1 // SPDX-License-Identifier: GPL-2.0-only
3 * VFIO PCI config space virtualization
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
14 * This code handles reading and writing of PCI configuration registers.
15 * This is hairy because we want to allow a lot of flexibility to the
16 * user driver, but cannot trust it with all of the config fields.
17 * Tables determine which fields can be read and written, as well as
18 * which fields are 'virtualized' - special actions and translations to
19 * make it appear to the user that he has control, when in fact things
20 * must be negotiated with the underlying OS.
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
29 #include "vfio_pci_priv.h"
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC 0
34 #define is_bar(offset) \
35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
39 * Lengths of PCI Config Capabilities
40 * 0: Removed from the user visible capability list
43 static const u8 pci_cap_length
[PCI_CAP_ID_MAX
+ 1] = {
44 [PCI_CAP_ID_BASIC
] = PCI_STD_HEADER_SIZEOF
, /* pci config header */
45 [PCI_CAP_ID_PM
] = PCI_PM_SIZEOF
,
46 [PCI_CAP_ID_AGP
] = PCI_AGP_SIZEOF
,
47 [PCI_CAP_ID_VPD
] = PCI_CAP_VPD_SIZEOF
,
48 [PCI_CAP_ID_SLOTID
] = 0, /* bridge - don't care */
49 [PCI_CAP_ID_MSI
] = 0xFF, /* 10, 14, 20, or 24 */
50 [PCI_CAP_ID_CHSWP
] = 0, /* cpci - not yet */
51 [PCI_CAP_ID_PCIX
] = 0xFF, /* 8 or 24 */
52 [PCI_CAP_ID_HT
] = 0xFF, /* hypertransport */
53 [PCI_CAP_ID_VNDR
] = 0xFF, /* variable */
54 [PCI_CAP_ID_DBG
] = 0, /* debug - don't care */
55 [PCI_CAP_ID_CCRC
] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_SHPC
] = 0, /* hotswap - not yet */
57 [PCI_CAP_ID_SSVID
] = 0, /* bridge - don't care */
58 [PCI_CAP_ID_AGP3
] = 0, /* AGP8x - not yet */
59 [PCI_CAP_ID_SECDEV
] = 0, /* secure device not yet */
60 [PCI_CAP_ID_EXP
] = 0xFF, /* 20 or 44 */
61 [PCI_CAP_ID_MSIX
] = PCI_CAP_MSIX_SIZEOF
,
62 [PCI_CAP_ID_SATA
] = 0xFF,
63 [PCI_CAP_ID_AF
] = PCI_CAP_AF_SIZEOF
,
67 * Lengths of PCIe/PCI-X Extended Config Capabilities
68 * 0: Removed or masked from the user visible capability list
71 static const u16 pci_ext_cap_length
[PCI_EXT_CAP_ID_MAX
+ 1] = {
72 [PCI_EXT_CAP_ID_ERR
] = PCI_ERR_ROOT_COMMAND
,
73 [PCI_EXT_CAP_ID_VC
] = 0xFF,
74 [PCI_EXT_CAP_ID_DSN
] = PCI_EXT_CAP_DSN_SIZEOF
,
75 [PCI_EXT_CAP_ID_PWR
] = PCI_EXT_CAP_PWR_SIZEOF
,
76 [PCI_EXT_CAP_ID_RCLD
] = 0, /* root only - don't care */
77 [PCI_EXT_CAP_ID_RCILC
] = 0, /* root only - don't care */
78 [PCI_EXT_CAP_ID_RCEC
] = 0, /* root only - don't care */
79 [PCI_EXT_CAP_ID_MFVC
] = 0xFF,
80 [PCI_EXT_CAP_ID_VC9
] = 0xFF, /* same as CAP_ID_VC */
81 [PCI_EXT_CAP_ID_RCRB
] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_VNDR
] = 0xFF,
83 [PCI_EXT_CAP_ID_CAC
] = 0, /* obsolete */
84 [PCI_EXT_CAP_ID_ACS
] = 0xFF,
85 [PCI_EXT_CAP_ID_ARI
] = PCI_EXT_CAP_ARI_SIZEOF
,
86 [PCI_EXT_CAP_ID_ATS
] = PCI_EXT_CAP_ATS_SIZEOF
,
87 [PCI_EXT_CAP_ID_SRIOV
] = PCI_EXT_CAP_SRIOV_SIZEOF
,
88 [PCI_EXT_CAP_ID_MRIOV
] = 0, /* not yet */
89 [PCI_EXT_CAP_ID_MCAST
] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF
,
90 [PCI_EXT_CAP_ID_PRI
] = PCI_EXT_CAP_PRI_SIZEOF
,
91 [PCI_EXT_CAP_ID_AMD_XXX
] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_REBAR
] = 0xFF,
93 [PCI_EXT_CAP_ID_DPA
] = 0xFF,
94 [PCI_EXT_CAP_ID_TPH
] = 0xFF,
95 [PCI_EXT_CAP_ID_LTR
] = PCI_EXT_CAP_LTR_SIZEOF
,
96 [PCI_EXT_CAP_ID_SECPCI
] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_PMUX
] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_PASID
] = 0, /* not yet */
99 [PCI_EXT_CAP_ID_DVSEC
] = 0xFF,
103 * Read/Write Permission Bits - one bit for each bit in capability
104 * Any field can be read if it exists, but what is read depends on
105 * whether the field is 'virtualized', or just pass through to the
106 * hardware. Any virtualized field is also virtualized for writes.
107 * Writes are only permitted if they have a 1 bit here.
110 u8
*virt
; /* read/write virtual data, not hw */
111 u8
*write
; /* writeable bits */
112 int (*readfn
)(struct vfio_pci_core_device
*vdev
, int pos
, int count
,
113 struct perm_bits
*perm
, int offset
, __le32
*val
);
114 int (*writefn
)(struct vfio_pci_core_device
*vdev
, int pos
, int count
,
115 struct perm_bits
*perm
, int offset
, __le32 val
);
119 #define ALL_VIRT 0xFFFFFFFFU
121 #define ALL_WRITE 0xFFFFFFFFU
123 static int vfio_user_config_read(struct pci_dev
*pdev
, int offset
,
124 __le32
*val
, int count
)
133 ret
= pci_user_read_config_byte(pdev
, offset
, &tmp
);
140 ret
= pci_user_read_config_word(pdev
, offset
, &tmp
);
145 ret
= pci_user_read_config_dword(pdev
, offset
, &tmp_val
);
149 *val
= cpu_to_le32(tmp_val
);
154 static int vfio_user_config_write(struct pci_dev
*pdev
, int offset
,
155 __le32 val
, int count
)
158 u32 tmp_val
= le32_to_cpu(val
);
162 ret
= pci_user_write_config_byte(pdev
, offset
, tmp_val
);
165 ret
= pci_user_write_config_word(pdev
, offset
, tmp_val
);
168 ret
= pci_user_write_config_dword(pdev
, offset
, tmp_val
);
175 static int vfio_default_config_read(struct vfio_pci_core_device
*vdev
, int pos
,
176 int count
, struct perm_bits
*perm
,
177 int offset
, __le32
*val
)
181 memcpy(val
, vdev
->vconfig
+ pos
, count
);
183 memcpy(&virt
, perm
->virt
+ offset
, count
);
185 /* Any non-virtualized bits? */
186 if (cpu_to_le32(~0U >> (32 - (count
* 8))) != virt
) {
187 struct pci_dev
*pdev
= vdev
->pdev
;
191 ret
= vfio_user_config_read(pdev
, pos
, &phys_val
, count
);
195 *val
= (phys_val
& ~virt
) | (*val
& virt
);
201 static int vfio_default_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
202 int count
, struct perm_bits
*perm
,
203 int offset
, __le32 val
)
205 __le32 virt
= 0, write
= 0;
207 memcpy(&write
, perm
->write
+ offset
, count
);
210 return count
; /* drop, no writable bits */
212 memcpy(&virt
, perm
->virt
+ offset
, count
);
214 /* Virtualized and writable bits go to vconfig */
218 memcpy(&virt_val
, vdev
->vconfig
+ pos
, count
);
220 virt_val
&= ~(write
& virt
);
221 virt_val
|= (val
& (write
& virt
));
223 memcpy(vdev
->vconfig
+ pos
, &virt_val
, count
);
226 /* Non-virtualized and writable bits go to hardware */
228 struct pci_dev
*pdev
= vdev
->pdev
;
232 ret
= vfio_user_config_read(pdev
, pos
, &phys_val
, count
);
236 phys_val
&= ~(write
& ~virt
);
237 phys_val
|= (val
& (write
& ~virt
));
239 ret
= vfio_user_config_write(pdev
, pos
, phys_val
, count
);
247 /* Allow direct read from hardware, except for capability next pointer */
248 static int vfio_direct_config_read(struct vfio_pci_core_device
*vdev
, int pos
,
249 int count
, struct perm_bits
*perm
,
250 int offset
, __le32
*val
)
254 ret
= vfio_user_config_read(vdev
->pdev
, pos
, val
, count
);
258 if (pos
>= PCI_CFG_SPACE_SIZE
) { /* Extended cap header mangling */
260 memcpy(val
, vdev
->vconfig
+ pos
, count
);
261 } else if (pos
>= PCI_STD_HEADER_SIZEOF
) { /* Std cap mangling */
262 if (offset
== PCI_CAP_LIST_ID
&& count
> 1)
263 memcpy(val
, vdev
->vconfig
+ pos
,
264 min(PCI_CAP_FLAGS
, count
));
265 else if (offset
== PCI_CAP_LIST_NEXT
)
266 memcpy(val
, vdev
->vconfig
+ pos
, 1);
272 /* Raw access skips any kind of virtualization */
273 static int vfio_raw_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
274 int count
, struct perm_bits
*perm
,
275 int offset
, __le32 val
)
279 ret
= vfio_user_config_write(vdev
->pdev
, pos
, val
, count
);
286 static int vfio_raw_config_read(struct vfio_pci_core_device
*vdev
, int pos
,
287 int count
, struct perm_bits
*perm
,
288 int offset
, __le32
*val
)
292 ret
= vfio_user_config_read(vdev
->pdev
, pos
, val
, count
);
299 /* Virt access uses only virtualization */
300 static int vfio_virt_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
301 int count
, struct perm_bits
*perm
,
302 int offset
, __le32 val
)
304 memcpy(vdev
->vconfig
+ pos
, &val
, count
);
308 static int vfio_virt_config_read(struct vfio_pci_core_device
*vdev
, int pos
,
309 int count
, struct perm_bits
*perm
,
310 int offset
, __le32
*val
)
312 memcpy(val
, vdev
->vconfig
+ pos
, count
);
316 static struct perm_bits direct_ro_perms
= {
317 .readfn
= vfio_direct_config_read
,
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms
[PCI_CAP_ID_MAX
+ 1] = {
322 [0 ... PCI_CAP_ID_MAX
] = { .readfn
= vfio_direct_config_read
}
324 static struct perm_bits ecap_perms
[PCI_EXT_CAP_ID_MAX
+ 1] = {
325 [0 ... PCI_EXT_CAP_ID_MAX
] = { .readfn
= vfio_direct_config_read
}
328 * Default unassigned regions to raw read-write access. Some devices
329 * require this to function as they hide registers between the gaps in
330 * config space (be2net). Like MMIO and I/O port registers, we have
331 * to trust the hardware isolation.
333 static struct perm_bits unassigned_perms
= {
334 .readfn
= vfio_raw_config_read
,
335 .writefn
= vfio_raw_config_write
338 static struct perm_bits virt_perms
= {
339 .readfn
= vfio_virt_config_read
,
340 .writefn
= vfio_virt_config_write
343 static void free_perm_bits(struct perm_bits
*perm
)
351 static int alloc_perm_bits(struct perm_bits
*perm
, int size
)
354 * Round up all permission bits to the next dword, this lets us
355 * ignore whether a read/write exceeds the defined capability
356 * structure. We can do this because:
357 * - Standard config space is already dword aligned
358 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
359 * - Express capabilities defined as dword aligned
361 size
= round_up(size
, 4);
365 * - All Readable, None Writeable, None Virtualized
367 perm
->virt
= kzalloc(size
, GFP_KERNEL
);
368 perm
->write
= kzalloc(size
, GFP_KERNEL
);
369 if (!perm
->virt
|| !perm
->write
) {
370 free_perm_bits(perm
);
374 perm
->readfn
= vfio_default_config_read
;
375 perm
->writefn
= vfio_default_config_write
;
381 * Helper functions for filling in permission tables
383 static inline void p_setb(struct perm_bits
*p
, int off
, u8 virt
, u8 write
)
386 p
->write
[off
] = write
;
389 /* Handle endian-ness - pci and tables are little-endian */
390 static inline void p_setw(struct perm_bits
*p
, int off
, u16 virt
, u16 write
)
392 *(__le16
*)(&p
->virt
[off
]) = cpu_to_le16(virt
);
393 *(__le16
*)(&p
->write
[off
]) = cpu_to_le16(write
);
396 /* Handle endian-ness - pci and tables are little-endian */
397 static inline void p_setd(struct perm_bits
*p
, int off
, u32 virt
, u32 write
)
399 *(__le32
*)(&p
->virt
[off
]) = cpu_to_le32(virt
);
400 *(__le32
*)(&p
->write
[off
]) = cpu_to_le32(write
);
403 /* Caller should hold memory_lock semaphore */
404 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device
*vdev
)
406 struct pci_dev
*pdev
= vdev
->pdev
;
407 u16 cmd
= le16_to_cpu(*(__le16
*)&vdev
->vconfig
[PCI_COMMAND
]);
410 * Memory region cannot be accessed if device power state is D3.
412 * SR-IOV VF memory enable is handled by the MSE bit in the
413 * PF SR-IOV capability, there's therefore no need to trigger
414 * faults based on the virtual value.
416 return pdev
->current_state
< PCI_D3hot
&&
417 (pdev
->no_command_memory
|| (cmd
& PCI_COMMAND_MEMORY
));
421 * Restore the *real* BARs after we detect a FLR or backdoor reset.
422 * (backdoor = some device specific technique that we didn't catch)
424 static void vfio_bar_restore(struct vfio_pci_core_device
*vdev
)
426 struct pci_dev
*pdev
= vdev
->pdev
;
427 u32
*rbar
= vdev
->rbar
;
434 pci_info(pdev
, "%s: reset recovery - restoring BARs\n", __func__
);
436 for (i
= PCI_BASE_ADDRESS_0
; i
<= PCI_BASE_ADDRESS_5
; i
+= 4, rbar
++)
437 pci_user_write_config_dword(pdev
, i
, *rbar
);
439 pci_user_write_config_dword(pdev
, PCI_ROM_ADDRESS
, *rbar
);
442 pci_user_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
443 cmd
|= PCI_COMMAND_INTX_DISABLE
;
444 pci_user_write_config_word(pdev
, PCI_COMMAND
, cmd
);
448 static __le32
vfio_generate_bar_flags(struct pci_dev
*pdev
, int bar
)
450 unsigned long flags
= pci_resource_flags(pdev
, bar
);
453 if (flags
& IORESOURCE_IO
)
454 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO
);
456 val
= PCI_BASE_ADDRESS_SPACE_MEMORY
;
458 if (flags
& IORESOURCE_PREFETCH
)
459 val
|= PCI_BASE_ADDRESS_MEM_PREFETCH
;
461 if (flags
& IORESOURCE_MEM_64
)
462 val
|= PCI_BASE_ADDRESS_MEM_TYPE_64
;
464 return cpu_to_le32(val
);
468 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
469 * to reflect the hardware capabilities. This implements BAR sizing.
471 static void vfio_bar_fixup(struct vfio_pci_core_device
*vdev
)
473 struct pci_dev
*pdev
= vdev
->pdev
;
481 vbar
= (__le32
*)&vdev
->vconfig
[PCI_BASE_ADDRESS_0
];
483 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++, vbar
++) {
484 int bar
= i
+ PCI_STD_RESOURCES
;
486 if (!pci_resource_start(pdev
, bar
)) {
487 *vbar
= 0; /* Unmapped by host = unimplemented to user */
491 mask
= ~(pci_resource_len(pdev
, bar
) - 1);
493 *vbar
&= cpu_to_le32((u32
)mask
);
494 *vbar
|= vfio_generate_bar_flags(pdev
, bar
);
496 if (*vbar
& cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64
)) {
498 *vbar
&= cpu_to_le32((u32
)(mask
>> 32));
503 vbar
= (__le32
*)&vdev
->vconfig
[PCI_ROM_ADDRESS
];
506 * NB. REGION_INFO will have reported zero size if we weren't able
507 * to read the ROM, but we still return the actual BAR size here if
508 * it exists (or the shadow ROM space).
510 if (pci_resource_start(pdev
, PCI_ROM_RESOURCE
)) {
511 mask
= ~(pci_resource_len(pdev
, PCI_ROM_RESOURCE
) - 1);
512 mask
|= PCI_ROM_ADDRESS_ENABLE
;
513 *vbar
&= cpu_to_le32((u32
)mask
);
514 } else if (pdev
->resource
[PCI_ROM_RESOURCE
].flags
&
515 IORESOURCE_ROM_SHADOW
) {
516 mask
= ~(0x20000 - 1);
517 mask
|= PCI_ROM_ADDRESS_ENABLE
;
518 *vbar
&= cpu_to_le32((u32
)mask
);
522 vdev
->bardirty
= false;
525 static int vfio_basic_config_read(struct vfio_pci_core_device
*vdev
, int pos
,
526 int count
, struct perm_bits
*perm
,
527 int offset
, __le32
*val
)
529 if (is_bar(offset
)) /* pos == offset for basic config */
530 vfio_bar_fixup(vdev
);
532 count
= vfio_default_config_read(vdev
, pos
, count
, perm
, offset
, val
);
534 /* Mask in virtual memory enable */
535 if (offset
== PCI_COMMAND
&& vdev
->pdev
->no_command_memory
) {
536 u16 cmd
= le16_to_cpu(*(__le16
*)&vdev
->vconfig
[PCI_COMMAND
]);
537 u32 tmp_val
= le32_to_cpu(*val
);
539 tmp_val
|= cmd
& PCI_COMMAND_MEMORY
;
540 *val
= cpu_to_le32(tmp_val
);
546 /* Test whether BARs match the value we think they should contain */
547 static bool vfio_need_bar_restore(struct vfio_pci_core_device
*vdev
)
549 int i
= 0, pos
= PCI_BASE_ADDRESS_0
, ret
;
552 for (; pos
<= PCI_BASE_ADDRESS_5
; i
++, pos
+= 4) {
554 ret
= pci_user_read_config_dword(vdev
->pdev
, pos
, &bar
);
555 if (ret
|| vdev
->rbar
[i
] != bar
)
563 static int vfio_basic_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
564 int count
, struct perm_bits
*perm
,
565 int offset
, __le32 val
)
567 struct pci_dev
*pdev
= vdev
->pdev
;
572 virt_cmd
= (__le16
*)&vdev
->vconfig
[PCI_COMMAND
];
574 if (offset
== PCI_COMMAND
) {
575 bool phys_mem
, virt_mem
, new_mem
, phys_io
, virt_io
, new_io
;
578 ret
= pci_user_read_config_word(pdev
, PCI_COMMAND
, &phys_cmd
);
582 new_cmd
= le32_to_cpu(val
);
584 phys_io
= !!(phys_cmd
& PCI_COMMAND_IO
);
585 virt_io
= !!(le16_to_cpu(*virt_cmd
) & PCI_COMMAND_IO
);
586 new_io
= !!(new_cmd
& PCI_COMMAND_IO
);
588 phys_mem
= !!(phys_cmd
& PCI_COMMAND_MEMORY
);
589 virt_mem
= !!(le16_to_cpu(*virt_cmd
) & PCI_COMMAND_MEMORY
);
590 new_mem
= !!(new_cmd
& PCI_COMMAND_MEMORY
);
593 vfio_pci_zap_and_down_write_memory_lock(vdev
);
595 down_write(&vdev
->memory_lock
);
598 * If the user is writing mem/io enable (new_mem/io) and we
599 * think it's already enabled (virt_mem/io), but the hardware
600 * shows it disabled (phys_mem/io, then the device has
601 * undergone some kind of backdoor reset and needs to be
602 * restored before we allow it to enable the bars.
603 * SR-IOV devices will trigger this - for mem enable let's
604 * catch this now and for io enable it will be caught later
606 if ((new_mem
&& virt_mem
&& !phys_mem
&&
607 !pdev
->no_command_memory
) ||
608 (new_io
&& virt_io
&& !phys_io
) ||
609 vfio_need_bar_restore(vdev
))
610 vfio_bar_restore(vdev
);
613 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
615 if (offset
== PCI_COMMAND
)
616 up_write(&vdev
->memory_lock
);
621 * Save current memory/io enable bits in vconfig to allow for
622 * the test above next time.
624 if (offset
== PCI_COMMAND
) {
625 u16 mask
= PCI_COMMAND_MEMORY
| PCI_COMMAND_IO
;
627 *virt_cmd
&= cpu_to_le16(~mask
);
628 *virt_cmd
|= cpu_to_le16(new_cmd
& mask
);
630 up_write(&vdev
->memory_lock
);
633 /* Emulate INTx disable */
634 if (offset
>= PCI_COMMAND
&& offset
<= PCI_COMMAND
+ 1) {
635 bool virt_intx_disable
;
637 virt_intx_disable
= !!(le16_to_cpu(*virt_cmd
) &
638 PCI_COMMAND_INTX_DISABLE
);
640 if (virt_intx_disable
&& !vdev
->virq_disabled
) {
641 vdev
->virq_disabled
= true;
642 vfio_pci_intx_mask(vdev
);
643 } else if (!virt_intx_disable
&& vdev
->virq_disabled
) {
644 vdev
->virq_disabled
= false;
645 vfio_pci_intx_unmask(vdev
);
650 vdev
->bardirty
= true;
655 /* Permissions for the Basic PCI Header */
656 static int __init
init_pci_cap_basic_perm(struct perm_bits
*perm
)
658 if (alloc_perm_bits(perm
, PCI_STD_HEADER_SIZEOF
))
661 perm
->readfn
= vfio_basic_config_read
;
662 perm
->writefn
= vfio_basic_config_write
;
664 /* Virtualized for SR-IOV functions, which just have FFFF */
665 p_setw(perm
, PCI_VENDOR_ID
, (u16
)ALL_VIRT
, NO_WRITE
);
666 p_setw(perm
, PCI_DEVICE_ID
, (u16
)ALL_VIRT
, NO_WRITE
);
669 * Virtualize INTx disable, we use it internally for interrupt
670 * control and can emulate it for non-PCI 2.3 devices.
672 p_setw(perm
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
, (u16
)ALL_WRITE
);
674 /* Virtualize capability list, we might want to skip/disable */
675 p_setw(perm
, PCI_STATUS
, PCI_STATUS_CAP_LIST
, NO_WRITE
);
677 /* No harm to write */
678 p_setb(perm
, PCI_CACHE_LINE_SIZE
, NO_VIRT
, (u8
)ALL_WRITE
);
679 p_setb(perm
, PCI_LATENCY_TIMER
, NO_VIRT
, (u8
)ALL_WRITE
);
680 p_setb(perm
, PCI_BIST
, NO_VIRT
, (u8
)ALL_WRITE
);
682 /* Virtualize all bars, can't touch the real ones */
683 p_setd(perm
, PCI_BASE_ADDRESS_0
, ALL_VIRT
, ALL_WRITE
);
684 p_setd(perm
, PCI_BASE_ADDRESS_1
, ALL_VIRT
, ALL_WRITE
);
685 p_setd(perm
, PCI_BASE_ADDRESS_2
, ALL_VIRT
, ALL_WRITE
);
686 p_setd(perm
, PCI_BASE_ADDRESS_3
, ALL_VIRT
, ALL_WRITE
);
687 p_setd(perm
, PCI_BASE_ADDRESS_4
, ALL_VIRT
, ALL_WRITE
);
688 p_setd(perm
, PCI_BASE_ADDRESS_5
, ALL_VIRT
, ALL_WRITE
);
689 p_setd(perm
, PCI_ROM_ADDRESS
, ALL_VIRT
, ALL_WRITE
);
691 /* Allow us to adjust capability chain */
692 p_setb(perm
, PCI_CAPABILITY_LIST
, (u8
)ALL_VIRT
, NO_WRITE
);
694 /* Sometimes used by sw, just virtualize */
695 p_setb(perm
, PCI_INTERRUPT_LINE
, (u8
)ALL_VIRT
, (u8
)ALL_WRITE
);
697 /* Virtualize interrupt pin to allow hiding INTx */
698 p_setb(perm
, PCI_INTERRUPT_PIN
, (u8
)ALL_VIRT
, (u8
)NO_WRITE
);
704 * It takes all the required locks to protect the access of power related
705 * variables and then invokes vfio_pci_set_power_state().
707 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device
*vdev
,
710 if (state
>= PCI_D3hot
)
711 vfio_pci_zap_and_down_write_memory_lock(vdev
);
713 down_write(&vdev
->memory_lock
);
715 vfio_pci_set_power_state(vdev
, state
);
716 up_write(&vdev
->memory_lock
);
719 static int vfio_pm_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
720 int count
, struct perm_bits
*perm
,
721 int offset
, __le32 val
)
723 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
727 if (offset
== PCI_PM_CTRL
) {
730 switch (le32_to_cpu(val
) & PCI_PM_CTRL_STATE_MASK
) {
745 vfio_lock_and_set_power_state(vdev
, state
);
751 /* Permissions for the Power Management capability */
752 static int __init
init_pci_cap_pm_perm(struct perm_bits
*perm
)
754 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_PM
]))
757 perm
->writefn
= vfio_pm_config_write
;
760 * We always virtualize the next field so we can remove
761 * capabilities from the chain if we want to.
763 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
766 * The guests can't process PME events. If any PME event will be
767 * generated, then it will be mostly handled in the host and the
768 * host will clear the PME_STATUS. So virtualize PME_Support bits.
769 * The vconfig bits will be cleared during device capability
772 p_setw(perm
, PCI_PM_PMC
, PCI_PM_CAP_PME_MASK
, NO_WRITE
);
775 * Power management is defined *per function*, so we can let
776 * the user change power state, but we trap and initiate the
777 * change ourselves, so the state bits are read-only.
779 * The guest can't process PME from D3cold so virtualize PME_Status
780 * and PME_En bits. The vconfig bits will be cleared during device
781 * capability initialization.
783 p_setd(perm
, PCI_PM_CTRL
,
784 PCI_PM_CTRL_PME_ENABLE
| PCI_PM_CTRL_PME_STATUS
,
785 ~(PCI_PM_CTRL_PME_ENABLE
| PCI_PM_CTRL_PME_STATUS
|
786 PCI_PM_CTRL_STATE_MASK
));
791 static int vfio_vpd_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
792 int count
, struct perm_bits
*perm
,
793 int offset
, __le32 val
)
795 struct pci_dev
*pdev
= vdev
->pdev
;
796 __le16
*paddr
= (__le16
*)(vdev
->vconfig
+ pos
- offset
+ PCI_VPD_ADDR
);
797 __le32
*pdata
= (__le32
*)(vdev
->vconfig
+ pos
- offset
+ PCI_VPD_DATA
);
802 * Write through to emulation. If the write includes the upper byte
803 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
806 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
807 if (count
< 0 || offset
> PCI_VPD_ADDR
+ 1 ||
808 offset
+ count
<= PCI_VPD_ADDR
+ 1)
811 addr
= le16_to_cpu(*paddr
);
813 if (addr
& PCI_VPD_ADDR_F
) {
814 data
= le32_to_cpu(*pdata
);
815 if (pci_write_vpd(pdev
, addr
& ~PCI_VPD_ADDR_F
, 4, &data
) != 4)
819 if (pci_read_vpd(pdev
, addr
, 4, &data
) < 0)
821 *pdata
= cpu_to_le32(data
);
825 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
826 * signal completion. If an error occurs above, we assume that not
827 * toggling this bit will induce a driver timeout.
829 addr
^= PCI_VPD_ADDR_F
;
830 *paddr
= cpu_to_le16(addr
);
835 /* Permissions for Vital Product Data capability */
836 static int __init
init_pci_cap_vpd_perm(struct perm_bits
*perm
)
838 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_VPD
]))
841 perm
->writefn
= vfio_vpd_config_write
;
844 * We always virtualize the next field so we can remove
845 * capabilities from the chain if we want to.
847 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
850 * Both the address and data registers are virtualized to
851 * enable access through the pci_vpd_read/write functions
853 p_setw(perm
, PCI_VPD_ADDR
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
854 p_setd(perm
, PCI_VPD_DATA
, ALL_VIRT
, ALL_WRITE
);
859 /* Permissions for PCI-X capability */
860 static int __init
init_pci_cap_pcix_perm(struct perm_bits
*perm
)
862 /* Alloc 24, but only 8 are used in v0 */
863 if (alloc_perm_bits(perm
, PCI_CAP_PCIX_SIZEOF_V2
))
866 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
868 p_setw(perm
, PCI_X_CMD
, NO_VIRT
, (u16
)ALL_WRITE
);
869 p_setd(perm
, PCI_X_ECC_CSR
, NO_VIRT
, ALL_WRITE
);
873 static int vfio_exp_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
874 int count
, struct perm_bits
*perm
,
875 int offset
, __le32 val
)
877 __le16
*ctrl
= (__le16
*)(vdev
->vconfig
+ pos
-
878 offset
+ PCI_EXP_DEVCTL
);
879 int readrq
= le16_to_cpu(*ctrl
) & PCI_EXP_DEVCTL_READRQ
;
881 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
886 * The FLR bit is virtualized, if set and the device supports PCIe
887 * FLR, issue a reset_function. Regardless, clear the bit, the spec
888 * requires it to be always read as zero. NB, reset_function might
889 * not use a PCIe FLR, we don't have that level of granularity.
891 if (*ctrl
& cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR
)) {
895 *ctrl
&= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR
);
897 ret
= pci_user_read_config_dword(vdev
->pdev
,
898 pos
- offset
+ PCI_EXP_DEVCAP
,
901 if (!ret
&& (cap
& PCI_EXP_DEVCAP_FLR
)) {
902 vfio_pci_zap_and_down_write_memory_lock(vdev
);
903 pci_try_reset_function(vdev
->pdev
);
904 up_write(&vdev
->memory_lock
);
909 * MPS is virtualized to the user, writes do not change the physical
910 * register since determining a proper MPS value requires a system wide
911 * device view. The MRRS is largely independent of MPS, but since the
912 * user does not have that system-wide view, they might set a safe, but
913 * inefficiently low value. Here we allow writes through to hardware,
914 * but we set the floor to the physical device MPS setting, so that
915 * we can at least use full TLPs, as defined by the MPS value.
917 * NB, if any devices actually depend on an artificially low MRRS
918 * setting, this will need to be revisited, perhaps with a quirk
919 * though pcie_set_readrq().
921 if (readrq
!= (le16_to_cpu(*ctrl
) & PCI_EXP_DEVCTL_READRQ
)) {
923 ((le16_to_cpu(*ctrl
) & PCI_EXP_DEVCTL_READRQ
) >> 12);
924 readrq
= max(readrq
, pcie_get_mps(vdev
->pdev
));
926 pcie_set_readrq(vdev
->pdev
, readrq
);
932 /* Permissions for PCI Express capability */
933 static int __init
init_pci_cap_exp_perm(struct perm_bits
*perm
)
935 /* Alloc largest of possible sizes */
936 if (alloc_perm_bits(perm
, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2
))
939 perm
->writefn
= vfio_exp_config_write
;
941 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
944 * Allow writes to device control fields, except devctl_phantom,
945 * which could confuse IOMMU, MPS, which can break communication
946 * with other physical devices, and the ARI bit in devctl2, which
947 * is set at probe time. FLR and MRRS get virtualized via our
950 p_setw(perm
, PCI_EXP_DEVCTL
,
951 PCI_EXP_DEVCTL_BCR_FLR
| PCI_EXP_DEVCTL_PAYLOAD
|
952 PCI_EXP_DEVCTL_READRQ
, ~PCI_EXP_DEVCTL_PHANTOM
);
953 p_setw(perm
, PCI_EXP_DEVCTL2
, NO_VIRT
, ~PCI_EXP_DEVCTL2_ARI
);
957 static int vfio_af_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
958 int count
, struct perm_bits
*perm
,
959 int offset
, __le32 val
)
961 u8
*ctrl
= vdev
->vconfig
+ pos
- offset
+ PCI_AF_CTRL
;
963 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
968 * The FLR bit is virtualized, if set and the device supports AF
969 * FLR, issue a reset_function. Regardless, clear the bit, the spec
970 * requires it to be always read as zero. NB, reset_function might
971 * not use an AF FLR, we don't have that level of granularity.
973 if (*ctrl
& PCI_AF_CTRL_FLR
) {
977 *ctrl
&= ~PCI_AF_CTRL_FLR
;
979 ret
= pci_user_read_config_byte(vdev
->pdev
,
980 pos
- offset
+ PCI_AF_CAP
,
983 if (!ret
&& (cap
& PCI_AF_CAP_FLR
) && (cap
& PCI_AF_CAP_TP
)) {
984 vfio_pci_zap_and_down_write_memory_lock(vdev
);
985 pci_try_reset_function(vdev
->pdev
);
986 up_write(&vdev
->memory_lock
);
993 /* Permissions for Advanced Function capability */
994 static int __init
init_pci_cap_af_perm(struct perm_bits
*perm
)
996 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_AF
]))
999 perm
->writefn
= vfio_af_config_write
;
1001 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
1002 p_setb(perm
, PCI_AF_CTRL
, PCI_AF_CTRL_FLR
, PCI_AF_CTRL_FLR
);
1006 /* Permissions for Advanced Error Reporting extended capability */
1007 static int __init
init_pci_ext_cap_err_perm(struct perm_bits
*perm
)
1011 if (alloc_perm_bits(perm
, pci_ext_cap_length
[PCI_EXT_CAP_ID_ERR
]))
1015 * Virtualize the first dword of all express capabilities
1016 * because it includes the next pointer. This lets us later
1017 * remove capabilities from the chain if we need to.
1019 p_setd(perm
, 0, ALL_VIRT
, NO_WRITE
);
1021 /* Writable bits mask */
1022 mask
= PCI_ERR_UNC_UND
| /* Undefined */
1023 PCI_ERR_UNC_DLP
| /* Data Link Protocol */
1024 PCI_ERR_UNC_SURPDN
| /* Surprise Down */
1025 PCI_ERR_UNC_POISON_TLP
| /* Poisoned TLP */
1026 PCI_ERR_UNC_FCP
| /* Flow Control Protocol */
1027 PCI_ERR_UNC_COMP_TIME
| /* Completion Timeout */
1028 PCI_ERR_UNC_COMP_ABORT
| /* Completer Abort */
1029 PCI_ERR_UNC_UNX_COMP
| /* Unexpected Completion */
1030 PCI_ERR_UNC_RX_OVER
| /* Receiver Overflow */
1031 PCI_ERR_UNC_MALF_TLP
| /* Malformed TLP */
1032 PCI_ERR_UNC_ECRC
| /* ECRC Error Status */
1033 PCI_ERR_UNC_UNSUP
| /* Unsupported Request */
1034 PCI_ERR_UNC_ACSV
| /* ACS Violation */
1035 PCI_ERR_UNC_INTN
| /* internal error */
1036 PCI_ERR_UNC_MCBTLP
| /* MC blocked TLP */
1037 PCI_ERR_UNC_ATOMEG
| /* Atomic egress blocked */
1038 PCI_ERR_UNC_TLPPRE
; /* TLP prefix blocked */
1039 p_setd(perm
, PCI_ERR_UNCOR_STATUS
, NO_VIRT
, mask
);
1040 p_setd(perm
, PCI_ERR_UNCOR_MASK
, NO_VIRT
, mask
);
1041 p_setd(perm
, PCI_ERR_UNCOR_SEVER
, NO_VIRT
, mask
);
1043 mask
= PCI_ERR_COR_RCVR
| /* Receiver Error Status */
1044 PCI_ERR_COR_BAD_TLP
| /* Bad TLP Status */
1045 PCI_ERR_COR_BAD_DLLP
| /* Bad DLLP Status */
1046 PCI_ERR_COR_REP_ROLL
| /* REPLAY_NUM Rollover */
1047 PCI_ERR_COR_REP_TIMER
| /* Replay Timer Timeout */
1048 PCI_ERR_COR_ADV_NFAT
| /* Advisory Non-Fatal */
1049 PCI_ERR_COR_INTERNAL
| /* Corrected Internal */
1050 PCI_ERR_COR_LOG_OVER
; /* Header Log Overflow */
1051 p_setd(perm
, PCI_ERR_COR_STATUS
, NO_VIRT
, mask
);
1052 p_setd(perm
, PCI_ERR_COR_MASK
, NO_VIRT
, mask
);
1054 mask
= PCI_ERR_CAP_ECRC_GENE
| /* ECRC Generation Enable */
1055 PCI_ERR_CAP_ECRC_CHKE
; /* ECRC Check Enable */
1056 p_setd(perm
, PCI_ERR_CAP
, NO_VIRT
, mask
);
1060 /* Permissions for Power Budgeting extended capability */
1061 static int __init
init_pci_ext_cap_pwr_perm(struct perm_bits
*perm
)
1063 if (alloc_perm_bits(perm
, pci_ext_cap_length
[PCI_EXT_CAP_ID_PWR
]))
1066 p_setd(perm
, 0, ALL_VIRT
, NO_WRITE
);
1068 /* Writing the data selector is OK, the info is still read-only */
1069 p_setb(perm
, PCI_PWR_DATA
, NO_VIRT
, (u8
)ALL_WRITE
);
1074 * Initialize the shared permission tables
1076 void vfio_pci_uninit_perm_bits(void)
1078 free_perm_bits(&cap_perms
[PCI_CAP_ID_BASIC
]);
1080 free_perm_bits(&cap_perms
[PCI_CAP_ID_PM
]);
1081 free_perm_bits(&cap_perms
[PCI_CAP_ID_VPD
]);
1082 free_perm_bits(&cap_perms
[PCI_CAP_ID_PCIX
]);
1083 free_perm_bits(&cap_perms
[PCI_CAP_ID_EXP
]);
1084 free_perm_bits(&cap_perms
[PCI_CAP_ID_AF
]);
1086 free_perm_bits(&ecap_perms
[PCI_EXT_CAP_ID_ERR
]);
1087 free_perm_bits(&ecap_perms
[PCI_EXT_CAP_ID_PWR
]);
1090 int __init
vfio_pci_init_perm_bits(void)
1094 /* Basic config space */
1095 ret
= init_pci_cap_basic_perm(&cap_perms
[PCI_CAP_ID_BASIC
]);
1098 ret
|= init_pci_cap_pm_perm(&cap_perms
[PCI_CAP_ID_PM
]);
1099 ret
|= init_pci_cap_vpd_perm(&cap_perms
[PCI_CAP_ID_VPD
]);
1100 ret
|= init_pci_cap_pcix_perm(&cap_perms
[PCI_CAP_ID_PCIX
]);
1101 cap_perms
[PCI_CAP_ID_VNDR
].writefn
= vfio_raw_config_write
;
1102 ret
|= init_pci_cap_exp_perm(&cap_perms
[PCI_CAP_ID_EXP
]);
1103 ret
|= init_pci_cap_af_perm(&cap_perms
[PCI_CAP_ID_AF
]);
1105 /* Extended capabilities */
1106 ret
|= init_pci_ext_cap_err_perm(&ecap_perms
[PCI_EXT_CAP_ID_ERR
]);
1107 ret
|= init_pci_ext_cap_pwr_perm(&ecap_perms
[PCI_EXT_CAP_ID_PWR
]);
1108 ecap_perms
[PCI_EXT_CAP_ID_VNDR
].writefn
= vfio_raw_config_write
;
1109 ecap_perms
[PCI_EXT_CAP_ID_DVSEC
].writefn
= vfio_raw_config_write
;
1112 vfio_pci_uninit_perm_bits();
1117 static int vfio_find_cap_start(struct vfio_pci_core_device
*vdev
, int pos
)
1120 int base
= (pos
>= PCI_CFG_SPACE_SIZE
) ? PCI_CFG_SPACE_SIZE
:
1121 PCI_STD_HEADER_SIZEOF
;
1122 cap
= vdev
->pci_config_map
[pos
];
1124 if (cap
== PCI_CAP_ID_BASIC
)
1127 /* XXX Can we have to abutting capabilities of the same type? */
1128 while (pos
- 1 >= base
&& vdev
->pci_config_map
[pos
- 1] == cap
)
1134 static int vfio_msi_config_read(struct vfio_pci_core_device
*vdev
, int pos
,
1135 int count
, struct perm_bits
*perm
,
1136 int offset
, __le32
*val
)
1138 /* Update max available queue size from msi_qmax */
1139 if (offset
<= PCI_MSI_FLAGS
&& offset
+ count
>= PCI_MSI_FLAGS
) {
1143 start
= vfio_find_cap_start(vdev
, pos
);
1145 flags
= (__le16
*)&vdev
->vconfig
[start
];
1147 *flags
&= cpu_to_le16(~PCI_MSI_FLAGS_QMASK
);
1148 *flags
|= cpu_to_le16(vdev
->msi_qmax
<< 1);
1151 return vfio_default_config_read(vdev
, pos
, count
, perm
, offset
, val
);
1154 static int vfio_msi_config_write(struct vfio_pci_core_device
*vdev
, int pos
,
1155 int count
, struct perm_bits
*perm
,
1156 int offset
, __le32 val
)
1158 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
1162 /* Fixup and write configured queue size and enable to hardware */
1163 if (offset
<= PCI_MSI_FLAGS
&& offset
+ count
>= PCI_MSI_FLAGS
) {
1168 start
= vfio_find_cap_start(vdev
, pos
);
1170 pflags
= (__le16
*)&vdev
->vconfig
[start
+ PCI_MSI_FLAGS
];
1172 flags
= le16_to_cpu(*pflags
);
1174 /* MSI is enabled via ioctl */
1175 if (vdev
->irq_type
!= VFIO_PCI_MSI_IRQ_INDEX
)
1176 flags
&= ~PCI_MSI_FLAGS_ENABLE
;
1178 /* Check queue size */
1179 if ((flags
& PCI_MSI_FLAGS_QSIZE
) >> 4 > vdev
->msi_qmax
) {
1180 flags
&= ~PCI_MSI_FLAGS_QSIZE
;
1181 flags
|= vdev
->msi_qmax
<< 4;
1184 /* Write back to virt and to hardware */
1185 *pflags
= cpu_to_le16(flags
);
1186 ret
= pci_user_write_config_word(vdev
->pdev
,
1187 start
+ PCI_MSI_FLAGS
,
1197 * MSI determination is per-device, so this routine gets used beyond
1198 * initialization time. Don't add __init
1200 static int init_pci_cap_msi_perm(struct perm_bits
*perm
, int len
, u16 flags
)
1202 if (alloc_perm_bits(perm
, len
))
1205 perm
->readfn
= vfio_msi_config_read
;
1206 perm
->writefn
= vfio_msi_config_write
;
1208 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
1211 * The upper byte of the control register is reserved,
1212 * just setup the lower byte.
1214 p_setb(perm
, PCI_MSI_FLAGS
, (u8
)ALL_VIRT
, (u8
)ALL_WRITE
);
1215 p_setd(perm
, PCI_MSI_ADDRESS_LO
, ALL_VIRT
, ALL_WRITE
);
1216 if (flags
& PCI_MSI_FLAGS_64BIT
) {
1217 p_setd(perm
, PCI_MSI_ADDRESS_HI
, ALL_VIRT
, ALL_WRITE
);
1218 p_setw(perm
, PCI_MSI_DATA_64
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
1219 if (flags
& PCI_MSI_FLAGS_MASKBIT
) {
1220 p_setd(perm
, PCI_MSI_MASK_64
, NO_VIRT
, ALL_WRITE
);
1221 p_setd(perm
, PCI_MSI_PENDING_64
, NO_VIRT
, ALL_WRITE
);
1224 p_setw(perm
, PCI_MSI_DATA_32
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
1225 if (flags
& PCI_MSI_FLAGS_MASKBIT
) {
1226 p_setd(perm
, PCI_MSI_MASK_32
, NO_VIRT
, ALL_WRITE
);
1227 p_setd(perm
, PCI_MSI_PENDING_32
, NO_VIRT
, ALL_WRITE
);
1233 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1234 static int vfio_msi_cap_len(struct vfio_pci_core_device
*vdev
, u8 pos
)
1236 struct pci_dev
*pdev
= vdev
->pdev
;
1240 ret
= pci_read_config_word(pdev
, pos
+ PCI_MSI_FLAGS
, &flags
);
1242 return pcibios_err_to_errno(ret
);
1244 len
= 10; /* Minimum size */
1245 if (flags
& PCI_MSI_FLAGS_64BIT
)
1247 if (flags
& PCI_MSI_FLAGS_MASKBIT
)
1253 vdev
->msi_perm
= kmalloc(sizeof(struct perm_bits
), GFP_KERNEL_ACCOUNT
);
1254 if (!vdev
->msi_perm
)
1257 ret
= init_pci_cap_msi_perm(vdev
->msi_perm
, len
, flags
);
1259 kfree(vdev
->msi_perm
);
1266 /* Determine extended capability length for VC (2 & 9) and MFVC */
1267 static int vfio_vc_cap_len(struct vfio_pci_core_device
*vdev
, u16 pos
)
1269 struct pci_dev
*pdev
= vdev
->pdev
;
1271 int ret
, evcc
, phases
, vc_arb
;
1272 int len
= PCI_CAP_VC_BASE_SIZEOF
;
1274 ret
= pci_read_config_dword(pdev
, pos
+ PCI_VC_PORT_CAP1
, &tmp
);
1276 return pcibios_err_to_errno(ret
);
1278 evcc
= tmp
& PCI_VC_CAP1_EVCC
; /* extended vc count */
1279 ret
= pci_read_config_dword(pdev
, pos
+ PCI_VC_PORT_CAP2
, &tmp
);
1281 return pcibios_err_to_errno(ret
);
1283 if (tmp
& PCI_VC_CAP2_128_PHASE
)
1285 else if (tmp
& PCI_VC_CAP2_64_PHASE
)
1287 else if (tmp
& PCI_VC_CAP2_32_PHASE
)
1292 vc_arb
= phases
* 4;
1295 * Port arbitration tables are root & switch only;
1296 * function arbitration tables are function 0 only.
1297 * In either case, we'll never let user write them so
1298 * we don't care how big they are
1300 len
+= (1 + evcc
) * PCI_CAP_VC_PER_VC_SIZEOF
;
1302 len
= round_up(len
, 16);
1308 static int vfio_cap_len(struct vfio_pci_core_device
*vdev
, u8 cap
, u8 pos
)
1310 struct pci_dev
*pdev
= vdev
->pdev
;
1317 case PCI_CAP_ID_MSI
:
1318 return vfio_msi_cap_len(vdev
, pos
);
1319 case PCI_CAP_ID_PCIX
:
1320 ret
= pci_read_config_word(pdev
, pos
+ PCI_X_CMD
, &word
);
1322 return pcibios_err_to_errno(ret
);
1324 if (PCI_X_CMD_VERSION(word
)) {
1325 if (pdev
->cfg_size
> PCI_CFG_SPACE_SIZE
) {
1326 /* Test for extended capabilities */
1327 pci_read_config_dword(pdev
, PCI_CFG_SPACE_SIZE
,
1329 vdev
->extended_caps
= (dword
!= 0);
1331 return PCI_CAP_PCIX_SIZEOF_V2
;
1333 return PCI_CAP_PCIX_SIZEOF_V0
;
1334 case PCI_CAP_ID_VNDR
:
1335 /* length follows next field */
1336 ret
= pci_read_config_byte(pdev
, pos
+ PCI_CAP_FLAGS
, &byte
);
1338 return pcibios_err_to_errno(ret
);
1341 case PCI_CAP_ID_EXP
:
1342 if (pdev
->cfg_size
> PCI_CFG_SPACE_SIZE
) {
1343 /* Test for extended capabilities */
1344 pci_read_config_dword(pdev
, PCI_CFG_SPACE_SIZE
, &dword
);
1345 vdev
->extended_caps
= (dword
!= 0);
1348 /* length based on version and type */
1349 if ((pcie_caps_reg(pdev
) & PCI_EXP_FLAGS_VERS
) == 1) {
1350 if (pci_pcie_type(pdev
) == PCI_EXP_TYPE_RC_END
)
1351 return 0xc; /* "All Devices" only, no link */
1352 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1
;
1354 if (pci_pcie_type(pdev
) == PCI_EXP_TYPE_RC_END
)
1355 return 0x2c; /* No link */
1356 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2
;
1359 ret
= pci_read_config_byte(pdev
, pos
+ 3, &byte
);
1361 return pcibios_err_to_errno(ret
);
1363 return (byte
& HT_3BIT_CAP_MASK
) ?
1364 HT_CAP_SIZEOF_SHORT
: HT_CAP_SIZEOF_LONG
;
1365 case PCI_CAP_ID_SATA
:
1366 ret
= pci_read_config_byte(pdev
, pos
+ PCI_SATA_REGS
, &byte
);
1368 return pcibios_err_to_errno(ret
);
1370 byte
&= PCI_SATA_REGS_MASK
;
1371 if (byte
== PCI_SATA_REGS_INLINE
)
1372 return PCI_SATA_SIZEOF_LONG
;
1374 return PCI_SATA_SIZEOF_SHORT
;
1376 pci_warn(pdev
, "%s: unknown length for PCI cap %#x@%#x\n",
1377 __func__
, cap
, pos
);
1383 static int vfio_ext_cap_len(struct vfio_pci_core_device
*vdev
, u16 ecap
, u16 epos
)
1385 struct pci_dev
*pdev
= vdev
->pdev
;
1391 case PCI_EXT_CAP_ID_VNDR
:
1392 ret
= pci_read_config_dword(pdev
, epos
+ PCI_VSEC_HDR
, &dword
);
1394 return pcibios_err_to_errno(ret
);
1396 return dword
>> PCI_VSEC_HDR_LEN_SHIFT
;
1397 case PCI_EXT_CAP_ID_VC
:
1398 case PCI_EXT_CAP_ID_VC9
:
1399 case PCI_EXT_CAP_ID_MFVC
:
1400 return vfio_vc_cap_len(vdev
, epos
);
1401 case PCI_EXT_CAP_ID_ACS
:
1402 ret
= pci_read_config_byte(pdev
, epos
+ PCI_ACS_CAP
, &byte
);
1404 return pcibios_err_to_errno(ret
);
1406 if (byte
& PCI_ACS_EC
) {
1409 ret
= pci_read_config_byte(pdev
,
1410 epos
+ PCI_ACS_EGRESS_BITS
,
1413 return pcibios_err_to_errno(ret
);
1415 bits
= byte
? round_up(byte
, 32) : 256;
1416 return 8 + (bits
/ 8);
1420 case PCI_EXT_CAP_ID_REBAR
:
1421 ret
= pci_read_config_byte(pdev
, epos
+ PCI_REBAR_CTRL
, &byte
);
1423 return pcibios_err_to_errno(ret
);
1425 byte
&= PCI_REBAR_CTRL_NBAR_MASK
;
1426 byte
>>= PCI_REBAR_CTRL_NBAR_SHIFT
;
1428 return 4 + (byte
* 8);
1429 case PCI_EXT_CAP_ID_DPA
:
1430 ret
= pci_read_config_byte(pdev
, epos
+ PCI_DPA_CAP
, &byte
);
1432 return pcibios_err_to_errno(ret
);
1434 byte
&= PCI_DPA_CAP_SUBSTATE_MASK
;
1435 return PCI_DPA_BASE_SIZEOF
+ byte
+ 1;
1436 case PCI_EXT_CAP_ID_TPH
:
1437 ret
= pci_read_config_dword(pdev
, epos
+ PCI_TPH_CAP
, &dword
);
1439 return pcibios_err_to_errno(ret
);
1441 if ((dword
& PCI_TPH_CAP_LOC_MASK
) == PCI_TPH_LOC_CAP
) {
1444 sts
= dword
& PCI_TPH_CAP_ST_MASK
;
1445 sts
>>= PCI_TPH_CAP_ST_SHIFT
;
1446 return PCI_TPH_BASE_SIZEOF
+ (sts
* 2) + 2;
1448 return PCI_TPH_BASE_SIZEOF
;
1449 case PCI_EXT_CAP_ID_DVSEC
:
1450 ret
= pci_read_config_dword(pdev
, epos
+ PCI_DVSEC_HEADER1
, &dword
);
1452 return pcibios_err_to_errno(ret
);
1453 return PCI_DVSEC_HEADER1_LEN(dword
);
1455 pci_warn(pdev
, "%s: unknown length for PCI ecap %#x@%#x\n",
1456 __func__
, ecap
, epos
);
1462 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device
*vdev
,
1465 __le16
*pmc
= (__le16
*)&vdev
->vconfig
[offset
+ PCI_PM_PMC
];
1466 __le16
*ctrl
= (__le16
*)&vdev
->vconfig
[offset
+ PCI_PM_CTRL
];
1468 /* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1469 *pmc
&= ~cpu_to_le16(PCI_PM_CAP_PME_MASK
);
1470 *ctrl
&= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE
| PCI_PM_CTRL_PME_STATUS
);
1473 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device
*vdev
,
1474 int offset
, int size
)
1476 struct pci_dev
*pdev
= vdev
->pdev
;
1480 * We try to read physical config space in the largest chunks
1481 * we can, assuming that all of the fields support dword access.
1482 * pci_save_state() makes this same assumption and seems to do ok.
1487 if (size
>= 4 && !(offset
% 4)) {
1488 __le32
*dwordp
= (__le32
*)&vdev
->vconfig
[offset
];
1491 ret
= pci_read_config_dword(pdev
, offset
, &dword
);
1494 *dwordp
= cpu_to_le32(dword
);
1496 } else if (size
>= 2 && !(offset
% 2)) {
1497 __le16
*wordp
= (__le16
*)&vdev
->vconfig
[offset
];
1500 ret
= pci_read_config_word(pdev
, offset
, &word
);
1503 *wordp
= cpu_to_le16(word
);
1506 u8
*byte
= &vdev
->vconfig
[offset
];
1507 ret
= pci_read_config_byte(pdev
, offset
, byte
);
1520 static int vfio_cap_init(struct vfio_pci_core_device
*vdev
)
1522 struct pci_dev
*pdev
= vdev
->pdev
;
1523 u8
*map
= vdev
->pci_config_map
;
1526 int loops
, ret
, caps
= 0;
1528 /* Any capabilities? */
1529 ret
= pci_read_config_word(pdev
, PCI_STATUS
, &status
);
1533 if (!(status
& PCI_STATUS_CAP_LIST
))
1534 return 0; /* Done */
1536 ret
= pci_read_config_byte(pdev
, PCI_CAPABILITY_LIST
, &pos
);
1540 /* Mark the previous position in case we want to skip a capability */
1541 prev
= &vdev
->vconfig
[PCI_CAPABILITY_LIST
];
1543 /* We can bound our loop, capabilities are dword aligned */
1544 loops
= (PCI_CFG_SPACE_SIZE
- PCI_STD_HEADER_SIZEOF
) / PCI_CAP_SIZEOF
;
1545 while (pos
&& loops
--) {
1549 ret
= pci_read_config_byte(pdev
, pos
, &cap
);
1553 ret
= pci_read_config_byte(pdev
,
1554 pos
+ PCI_CAP_LIST_NEXT
, &next
);
1559 * ID 0 is a NULL capability, conflicting with our fake
1560 * PCI_CAP_ID_BASIC. As it has no content, consider it
1563 if (cap
&& cap
<= PCI_CAP_ID_MAX
) {
1564 len
= pci_cap_length
[cap
];
1565 if (len
== 0xFF) { /* Variable length */
1566 len
= vfio_cap_len(vdev
, cap
, pos
);
1573 pci_dbg(pdev
, "%s: hiding cap %#x@%#x\n", __func__
,
1580 /* Sanity check, do we overlap other capabilities? */
1581 for (i
= 0; i
< len
; i
++) {
1582 if (likely(map
[pos
+ i
] == PCI_CAP_ID_INVALID
))
1585 pci_warn(pdev
, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1586 __func__
, pos
+ i
, map
[pos
+ i
], cap
);
1589 BUILD_BUG_ON(PCI_CAP_ID_MAX
>= PCI_CAP_ID_INVALID_VIRT
);
1591 memset(map
+ pos
, cap
, len
);
1592 ret
= vfio_fill_vconfig_bytes(vdev
, pos
, len
);
1596 if (cap
== PCI_CAP_ID_PM
)
1597 vfio_update_pm_vconfig_bytes(vdev
, pos
);
1599 prev
= &vdev
->vconfig
[pos
+ PCI_CAP_LIST_NEXT
];
1604 /* If we didn't fill any capabilities, clear the status flag */
1606 __le16
*vstatus
= (__le16
*)&vdev
->vconfig
[PCI_STATUS
];
1607 *vstatus
&= ~cpu_to_le16(PCI_STATUS_CAP_LIST
);
1613 static int vfio_ecap_init(struct vfio_pci_core_device
*vdev
)
1615 struct pci_dev
*pdev
= vdev
->pdev
;
1616 u8
*map
= vdev
->pci_config_map
;
1618 __le32
*prev
= NULL
;
1619 int loops
, ret
, ecaps
= 0;
1621 if (!vdev
->extended_caps
)
1624 epos
= PCI_CFG_SPACE_SIZE
;
1626 loops
= (pdev
->cfg_size
- PCI_CFG_SPACE_SIZE
) / PCI_CAP_SIZEOF
;
1628 while (loops
-- && epos
>= PCI_CFG_SPACE_SIZE
) {
1632 bool hidden
= false;
1634 ret
= pci_read_config_dword(pdev
, epos
, &header
);
1638 ecap
= PCI_EXT_CAP_ID(header
);
1640 if (ecap
<= PCI_EXT_CAP_ID_MAX
) {
1641 len
= pci_ext_cap_length
[ecap
];
1643 len
= vfio_ext_cap_len(vdev
, ecap
, epos
);
1650 pci_dbg(pdev
, "%s: hiding ecap %#x@%#x\n",
1651 __func__
, ecap
, epos
);
1653 /* If not the first in the chain, we can skip over it */
1655 u32 val
= epos
= PCI_EXT_CAP_NEXT(header
);
1656 *prev
&= cpu_to_le32(~(0xffcU
<< 20));
1657 *prev
|= cpu_to_le32(val
<< 20);
1662 * Otherwise, fill in a placeholder, the direct
1663 * readfn will virtualize this automatically
1665 len
= PCI_CAP_SIZEOF
;
1669 for (i
= 0; i
< len
; i
++) {
1670 if (likely(map
[epos
+ i
] == PCI_CAP_ID_INVALID
))
1673 pci_warn(pdev
, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1674 __func__
, epos
+ i
, map
[epos
+ i
], ecap
);
1678 * Even though ecap is 2 bytes, we're currently a long way
1679 * from exceeding 1 byte capabilities. If we ever make it
1680 * up to 0xFE we'll need to up this to a two-byte, byte map.
1682 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX
>= PCI_CAP_ID_INVALID_VIRT
);
1684 memset(map
+ epos
, ecap
, len
);
1685 ret
= vfio_fill_vconfig_bytes(vdev
, epos
, len
);
1690 * If we're just using this capability to anchor the list,
1691 * hide the real ID. Only count real ecaps. XXX PCI spec
1692 * indicates to use cap id = 0, version = 0, next = 0 if
1693 * ecaps are absent, hope users check all the way to next.
1696 *(__le32
*)&vdev
->vconfig
[epos
] &=
1697 cpu_to_le32((0xffcU
<< 20));
1701 prev
= (__le32
*)&vdev
->vconfig
[epos
];
1702 epos
= PCI_EXT_CAP_NEXT(header
);
1706 *(u32
*)&vdev
->vconfig
[PCI_CFG_SPACE_SIZE
] = 0;
1712 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1713 * to collect a list of dependencies for the VF INTx pin quirk below.
1715 static const struct pci_device_id known_bogus_vf_intx_pin
[] = {
1716 { PCI_DEVICE(PCI_VENDOR_ID_INTEL
, 0x270c) },
1721 * For each device we allocate a pci_config_map that indicates the
1722 * capability occupying each dword and thus the struct perm_bits we
1723 * use for read and write. We also allocate a virtualized config
1724 * space which tracks reads and writes to bits that we emulate for
1725 * the user. Initial values filled from device.
1727 * Using shared struct perm_bits between all vfio-pci devices saves
1728 * us from allocating cfg_size buffers for virt and write for every
1729 * device. We could remove vconfig and allocate individual buffers
1730 * for each area requiring emulated bits, but the array of pointers
1731 * would be comparable in size (at least for standard config space).
1733 int vfio_config_init(struct vfio_pci_core_device
*vdev
)
1735 struct pci_dev
*pdev
= vdev
->pdev
;
1740 * Config space, caps and ecaps are all dword aligned, so we could
1741 * use one byte per dword to record the type. However, there are
1742 * no requirements on the length of a capability, so the gap between
1743 * capabilities needs byte granularity.
1745 map
= kmalloc(pdev
->cfg_size
, GFP_KERNEL_ACCOUNT
);
1749 vconfig
= kmalloc(pdev
->cfg_size
, GFP_KERNEL_ACCOUNT
);
1755 vdev
->pci_config_map
= map
;
1756 vdev
->vconfig
= vconfig
;
1758 memset(map
, PCI_CAP_ID_BASIC
, PCI_STD_HEADER_SIZEOF
);
1759 memset(map
+ PCI_STD_HEADER_SIZEOF
, PCI_CAP_ID_INVALID
,
1760 pdev
->cfg_size
- PCI_STD_HEADER_SIZEOF
);
1762 ret
= vfio_fill_vconfig_bytes(vdev
, 0, PCI_STD_HEADER_SIZEOF
);
1766 vdev
->bardirty
= true;
1769 * XXX can we just pci_load_saved_state/pci_restore_state?
1770 * may need to rebuild vconfig after that
1773 /* For restore after reset */
1774 vdev
->rbar
[0] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_0
]);
1775 vdev
->rbar
[1] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_1
]);
1776 vdev
->rbar
[2] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_2
]);
1777 vdev
->rbar
[3] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_3
]);
1778 vdev
->rbar
[4] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_4
]);
1779 vdev
->rbar
[5] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_5
]);
1780 vdev
->rbar
[6] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_ROM_ADDRESS
]);
1782 if (pdev
->is_virtfn
) {
1783 *(__le16
*)&vconfig
[PCI_VENDOR_ID
] = cpu_to_le16(pdev
->vendor
);
1784 *(__le16
*)&vconfig
[PCI_DEVICE_ID
] = cpu_to_le16(pdev
->device
);
1787 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1788 * does not apply to VFs and VFs must implement this register
1789 * as read-only with value zero. Userspace is not readily able
1790 * to identify whether a device is a VF and thus that the pin
1791 * definition on the device is bogus should it violate this
1792 * requirement. We already virtualize the pin register for
1793 * other purposes, so we simply need to replace the bogus value
1794 * and consider VFs when we determine INTx IRQ count.
1796 if (vconfig
[PCI_INTERRUPT_PIN
] &&
1797 !pci_match_id(known_bogus_vf_intx_pin
, pdev
))
1799 "Hardware bug: VF reports bogus INTx pin %d\n",
1800 vconfig
[PCI_INTERRUPT_PIN
]);
1802 vconfig
[PCI_INTERRUPT_PIN
] = 0; /* Gratuitous for good VFs */
1804 if (pdev
->no_command_memory
) {
1806 * VFs and devices that set pdev->no_command_memory do not
1807 * implement the memory enable bit of the COMMAND register
1808 * therefore we'll not have it set in our initial copy of
1809 * config space after pci_enable_device(). For consistency
1810 * with PFs, set the virtual enable bit here.
1812 *(__le16
*)&vconfig
[PCI_COMMAND
] |=
1813 cpu_to_le16(PCI_COMMAND_MEMORY
);
1816 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX
) || vdev
->nointx
)
1817 vconfig
[PCI_INTERRUPT_PIN
] = 0;
1819 ret
= vfio_cap_init(vdev
);
1823 ret
= vfio_ecap_init(vdev
);
1831 vdev
->pci_config_map
= NULL
;
1833 vdev
->vconfig
= NULL
;
1834 return pcibios_err_to_errno(ret
);
1837 void vfio_config_free(struct vfio_pci_core_device
*vdev
)
1839 kfree(vdev
->vconfig
);
1840 vdev
->vconfig
= NULL
;
1841 kfree(vdev
->pci_config_map
);
1842 vdev
->pci_config_map
= NULL
;
1843 if (vdev
->msi_perm
) {
1844 free_perm_bits(vdev
->msi_perm
);
1845 kfree(vdev
->msi_perm
);
1846 vdev
->msi_perm
= NULL
;
1851 * Find the remaining number of bytes in a dword that match the given
1852 * position. Stop at either the end of the capability or the dword boundary.
1854 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device
*vdev
,
1857 u8 cap
= vdev
->pci_config_map
[pos
];
1860 for (i
= 1; (pos
+ i
) % 4 && vdev
->pci_config_map
[pos
+ i
] == cap
; i
++)
1866 static ssize_t
vfio_config_do_rw(struct vfio_pci_core_device
*vdev
, char __user
*buf
,
1867 size_t count
, loff_t
*ppos
, bool iswrite
)
1869 struct pci_dev
*pdev
= vdev
->pdev
;
1870 struct perm_bits
*perm
;
1872 int cap_start
= 0, offset
;
1876 if (*ppos
< 0 || *ppos
>= pdev
->cfg_size
||
1877 *ppos
+ count
> pdev
->cfg_size
)
1881 * Chop accesses into aligned chunks containing no more than a
1882 * single capability. Caller increments to the next chunk.
1884 count
= min(count
, vfio_pci_cap_remaining_dword(vdev
, *ppos
));
1885 if (count
>= 4 && !(*ppos
% 4))
1887 else if (count
>= 2 && !(*ppos
% 2))
1894 cap_id
= vdev
->pci_config_map
[*ppos
];
1896 if (cap_id
== PCI_CAP_ID_INVALID
) {
1897 perm
= &unassigned_perms
;
1899 } else if (cap_id
== PCI_CAP_ID_INVALID_VIRT
) {
1903 if (*ppos
>= PCI_CFG_SPACE_SIZE
) {
1905 * We can get a cap_id that exceeds PCI_EXT_CAP_ID_MAX
1906 * if we're hiding an unknown capability at the start
1907 * of the extended capability list. Use default, ro
1908 * access, which will virtualize the id and next values.
1910 if (cap_id
> PCI_EXT_CAP_ID_MAX
)
1911 perm
= &direct_ro_perms
;
1913 perm
= &ecap_perms
[cap_id
];
1915 cap_start
= vfio_find_cap_start(vdev
, *ppos
);
1917 WARN_ON(cap_id
> PCI_CAP_ID_MAX
);
1919 perm
= &cap_perms
[cap_id
];
1921 if (cap_id
== PCI_CAP_ID_MSI
)
1922 perm
= vdev
->msi_perm
;
1924 if (cap_id
> PCI_CAP_ID_BASIC
)
1925 cap_start
= vfio_find_cap_start(vdev
, *ppos
);
1929 WARN_ON(!cap_start
&& cap_id
!= PCI_CAP_ID_BASIC
);
1930 WARN_ON(cap_start
> *ppos
);
1932 offset
= *ppos
- cap_start
;
1938 if (copy_from_user(&val
, buf
, count
))
1941 ret
= perm
->writefn(vdev
, *ppos
, count
, perm
, offset
, val
);
1944 ret
= perm
->readfn(vdev
, *ppos
, count
,
1945 perm
, offset
, &val
);
1950 if (copy_to_user(buf
, &val
, count
))
1957 ssize_t
vfio_pci_config_rw(struct vfio_pci_core_device
*vdev
, char __user
*buf
,
1958 size_t count
, loff_t
*ppos
, bool iswrite
)
1964 pos
&= VFIO_PCI_OFFSET_MASK
;
1967 ret
= vfio_config_do_rw(vdev
, buf
, count
, &pos
, iswrite
);
1983 * vfio_pci_core_range_intersect_range() - Determine overlap between a buffer
1984 * and register offset ranges.
1985 * @buf_start: start offset of the buffer
1986 * @buf_cnt: number of buffer bytes
1987 * @reg_start: start register offset
1988 * @reg_cnt: number of register bytes
1989 * @buf_offset: start offset of overlap in the buffer
1990 * @intersect_count: number of overlapping bytes
1991 * @register_offset: start offset of overlap in register
1993 * Returns: true if there is overlap, false if not.
1994 * The overlap start and size is returned through function args.
1996 bool vfio_pci_core_range_intersect_range(loff_t buf_start
, size_t buf_cnt
,
1997 loff_t reg_start
, size_t reg_cnt
,
1999 size_t *intersect_count
,
2000 size_t *register_offset
)
2002 if (buf_start
<= reg_start
&&
2003 buf_start
+ buf_cnt
> reg_start
) {
2004 *buf_offset
= reg_start
- buf_start
;
2005 *intersect_count
= min_t(size_t, reg_cnt
,
2006 buf_start
+ buf_cnt
- reg_start
);
2007 *register_offset
= 0;
2011 if (buf_start
> reg_start
&&
2012 buf_start
< reg_start
+ reg_cnt
) {
2014 *intersect_count
= min_t(size_t, buf_cnt
,
2015 reg_start
+ reg_cnt
- buf_start
);
2016 *register_offset
= buf_start
- reg_start
;
2022 EXPORT_SYMBOL_GPL(vfio_pci_core_range_intersect_range
);