where there is only one
2327 * possible way to schedule packets for that interval. In order to simplify
2328 * this algorithm, we record the largest max packet size for each interval, and
2329 * assume all packets will be that size.
2331 * For interval 0, we obviously must schedule all packets for each interval.
2332 * The bandwidth for interval 0 is just the amount of data to be transmitted
2333 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2334 * the number of packets).
2336 * For interval 1, we have two possible microframes to schedule those packets
2337 * in. For this algorithm, if we can schedule the same number of packets for
2338 * each possible scheduling opportunity (each microframe), we will do so. The
2339 * remaining number of packets will be saved to be transmitted in the gaps in
2340 * the next interval's scheduling sequence.
2342 * As we move those remaining packets to be scheduled with interval 2 packets,
2343 * we have to double the number of remaining packets to transmit. This is
2344 * because the intervals are actually powers of 2, and we would be transmitting
2345 * the previous interval's packets twice in this interval. We also have to be
2346 * sure that when we look at the largest max packet size for this interval, we
2347 * also look at the largest max packet size for the remaining packets and take
2348 * the greater of the two.
2350 * The algorithm continues to evenly distribute packets in each scheduling
2351 * opportunity, and push the remaining packets out, until we get to the last
2352 * interval. Then those packets and their associated overhead are just added
2353 * to the bandwidth used.
2355 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2356 struct xhci_virt_device *virt_dev,
2357 int old_active_eps)
2359 unsigned int bw_reserved;
2360 unsigned int max_bandwidth;
2361 unsigned int bw_used;
2362 unsigned int block_size;
2363 struct xhci_interval_bw_table *bw_table;
2364 unsigned int packet_size = 0;
2365 unsigned int overhead = 0;
2366 unsigned int packets_transmitted = 0;
2367 unsigned int packets_remaining = 0;
2368 unsigned int i;
2370 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2371 return xhci_check_ss_bw(xhci, virt_dev);
2373 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2374 max_bandwidth = HS_BW_LIMIT;
2375 /* Convert percent of bus BW reserved to blocks reserved */
2376 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2377 } else {
2378 max_bandwidth = FS_BW_LIMIT;
2379 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2382 bw_table = virt_dev->bw_table;
2383 /* We need to translate the max packet size and max ESIT payloads into
2384 * the units the hardware uses.
2386 block_size = xhci_get_block_size(virt_dev->udev);
2388 /* If we are manipulating a LS/FS device under a HS hub, double check
2389 * that the HS bus has enough bandwidth if we are activing a new TT.
2391 if (virt_dev->tt_info) {
2392 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2393 "Recalculating BW for rootport %u",
2394 virt_dev->rhub_port->hw_portnum + 1);
2395 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2396 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2397 "newly activated TT.\n");
2398 return -ENOMEM;
2400 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2401 "Recalculating BW for TT slot %u port %u",
2402 virt_dev->tt_info->slot_id,
2403 virt_dev->tt_info->ttport);
2404 } else {
2405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2406 "Recalculating BW for rootport %u",
2407 virt_dev->rhub_port->hw_portnum + 1);
2410 /* Add in how much bandwidth will be used for interval zero, or the
2411 * rounded max ESIT payload + number of packets * largest overhead.
2413 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2414 bw_table->interval_bw[0].num_packets *
2415 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2417 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2418 unsigned int bw_added;
2419 unsigned int largest_mps;
2420 unsigned int interval_overhead;
2423 * How many packets could we transmit in this interval?
2424 * If packets didn't fit in the previous interval, we will need
2425 * to transmit that many packets twice within this interval.
2427 packets_remaining = 2 * packets_remaining +
2428 bw_table->interval_bw[i].num_packets;
2430 /* Find the largest max packet size of this or the previous
2431 * interval.
2433 if (list_empty(&bw_table->interval_bw[i].endpoints))
2434 largest_mps = 0;
2435 else {
2436 struct xhci_virt_ep *virt_ep;
2437 struct list_head *ep_entry;
2439 ep_entry = bw_table->interval_bw[i].endpoints.next;
2440 virt_ep = list_entry(ep_entry,
2441 struct xhci_virt_ep, bw_endpoint_list);
2442 /* Convert to blocks, rounding up */
2443 largest_mps = DIV_ROUND_UP(
2444 virt_ep->bw_info.max_packet_size,
2445 block_size);
2447 if (largest_mps > packet_size)
2448 packet_size = largest_mps;
2450 /* Use the larger overhead of this or the previous interval. */
2451 interval_overhead = xhci_get_largest_overhead(
2452 &bw_table->interval_bw[i]);
2453 if (interval_overhead > overhead)
2454 overhead = interval_overhead;
2456 /* How many packets can we evenly distribute across
2457 * (1 << (i + 1)) possible scheduling opportunities?
2459 packets_transmitted = packets_remaining >> (i + 1);
2461 /* Add in the bandwidth used for those scheduled packets */
2462 bw_added = packets_transmitted * (overhead + packet_size);
2464 /* How many packets do we have remaining to transmit? */
2465 packets_remaining = packets_remaining % (1 << (i + 1));
2467 /* What largest max packet size should those packets have? */
2468 /* If we've transmitted all packets, don't carry over the
2469 * largest packet size.
2471 if (packets_remaining == 0) {
2472 packet_size = 0;
2473 overhead = 0;
2474 } else if (packets_transmitted > 0) {
2475 /* Otherwise if we do have remaining packets, and we've
2476 * scheduled some packets in this interval, take the
2477 * largest max packet size from endpoints with this
2478 * interval.
2480 packet_size = largest_mps;
2481 overhead = interval_overhead;
2483 /* Otherwise carry over packet_size and overhead from the last
2484 * time we had a remainder.
2486 bw_used += bw_added;
2487 if (bw_used > max_bandwidth) {
2488 xhci_warn(xhci, "Not enough bandwidth. "
2489 "Proposed: %u, Max: %u\n",
2490 bw_used, max_bandwidth);
2491 return -ENOMEM;
2495 * Ok, we know we have some packets left over after even-handedly
2496 * scheduling interval 15. We don't know which microframes they will
2497 * fit into, so we over-schedule and say they will be scheduled every
2498 * microframe.
2500 if (packets_remaining > 0)
2501 bw_used += overhead + packet_size;
2503 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2504 /* OK, we're manipulating a HS device attached to a
2505 * root port bandwidth domain. Include the number of active TTs
2506 * in the bandwidth used.
2508 bw_used += TT_HS_OVERHEAD *
2509 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2512 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2513 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2514 "Available: %u " "percent",
2515 bw_used, max_bandwidth, bw_reserved,
2516 (max_bandwidth - bw_used - bw_reserved) * 100 /
2517 max_bandwidth);
2519 bw_used += bw_reserved;
2520 if (bw_used > max_bandwidth) {
2521 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2522 bw_used, max_bandwidth);
2523 return -ENOMEM;
2526 bw_table->bw_used = bw_used;
2527 return 0;
2530 static bool xhci_is_async_ep(unsigned int ep_type)
2532 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2533 ep_type != ISOC_IN_EP &&
2534 ep_type != INT_IN_EP);
2537 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2539 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2542 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2544 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2546 if (ep_bw->ep_interval == 0)
2547 return SS_OVERHEAD_BURST +
2548 (ep_bw->mult * ep_bw->num_packets *
2549 (SS_OVERHEAD + mps));
2550 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2551 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2552 1 << ep_bw->ep_interval);
2556 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2557 struct xhci_bw_info *ep_bw,
2558 struct xhci_interval_bw_table *bw_table,
2559 struct usb_device *udev,
2560 struct xhci_virt_ep *virt_ep,
2561 struct xhci_tt_bw_info *tt_info)
2563 struct xhci_interval_bw *interval_bw;
2564 int normalized_interval;
2566 if (xhci_is_async_ep(ep_bw->type))
2567 return;
2569 if (udev->speed >= USB_SPEED_SUPER) {
2570 if (xhci_is_sync_in_ep(ep_bw->type))
2571 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2572 xhci_get_ss_bw_consumed(ep_bw);
2573 else
2574 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2575 xhci_get_ss_bw_consumed(ep_bw);
2576 return;
2579 /* SuperSpeed endpoints never get added to intervals in the table, so
2580 * this check is only valid for HS/FS/LS devices.
2582 if (list_empty(&virt_ep->bw_endpoint_list))
2583 return;
2584 /* For LS/FS devices, we need to translate the interval expressed in
2585 * microframes to frames.
2587 if (udev->speed == USB_SPEED_HIGH)
2588 normalized_interval = ep_bw->ep_interval;
2589 else
2590 normalized_interval = ep_bw->ep_interval - 3;
2592 if (normalized_interval == 0)
2593 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2594 interval_bw = &bw_table->interval_bw[normalized_interval];
2595 interval_bw->num_packets -= ep_bw->num_packets;
2596 switch (udev->speed) {
2597 case USB_SPEED_LOW:
2598 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2599 break;
2600 case USB_SPEED_FULL:
2601 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2602 break;
2603 case USB_SPEED_HIGH:
2604 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2605 break;
2606 default:
2607 /* Should never happen because only LS/FS/HS endpoints will get
2608 * added to the endpoint list.
2610 return;
2612 if (tt_info)
2613 tt_info->active_eps -= 1;
2614 list_del_init(&virt_ep->bw_endpoint_list);
2617 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2618 struct xhci_bw_info *ep_bw,
2619 struct xhci_interval_bw_table *bw_table,
2620 struct usb_device *udev,
2621 struct xhci_virt_ep *virt_ep,
2622 struct xhci_tt_bw_info *tt_info)
2624 struct xhci_interval_bw *interval_bw;
2625 struct xhci_virt_ep *smaller_ep;
2626 int normalized_interval;
2628 if (xhci_is_async_ep(ep_bw->type))
2629 return;
2631 if (udev->speed == USB_SPEED_SUPER) {
2632 if (xhci_is_sync_in_ep(ep_bw->type))
2633 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2634 xhci_get_ss_bw_consumed(ep_bw);
2635 else
2636 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2637 xhci_get_ss_bw_consumed(ep_bw);
2638 return;
2641 /* For LS/FS devices, we need to translate the interval expressed in
2642 * microframes to frames.
2644 if (udev->speed == USB_SPEED_HIGH)
2645 normalized_interval = ep_bw->ep_interval;
2646 else
2647 normalized_interval = ep_bw->ep_interval - 3;
2649 if (normalized_interval == 0)
2650 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2651 interval_bw = &bw_table->interval_bw[normalized_interval];
2652 interval_bw->num_packets += ep_bw->num_packets;
2653 switch (udev->speed) {
2654 case USB_SPEED_LOW:
2655 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2656 break;
2657 case USB_SPEED_FULL:
2658 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2659 break;
2660 case USB_SPEED_HIGH:
2661 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2662 break;
2663 default:
2664 /* Should never happen because only LS/FS/HS endpoints will get
2665 * added to the endpoint list.
2667 return;
2670 if (tt_info)
2671 tt_info->active_eps += 1;
2672 /* Insert the endpoint into the list, largest max packet size first. */
2673 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2674 bw_endpoint_list) {
2675 if (ep_bw->max_packet_size >=
2676 smaller_ep->bw_info.max_packet_size) {
2677 /* Add the new ep before the smaller endpoint */
2678 list_add_tail(&virt_ep->bw_endpoint_list,
2679 &smaller_ep->bw_endpoint_list);
2680 return;
2683 /* Add the new endpoint at the end of the list. */
2684 list_add_tail(&virt_ep->bw_endpoint_list,
2685 &interval_bw->endpoints);
2688 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2689 struct xhci_virt_device *virt_dev,
2690 int old_active_eps)
2692 struct xhci_root_port_bw_info *rh_bw_info;
2693 if (!virt_dev->tt_info)
2694 return;
2696 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2697 if (old_active_eps == 0 &&
2698 virt_dev->tt_info->active_eps != 0) {
2699 rh_bw_info->num_active_tts += 1;
2700 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2701 } else if (old_active_eps != 0 &&
2702 virt_dev->tt_info->active_eps == 0) {
2703 rh_bw_info->num_active_tts -= 1;
2704 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2708 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2709 struct xhci_virt_device *virt_dev,
2710 struct xhci_container_ctx *in_ctx)
2712 struct xhci_bw_info ep_bw_info[31];
2713 int i;
2714 struct xhci_input_control_ctx *ctrl_ctx;
2715 int old_active_eps = 0;
2717 if (virt_dev->tt_info)
2718 old_active_eps = virt_dev->tt_info->active_eps;
2720 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2721 if (!ctrl_ctx) {
2722 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2723 __func__);
2724 return -ENOMEM;
2727 for (i = 0; i < 31; i++) {
2728 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2729 continue;
2731 /* Make a copy of the BW info in case we need to revert this */
2732 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2733 sizeof(ep_bw_info[i]));
2734 /* Drop the endpoint from the interval table if the endpoint is
2735 * being dropped or changed.
2737 if (EP_IS_DROPPED(ctrl_ctx, i))
2738 xhci_drop_ep_from_interval_table(xhci,
2739 &virt_dev->eps[i].bw_info,
2740 virt_dev->bw_table,
2741 virt_dev->udev,
2742 &virt_dev->eps[i],
2743 virt_dev->tt_info);
2745 /* Overwrite the information stored in the endpoints' bw_info */
2746 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2747 for (i = 0; i < 31; i++) {
2748 /* Add any changed or added endpoints to the interval table */
2749 if (EP_IS_ADDED(ctrl_ctx, i))
2750 xhci_add_ep_to_interval_table(xhci,
2751 &virt_dev->eps[i].bw_info,
2752 virt_dev->bw_table,
2753 virt_dev->udev,
2754 &virt_dev->eps[i],
2755 virt_dev->tt_info);
2758 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2759 /* Ok, this fits in the bandwidth we have.
2760 * Update the number of active TTs.
2762 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2763 return 0;
2766 /* We don't have enough bandwidth for this, revert the stored info. */
2767 for (i = 0; i < 31; i++) {
2768 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2769 continue;
2771 /* Drop the new copies of any added or changed endpoints from
2772 * the interval table.
2774 if (EP_IS_ADDED(ctrl_ctx, i)) {
2775 xhci_drop_ep_from_interval_table(xhci,
2776 &virt_dev->eps[i].bw_info,
2777 virt_dev->bw_table,
2778 virt_dev->udev,
2779 &virt_dev->eps[i],
2780 virt_dev->tt_info);
2782 /* Revert the endpoint back to its old information */
2783 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2784 sizeof(ep_bw_info[i]));
2785 /* Add any changed or dropped endpoints back into the table */
2786 if (EP_IS_DROPPED(ctrl_ctx, i))
2787 xhci_add_ep_to_interval_table(xhci,
2788 &virt_dev->eps[i].bw_info,
2789 virt_dev->bw_table,
2790 virt_dev->udev,
2791 &virt_dev->eps[i],
2792 virt_dev->tt_info);
2794 return -ENOMEM;
2798 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and
2799 * waits for the command completion before returning. This does not call
2800 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2801 * cases, along with transfer ring cleanup.
2803 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2804 * their own transfer ring, such as offload situations.
2806 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2807 gfp_t gfp_flags)
2809 struct xhci_command *command;
2810 unsigned long flags;
2811 int ret;
2813 command = xhci_alloc_command(xhci, true, gfp_flags);
2814 if (!command)
2815 return -ENOMEM;
2817 spin_lock_irqsave(&xhci->lock, flags);
2818 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2819 ep->ep_index, suspend);
2820 if (ret < 0) {
2821 spin_unlock_irqrestore(&xhci->lock, flags);
2822 goto out;
2825 xhci_ring_cmd_db(xhci);
2826 spin_unlock_irqrestore(&xhci->lock, flags);
2828 wait_for_completion(command->completion);
2830 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2831 if (command->status == COMP_COMMAND_ABORTED ||
2832 command->status == COMP_COMMAND_RING_STOPPED) {
2833 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2834 ret = -ETIME;
2836 out:
2837 xhci_free_command(xhci, command);
2839 return ret;
2841 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2843 /* Issue a configure endpoint command or evaluate context command
2844 * and wait for it to finish.
2846 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2847 struct usb_device *udev,
2848 struct xhci_command *command,
2849 bool ctx_change, bool must_succeed)
2851 int ret;
2852 unsigned long flags;
2853 struct xhci_input_control_ctx *ctrl_ctx;
2854 struct xhci_virt_device *virt_dev;
2855 struct xhci_slot_ctx *slot_ctx;
2857 if (!command)
2858 return -EINVAL;
2860 spin_lock_irqsave(&xhci->lock, flags);
2862 if (xhci->xhc_state & XHCI_STATE_DYING) {
2863 spin_unlock_irqrestore(&xhci->lock, flags);
2864 return -ESHUTDOWN;
2867 virt_dev = xhci->devs[udev->slot_id];
2869 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2870 if (!ctrl_ctx) {
2871 spin_unlock_irqrestore(&xhci->lock, flags);
2872 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2873 __func__);
2874 return -ENOMEM;
2877 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2878 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2879 spin_unlock_irqrestore(&xhci->lock, flags);
2880 xhci_warn(xhci, "Not enough host resources, "
2881 "active endpoint contexts = %u\n",
2882 xhci->num_active_eps);
2883 return -ENOMEM;
2885 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2886 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2887 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2888 xhci_free_host_resources(xhci, ctrl_ctx);
2889 spin_unlock_irqrestore(&xhci->lock, flags);
2890 xhci_warn(xhci, "Not enough bandwidth\n");
2891 return -ENOMEM;
2894 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2896 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2897 trace_xhci_configure_endpoint(slot_ctx);
2899 if (!ctx_change)
2900 ret = xhci_queue_configure_endpoint(xhci, command,
2901 command->in_ctx->dma,
2902 udev->slot_id, must_succeed);
2903 else
2904 ret = xhci_queue_evaluate_context(xhci, command,
2905 command->in_ctx->dma,
2906 udev->slot_id, must_succeed);
2907 if (ret < 0) {
2908 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2909 xhci_free_host_resources(xhci, ctrl_ctx);
2910 spin_unlock_irqrestore(&xhci->lock, flags);
2911 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2912 "FIXME allocate a new ring segment");
2913 return -ENOMEM;
2915 xhci_ring_cmd_db(xhci);
2916 spin_unlock_irqrestore(&xhci->lock, flags);
2918 /* Wait for the configure endpoint command to complete */
2919 wait_for_completion(command->completion);
2921 if (!ctx_change)
2922 ret = xhci_configure_endpoint_result(xhci, udev,
2923 &command->status);
2924 else
2925 ret = xhci_evaluate_context_result(xhci, udev,
2926 &command->status);
2928 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2929 spin_lock_irqsave(&xhci->lock, flags);
2930 /* If the command failed, remove the reserved resources.
2931 * Otherwise, clean up the estimate to include dropped eps.
2933 if (ret)
2934 xhci_free_host_resources(xhci, ctrl_ctx);
2935 else
2936 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2937 spin_unlock_irqrestore(&xhci->lock, flags);
2939 return ret;
2942 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2943 struct xhci_virt_device *vdev, int i)
2945 struct xhci_virt_ep *ep = &vdev->eps[i];
2947 if (ep->ep_state & EP_HAS_STREAMS) {
2948 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2949 xhci_get_endpoint_address(i));
2950 xhci_free_stream_info(xhci, ep->stream_info);
2951 ep->stream_info = NULL;
2952 ep->ep_state &= ~EP_HAS_STREAMS;
2956 /* Called after one or more calls to xhci_add_endpoint() or
2957 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2958 * to call xhci_reset_bandwidth().
2960 * Since we are in the middle of changing either configuration or
2961 * installing a new alt setting, the USB core won't allow URBs to be
2962 * enqueued for any endpoint on the old config or interface. Nothing
2963 * else should be touching the xhci->devs[slot_id] structure, so we
2964 * don't need to take the xhci->lock for manipulating that.
2966 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2968 int i;
2969 int ret = 0;
2970 struct xhci_hcd *xhci;
2971 struct xhci_virt_device *virt_dev;
2972 struct xhci_input_control_ctx *ctrl_ctx;
2973 struct xhci_slot_ctx *slot_ctx;
2974 struct xhci_command *command;
2976 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2977 if (ret <= 0)
2978 return ret;
2979 xhci = hcd_to_xhci(hcd);
2980 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2981 (xhci->xhc_state & XHCI_STATE_REMOVING))
2982 return -ENODEV;
2984 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2985 virt_dev = xhci->devs[udev->slot_id];
2987 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2988 if (!command)
2989 return -ENOMEM;
2991 command->in_ctx = virt_dev->in_ctx;
2993 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2994 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2995 if (!ctrl_ctx) {
2996 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2997 __func__);
2998 ret = -ENOMEM;
2999 goto command_cleanup;
3001 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3002 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3003 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3005 /* Don't issue the command if there's no endpoints to update. */
3006 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3007 ctrl_ctx->drop_flags == 0) {
3008 ret = 0;
3009 goto command_cleanup;
3011 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3012 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3013 for (i = 31; i >= 1; i--) {
3014 __le32 le32 = cpu_to_le32(BIT(i));
3016 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3017 || (ctrl_ctx->add_flags & le32) || i == 1) {
3018 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3019 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3020 break;
3024 ret = xhci_configure_endpoint(xhci, udev, command,
3025 false, false);
3026 if (ret)
3027 /* Callee should call reset_bandwidth() */
3028 goto command_cleanup;
3030 /* Free any rings that were dropped, but not changed. */
3031 for (i = 1; i < 31; i++) {
3032 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3033 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3034 xhci_free_endpoint_ring(xhci, virt_dev, i);
3035 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3038 xhci_zero_in_ctx(xhci, virt_dev);
3040 * Install any rings for completely new endpoints or changed endpoints,
3041 * and free any old rings from changed endpoints.
3043 for (i = 1; i < 31; i++) {
3044 if (!virt_dev->eps[i].new_ring)
3045 continue;
3046 /* Only free the old ring if it exists.
3047 * It may not if this is the first add of an endpoint.
3049 if (virt_dev->eps[i].ring) {
3050 xhci_free_endpoint_ring(xhci, virt_dev, i);
3052 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3053 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3054 virt_dev->eps[i].new_ring = NULL;
3055 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3057 command_cleanup:
3058 kfree(command->completion);
3059 kfree(command);
3061 return ret;
3063 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3065 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3067 struct xhci_hcd *xhci;
3068 struct xhci_virt_device *virt_dev;
3069 int i, ret;
3071 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3072 if (ret <= 0)
3073 return;
3074 xhci = hcd_to_xhci(hcd);
3076 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3077 virt_dev = xhci->devs[udev->slot_id];
3078 /* Free any rings allocated for added endpoints */
3079 for (i = 0; i < 31; i++) {
3080 if (virt_dev->eps[i].new_ring) {
3081 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3082 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3083 virt_dev->eps[i].new_ring = NULL;
3086 xhci_zero_in_ctx(xhci, virt_dev);
3088 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3090 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3091 struct xhci_container_ctx *in_ctx,
3092 struct xhci_container_ctx *out_ctx,
3093 struct xhci_input_control_ctx *ctrl_ctx,
3094 u32 add_flags, u32 drop_flags)
3096 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3097 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3098 xhci_slot_copy(xhci, in_ctx, out_ctx);
3099 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3102 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3103 struct usb_host_endpoint *host_ep)
3105 struct xhci_hcd *xhci;
3106 struct xhci_virt_device *vdev;
3107 struct xhci_virt_ep *ep;
3108 struct usb_device *udev;
3109 unsigned long flags;
3110 unsigned int ep_index;
3112 xhci = hcd_to_xhci(hcd);
3113 rescan:
3114 spin_lock_irqsave(&xhci->lock, flags);
3116 udev = (struct usb_device *)host_ep->hcpriv;
3117 if (!udev || !udev->slot_id)
3118 goto done;
3120 vdev = xhci->devs[udev->slot_id];
3121 if (!vdev)
3122 goto done;
3124 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3125 ep = &vdev->eps[ep_index];
3127 /* wait for hub_tt_work to finish clearing hub TT */
3128 if (ep->ep_state & EP_CLEARING_TT) {
3129 spin_unlock_irqrestore(&xhci->lock, flags);
3130 schedule_timeout_uninterruptible(1);
3131 goto rescan;
3134 if (ep->ep_state)
3135 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3136 ep->ep_state);
3137 done:
3138 host_ep->hcpriv = NULL;
3139 spin_unlock_irqrestore(&xhci->lock, flags);
3143 * Called after usb core issues a clear halt control message.
3144 * The host side of the halt should already be cleared by a reset endpoint
3145 * command issued when the STALL event was received.
3147 * The reset endpoint command may only be issued to endpoints in the halted
3148 * state. For software that wishes to reset the data toggle or sequence number
3149 * of an endpoint that isn't in the halted state this function will issue a
3150 * configure endpoint command with the Drop and Add bits set for the target
3151 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3153 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3154 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3157 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3158 struct usb_host_endpoint *host_ep)
3160 struct xhci_hcd *xhci;
3161 struct usb_device *udev;
3162 struct xhci_virt_device *vdev;
3163 struct xhci_virt_ep *ep;
3164 struct xhci_input_control_ctx *ctrl_ctx;
3165 struct xhci_command *stop_cmd, *cfg_cmd;
3166 unsigned int ep_index;
3167 unsigned long flags;
3168 u32 ep_flag;
3169 int err;
3171 xhci = hcd_to_xhci(hcd);
3172 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3175 * Usb core assumes a max packet value for ep0 on FS devices until the
3176 * real value is read from the descriptor. Core resets Ep0 if values
3177 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3179 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3181 udev = container_of(host_ep, struct usb_device, ep0);
3182 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3183 return;
3185 vdev = xhci->devs[udev->slot_id];
3186 if (!vdev || vdev->udev != udev)
3187 return;
3189 xhci_check_ep0_maxpacket(xhci, vdev);
3191 /* Nothing else should be done here for ep0 during ep reset */
3192 return;
3195 if (!host_ep->hcpriv)
3196 return;
3197 udev = (struct usb_device *) host_ep->hcpriv;
3198 vdev = xhci->devs[udev->slot_id];
3200 if (!udev->slot_id || !vdev)
3201 return;
3203 ep = &vdev->eps[ep_index];
3205 /* Bail out if toggle is already being cleared by a endpoint reset */
3206 spin_lock_irqsave(&xhci->lock, flags);
3207 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3208 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3209 spin_unlock_irqrestore(&xhci->lock, flags);
3210 return;
3212 spin_unlock_irqrestore(&xhci->lock, flags);
3213 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3214 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3215 usb_endpoint_xfer_isoc(&host_ep->desc))
3216 return;
3218 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3220 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3221 return;
3223 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3224 if (!stop_cmd)
3225 return;
3227 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3228 if (!cfg_cmd)
3229 goto cleanup;
3231 spin_lock_irqsave(&xhci->lock, flags);
3233 /* block queuing new trbs and ringing ep doorbell */
3234 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3237 * Make sure endpoint ring is empty before resetting the toggle/seq.
3238 * Driver is required to synchronously cancel all transfer request.
3239 * Stop the endpoint to force xHC to update the output context
3242 if (!list_empty(&ep->ring->td_list)) {
3243 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3244 spin_unlock_irqrestore(&xhci->lock, flags);
3245 xhci_free_command(xhci, cfg_cmd);
3246 goto cleanup;
3249 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3250 ep_index, 0);
3251 if (err < 0) {
3252 spin_unlock_irqrestore(&xhci->lock, flags);
3253 xhci_free_command(xhci, cfg_cmd);
3254 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3255 __func__, err);
3256 goto cleanup;
3259 xhci_ring_cmd_db(xhci);
3260 spin_unlock_irqrestore(&xhci->lock, flags);
3262 wait_for_completion(stop_cmd->completion);
3264 spin_lock_irqsave(&xhci->lock, flags);
3266 /* config ep command clears toggle if add and drop ep flags are set */
3267 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3268 if (!ctrl_ctx) {
3269 spin_unlock_irqrestore(&xhci->lock, flags);
3270 xhci_free_command(xhci, cfg_cmd);
3271 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3272 __func__);
3273 goto cleanup;
3276 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3277 ctrl_ctx, ep_flag, ep_flag);
3278 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3280 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3281 udev->slot_id, false);
3282 if (err < 0) {
3283 spin_unlock_irqrestore(&xhci->lock, flags);
3284 xhci_free_command(xhci, cfg_cmd);
3285 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3286 __func__, err);
3287 goto cleanup;
3290 xhci_ring_cmd_db(xhci);
3291 spin_unlock_irqrestore(&xhci->lock, flags);
3293 wait_for_completion(cfg_cmd->completion);
3295 xhci_free_command(xhci, cfg_cmd);
3296 cleanup:
3297 xhci_free_command(xhci, stop_cmd);
3298 spin_lock_irqsave(&xhci->lock, flags);
3299 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3300 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3301 spin_unlock_irqrestore(&xhci->lock, flags);
3304 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3305 struct usb_device *udev, struct usb_host_endpoint *ep,
3306 unsigned int slot_id)
3308 int ret;
3309 unsigned int ep_index;
3310 unsigned int ep_state;
3312 if (!ep)
3313 return -EINVAL;
3314 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3315 if (ret <= 0)
3316 return ret ? ret : -EINVAL;
3317 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3318 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3319 " descriptor for ep 0x%x does not support streams\n",
3320 ep->desc.bEndpointAddress);
3321 return -EINVAL;
3324 ep_index = xhci_get_endpoint_index(&ep->desc);
3325 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3326 if (ep_state & EP_HAS_STREAMS ||
3327 ep_state & EP_GETTING_STREAMS) {
3328 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3329 "already has streams set up.\n",
3330 ep->desc.bEndpointAddress);
3331 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3332 "dynamic stream context array reallocation.\n");
3333 return -EINVAL;
3335 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3336 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3337 "endpoint 0x%x; URBs are pending.\n",
3338 ep->desc.bEndpointAddress);
3339 return -EINVAL;
3341 return 0;
3344 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3345 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3347 unsigned int max_streams;
3349 /* The stream context array size must be a power of two */
3350 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3352 * Find out how many primary stream array entries the host controller
3353 * supports. Later we may use secondary stream arrays (similar to 2nd
3354 * level page entries), but that's an optional feature for xHCI host
3355 * controllers. xHCs must support at least 4 stream IDs.
3357 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3358 if (*num_stream_ctxs > max_streams) {
3359 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3360 max_streams);
3361 *num_stream_ctxs = max_streams;
3362 *num_streams = max_streams;
3366 /* Returns an error code if one of the endpoint already has streams.
3367 * This does not change any data structures, it only checks and gathers
3368 * information.
3370 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3371 struct usb_device *udev,
3372 struct usb_host_endpoint **eps, unsigned int num_eps,
3373 unsigned int *num_streams, u32 *changed_ep_bitmask)
3375 unsigned int max_streams;
3376 unsigned int endpoint_flag;
3377 int i;
3378 int ret;
3380 for (i = 0; i < num_eps; i++) {
3381 ret = xhci_check_streams_endpoint(xhci, udev,
3382 eps[i], udev->slot_id);
3383 if (ret < 0)
3384 return ret;
3386 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3387 if (max_streams < (*num_streams - 1)) {
3388 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3389 eps[i]->desc.bEndpointAddress,
3390 max_streams);
3391 *num_streams = max_streams+1;
3394 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3395 if (*changed_ep_bitmask & endpoint_flag)
3396 return -EINVAL;
3397 *changed_ep_bitmask |= endpoint_flag;
3399 return 0;
3402 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3403 struct usb_device *udev,
3404 struct usb_host_endpoint **eps, unsigned int num_eps)
3406 u32 changed_ep_bitmask = 0;
3407 unsigned int slot_id;
3408 unsigned int ep_index;
3409 unsigned int ep_state;
3410 int i;
3412 slot_id = udev->slot_id;
3413 if (!xhci->devs[slot_id])
3414 return 0;
3416 for (i = 0; i < num_eps; i++) {
3417 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3418 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3419 /* Are streams already being freed for the endpoint? */
3420 if (ep_state & EP_GETTING_NO_STREAMS) {
3421 xhci_warn(xhci, "WARN Can't disable streams for "
3422 "endpoint 0x%x, "
3423 "streams are being disabled already\n",
3424 eps[i]->desc.bEndpointAddress);
3425 return 0;
3427 /* Are there actually any streams to free? */
3428 if (!(ep_state & EP_HAS_STREAMS) &&
3429 !(ep_state & EP_GETTING_STREAMS)) {
3430 xhci_warn(xhci, "WARN Can't disable streams for "
3431 "endpoint 0x%x, "
3432 "streams are already disabled!\n",
3433 eps[i]->desc.bEndpointAddress);
3434 xhci_warn(xhci, "WARN xhci_free_streams() called "
3435 "with non-streams endpoint\n");
3436 return 0;
3438 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3440 return changed_ep_bitmask;
3444 * The USB device drivers use this function (through the HCD interface in USB
3445 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3446 * coordinate mass storage command queueing across multiple endpoints (basically
3447 * a stream ID == a task ID).
3449 * Setting up streams involves allocating the same size stream context array
3450 * for each endpoint and issuing a configure endpoint command for all endpoints.
3452 * Don't allow the call to succeed if one endpoint only supports one stream
3453 * (which means it doesn't support streams at all).
3455 * Drivers may get less stream IDs than they asked for, if the host controller
3456 * hardware or endpoints claim they can't support the number of requested
3457 * stream IDs.
3459 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3460 struct usb_host_endpoint **eps, unsigned int num_eps,
3461 unsigned int num_streams, gfp_t mem_flags)
3463 int i, ret;
3464 struct xhci_hcd *xhci;
3465 struct xhci_virt_device *vdev;
3466 struct xhci_command *config_cmd;
3467 struct xhci_input_control_ctx *ctrl_ctx;
3468 unsigned int ep_index;
3469 unsigned int num_stream_ctxs;
3470 unsigned int max_packet;
3471 unsigned long flags;
3472 u32 changed_ep_bitmask = 0;
3474 if (!eps)
3475 return -EINVAL;
3477 /* Add one to the number of streams requested to account for
3478 * stream 0 that is reserved for xHCI usage.
3480 num_streams += 1;
3481 xhci = hcd_to_xhci(hcd);
3482 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3483 num_streams);
3485 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3486 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3487 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3488 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3489 return -ENOSYS;
3492 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3493 if (!config_cmd)
3494 return -ENOMEM;
3496 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3497 if (!ctrl_ctx) {
3498 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3499 __func__);
3500 xhci_free_command(xhci, config_cmd);
3501 return -ENOMEM;
3504 /* Check to make sure all endpoints are not already configured for
3505 * streams. While we're at it, find the maximum number of streams that
3506 * all the endpoints will support and check for duplicate endpoints.
3508 spin_lock_irqsave(&xhci->lock, flags);
3509 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3510 num_eps, &num_streams, &changed_ep_bitmask);
3511 if (ret < 0) {
3512 xhci_free_command(xhci, config_cmd);
3513 spin_unlock_irqrestore(&xhci->lock, flags);
3514 return ret;
3516 if (num_streams <= 1) {
3517 xhci_warn(xhci, "WARN: endpoints can't handle "
3518 "more than one stream.\n");
3519 xhci_free_command(xhci, config_cmd);
3520 spin_unlock_irqrestore(&xhci->lock, flags);
3521 return -EINVAL;
3523 vdev = xhci->devs[udev->slot_id];
3524 /* Mark each endpoint as being in transition, so
3525 * xhci_urb_enqueue() will reject all URBs.
3527 for (i = 0; i < num_eps; i++) {
3528 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3531 spin_unlock_irqrestore(&xhci->lock, flags);
3533 /* Setup internal data structures and allocate HW data structures for
3534 * streams (but don't install the HW structures in the input context
3535 * until we're sure all memory allocation succeeded).
3537 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3538 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3539 num_stream_ctxs, num_streams);
3541 for (i = 0; i < num_eps; i++) {
3542 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3544 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3545 num_stream_ctxs,
3546 num_streams,
3547 max_packet, mem_flags);
3548 if (!vdev->eps[ep_index].stream_info)
3549 goto cleanup;
3550 /* Set maxPstreams in endpoint context and update deq ptr to
3551 * point to stream context array. FIXME
3555 /* Set up the input context for a configure endpoint command. */
3556 for (i = 0; i < num_eps; i++) {
3557 struct xhci_ep_ctx *ep_ctx;
3559 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3560 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3562 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3563 vdev->out_ctx, ep_index);
3564 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3565 vdev->eps[ep_index].stream_info);
3567 /* Tell the HW to drop its old copy of the endpoint context info
3568 * and add the updated copy from the input context.
3570 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3571 vdev->out_ctx, ctrl_ctx,
3572 changed_ep_bitmask, changed_ep_bitmask);
3574 /* Issue and wait for the configure endpoint command */
3575 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3576 false, false);
3578 /* xHC rejected the configure endpoint command for some reason, so we
3579 * leave the old ring intact and free our internal streams data
3580 * structure.
3582 if (ret < 0)
3583 goto cleanup;
3585 spin_lock_irqsave(&xhci->lock, flags);
3586 for (i = 0; i < num_eps; i++) {
3587 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3588 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3589 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3590 udev->slot_id, ep_index);
3591 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3593 xhci_free_command(xhci, config_cmd);
3594 spin_unlock_irqrestore(&xhci->lock, flags);
3596 for (i = 0; i < num_eps; i++) {
3597 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3598 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3600 /* Subtract 1 for stream 0, which drivers can't use */
3601 return num_streams - 1;
3603 cleanup:
3604 /* If it didn't work, free the streams! */
3605 for (i = 0; i < num_eps; i++) {
3606 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3607 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3608 vdev->eps[ep_index].stream_info = NULL;
3609 /* FIXME Unset maxPstreams in endpoint context and
3610 * update deq ptr to point to normal string ring.
3612 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3613 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3614 xhci_endpoint_zero(xhci, vdev, eps[i]);
3616 xhci_free_command(xhci, config_cmd);
3617 return -ENOMEM;
3620 /* Transition the endpoint from using streams to being a "normal" endpoint
3621 * without streams.
3623 * Modify the endpoint context state, submit a configure endpoint command,
3624 * and free all endpoint rings for streams if that completes successfully.
3626 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3627 struct usb_host_endpoint **eps, unsigned int num_eps,
3628 gfp_t mem_flags)
3630 int i, ret;
3631 struct xhci_hcd *xhci;
3632 struct xhci_virt_device *vdev;
3633 struct xhci_command *command;
3634 struct xhci_input_control_ctx *ctrl_ctx;
3635 unsigned int ep_index;
3636 unsigned long flags;
3637 u32 changed_ep_bitmask;
3639 xhci = hcd_to_xhci(hcd);
3640 vdev = xhci->devs[udev->slot_id];
3642 /* Set up a configure endpoint command to remove the streams rings */
3643 spin_lock_irqsave(&xhci->lock, flags);
3644 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3645 udev, eps, num_eps);
3646 if (changed_ep_bitmask == 0) {
3647 spin_unlock_irqrestore(&xhci->lock, flags);
3648 return -EINVAL;
3651 /* Use the xhci_command structure from the first endpoint. We may have
3652 * allocated too many, but the driver may call xhci_free_streams() for
3653 * each endpoint it grouped into one call to xhci_alloc_streams().
3655 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3656 command = vdev->eps[ep_index].stream_info->free_streams_command;
3657 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3658 if (!ctrl_ctx) {
3659 spin_unlock_irqrestore(&xhci->lock, flags);
3660 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3661 __func__);
3662 return -EINVAL;
3665 for (i = 0; i < num_eps; i++) {
3666 struct xhci_ep_ctx *ep_ctx;
3668 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3669 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3670 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3671 EP_GETTING_NO_STREAMS;
3673 xhci_endpoint_copy(xhci, command->in_ctx,
3674 vdev->out_ctx, ep_index);
3675 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3676 &vdev->eps[ep_index]);
3678 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3679 vdev->out_ctx, ctrl_ctx,
3680 changed_ep_bitmask, changed_ep_bitmask);
3681 spin_unlock_irqrestore(&xhci->lock, flags);
3683 /* Issue and wait for the configure endpoint command,
3684 * which must succeed.
3686 ret = xhci_configure_endpoint(xhci, udev, command,
3687 false, true);
3689 /* xHC rejected the configure endpoint command for some reason, so we
3690 * leave the streams rings intact.
3692 if (ret < 0)
3693 return ret;
3695 spin_lock_irqsave(&xhci->lock, flags);
3696 for (i = 0; i < num_eps; i++) {
3697 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3698 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3699 vdev->eps[ep_index].stream_info = NULL;
3700 /* FIXME Unset maxPstreams in endpoint context and
3701 * update deq ptr to point to normal string ring.
3703 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3704 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3706 spin_unlock_irqrestore(&xhci->lock, flags);
3708 return 0;
3712 * Deletes endpoint resources for endpoints that were active before a Reset
3713 * Device command, or a Disable Slot command. The Reset Device command leaves
3714 * the control endpoint intact, whereas the Disable Slot command deletes it.
3716 * Must be called with xhci->lock held.
3718 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3719 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3721 int i;
3722 unsigned int num_dropped_eps = 0;
3723 unsigned int drop_flags = 0;
3725 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3726 if (virt_dev->eps[i].ring) {
3727 drop_flags |= 1 << i;
3728 num_dropped_eps++;
3731 xhci->num_active_eps -= num_dropped_eps;
3732 if (num_dropped_eps)
3733 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3734 "Dropped %u ep ctxs, flags = 0x%x, "
3735 "%u now active.",
3736 num_dropped_eps, drop_flags,
3737 xhci->num_active_eps);
3740 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3743 * This submits a Reset Device Command, which will set the device state to 0,
3744 * set the device address to 0, and disable all the endpoints except the default
3745 * control endpoint. The USB core should come back and call
3746 * xhci_address_device(), and then re-set up the configuration. If this is
3747 * called because of a usb_reset_and_verify_device(), then the old alternate
3748 * settings will be re-installed through the normal bandwidth allocation
3749 * functions.
3751 * Wait for the Reset Device command to finish. Remove all structures
3752 * associated with the endpoints that were disabled. Clear the input device
3753 * structure? Reset the control endpoint 0 max packet size?
3755 * If the virt_dev to be reset does not exist or does not match the udev,
3756 * it means the device is lost, possibly due to the xHC restore error and
3757 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3758 * re-allocate the device.
3760 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3761 struct usb_device *udev)
3763 int ret, i;
3764 unsigned long flags;
3765 struct xhci_hcd *xhci;
3766 unsigned int slot_id;
3767 struct xhci_virt_device *virt_dev;
3768 struct xhci_command *reset_device_cmd;
3769 struct xhci_slot_ctx *slot_ctx;
3770 int old_active_eps = 0;
3772 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3773 if (ret <= 0)
3774 return ret;
3775 xhci = hcd_to_xhci(hcd);
3776 slot_id = udev->slot_id;
3777 virt_dev = xhci->devs[slot_id];
3778 if (!virt_dev) {
3779 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3780 "not exist. Re-allocate the device\n", slot_id);
3781 ret = xhci_alloc_dev(hcd, udev);
3782 if (ret == 1)
3783 return 0;
3784 else
3785 return -EINVAL;
3788 if (virt_dev->tt_info)
3789 old_active_eps = virt_dev->tt_info->active_eps;
3791 if (virt_dev->udev != udev) {
3792 /* If the virt_dev and the udev does not match, this virt_dev
3793 * may belong to another udev.
3794 * Re-allocate the device.
3796 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3797 "not match the udev. Re-allocate the device\n",
3798 slot_id);
3799 ret = xhci_alloc_dev(hcd, udev);
3800 if (ret == 1)
3801 return 0;
3802 else
3803 return -EINVAL;
3806 /* If device is not setup, there is no point in resetting it */
3807 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3808 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3809 SLOT_STATE_DISABLED)
3810 return 0;
3812 if (xhci->quirks & XHCI_ETRON_HOST) {
3814 * Obtaining a new device slot to inform the xHCI host that
3815 * the USB device has been reset.
3817 ret = xhci_disable_slot(xhci, udev->slot_id);
3818 xhci_free_virt_device(xhci, udev->slot_id);
3819 if (!ret) {
3820 ret = xhci_alloc_dev(hcd, udev);
3821 if (ret == 1)
3822 ret = 0;
3823 else
3824 ret = -EINVAL;
3826 return ret;
3829 trace_xhci_discover_or_reset_device(slot_ctx);
3831 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3832 /* Allocate the command structure that holds the struct completion.
3833 * Assume we're in process context, since the normal device reset
3834 * process has to wait for the device anyway. Storage devices are
3835 * reset as part of error handling, so use GFP_NOIO instead of
3836 * GFP_KERNEL.
3838 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3839 if (!reset_device_cmd) {
3840 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3841 return -ENOMEM;
3844 /* Attempt to submit the Reset Device command to the command ring */
3845 spin_lock_irqsave(&xhci->lock, flags);
3847 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3848 if (ret) {
3849 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3850 spin_unlock_irqrestore(&xhci->lock, flags);
3851 goto command_cleanup;
3853 xhci_ring_cmd_db(xhci);
3854 spin_unlock_irqrestore(&xhci->lock, flags);
3856 /* Wait for the Reset Device command to finish */
3857 wait_for_completion(reset_device_cmd->completion);
3859 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3860 * unless we tried to reset a slot ID that wasn't enabled,
3861 * or the device wasn't in the addressed or configured state.
3863 ret = reset_device_cmd->status;
3864 switch (ret) {
3865 case COMP_COMMAND_ABORTED:
3866 case COMP_COMMAND_RING_STOPPED:
3867 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3868 ret = -ETIME;
3869 goto command_cleanup;
3870 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3871 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3872 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3873 slot_id,
3874 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3875 xhci_dbg(xhci, "Not freeing device rings.\n");
3876 /* Don't treat this as an error. May change my mind later. */
3877 ret = 0;
3878 goto command_cleanup;
3879 case COMP_SUCCESS:
3880 xhci_dbg(xhci, "Successful reset device command.\n");
3881 break;
3882 default:
3883 if (xhci_is_vendor_info_code(xhci, ret))
3884 break;
3885 xhci_warn(xhci, "Unknown completion code %u for "
3886 "reset device command.\n", ret);
3887 ret = -EINVAL;
3888 goto command_cleanup;
3891 /* Free up host controller endpoint resources */
3892 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3893 spin_lock_irqsave(&xhci->lock, flags);
3894 /* Don't delete the default control endpoint resources */
3895 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3896 spin_unlock_irqrestore(&xhci->lock, flags);
3899 /* Everything but endpoint 0 is disabled, so free the rings. */
3900 for (i = 1; i < 31; i++) {
3901 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3903 if (ep->ep_state & EP_HAS_STREAMS) {
3904 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3905 xhci_get_endpoint_address(i));
3906 xhci_free_stream_info(xhci, ep->stream_info);
3907 ep->stream_info = NULL;
3908 ep->ep_state &= ~EP_HAS_STREAMS;
3911 if (ep->ring) {
3912 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3913 xhci_free_endpoint_ring(xhci, virt_dev, i);
3915 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3916 xhci_drop_ep_from_interval_table(xhci,
3917 &virt_dev->eps[i].bw_info,
3918 virt_dev->bw_table,
3919 udev,
3920 &virt_dev->eps[i],
3921 virt_dev->tt_info);
3922 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3924 /* If necessary, update the number of active TTs on this root port */
3925 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3926 virt_dev->flags = 0;
3927 ret = 0;
3929 command_cleanup:
3930 xhci_free_command(xhci, reset_device_cmd);
3931 return ret;
3935 * At this point, the struct usb_device is about to go away, the device has
3936 * disconnected, and all traffic has been stopped and the endpoints have been
3937 * disabled. Free any HC data structures associated with that device.
3939 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3941 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3942 struct xhci_virt_device *virt_dev;
3943 struct xhci_slot_ctx *slot_ctx;
3944 unsigned long flags;
3945 int i, ret;
3948 * We called pm_runtime_get_noresume when the device was attached.
3949 * Decrement the counter here to allow controller to runtime suspend
3950 * if no devices remain.
3952 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3953 pm_runtime_put_noidle(hcd->self.controller);
3955 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3956 /* If the host is halted due to driver unload, we still need to free the
3957 * device.
3959 if (ret <= 0 && ret != -ENODEV)
3960 return;
3962 virt_dev = xhci->devs[udev->slot_id];
3963 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3964 trace_xhci_free_dev(slot_ctx);
3966 /* Stop any wayward timer functions (which may grab the lock) */
3967 for (i = 0; i < 31; i++)
3968 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3969 virt_dev->udev = NULL;
3970 xhci_disable_slot(xhci, udev->slot_id);
3972 spin_lock_irqsave(&xhci->lock, flags);
3973 xhci_free_virt_device(xhci, udev->slot_id);
3974 spin_unlock_irqrestore(&xhci->lock, flags);
3978 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3980 struct xhci_command *command;
3981 unsigned long flags;
3982 u32 state;
3983 int ret;
3985 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3986 if (!command)
3987 return -ENOMEM;
3989 xhci_debugfs_remove_slot(xhci, slot_id);
3991 spin_lock_irqsave(&xhci->lock, flags);
3992 /* Don't disable the slot if the host controller is dead. */
3993 state = readl(&xhci->op_regs->status);
3994 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3995 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3996 spin_unlock_irqrestore(&xhci->lock, flags);
3997 kfree(command);
3998 return -ENODEV;
4001 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4002 slot_id);
4003 if (ret) {
4004 spin_unlock_irqrestore(&xhci->lock, flags);
4005 kfree(command);
4006 return ret;
4008 xhci_ring_cmd_db(xhci);
4009 spin_unlock_irqrestore(&xhci->lock, flags);
4011 wait_for_completion(command->completion);
4013 if (command->status != COMP_SUCCESS)
4014 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4015 slot_id, command->status);
4017 xhci_free_command(xhci, command);
4019 return 0;
4023 * Checks if we have enough host controller resources for the default control
4024 * endpoint.
4026 * Must be called with xhci->lock held.
4028 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4030 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4031 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4032 "Not enough ep ctxs: "
4033 "%u active, need to add 1, limit is %u.",
4034 xhci->num_active_eps, xhci->limit_active_eps);
4035 return -ENOMEM;
4037 xhci->num_active_eps += 1;
4038 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4039 "Adding 1 ep ctx, %u now active.",
4040 xhci->num_active_eps);
4041 return 0;
4046 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4047 * timed out, or allocating memory failed. Returns 1 on success.
4049 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4051 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4052 struct xhci_virt_device *vdev;
4053 struct xhci_slot_ctx *slot_ctx;
4054 unsigned long flags;
4055 int ret, slot_id;
4056 struct xhci_command *command;
4058 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4059 if (!command)
4060 return 0;
4062 spin_lock_irqsave(&xhci->lock, flags);
4063 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4064 if (ret) {
4065 spin_unlock_irqrestore(&xhci->lock, flags);
4066 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4067 xhci_free_command(xhci, command);
4068 return 0;
4070 xhci_ring_cmd_db(xhci);
4071 spin_unlock_irqrestore(&xhci->lock, flags);
4073 wait_for_completion(command->completion);
4074 slot_id = command->slot_id;
4076 if (!slot_id || command->status != COMP_SUCCESS) {
4077 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4078 xhci_trb_comp_code_string(command->status));
4079 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4080 HCS_MAX_SLOTS(
4081 readl(&xhci->cap_regs->hcs_params1)));
4082 xhci_free_command(xhci, command);
4083 return 0;
4086 xhci_free_command(xhci, command);
4088 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4089 spin_lock_irqsave(&xhci->lock, flags);
4090 ret = xhci_reserve_host_control_ep_resources(xhci);
4091 if (ret) {
4092 spin_unlock_irqrestore(&xhci->lock, flags);
4093 xhci_warn(xhci, "Not enough host resources, "
4094 "active endpoint contexts = %u\n",
4095 xhci->num_active_eps);
4096 goto disable_slot;
4098 spin_unlock_irqrestore(&xhci->lock, flags);
4100 /* Use GFP_NOIO, since this function can be called from
4101 * xhci_discover_or_reset_device(), which may be called as part of
4102 * mass storage driver error handling.
4104 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4105 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4106 goto disable_slot;
4108 vdev = xhci->devs[slot_id];
4109 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4110 trace_xhci_alloc_dev(slot_ctx);
4112 udev->slot_id = slot_id;
4114 xhci_debugfs_create_slot(xhci, slot_id);
4117 * If resetting upon resume, we can't put the controller into runtime
4118 * suspend if there is a device attached.
4120 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4121 pm_runtime_get_noresume(hcd->self.controller);
4123 /* Is this a LS or FS device under a HS hub? */
4124 /* Hub or peripherial? */
4125 return 1;
4127 disable_slot:
4128 xhci_disable_slot(xhci, udev->slot_id);
4129 xhci_free_virt_device(xhci, udev->slot_id);
4131 return 0;
4135 * xhci_setup_device - issues an Address Device command to assign a unique
4136 * USB bus address.
4137 * @hcd: USB host controller data structure.
4138 * @udev: USB dev structure representing the connected device.
4139 * @setup: Enum specifying setup mode: address only or with context.
4140 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4142 * Return: 0 if successful; otherwise, negative error code.
4144 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4145 enum xhci_setup_dev setup, unsigned int timeout_ms)
4147 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4148 unsigned long flags;
4149 struct xhci_virt_device *virt_dev;
4150 int ret = 0;
4151 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4152 struct xhci_slot_ctx *slot_ctx;
4153 struct xhci_input_control_ctx *ctrl_ctx;
4154 u64 temp_64;
4155 struct xhci_command *command = NULL;
4157 mutex_lock(&xhci->mutex);
4159 if (xhci->xhc_state) { /* dying, removing or halted */
4160 ret = -ESHUTDOWN;
4161 goto out;
4164 if (!udev->slot_id) {
4165 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4166 "Bad Slot ID %d", udev->slot_id);
4167 ret = -EINVAL;
4168 goto out;
4171 virt_dev = xhci->devs[udev->slot_id];
4173 if (WARN_ON(!virt_dev)) {
4175 * In plug/unplug torture test with an NEC controller,
4176 * a zero-dereference was observed once due to virt_dev = 0.
4177 * Print useful debug rather than crash if it is observed again!
4179 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4180 udev->slot_id);
4181 ret = -EINVAL;
4182 goto out;
4184 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4185 trace_xhci_setup_device_slot(slot_ctx);
4187 if (setup == SETUP_CONTEXT_ONLY) {
4188 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4189 SLOT_STATE_DEFAULT) {
4190 xhci_dbg(xhci, "Slot already in default state\n");
4191 goto out;
4195 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4196 if (!command) {
4197 ret = -ENOMEM;
4198 goto out;
4201 command->in_ctx = virt_dev->in_ctx;
4202 command->timeout_ms = timeout_ms;
4204 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4205 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4206 if (!ctrl_ctx) {
4207 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4208 __func__);
4209 ret = -EINVAL;
4210 goto out;
4213 * If this is the first Set Address since device plug-in or
4214 * virt_device realloaction after a resume with an xHCI power loss,
4215 * then set up the slot context.
4217 if (!slot_ctx->dev_info)
4218 xhci_setup_addressable_virt_dev(xhci, udev);
4219 /* Otherwise, update the control endpoint ring enqueue pointer. */
4220 else
4221 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4222 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4223 ctrl_ctx->drop_flags = 0;
4225 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4226 le32_to_cpu(slot_ctx->dev_info) >> 27);
4228 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4229 spin_lock_irqsave(&xhci->lock, flags);
4230 trace_xhci_setup_device(virt_dev);
4231 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4232 udev->slot_id, setup);
4233 if (ret) {
4234 spin_unlock_irqrestore(&xhci->lock, flags);
4235 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4236 "FIXME: allocate a command ring segment");
4237 goto out;
4239 xhci_ring_cmd_db(xhci);
4240 spin_unlock_irqrestore(&xhci->lock, flags);
4242 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4243 wait_for_completion(command->completion);
4245 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4246 * the SetAddress() "recovery interval" required by USB and aborting the
4247 * command on a timeout.
4249 switch (command->status) {
4250 case COMP_COMMAND_ABORTED:
4251 case COMP_COMMAND_RING_STOPPED:
4252 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4253 ret = -ETIME;
4254 break;
4255 case COMP_CONTEXT_STATE_ERROR:
4256 case COMP_SLOT_NOT_ENABLED_ERROR:
4257 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4258 act, udev->slot_id);
4259 ret = -EINVAL;
4260 break;
4261 case COMP_USB_TRANSACTION_ERROR:
4262 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4264 mutex_unlock(&xhci->mutex);
4265 ret = xhci_disable_slot(xhci, udev->slot_id);
4266 xhci_free_virt_device(xhci, udev->slot_id);
4267 if (!ret) {
4268 if (xhci_alloc_dev(hcd, udev) == 1)
4269 xhci_setup_addressable_virt_dev(xhci, udev);
4271 kfree(command->completion);
4272 kfree(command);
4273 return -EPROTO;
4274 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4275 dev_warn(&udev->dev,
4276 "ERROR: Incompatible device for setup %s command\n", act);
4277 ret = -ENODEV;
4278 break;
4279 case COMP_SUCCESS:
4280 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4281 "Successful setup %s command", act);
4282 break;
4283 default:
4284 xhci_err(xhci,
4285 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4286 act, command->status);
4287 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4288 ret = -EINVAL;
4289 break;
4291 if (ret)
4292 goto out;
4293 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4294 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4295 "Op regs DCBAA ptr = %#016llx", temp_64);
4296 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4297 "Slot ID %d dcbaa entry @%p = %#016llx",
4298 udev->slot_id,
4299 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4300 (unsigned long long)
4301 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4302 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4303 "Output Context DMA address = %#08llx",
4304 (unsigned long long)virt_dev->out_ctx->dma);
4305 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4306 le32_to_cpu(slot_ctx->dev_info) >> 27);
4308 * USB core uses address 1 for the roothubs, so we add one to the
4309 * address given back to us by the HC.
4311 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4312 le32_to_cpu(slot_ctx->dev_info) >> 27);
4313 /* Zero the input context control for later use */
4314 ctrl_ctx->add_flags = 0;
4315 ctrl_ctx->drop_flags = 0;
4316 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4317 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4319 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4320 "Internal device address = %d",
4321 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4322 out:
4323 mutex_unlock(&xhci->mutex);
4324 if (command) {
4325 kfree(command->completion);
4326 kfree(command);
4328 return ret;
4331 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4332 unsigned int timeout_ms)
4334 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4337 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4339 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4340 XHCI_CMD_DEFAULT_TIMEOUT);
4344 * Transfer the port index into real index in the HW port status
4345 * registers. Caculate offset between the port's PORTSC register
4346 * and port status base. Divide the number of per port register
4347 * to get the real index. The raw port number bases 1.
4349 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4351 struct xhci_hub *rhub;
4353 rhub = xhci_get_rhub(hcd);
4354 return rhub->ports[port1 - 1]->hw_portnum + 1;
4358 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4359 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4361 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4362 struct usb_device *udev, u16 max_exit_latency)
4364 struct xhci_virt_device *virt_dev;
4365 struct xhci_command *command;
4366 struct xhci_input_control_ctx *ctrl_ctx;
4367 struct xhci_slot_ctx *slot_ctx;
4368 unsigned long flags;
4369 int ret;
4371 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4372 if (!command)
4373 return -ENOMEM;
4375 spin_lock_irqsave(&xhci->lock, flags);
4377 virt_dev = xhci->devs[udev->slot_id];
4380 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4381 * xHC was re-initialized. Exit latency will be set later after
4382 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4385 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4386 spin_unlock_irqrestore(&xhci->lock, flags);
4387 xhci_free_command(xhci, command);
4388 return 0;
4391 /* Attempt to issue an Evaluate Context command to change the MEL. */
4392 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4393 if (!ctrl_ctx) {
4394 spin_unlock_irqrestore(&xhci->lock, flags);
4395 xhci_free_command(xhci, command);
4396 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4397 __func__);
4398 return -ENOMEM;
4401 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4402 spin_unlock_irqrestore(&xhci->lock, flags);
4404 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4405 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4406 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4407 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4408 slot_ctx->dev_state = 0;
4410 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4411 "Set up evaluate context for LPM MEL change.");
4413 /* Issue and wait for the evaluate context command. */
4414 ret = xhci_configure_endpoint(xhci, udev, command,
4415 true, true);
4417 if (!ret) {
4418 spin_lock_irqsave(&xhci->lock, flags);
4419 virt_dev->current_mel = max_exit_latency;
4420 spin_unlock_irqrestore(&xhci->lock, flags);
4423 xhci_free_command(xhci, command);
4425 return ret;
4428 #ifdef CONFIG_PM
4430 /* BESL to HIRD Encoding array for USB2 LPM */
4431 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4432 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4434 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4435 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4436 struct usb_device *udev)
4438 int u2del, besl, besl_host;
4439 int besl_device = 0;
4440 u32 field;
4442 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4443 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4445 if (field & USB_BESL_SUPPORT) {
4446 for (besl_host = 0; besl_host < 16; besl_host++) {
4447 if (xhci_besl_encoding[besl_host] >= u2del)
4448 break;
4450 /* Use baseline BESL value as default */
4451 if (field & USB_BESL_BASELINE_VALID)
4452 besl_device = USB_GET_BESL_BASELINE(field);
4453 else if (field & USB_BESL_DEEP_VALID)
4454 besl_device = USB_GET_BESL_DEEP(field);
4455 } else {
4456 if (u2del <= 50)
4457 besl_host = 0;
4458 else
4459 besl_host = (u2del - 51) / 75 + 1;
4462 besl = besl_host + besl_device;
4463 if (besl > 15)
4464 besl = 15;
4466 return besl;
4469 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4470 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4472 u32 field;
4473 int l1;
4474 int besld = 0;
4475 int hirdm = 0;
4477 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4479 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4480 l1 = udev->l1_params.timeout / 256;
4482 /* device has preferred BESLD */
4483 if (field & USB_BESL_DEEP_VALID) {
4484 besld = USB_GET_BESL_DEEP(field);
4485 hirdm = 1;
4488 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4491 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4492 struct usb_device *udev, int enable)
4494 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4495 struct xhci_port **ports;
4496 __le32 __iomem *pm_addr, *hlpm_addr;
4497 u32 pm_val, hlpm_val, field;
4498 unsigned int port_num;
4499 unsigned long flags;
4500 int hird, exit_latency;
4501 int ret;
4503 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4504 return -EPERM;
4506 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4507 !udev->lpm_capable)
4508 return -EPERM;
4510 if (!udev->parent || udev->parent->parent ||
4511 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4512 return -EPERM;
4514 if (udev->usb2_hw_lpm_capable != 1)
4515 return -EPERM;
4517 spin_lock_irqsave(&xhci->lock, flags);
4519 ports = xhci->usb2_rhub.ports;
4520 port_num = udev->portnum - 1;
4521 pm_addr = ports[port_num]->addr + PORTPMSC;
4522 pm_val = readl(pm_addr);
4523 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4525 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4526 enable ? "enable" : "disable", port_num + 1);
4528 if (enable) {
4529 /* Host supports BESL timeout instead of HIRD */
4530 if (udev->usb2_hw_lpm_besl_capable) {
4531 /* if device doesn't have a preferred BESL value use a
4532 * default one which works with mixed HIRD and BESL
4533 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4535 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4536 if ((field & USB_BESL_SUPPORT) &&
4537 (field & USB_BESL_BASELINE_VALID))
4538 hird = USB_GET_BESL_BASELINE(field);
4539 else
4540 hird = udev->l1_params.besl;
4542 exit_latency = xhci_besl_encoding[hird];
4543 spin_unlock_irqrestore(&xhci->lock, flags);
4545 ret = xhci_change_max_exit_latency(xhci, udev,
4546 exit_latency);
4547 if (ret < 0)
4548 return ret;
4549 spin_lock_irqsave(&xhci->lock, flags);
4551 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4552 writel(hlpm_val, hlpm_addr);
4553 /* flush write */
4554 readl(hlpm_addr);
4555 } else {
4556 hird = xhci_calculate_hird_besl(xhci, udev);
4559 pm_val &= ~PORT_HIRD_MASK;
4560 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4561 writel(pm_val, pm_addr);
4562 pm_val = readl(pm_addr);
4563 pm_val |= PORT_HLE;
4564 writel(pm_val, pm_addr);
4565 /* flush write */
4566 readl(pm_addr);
4567 } else {
4568 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4569 writel(pm_val, pm_addr);
4570 /* flush write */
4571 readl(pm_addr);
4572 if (udev->usb2_hw_lpm_besl_capable) {
4573 spin_unlock_irqrestore(&xhci->lock, flags);
4574 xhci_change_max_exit_latency(xhci, udev, 0);
4575 readl_poll_timeout(ports[port_num]->addr, pm_val,
4576 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4577 100, 10000);
4578 return 0;
4582 spin_unlock_irqrestore(&xhci->lock, flags);
4583 return 0;
4586 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4588 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4589 struct xhci_port *port;
4590 u32 capability;
4592 /* Check if USB3 device at root port is tunneled over USB4 */
4593 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4594 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4596 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4597 if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4598 dev_dbg(&udev->dev, "link tunnel state unknown\n");
4599 else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4600 dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4601 else if (udev->tunnel_mode == USB_LINK_NATIVE)
4602 dev_dbg(&udev->dev, "native USB 3.x link\n");
4603 return 0;
4606 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4607 return 0;
4609 /* we only support lpm for non-hub device connected to root hub yet */
4610 if (!udev->parent || udev->parent->parent ||
4611 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4612 return 0;
4614 port = xhci->usb2_rhub.ports[udev->portnum - 1];
4615 capability = port->port_cap->protocol_caps;
4617 if (capability & XHCI_HLC) {
4618 udev->usb2_hw_lpm_capable = 1;
4619 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4620 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4621 if (capability & XHCI_BLC)
4622 udev->usb2_hw_lpm_besl_capable = 1;
4625 return 0;
4628 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4630 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4631 static unsigned long long xhci_service_interval_to_ns(
4632 struct usb_endpoint_descriptor *desc)
4634 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4637 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4638 enum usb3_link_state state)
4640 unsigned long long sel;
4641 unsigned long long pel;
4642 unsigned int max_sel_pel;
4643 char *state_name;
4645 switch (state) {
4646 case USB3_LPM_U1:
4647 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4648 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4649 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4650 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4651 state_name = "U1";
4652 break;
4653 case USB3_LPM_U2:
4654 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4655 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4656 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4657 state_name = "U2";
4658 break;
4659 default:
4660 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4661 __func__);
4662 return USB3_LPM_DISABLED;
4665 if (sel <= max_sel_pel && pel <= max_sel_pel)
4666 return USB3_LPM_DEVICE_INITIATED;
4668 if (sel > max_sel_pel)
4669 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4670 "due to long SEL %llu ms\n",
4671 state_name, sel);
4672 else
4673 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4674 "due to long PEL %llu ms\n",
4675 state_name, pel);
4676 return USB3_LPM_DISABLED;
4679 /* The U1 timeout should be the maximum of the following values:
4680 * - For control endpoints, U1 system exit latency (SEL) * 3
4681 * - For bulk endpoints, U1 SEL * 5
4682 * - For interrupt endpoints:
4683 * - Notification EPs, U1 SEL * 3
4684 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4685 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4687 static unsigned long long xhci_calculate_intel_u1_timeout(
4688 struct usb_device *udev,
4689 struct usb_endpoint_descriptor *desc)
4691 unsigned long long timeout_ns;
4692 int ep_type;
4693 int intr_type;
4695 ep_type = usb_endpoint_type(desc);
4696 switch (ep_type) {
4697 case USB_ENDPOINT_XFER_CONTROL:
4698 timeout_ns = udev->u1_params.sel * 3;
4699 break;
4700 case USB_ENDPOINT_XFER_BULK:
4701 timeout_ns = udev->u1_params.sel * 5;
4702 break;
4703 case USB_ENDPOINT_XFER_INT:
4704 intr_type = usb_endpoint_interrupt_type(desc);
4705 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4706 timeout_ns = udev->u1_params.sel * 3;
4707 break;
4709 /* Otherwise the calculation is the same as isoc eps */
4710 fallthrough;
4711 case USB_ENDPOINT_XFER_ISOC:
4712 timeout_ns = xhci_service_interval_to_ns(desc);
4713 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4714 if (timeout_ns < udev->u1_params.sel * 2)
4715 timeout_ns = udev->u1_params.sel * 2;
4716 break;
4717 default:
4718 return 0;
4721 return timeout_ns;
4724 /* Returns the hub-encoded U1 timeout value. */
4725 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4726 struct usb_device *udev,
4727 struct usb_endpoint_descriptor *desc)
4729 unsigned long long timeout_ns;
4731 /* Prevent U1 if service interval is shorter than U1 exit latency */
4732 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4733 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4734 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4735 return USB3_LPM_DISABLED;
4739 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4740 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4741 else
4742 timeout_ns = udev->u1_params.sel;
4744 /* The U1 timeout is encoded in 1us intervals.
4745 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4747 if (timeout_ns == USB3_LPM_DISABLED)
4748 timeout_ns = 1;
4749 else
4750 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4752 /* If the necessary timeout value is bigger than what we can set in the
4753 * USB 3.0 hub, we have to disable hub-initiated U1.
4755 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4756 return timeout_ns;
4757 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4758 "due to long timeout %llu ms\n", timeout_ns);
4759 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4762 /* The U2 timeout should be the maximum of:
4763 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4764 * - largest bInterval of any active periodic endpoint (to avoid going
4765 * into lower power link states between intervals).
4766 * - the U2 Exit Latency of the device
4768 static unsigned long long xhci_calculate_intel_u2_timeout(
4769 struct usb_device *udev,
4770 struct usb_endpoint_descriptor *desc)
4772 unsigned long long timeout_ns;
4773 unsigned long long u2_del_ns;
4775 timeout_ns = 10 * 1000 * 1000;
4777 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4778 (xhci_service_interval_to_ns(desc) > timeout_ns))
4779 timeout_ns = xhci_service_interval_to_ns(desc);
4781 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4782 if (u2_del_ns > timeout_ns)
4783 timeout_ns = u2_del_ns;
4785 return timeout_ns;
4788 /* Returns the hub-encoded U2 timeout value. */
4789 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4790 struct usb_device *udev,
4791 struct usb_endpoint_descriptor *desc)
4793 unsigned long long timeout_ns;
4795 /* Prevent U2 if service interval is shorter than U2 exit latency */
4796 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4797 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4798 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4799 return USB3_LPM_DISABLED;
4803 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4804 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4805 else
4806 timeout_ns = udev->u2_params.sel;
4808 /* The U2 timeout is encoded in 256us intervals */
4809 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4810 /* If the necessary timeout value is bigger than what we can set in the
4811 * USB 3.0 hub, we have to disable hub-initiated U2.
4813 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4814 return timeout_ns;
4815 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4816 "due to long timeout %llu ms\n", timeout_ns);
4817 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4820 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4821 struct usb_device *udev,
4822 struct usb_endpoint_descriptor *desc,
4823 enum usb3_link_state state,
4824 u16 *timeout)
4826 if (state == USB3_LPM_U1)
4827 return xhci_calculate_u1_timeout(xhci, udev, desc);
4828 else if (state == USB3_LPM_U2)
4829 return xhci_calculate_u2_timeout(xhci, udev, desc);
4831 return USB3_LPM_DISABLED;
4834 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4835 struct usb_device *udev,
4836 struct usb_endpoint_descriptor *desc,
4837 enum usb3_link_state state,
4838 u16 *timeout)
4840 u16 alt_timeout;
4842 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4843 desc, state, timeout);
4845 /* If we found we can't enable hub-initiated LPM, and
4846 * the U1 or U2 exit latency was too high to allow
4847 * device-initiated LPM as well, then we will disable LPM
4848 * for this device, so stop searching any further.
4850 if (alt_timeout == USB3_LPM_DISABLED) {
4851 *timeout = alt_timeout;
4852 return -E2BIG;
4854 if (alt_timeout > *timeout)
4855 *timeout = alt_timeout;
4856 return 0;
4859 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4860 struct usb_device *udev,
4861 struct usb_host_interface *alt,
4862 enum usb3_link_state state,
4863 u16 *timeout)
4865 int j;
4867 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4868 if (xhci_update_timeout_for_endpoint(xhci, udev,
4869 &alt->endpoint[j].desc, state, timeout))
4870 return -E2BIG;
4872 return 0;
4875 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4876 struct usb_device *udev,
4877 enum usb3_link_state state)
4879 struct usb_device *parent = udev->parent;
4880 int tier = 1; /* roothub is tier1 */
4882 while (parent) {
4883 parent = parent->parent;
4884 tier++;
4887 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4888 goto fail;
4889 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4890 goto fail;
4892 return 0;
4893 fail:
4894 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4895 tier);
4896 return -E2BIG;
4899 /* Returns the U1 or U2 timeout that should be enabled.
4900 * If the tier check or timeout setting functions return with a non-zero exit
4901 * code, that means the timeout value has been finalized and we shouldn't look
4902 * at any more endpoints.
4904 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4905 struct usb_device *udev, enum usb3_link_state state)
4907 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4908 struct usb_host_config *config;
4909 char *state_name;
4910 int i;
4911 u16 timeout = USB3_LPM_DISABLED;
4913 if (state == USB3_LPM_U1)
4914 state_name = "U1";
4915 else if (state == USB3_LPM_U2)
4916 state_name = "U2";
4917 else {
4918 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4919 state);
4920 return timeout;
4923 /* Gather some information about the currently installed configuration
4924 * and alternate interface settings.
4926 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4927 state, &timeout))
4928 return timeout;
4930 config = udev->actconfig;
4931 if (!config)
4932 return timeout;
4934 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4935 struct usb_driver *driver;
4936 struct usb_interface *intf = config->interface[i];
4938 if (!intf)
4939 continue;
4941 /* Check if any currently bound drivers want hub-initiated LPM
4942 * disabled.
4944 if (intf->dev.driver) {
4945 driver = to_usb_driver(intf->dev.driver);
4946 if (driver && driver->disable_hub_initiated_lpm) {
4947 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4948 state_name, driver->name);
4949 timeout = xhci_get_timeout_no_hub_lpm(udev,
4950 state);
4951 if (timeout == USB3_LPM_DISABLED)
4952 return timeout;
4956 /* Not sure how this could happen... */
4957 if (!intf->cur_altsetting)
4958 continue;
4960 if (xhci_update_timeout_for_interface(xhci, udev,
4961 intf->cur_altsetting,
4962 state, &timeout))
4963 return timeout;
4965 return timeout;
4968 static int calculate_max_exit_latency(struct usb_device *udev,
4969 enum usb3_link_state state_changed,
4970 u16 hub_encoded_timeout)
4972 unsigned long long u1_mel_us = 0;
4973 unsigned long long u2_mel_us = 0;
4974 unsigned long long mel_us = 0;
4975 bool disabling_u1;
4976 bool disabling_u2;
4977 bool enabling_u1;
4978 bool enabling_u2;
4980 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4981 hub_encoded_timeout == USB3_LPM_DISABLED);
4982 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4983 hub_encoded_timeout == USB3_LPM_DISABLED);
4985 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4986 hub_encoded_timeout != USB3_LPM_DISABLED);
4987 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4988 hub_encoded_timeout != USB3_LPM_DISABLED);
4990 /* If U1 was already enabled and we're not disabling it,
4991 * or we're going to enable U1, account for the U1 max exit latency.
4993 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4994 enabling_u1)
4995 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4996 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4997 enabling_u2)
4998 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5000 mel_us = max(u1_mel_us, u2_mel_us);
5002 /* xHCI host controller max exit latency field is only 16 bits wide. */
5003 if (mel_us > MAX_EXIT) {
5004 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5005 "is too big.\n", mel_us);
5006 return -E2BIG;
5008 return mel_us;
5011 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5012 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5013 struct usb_device *udev, enum usb3_link_state state)
5015 struct xhci_hcd *xhci;
5016 struct xhci_port *port;
5017 u16 hub_encoded_timeout;
5018 int mel;
5019 int ret;
5021 xhci = hcd_to_xhci(hcd);
5022 /* The LPM timeout values are pretty host-controller specific, so don't
5023 * enable hub-initiated timeouts unless the vendor has provided
5024 * information about their timeout algorithm.
5026 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027 !xhci->devs[udev->slot_id])
5028 return USB3_LPM_DISABLED;
5030 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5031 return USB3_LPM_DISABLED;
5033 /* If connected to root port then check port can handle lpm */
5034 if (udev->parent && !udev->parent->parent) {
5035 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5036 if (port->lpm_incapable)
5037 return USB3_LPM_DISABLED;
5040 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5041 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5042 if (mel < 0) {
5043 /* Max Exit Latency is too big, disable LPM. */
5044 hub_encoded_timeout = USB3_LPM_DISABLED;
5045 mel = 0;
5048 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5049 if (ret)
5050 return ret;
5051 return hub_encoded_timeout;
5054 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5055 struct usb_device *udev, enum usb3_link_state state)
5057 struct xhci_hcd *xhci;
5058 u16 mel;
5060 xhci = hcd_to_xhci(hcd);
5061 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5062 !xhci->devs[udev->slot_id])
5063 return 0;
5065 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5066 return xhci_change_max_exit_latency(xhci, udev, mel);
5068 #else /* CONFIG_PM */
5070 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5071 struct usb_device *udev, int enable)
5073 return 0;
5076 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5078 return 0;
5081 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5082 struct usb_device *udev, enum usb3_link_state state)
5084 return USB3_LPM_DISABLED;
5087 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5088 struct usb_device *udev, enum usb3_link_state state)
5090 return 0;
5092 #endif /* CONFIG_PM */
5094 /*-------------------------------------------------------------------------*/
5096 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5097 * internal data structures for the device.
5099 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5100 struct usb_tt *tt, gfp_t mem_flags)
5102 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5103 struct xhci_virt_device *vdev;
5104 struct xhci_command *config_cmd;
5105 struct xhci_input_control_ctx *ctrl_ctx;
5106 struct xhci_slot_ctx *slot_ctx;
5107 unsigned long flags;
5108 unsigned think_time;
5109 int ret;
5111 /* Ignore root hubs */
5112 if (!hdev->parent)
5113 return 0;
5115 vdev = xhci->devs[hdev->slot_id];
5116 if (!vdev) {
5117 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5118 return -EINVAL;
5121 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5122 if (!config_cmd)
5123 return -ENOMEM;
5125 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5126 if (!ctrl_ctx) {
5127 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5128 __func__);
5129 xhci_free_command(xhci, config_cmd);
5130 return -ENOMEM;
5133 spin_lock_irqsave(&xhci->lock, flags);
5134 if (hdev->speed == USB_SPEED_HIGH &&
5135 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5136 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5137 xhci_free_command(xhci, config_cmd);
5138 spin_unlock_irqrestore(&xhci->lock, flags);
5139 return -ENOMEM;
5142 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5143 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5144 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5145 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5147 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5148 * but it may be already set to 1 when setup an xHCI virtual
5149 * device, so clear it anyway.
5151 if (tt->multi)
5152 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5153 else if (hdev->speed == USB_SPEED_FULL)
5154 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5156 if (xhci->hci_version > 0x95) {
5157 xhci_dbg(xhci, "xHCI version %x needs hub "
5158 "TT think time and number of ports\n",
5159 (unsigned int) xhci->hci_version);
5160 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5161 /* Set TT think time - convert from ns to FS bit times.
5162 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5163 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5165 * xHCI 1.0: this field shall be 0 if the device is not a
5166 * High-spped hub.
5168 think_time = tt->think_time;
5169 if (think_time != 0)
5170 think_time = (think_time / 666) - 1;
5171 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5172 slot_ctx->tt_info |=
5173 cpu_to_le32(TT_THINK_TIME(think_time));
5174 } else {
5175 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5176 "TT think time or number of ports\n",
5177 (unsigned int) xhci->hci_version);
5179 slot_ctx->dev_state = 0;
5180 spin_unlock_irqrestore(&xhci->lock, flags);
5182 xhci_dbg(xhci, "Set up %s for hub device.\n",
5183 (xhci->hci_version > 0x95) ?
5184 "configure endpoint" : "evaluate context");
5186 /* Issue and wait for the configure endpoint or
5187 * evaluate context command.
5189 if (xhci->hci_version > 0x95)
5190 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5191 false, false);
5192 else
5193 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5194 true, false);
5196 xhci_free_command(xhci, config_cmd);
5197 return ret;
5199 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5201 static int xhci_get_frame(struct usb_hcd *hcd)
5203 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5204 /* EHCI mods by the periodic size. Why? */
5205 return readl(&xhci->run_regs->microframe_index) >> 3;
5208 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5210 xhci->usb2_rhub.hcd = hcd;
5211 hcd->speed = HCD_USB2;
5212 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5214 * USB 2.0 roothub under xHCI has an integrated TT,
5215 * (rate matching hub) as opposed to having an OHCI/UHCI
5216 * companion controller.
5218 hcd->has_tt = 1;
5221 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5223 unsigned int minor_rev;
5226 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5227 * should return 0x31 for sbrn, or that the minor revision
5228 * is a two digit BCD containig minor and sub-minor numbers.
5229 * This was later clarified in xHCI 1.2.
5231 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5232 * minor revision set to 0x1 instead of 0x10.
5234 if (xhci->usb3_rhub.min_rev == 0x1)
5235 minor_rev = 1;
5236 else
5237 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5239 switch (minor_rev) {
5240 case 2:
5241 hcd->speed = HCD_USB32;
5242 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5243 hcd->self.root_hub->rx_lanes = 2;
5244 hcd->self.root_hub->tx_lanes = 2;
5245 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5246 break;
5247 case 1:
5248 hcd->speed = HCD_USB31;
5249 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5250 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5251 break;
5253 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5254 minor_rev, minor_rev ? "Enhanced " : "");
5256 xhci->usb3_rhub.hcd = hcd;
5259 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5261 struct xhci_hcd *xhci;
5263 * TODO: Check with DWC3 clients for sysdev according to
5264 * quirks
5266 struct device *dev = hcd->self.sysdev;
5267 int retval;
5269 /* Accept arbitrarily long scatter-gather lists */
5270 hcd->self.sg_tablesize = ~0;
5272 /* support to build packet from discontinuous buffers */
5273 hcd->self.no_sg_constraint = 1;
5275 /* XHCI controllers don't stop the ep queue on short packets :| */
5276 hcd->self.no_stop_on_short = 1;
5278 xhci = hcd_to_xhci(hcd);
5280 if (!usb_hcd_is_primary_hcd(hcd)) {
5281 xhci_hcd_init_usb3_data(xhci, hcd);
5282 return 0;
5285 mutex_init(&xhci->mutex);
5286 xhci->main_hcd = hcd;
5287 xhci->cap_regs = hcd->regs;
5288 xhci->op_regs = hcd->regs +
5289 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5290 xhci->run_regs = hcd->regs +
5291 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5292 /* Cache read-only capability registers */
5293 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5294 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5295 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5296 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5297 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5298 if (xhci->hci_version > 0x100)
5299 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5301 /* xhci-plat or xhci-pci might have set max_interrupters already */
5302 if ((!xhci->max_interrupters) ||
5303 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5304 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5306 xhci->quirks |= quirks;
5308 if (get_quirks)
5309 get_quirks(dev, xhci);
5311 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5312 * success event after a short transfer. This quirk will ignore such
5313 * spurious event.
5315 if (xhci->hci_version > 0x96)
5316 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5318 if (xhci->hci_version == 0x95 && link_quirk) {
5319 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5320 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5323 /* Make sure the HC is halted. */
5324 retval = xhci_halt(xhci);
5325 if (retval)
5326 return retval;
5328 xhci_zero_64b_regs(xhci);
5330 xhci_dbg(xhci, "Resetting HCD\n");
5331 /* Reset the internal HC memory state and registers. */
5332 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5333 if (retval)
5334 return retval;
5335 xhci_dbg(xhci, "Reset complete\n");
5338 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5339 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5340 * address memory pointers actually. So, this driver clears the AC64
5341 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5342 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5344 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5345 xhci->hcc_params &= ~BIT(0);
5347 /* Set dma_mask and coherent_dma_mask to 64-bits,
5348 * if xHC supports 64-bit addressing */
5349 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5350 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5351 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5352 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5353 } else {
5355 * This is to avoid error in cases where a 32-bit USB
5356 * controller is used on a 64-bit capable system.
5358 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5359 if (retval)
5360 return retval;
5361 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5362 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5365 xhci_dbg(xhci, "Calling HCD init\n");
5366 /* Initialize HCD and host controller data structures. */
5367 retval = xhci_init(hcd);
5368 if (retval)
5369 return retval;
5370 xhci_dbg(xhci, "Called HCD init\n");
5372 if (xhci_hcd_is_usb3(hcd))
5373 xhci_hcd_init_usb3_data(xhci, hcd);
5374 else
5375 xhci_hcd_init_usb2_data(xhci, hcd);
5377 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5378 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5380 return 0;
5382 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5384 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5385 struct usb_host_endpoint *ep)
5387 struct xhci_hcd *xhci;
5388 struct usb_device *udev;
5389 unsigned int slot_id;
5390 unsigned int ep_index;
5391 unsigned long flags;
5393 xhci = hcd_to_xhci(hcd);
5395 spin_lock_irqsave(&xhci->lock, flags);
5396 udev = (struct usb_device *)ep->hcpriv;
5397 slot_id = udev->slot_id;
5398 ep_index = xhci_get_endpoint_index(&ep->desc);
5400 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5401 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5402 spin_unlock_irqrestore(&xhci->lock, flags);
5405 static const struct hc_driver xhci_hc_driver = {
5406 .description = "xhci-hcd",
5407 .product_desc = "xHCI Host Controller",
5408 .hcd_priv_size = sizeof(struct xhci_hcd),
5411 * generic hardware linkage
5413 .irq = xhci_irq,
5414 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5415 HCD_BH,
5418 * basic lifecycle operations
5420 .reset = NULL, /* set in xhci_init_driver() */
5421 .start = xhci_run,
5422 .stop = xhci_stop,
5423 .shutdown = xhci_shutdown,
5426 * managing i/o requests and associated device resources
5428 .map_urb_for_dma = xhci_map_urb_for_dma,
5429 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5430 .urb_enqueue = xhci_urb_enqueue,
5431 .urb_dequeue = xhci_urb_dequeue,
5432 .alloc_dev = xhci_alloc_dev,
5433 .free_dev = xhci_free_dev,
5434 .alloc_streams = xhci_alloc_streams,
5435 .free_streams = xhci_free_streams,
5436 .add_endpoint = xhci_add_endpoint,
5437 .drop_endpoint = xhci_drop_endpoint,
5438 .endpoint_disable = xhci_endpoint_disable,
5439 .endpoint_reset = xhci_endpoint_reset,
5440 .check_bandwidth = xhci_check_bandwidth,
5441 .reset_bandwidth = xhci_reset_bandwidth,
5442 .address_device = xhci_address_device,
5443 .enable_device = xhci_enable_device,
5444 .update_hub_device = xhci_update_hub_device,
5445 .reset_device = xhci_discover_or_reset_device,
5448 * scheduling support
5450 .get_frame_number = xhci_get_frame,
5453 * root hub support
5455 .hub_control = xhci_hub_control,
5456 .hub_status_data = xhci_hub_status_data,
5457 .bus_suspend = xhci_bus_suspend,
5458 .bus_resume = xhci_bus_resume,
5459 .get_resuming_ports = xhci_get_resuming_ports,
5462 * call back when device connected and addressed
5464 .update_device = xhci_update_device,
5465 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5466 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5467 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5468 .find_raw_port_number = xhci_find_raw_port_number,
5469 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5472 void xhci_init_driver(struct hc_driver *drv,
5473 const struct xhci_driver_overrides *over)
5475 BUG_ON(!over);
5477 /* Copy the generic table to drv then apply the overrides */
5478 *drv = xhci_hc_driver;
5480 if (over) {
5481 drv->hcd_priv_size += over->extra_priv_size;
5482 if (over->reset)
5483 drv->reset = over->reset;
5484 if (over->start)
5485 drv->start = over->start;
5486 if (over->add_endpoint)
5487 drv->add_endpoint = over->add_endpoint;
5488 if (over->drop_endpoint)
5489 drv->drop_endpoint = over->drop_endpoint;
5490 if (over->check_bandwidth)
5491 drv->check_bandwidth = over->check_bandwidth;
5492 if (over->reset_bandwidth)
5493 drv->reset_bandwidth = over->reset_bandwidth;
5494 if (over->update_hub_device)
5495 drv->update_hub_device = over->update_hub_device;
5496 if (over->hub_control)
5497 drv->hub_control = over->hub_control;
5500 EXPORT_SYMBOL_GPL(xhci_init_driver);
5502 MODULE_DESCRIPTION(DRIVER_DESC);
5503 MODULE_AUTHOR(DRIVER_AUTHOR);
5504 MODULE_LICENSE("GPL");
5506 static int __init xhci_hcd_init(void)
5509 * Check the compiler generated sizes of structures that must be laid
5510 * out in specific ways for hardware access.
5512 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5513 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5514 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5515 /* xhci_device_control has eight fields, and also
5516 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5518 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5519 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5520 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5521 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5522 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5523 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5524 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5526 if (usb_disabled())
5527 return -ENODEV;
5529 xhci_debugfs_create_root();
5530 xhci_dbc_init();
5532 return 0;
5536 * If an init function is provided, an exit function must also be provided
5537 * to allow module unload.
5539 static void __exit xhci_hcd_fini(void)
5541 xhci_debugfs_remove_root();
5542 xhci_dbc_exit();
5545 module_init(xhci_hcd_init);
5546 module_exit(xhci_hcd_fini);