Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / vhost / vhost.c
blob9ac25d08f473e832f375aad71d9811b21555bbdb
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2009 Red Hat, Inc.
3 * Copyright (C) 2006 Rusty Russell IBM Corporation
5 * Author: Michael S. Tsirkin <mst@redhat.com>
7 * Inspiration, some code, and most witty comments come from
8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell
10 * Generic code for virtio server in host kernel.
13 #include <linux/eventfd.h>
14 #include <linux/vhost.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 #include <linux/miscdevice.h>
18 #include <linux/mutex.h>
19 #include <linux/poll.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/kthread.h>
25 #include <linux/module.h>
26 #include <linux/sort.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/vhost_task.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/nospec.h>
32 #include <linux/kcov.h>
34 #include "vhost.h"
36 static ushort max_mem_regions = 64;
37 module_param(max_mem_regions, ushort, 0444);
38 MODULE_PARM_DESC(max_mem_regions,
39 "Maximum number of memory regions in memory map. (default: 64)");
40 static int max_iotlb_entries = 2048;
41 module_param(max_iotlb_entries, int, 0444);
42 MODULE_PARM_DESC(max_iotlb_entries,
43 "Maximum number of iotlb entries. (default: 2048)");
45 enum {
46 VHOST_MEMORY_F_LOG = 0x1,
49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
52 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
53 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
55 vq->user_be = !virtio_legacy_is_little_endian();
58 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
60 vq->user_be = true;
63 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
65 vq->user_be = false;
68 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
70 struct vhost_vring_state s;
72 if (vq->private_data)
73 return -EBUSY;
75 if (copy_from_user(&s, argp, sizeof(s)))
76 return -EFAULT;
78 if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
79 s.num != VHOST_VRING_BIG_ENDIAN)
80 return -EINVAL;
82 if (s.num == VHOST_VRING_BIG_ENDIAN)
83 vhost_enable_cross_endian_big(vq);
84 else
85 vhost_enable_cross_endian_little(vq);
87 return 0;
90 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
91 int __user *argp)
93 struct vhost_vring_state s = {
94 .index = idx,
95 .num = vq->user_be
98 if (copy_to_user(argp, &s, sizeof(s)))
99 return -EFAULT;
101 return 0;
104 static void vhost_init_is_le(struct vhost_virtqueue *vq)
106 /* Note for legacy virtio: user_be is initialized at reset time
107 * according to the host endianness. If userspace does not set an
108 * explicit endianness, the default behavior is native endian, as
109 * expected by legacy virtio.
111 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
113 #else
114 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
118 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
120 return -ENOIOCTLCMD;
123 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
124 int __user *argp)
126 return -ENOIOCTLCMD;
129 static void vhost_init_is_le(struct vhost_virtqueue *vq)
131 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
132 || virtio_legacy_is_little_endian();
134 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
136 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
138 vhost_init_is_le(vq);
141 struct vhost_flush_struct {
142 struct vhost_work work;
143 struct completion wait_event;
146 static void vhost_flush_work(struct vhost_work *work)
148 struct vhost_flush_struct *s;
150 s = container_of(work, struct vhost_flush_struct, work);
151 complete(&s->wait_event);
154 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
155 poll_table *pt)
157 struct vhost_poll *poll;
159 poll = container_of(pt, struct vhost_poll, table);
160 poll->wqh = wqh;
161 add_wait_queue(wqh, &poll->wait);
164 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
165 void *key)
167 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
168 struct vhost_work *work = &poll->work;
170 if (!(key_to_poll(key) & poll->mask))
171 return 0;
173 if (!poll->dev->use_worker)
174 work->fn(work);
175 else
176 vhost_poll_queue(poll);
178 return 0;
181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
183 clear_bit(VHOST_WORK_QUEUED, &work->flags);
184 work->fn = fn;
186 EXPORT_SYMBOL_GPL(vhost_work_init);
188 /* Init poll structure */
189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
190 __poll_t mask, struct vhost_dev *dev,
191 struct vhost_virtqueue *vq)
193 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
194 init_poll_funcptr(&poll->table, vhost_poll_func);
195 poll->mask = mask;
196 poll->dev = dev;
197 poll->wqh = NULL;
198 poll->vq = vq;
200 vhost_work_init(&poll->work, fn);
202 EXPORT_SYMBOL_GPL(vhost_poll_init);
204 /* Start polling a file. We add ourselves to file's wait queue. The caller must
205 * keep a reference to a file until after vhost_poll_stop is called. */
206 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
208 __poll_t mask;
210 if (poll->wqh)
211 return 0;
213 mask = vfs_poll(file, &poll->table);
214 if (mask)
215 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
216 if (mask & EPOLLERR) {
217 vhost_poll_stop(poll);
218 return -EINVAL;
221 return 0;
223 EXPORT_SYMBOL_GPL(vhost_poll_start);
225 /* Stop polling a file. After this function returns, it becomes safe to drop the
226 * file reference. You must also flush afterwards. */
227 void vhost_poll_stop(struct vhost_poll *poll)
229 if (poll->wqh) {
230 remove_wait_queue(poll->wqh, &poll->wait);
231 poll->wqh = NULL;
234 EXPORT_SYMBOL_GPL(vhost_poll_stop);
236 static void vhost_worker_queue(struct vhost_worker *worker,
237 struct vhost_work *work)
239 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
240 /* We can only add the work to the list after we're
241 * sure it was not in the list.
242 * test_and_set_bit() implies a memory barrier.
244 llist_add(&work->node, &worker->work_list);
245 vhost_task_wake(worker->vtsk);
249 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work)
251 struct vhost_worker *worker;
252 bool queued = false;
254 rcu_read_lock();
255 worker = rcu_dereference(vq->worker);
256 if (worker) {
257 queued = true;
258 vhost_worker_queue(worker, work);
260 rcu_read_unlock();
262 return queued;
264 EXPORT_SYMBOL_GPL(vhost_vq_work_queue);
267 * __vhost_worker_flush - flush a worker
268 * @worker: worker to flush
270 * The worker's flush_mutex must be held.
272 static void __vhost_worker_flush(struct vhost_worker *worker)
274 struct vhost_flush_struct flush;
276 if (!worker->attachment_cnt || worker->killed)
277 return;
279 init_completion(&flush.wait_event);
280 vhost_work_init(&flush.work, vhost_flush_work);
282 vhost_worker_queue(worker, &flush.work);
284 * Drop mutex in case our worker is killed and it needs to take the
285 * mutex to force cleanup.
287 mutex_unlock(&worker->mutex);
288 wait_for_completion(&flush.wait_event);
289 mutex_lock(&worker->mutex);
292 static void vhost_worker_flush(struct vhost_worker *worker)
294 mutex_lock(&worker->mutex);
295 __vhost_worker_flush(worker);
296 mutex_unlock(&worker->mutex);
299 void vhost_dev_flush(struct vhost_dev *dev)
301 struct vhost_worker *worker;
302 unsigned long i;
304 xa_for_each(&dev->worker_xa, i, worker)
305 vhost_worker_flush(worker);
307 EXPORT_SYMBOL_GPL(vhost_dev_flush);
309 /* A lockless hint for busy polling code to exit the loop */
310 bool vhost_vq_has_work(struct vhost_virtqueue *vq)
312 struct vhost_worker *worker;
313 bool has_work = false;
315 rcu_read_lock();
316 worker = rcu_dereference(vq->worker);
317 if (worker && !llist_empty(&worker->work_list))
318 has_work = true;
319 rcu_read_unlock();
321 return has_work;
323 EXPORT_SYMBOL_GPL(vhost_vq_has_work);
325 void vhost_poll_queue(struct vhost_poll *poll)
327 vhost_vq_work_queue(poll->vq, &poll->work);
329 EXPORT_SYMBOL_GPL(vhost_poll_queue);
331 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
333 int j;
335 for (j = 0; j < VHOST_NUM_ADDRS; j++)
336 vq->meta_iotlb[j] = NULL;
339 static void vhost_vq_meta_reset(struct vhost_dev *d)
341 int i;
343 for (i = 0; i < d->nvqs; ++i)
344 __vhost_vq_meta_reset(d->vqs[i]);
347 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx)
349 call_ctx->ctx = NULL;
350 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer));
353 bool vhost_vq_is_setup(struct vhost_virtqueue *vq)
355 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq);
357 EXPORT_SYMBOL_GPL(vhost_vq_is_setup);
359 static void vhost_vq_reset(struct vhost_dev *dev,
360 struct vhost_virtqueue *vq)
362 vq->num = 1;
363 vq->desc = NULL;
364 vq->avail = NULL;
365 vq->used = NULL;
366 vq->last_avail_idx = 0;
367 vq->avail_idx = 0;
368 vq->last_used_idx = 0;
369 vq->signalled_used = 0;
370 vq->signalled_used_valid = false;
371 vq->used_flags = 0;
372 vq->log_used = false;
373 vq->log_addr = -1ull;
374 vq->private_data = NULL;
375 vq->acked_features = 0;
376 vq->acked_backend_features = 0;
377 vq->log_base = NULL;
378 vq->error_ctx = NULL;
379 vq->kick = NULL;
380 vq->log_ctx = NULL;
381 vhost_disable_cross_endian(vq);
382 vhost_reset_is_le(vq);
383 vq->busyloop_timeout = 0;
384 vq->umem = NULL;
385 vq->iotlb = NULL;
386 rcu_assign_pointer(vq->worker, NULL);
387 vhost_vring_call_reset(&vq->call_ctx);
388 __vhost_vq_meta_reset(vq);
391 static bool vhost_run_work_list(void *data)
393 struct vhost_worker *worker = data;
394 struct vhost_work *work, *work_next;
395 struct llist_node *node;
397 node = llist_del_all(&worker->work_list);
398 if (node) {
399 __set_current_state(TASK_RUNNING);
401 node = llist_reverse_order(node);
402 /* make sure flag is seen after deletion */
403 smp_wmb();
404 llist_for_each_entry_safe(work, work_next, node, node) {
405 clear_bit(VHOST_WORK_QUEUED, &work->flags);
406 kcov_remote_start_common(worker->kcov_handle);
407 work->fn(work);
408 kcov_remote_stop();
409 cond_resched();
413 return !!node;
416 static void vhost_worker_killed(void *data)
418 struct vhost_worker *worker = data;
419 struct vhost_dev *dev = worker->dev;
420 struct vhost_virtqueue *vq;
421 int i, attach_cnt = 0;
423 mutex_lock(&worker->mutex);
424 worker->killed = true;
426 for (i = 0; i < dev->nvqs; i++) {
427 vq = dev->vqs[i];
429 mutex_lock(&vq->mutex);
430 if (worker ==
431 rcu_dereference_check(vq->worker,
432 lockdep_is_held(&vq->mutex))) {
433 rcu_assign_pointer(vq->worker, NULL);
434 attach_cnt++;
436 mutex_unlock(&vq->mutex);
439 worker->attachment_cnt -= attach_cnt;
440 if (attach_cnt)
441 synchronize_rcu();
443 * Finish vhost_worker_flush calls and any other works that snuck in
444 * before the synchronize_rcu.
446 vhost_run_work_list(worker);
447 mutex_unlock(&worker->mutex);
450 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
452 kfree(vq->indirect);
453 vq->indirect = NULL;
454 kfree(vq->log);
455 vq->log = NULL;
456 kfree(vq->heads);
457 vq->heads = NULL;
460 /* Helper to allocate iovec buffers for all vqs. */
461 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
463 struct vhost_virtqueue *vq;
464 int i;
466 for (i = 0; i < dev->nvqs; ++i) {
467 vq = dev->vqs[i];
468 vq->indirect = kmalloc_array(UIO_MAXIOV,
469 sizeof(*vq->indirect),
470 GFP_KERNEL);
471 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log),
472 GFP_KERNEL);
473 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads),
474 GFP_KERNEL);
475 if (!vq->indirect || !vq->log || !vq->heads)
476 goto err_nomem;
478 return 0;
480 err_nomem:
481 for (; i >= 0; --i)
482 vhost_vq_free_iovecs(dev->vqs[i]);
483 return -ENOMEM;
486 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
488 int i;
490 for (i = 0; i < dev->nvqs; ++i)
491 vhost_vq_free_iovecs(dev->vqs[i]);
494 bool vhost_exceeds_weight(struct vhost_virtqueue *vq,
495 int pkts, int total_len)
497 struct vhost_dev *dev = vq->dev;
499 if ((dev->byte_weight && total_len >= dev->byte_weight) ||
500 pkts >= dev->weight) {
501 vhost_poll_queue(&vq->poll);
502 return true;
505 return false;
507 EXPORT_SYMBOL_GPL(vhost_exceeds_weight);
509 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq,
510 unsigned int num)
512 size_t event __maybe_unused =
513 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
515 return size_add(struct_size(vq->avail, ring, num), event);
518 static size_t vhost_get_used_size(struct vhost_virtqueue *vq,
519 unsigned int num)
521 size_t event __maybe_unused =
522 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
524 return size_add(struct_size(vq->used, ring, num), event);
527 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq,
528 unsigned int num)
530 return sizeof(*vq->desc) * num;
533 void vhost_dev_init(struct vhost_dev *dev,
534 struct vhost_virtqueue **vqs, int nvqs,
535 int iov_limit, int weight, int byte_weight,
536 bool use_worker,
537 int (*msg_handler)(struct vhost_dev *dev, u32 asid,
538 struct vhost_iotlb_msg *msg))
540 struct vhost_virtqueue *vq;
541 int i;
543 dev->vqs = vqs;
544 dev->nvqs = nvqs;
545 mutex_init(&dev->mutex);
546 dev->log_ctx = NULL;
547 dev->umem = NULL;
548 dev->iotlb = NULL;
549 dev->mm = NULL;
550 dev->iov_limit = iov_limit;
551 dev->weight = weight;
552 dev->byte_weight = byte_weight;
553 dev->use_worker = use_worker;
554 dev->msg_handler = msg_handler;
555 init_waitqueue_head(&dev->wait);
556 INIT_LIST_HEAD(&dev->read_list);
557 INIT_LIST_HEAD(&dev->pending_list);
558 spin_lock_init(&dev->iotlb_lock);
559 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC);
561 for (i = 0; i < dev->nvqs; ++i) {
562 vq = dev->vqs[i];
563 vq->log = NULL;
564 vq->indirect = NULL;
565 vq->heads = NULL;
566 vq->dev = dev;
567 mutex_init(&vq->mutex);
568 vhost_vq_reset(dev, vq);
569 if (vq->handle_kick)
570 vhost_poll_init(&vq->poll, vq->handle_kick,
571 EPOLLIN, dev, vq);
574 EXPORT_SYMBOL_GPL(vhost_dev_init);
576 /* Caller should have device mutex */
577 long vhost_dev_check_owner(struct vhost_dev *dev)
579 /* Are you the owner? If not, I don't think you mean to do that */
580 return dev->mm == current->mm ? 0 : -EPERM;
582 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
584 /* Caller should have device mutex */
585 bool vhost_dev_has_owner(struct vhost_dev *dev)
587 return dev->mm;
589 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
591 static void vhost_attach_mm(struct vhost_dev *dev)
593 /* No owner, become one */
594 if (dev->use_worker) {
595 dev->mm = get_task_mm(current);
596 } else {
597 /* vDPA device does not use worker thead, so there's
598 * no need to hold the address space for mm. This help
599 * to avoid deadlock in the case of mmap() which may
600 * held the refcnt of the file and depends on release
601 * method to remove vma.
603 dev->mm = current->mm;
604 mmgrab(dev->mm);
608 static void vhost_detach_mm(struct vhost_dev *dev)
610 if (!dev->mm)
611 return;
613 if (dev->use_worker)
614 mmput(dev->mm);
615 else
616 mmdrop(dev->mm);
618 dev->mm = NULL;
621 static void vhost_worker_destroy(struct vhost_dev *dev,
622 struct vhost_worker *worker)
624 if (!worker)
625 return;
627 WARN_ON(!llist_empty(&worker->work_list));
628 xa_erase(&dev->worker_xa, worker->id);
629 vhost_task_stop(worker->vtsk);
630 kfree(worker);
633 static void vhost_workers_free(struct vhost_dev *dev)
635 struct vhost_worker *worker;
636 unsigned long i;
638 if (!dev->use_worker)
639 return;
641 for (i = 0; i < dev->nvqs; i++)
642 rcu_assign_pointer(dev->vqs[i]->worker, NULL);
644 * Free the default worker we created and cleanup workers userspace
645 * created but couldn't clean up (it forgot or crashed).
647 xa_for_each(&dev->worker_xa, i, worker)
648 vhost_worker_destroy(dev, worker);
649 xa_destroy(&dev->worker_xa);
652 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev)
654 struct vhost_worker *worker;
655 struct vhost_task *vtsk;
656 char name[TASK_COMM_LEN];
657 int ret;
658 u32 id;
660 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT);
661 if (!worker)
662 return NULL;
664 worker->dev = dev;
665 snprintf(name, sizeof(name), "vhost-%d", current->pid);
667 vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed,
668 worker, name);
669 if (!vtsk)
670 goto free_worker;
672 mutex_init(&worker->mutex);
673 init_llist_head(&worker->work_list);
674 worker->kcov_handle = kcov_common_handle();
675 worker->vtsk = vtsk;
677 vhost_task_start(vtsk);
679 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL);
680 if (ret < 0)
681 goto stop_worker;
682 worker->id = id;
684 return worker;
686 stop_worker:
687 vhost_task_stop(vtsk);
688 free_worker:
689 kfree(worker);
690 return NULL;
693 /* Caller must have device mutex */
694 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq,
695 struct vhost_worker *worker)
697 struct vhost_worker *old_worker;
699 mutex_lock(&worker->mutex);
700 if (worker->killed) {
701 mutex_unlock(&worker->mutex);
702 return;
705 mutex_lock(&vq->mutex);
707 old_worker = rcu_dereference_check(vq->worker,
708 lockdep_is_held(&vq->mutex));
709 rcu_assign_pointer(vq->worker, worker);
710 worker->attachment_cnt++;
712 if (!old_worker) {
713 mutex_unlock(&vq->mutex);
714 mutex_unlock(&worker->mutex);
715 return;
717 mutex_unlock(&vq->mutex);
718 mutex_unlock(&worker->mutex);
721 * Take the worker mutex to make sure we see the work queued from
722 * device wide flushes which doesn't use RCU for execution.
724 mutex_lock(&old_worker->mutex);
725 if (old_worker->killed) {
726 mutex_unlock(&old_worker->mutex);
727 return;
731 * We don't want to call synchronize_rcu for every vq during setup
732 * because it will slow down VM startup. If we haven't done
733 * VHOST_SET_VRING_KICK and not done the driver specific
734 * SET_ENDPOINT/RUNNUNG then we can skip the sync since there will
735 * not be any works queued for scsi and net.
737 mutex_lock(&vq->mutex);
738 if (!vhost_vq_get_backend(vq) && !vq->kick) {
739 mutex_unlock(&vq->mutex);
741 old_worker->attachment_cnt--;
742 mutex_unlock(&old_worker->mutex);
744 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID.
745 * Warn if it adds support for multiple workers but forgets to
746 * handle the early queueing case.
748 WARN_ON(!old_worker->attachment_cnt &&
749 !llist_empty(&old_worker->work_list));
750 return;
752 mutex_unlock(&vq->mutex);
754 /* Make sure new vq queue/flush/poll calls see the new worker */
755 synchronize_rcu();
756 /* Make sure whatever was queued gets run */
757 __vhost_worker_flush(old_worker);
758 old_worker->attachment_cnt--;
759 mutex_unlock(&old_worker->mutex);
762 /* Caller must have device mutex */
763 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq,
764 struct vhost_vring_worker *info)
766 unsigned long index = info->worker_id;
767 struct vhost_dev *dev = vq->dev;
768 struct vhost_worker *worker;
770 if (!dev->use_worker)
771 return -EINVAL;
773 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT);
774 if (!worker || worker->id != info->worker_id)
775 return -ENODEV;
777 __vhost_vq_attach_worker(vq, worker);
778 return 0;
781 /* Caller must have device mutex */
782 static int vhost_new_worker(struct vhost_dev *dev,
783 struct vhost_worker_state *info)
785 struct vhost_worker *worker;
787 worker = vhost_worker_create(dev);
788 if (!worker)
789 return -ENOMEM;
791 info->worker_id = worker->id;
792 return 0;
795 /* Caller must have device mutex */
796 static int vhost_free_worker(struct vhost_dev *dev,
797 struct vhost_worker_state *info)
799 unsigned long index = info->worker_id;
800 struct vhost_worker *worker;
802 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT);
803 if (!worker || worker->id != info->worker_id)
804 return -ENODEV;
806 mutex_lock(&worker->mutex);
807 if (worker->attachment_cnt || worker->killed) {
808 mutex_unlock(&worker->mutex);
809 return -EBUSY;
812 * A flush might have raced and snuck in before attachment_cnt was set
813 * to zero. Make sure flushes are flushed from the queue before
814 * freeing.
816 __vhost_worker_flush(worker);
817 mutex_unlock(&worker->mutex);
819 vhost_worker_destroy(dev, worker);
820 return 0;
823 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp,
824 struct vhost_virtqueue **vq, u32 *id)
826 u32 __user *idxp = argp;
827 u32 idx;
828 long r;
830 r = get_user(idx, idxp);
831 if (r < 0)
832 return r;
834 if (idx >= dev->nvqs)
835 return -ENOBUFS;
837 idx = array_index_nospec(idx, dev->nvqs);
839 *vq = dev->vqs[idx];
840 *id = idx;
841 return 0;
844 /* Caller must have device mutex */
845 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl,
846 void __user *argp)
848 struct vhost_vring_worker ring_worker;
849 struct vhost_worker_state state;
850 struct vhost_worker *worker;
851 struct vhost_virtqueue *vq;
852 long ret;
853 u32 idx;
855 if (!dev->use_worker)
856 return -EINVAL;
858 if (!vhost_dev_has_owner(dev))
859 return -EINVAL;
861 ret = vhost_dev_check_owner(dev);
862 if (ret)
863 return ret;
865 switch (ioctl) {
866 /* dev worker ioctls */
867 case VHOST_NEW_WORKER:
868 ret = vhost_new_worker(dev, &state);
869 if (!ret && copy_to_user(argp, &state, sizeof(state)))
870 ret = -EFAULT;
871 return ret;
872 case VHOST_FREE_WORKER:
873 if (copy_from_user(&state, argp, sizeof(state)))
874 return -EFAULT;
875 return vhost_free_worker(dev, &state);
876 /* vring worker ioctls */
877 case VHOST_ATTACH_VRING_WORKER:
878 case VHOST_GET_VRING_WORKER:
879 break;
880 default:
881 return -ENOIOCTLCMD;
884 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx);
885 if (ret)
886 return ret;
888 switch (ioctl) {
889 case VHOST_ATTACH_VRING_WORKER:
890 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) {
891 ret = -EFAULT;
892 break;
895 ret = vhost_vq_attach_worker(vq, &ring_worker);
896 break;
897 case VHOST_GET_VRING_WORKER:
898 worker = rcu_dereference_check(vq->worker,
899 lockdep_is_held(&dev->mutex));
900 if (!worker) {
901 ret = -EINVAL;
902 break;
905 ring_worker.index = idx;
906 ring_worker.worker_id = worker->id;
908 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker)))
909 ret = -EFAULT;
910 break;
911 default:
912 ret = -ENOIOCTLCMD;
913 break;
916 return ret;
918 EXPORT_SYMBOL_GPL(vhost_worker_ioctl);
920 /* Caller should have device mutex */
921 long vhost_dev_set_owner(struct vhost_dev *dev)
923 struct vhost_worker *worker;
924 int err, i;
926 /* Is there an owner already? */
927 if (vhost_dev_has_owner(dev)) {
928 err = -EBUSY;
929 goto err_mm;
932 vhost_attach_mm(dev);
934 err = vhost_dev_alloc_iovecs(dev);
935 if (err)
936 goto err_iovecs;
938 if (dev->use_worker) {
940 * This should be done last, because vsock can queue work
941 * before VHOST_SET_OWNER so it simplifies the failure path
942 * below since we don't have to worry about vsock queueing
943 * while we free the worker.
945 worker = vhost_worker_create(dev);
946 if (!worker) {
947 err = -ENOMEM;
948 goto err_worker;
951 for (i = 0; i < dev->nvqs; i++)
952 __vhost_vq_attach_worker(dev->vqs[i], worker);
955 return 0;
957 err_worker:
958 vhost_dev_free_iovecs(dev);
959 err_iovecs:
960 vhost_detach_mm(dev);
961 err_mm:
962 return err;
964 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
966 static struct vhost_iotlb *iotlb_alloc(void)
968 return vhost_iotlb_alloc(max_iotlb_entries,
969 VHOST_IOTLB_FLAG_RETIRE);
972 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void)
974 return iotlb_alloc();
976 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
978 /* Caller should have device mutex */
979 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem)
981 int i;
983 vhost_dev_cleanup(dev);
985 dev->umem = umem;
986 /* We don't need VQ locks below since vhost_dev_cleanup makes sure
987 * VQs aren't running.
989 for (i = 0; i < dev->nvqs; ++i)
990 dev->vqs[i]->umem = umem;
992 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
994 void vhost_dev_stop(struct vhost_dev *dev)
996 int i;
998 for (i = 0; i < dev->nvqs; ++i) {
999 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick)
1000 vhost_poll_stop(&dev->vqs[i]->poll);
1003 vhost_dev_flush(dev);
1005 EXPORT_SYMBOL_GPL(vhost_dev_stop);
1007 void vhost_clear_msg(struct vhost_dev *dev)
1009 struct vhost_msg_node *node, *n;
1011 spin_lock(&dev->iotlb_lock);
1013 list_for_each_entry_safe(node, n, &dev->read_list, node) {
1014 list_del(&node->node);
1015 kfree(node);
1018 list_for_each_entry_safe(node, n, &dev->pending_list, node) {
1019 list_del(&node->node);
1020 kfree(node);
1023 spin_unlock(&dev->iotlb_lock);
1025 EXPORT_SYMBOL_GPL(vhost_clear_msg);
1027 void vhost_dev_cleanup(struct vhost_dev *dev)
1029 int i;
1031 for (i = 0; i < dev->nvqs; ++i) {
1032 if (dev->vqs[i]->error_ctx)
1033 eventfd_ctx_put(dev->vqs[i]->error_ctx);
1034 if (dev->vqs[i]->kick)
1035 fput(dev->vqs[i]->kick);
1036 if (dev->vqs[i]->call_ctx.ctx)
1037 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx);
1038 vhost_vq_reset(dev, dev->vqs[i]);
1040 vhost_dev_free_iovecs(dev);
1041 if (dev->log_ctx)
1042 eventfd_ctx_put(dev->log_ctx);
1043 dev->log_ctx = NULL;
1044 /* No one will access memory at this point */
1045 vhost_iotlb_free(dev->umem);
1046 dev->umem = NULL;
1047 vhost_iotlb_free(dev->iotlb);
1048 dev->iotlb = NULL;
1049 vhost_clear_msg(dev);
1050 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
1051 vhost_workers_free(dev);
1052 vhost_detach_mm(dev);
1054 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
1056 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
1058 u64 a = addr / VHOST_PAGE_SIZE / 8;
1060 /* Make sure 64 bit math will not overflow. */
1061 if (a > ULONG_MAX - (unsigned long)log_base ||
1062 a + (unsigned long)log_base > ULONG_MAX)
1063 return false;
1065 return access_ok(log_base + a,
1066 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
1069 /* Make sure 64 bit math will not overflow. */
1070 static bool vhost_overflow(u64 uaddr, u64 size)
1072 if (uaddr > ULONG_MAX || size > ULONG_MAX)
1073 return true;
1075 if (!size)
1076 return false;
1078 return uaddr > ULONG_MAX - size + 1;
1081 /* Caller should have vq mutex and device mutex. */
1082 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem,
1083 int log_all)
1085 struct vhost_iotlb_map *map;
1087 if (!umem)
1088 return false;
1090 list_for_each_entry(map, &umem->list, link) {
1091 unsigned long a = map->addr;
1093 if (vhost_overflow(map->addr, map->size))
1094 return false;
1097 if (!access_ok((void __user *)a, map->size))
1098 return false;
1099 else if (log_all && !log_access_ok(log_base,
1100 map->start,
1101 map->size))
1102 return false;
1104 return true;
1107 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
1108 u64 addr, unsigned int size,
1109 int type)
1111 const struct vhost_iotlb_map *map = vq->meta_iotlb[type];
1113 if (!map)
1114 return NULL;
1116 return (void __user *)(uintptr_t)(map->addr + addr - map->start);
1119 /* Can we switch to this memory table? */
1120 /* Caller should have device mutex but not vq mutex */
1121 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem,
1122 int log_all)
1124 int i;
1126 for (i = 0; i < d->nvqs; ++i) {
1127 bool ok;
1128 bool log;
1130 mutex_lock(&d->vqs[i]->mutex);
1131 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
1132 /* If ring is inactive, will check when it's enabled. */
1133 if (d->vqs[i]->private_data)
1134 ok = vq_memory_access_ok(d->vqs[i]->log_base,
1135 umem, log);
1136 else
1137 ok = true;
1138 mutex_unlock(&d->vqs[i]->mutex);
1139 if (!ok)
1140 return false;
1142 return true;
1145 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1146 struct iovec iov[], int iov_size, int access);
1148 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
1149 const void *from, unsigned size)
1151 int ret;
1153 if (!vq->iotlb)
1154 return __copy_to_user(to, from, size);
1155 else {
1156 /* This function should be called after iotlb
1157 * prefetch, which means we're sure that all vq
1158 * could be access through iotlb. So -EAGAIN should
1159 * not happen in this case.
1161 struct iov_iter t;
1162 void __user *uaddr = vhost_vq_meta_fetch(vq,
1163 (u64)(uintptr_t)to, size,
1164 VHOST_ADDR_USED);
1166 if (uaddr)
1167 return __copy_to_user(uaddr, from, size);
1169 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
1170 ARRAY_SIZE(vq->iotlb_iov),
1171 VHOST_ACCESS_WO);
1172 if (ret < 0)
1173 goto out;
1174 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size);
1175 ret = copy_to_iter(from, size, &t);
1176 if (ret == size)
1177 ret = 0;
1179 out:
1180 return ret;
1183 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
1184 void __user *from, unsigned size)
1186 int ret;
1188 if (!vq->iotlb)
1189 return __copy_from_user(to, from, size);
1190 else {
1191 /* This function should be called after iotlb
1192 * prefetch, which means we're sure that vq
1193 * could be access through iotlb. So -EAGAIN should
1194 * not happen in this case.
1196 void __user *uaddr = vhost_vq_meta_fetch(vq,
1197 (u64)(uintptr_t)from, size,
1198 VHOST_ADDR_DESC);
1199 struct iov_iter f;
1201 if (uaddr)
1202 return __copy_from_user(to, uaddr, size);
1204 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
1205 ARRAY_SIZE(vq->iotlb_iov),
1206 VHOST_ACCESS_RO);
1207 if (ret < 0) {
1208 vq_err(vq, "IOTLB translation failure: uaddr "
1209 "%p size 0x%llx\n", from,
1210 (unsigned long long) size);
1211 goto out;
1213 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size);
1214 ret = copy_from_iter(to, size, &f);
1215 if (ret == size)
1216 ret = 0;
1219 out:
1220 return ret;
1223 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
1224 void __user *addr, unsigned int size,
1225 int type)
1227 int ret;
1229 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
1230 ARRAY_SIZE(vq->iotlb_iov),
1231 VHOST_ACCESS_RO);
1232 if (ret < 0) {
1233 vq_err(vq, "IOTLB translation failure: uaddr "
1234 "%p size 0x%llx\n", addr,
1235 (unsigned long long) size);
1236 return NULL;
1239 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
1240 vq_err(vq, "Non atomic userspace memory access: uaddr "
1241 "%p size 0x%llx\n", addr,
1242 (unsigned long long) size);
1243 return NULL;
1246 return vq->iotlb_iov[0].iov_base;
1249 /* This function should be called after iotlb
1250 * prefetch, which means we're sure that vq
1251 * could be access through iotlb. So -EAGAIN should
1252 * not happen in this case.
1254 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
1255 void __user *addr, unsigned int size,
1256 int type)
1258 void __user *uaddr = vhost_vq_meta_fetch(vq,
1259 (u64)(uintptr_t)addr, size, type);
1260 if (uaddr)
1261 return uaddr;
1263 return __vhost_get_user_slow(vq, addr, size, type);
1266 #define vhost_put_user(vq, x, ptr) \
1267 ({ \
1268 int ret; \
1269 if (!vq->iotlb) { \
1270 ret = __put_user(x, ptr); \
1271 } else { \
1272 __typeof__(ptr) to = \
1273 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
1274 sizeof(*ptr), VHOST_ADDR_USED); \
1275 if (to != NULL) \
1276 ret = __put_user(x, to); \
1277 else \
1278 ret = -EFAULT; \
1280 ret; \
1283 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq)
1285 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1286 vhost_avail_event(vq));
1289 static inline int vhost_put_used(struct vhost_virtqueue *vq,
1290 struct vring_used_elem *head, int idx,
1291 int count)
1293 return vhost_copy_to_user(vq, vq->used->ring + idx, head,
1294 count * sizeof(*head));
1297 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq)
1300 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1301 &vq->used->flags);
1304 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq)
1307 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
1308 &vq->used->idx);
1311 #define vhost_get_user(vq, x, ptr, type) \
1312 ({ \
1313 int ret; \
1314 if (!vq->iotlb) { \
1315 ret = __get_user(x, ptr); \
1316 } else { \
1317 __typeof__(ptr) from = \
1318 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
1319 sizeof(*ptr), \
1320 type); \
1321 if (from != NULL) \
1322 ret = __get_user(x, from); \
1323 else \
1324 ret = -EFAULT; \
1326 ret; \
1329 #define vhost_get_avail(vq, x, ptr) \
1330 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
1332 #define vhost_get_used(vq, x, ptr) \
1333 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
1335 static void vhost_dev_lock_vqs(struct vhost_dev *d)
1337 int i = 0;
1338 for (i = 0; i < d->nvqs; ++i)
1339 mutex_lock_nested(&d->vqs[i]->mutex, i);
1342 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
1344 int i = 0;
1345 for (i = 0; i < d->nvqs; ++i)
1346 mutex_unlock(&d->vqs[i]->mutex);
1349 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq)
1351 __virtio16 idx;
1352 int r;
1354 r = vhost_get_avail(vq, idx, &vq->avail->idx);
1355 if (unlikely(r < 0)) {
1356 vq_err(vq, "Failed to access available index at %p (%d)\n",
1357 &vq->avail->idx, r);
1358 return r;
1361 /* Check it isn't doing very strange thing with available indexes */
1362 vq->avail_idx = vhost16_to_cpu(vq, idx);
1363 if (unlikely((u16)(vq->avail_idx - vq->last_avail_idx) > vq->num)) {
1364 vq_err(vq, "Invalid available index change from %u to %u",
1365 vq->last_avail_idx, vq->avail_idx);
1366 return -EINVAL;
1369 /* We're done if there is nothing new */
1370 if (vq->avail_idx == vq->last_avail_idx)
1371 return 0;
1374 * We updated vq->avail_idx so we need a memory barrier between
1375 * the index read above and the caller reading avail ring entries.
1377 smp_rmb();
1378 return 1;
1381 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq,
1382 __virtio16 *head, int idx)
1384 return vhost_get_avail(vq, *head,
1385 &vq->avail->ring[idx & (vq->num - 1)]);
1388 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq,
1389 __virtio16 *flags)
1391 return vhost_get_avail(vq, *flags, &vq->avail->flags);
1394 static inline int vhost_get_used_event(struct vhost_virtqueue *vq,
1395 __virtio16 *event)
1397 return vhost_get_avail(vq, *event, vhost_used_event(vq));
1400 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq,
1401 __virtio16 *idx)
1403 return vhost_get_used(vq, *idx, &vq->used->idx);
1406 static inline int vhost_get_desc(struct vhost_virtqueue *vq,
1407 struct vring_desc *desc, int idx)
1409 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc));
1412 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
1413 struct vhost_iotlb_msg *msg)
1415 struct vhost_msg_node *node, *n;
1417 spin_lock(&d->iotlb_lock);
1419 list_for_each_entry_safe(node, n, &d->pending_list, node) {
1420 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
1421 if (msg->iova <= vq_msg->iova &&
1422 msg->iova + msg->size - 1 >= vq_msg->iova &&
1423 vq_msg->type == VHOST_IOTLB_MISS) {
1424 vhost_poll_queue(&node->vq->poll);
1425 list_del(&node->node);
1426 kfree(node);
1430 spin_unlock(&d->iotlb_lock);
1433 static bool umem_access_ok(u64 uaddr, u64 size, int access)
1435 unsigned long a = uaddr;
1437 /* Make sure 64 bit math will not overflow. */
1438 if (vhost_overflow(uaddr, size))
1439 return false;
1441 if ((access & VHOST_ACCESS_RO) &&
1442 !access_ok((void __user *)a, size))
1443 return false;
1444 if ((access & VHOST_ACCESS_WO) &&
1445 !access_ok((void __user *)a, size))
1446 return false;
1447 return true;
1450 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid,
1451 struct vhost_iotlb_msg *msg)
1453 int ret = 0;
1455 if (asid != 0)
1456 return -EINVAL;
1458 mutex_lock(&dev->mutex);
1459 vhost_dev_lock_vqs(dev);
1460 switch (msg->type) {
1461 case VHOST_IOTLB_UPDATE:
1462 if (!dev->iotlb) {
1463 ret = -EFAULT;
1464 break;
1466 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
1467 ret = -EFAULT;
1468 break;
1470 vhost_vq_meta_reset(dev);
1471 if (vhost_iotlb_add_range(dev->iotlb, msg->iova,
1472 msg->iova + msg->size - 1,
1473 msg->uaddr, msg->perm)) {
1474 ret = -ENOMEM;
1475 break;
1477 vhost_iotlb_notify_vq(dev, msg);
1478 break;
1479 case VHOST_IOTLB_INVALIDATE:
1480 if (!dev->iotlb) {
1481 ret = -EFAULT;
1482 break;
1484 vhost_vq_meta_reset(dev);
1485 vhost_iotlb_del_range(dev->iotlb, msg->iova,
1486 msg->iova + msg->size - 1);
1487 break;
1488 default:
1489 ret = -EINVAL;
1490 break;
1493 vhost_dev_unlock_vqs(dev);
1494 mutex_unlock(&dev->mutex);
1496 return ret;
1498 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1499 struct iov_iter *from)
1501 struct vhost_iotlb_msg msg;
1502 size_t offset;
1503 int type, ret;
1504 u32 asid = 0;
1506 ret = copy_from_iter(&type, sizeof(type), from);
1507 if (ret != sizeof(type)) {
1508 ret = -EINVAL;
1509 goto done;
1512 switch (type) {
1513 case VHOST_IOTLB_MSG:
1514 /* There maybe a hole after type for V1 message type,
1515 * so skip it here.
1517 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1518 break;
1519 case VHOST_IOTLB_MSG_V2:
1520 if (vhost_backend_has_feature(dev->vqs[0],
1521 VHOST_BACKEND_F_IOTLB_ASID)) {
1522 ret = copy_from_iter(&asid, sizeof(asid), from);
1523 if (ret != sizeof(asid)) {
1524 ret = -EINVAL;
1525 goto done;
1527 offset = 0;
1528 } else
1529 offset = sizeof(__u32);
1530 break;
1531 default:
1532 ret = -EINVAL;
1533 goto done;
1536 iov_iter_advance(from, offset);
1537 ret = copy_from_iter(&msg, sizeof(msg), from);
1538 if (ret != sizeof(msg)) {
1539 ret = -EINVAL;
1540 goto done;
1543 if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) {
1544 ret = -EINVAL;
1545 goto done;
1548 if (dev->msg_handler)
1549 ret = dev->msg_handler(dev, asid, &msg);
1550 else
1551 ret = vhost_process_iotlb_msg(dev, asid, &msg);
1552 if (ret) {
1553 ret = -EFAULT;
1554 goto done;
1557 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1558 sizeof(struct vhost_msg_v2);
1559 done:
1560 return ret;
1562 EXPORT_SYMBOL(vhost_chr_write_iter);
1564 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1565 poll_table *wait)
1567 __poll_t mask = 0;
1569 poll_wait(file, &dev->wait, wait);
1571 if (!list_empty(&dev->read_list))
1572 mask |= EPOLLIN | EPOLLRDNORM;
1574 return mask;
1576 EXPORT_SYMBOL(vhost_chr_poll);
1578 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1579 int noblock)
1581 DEFINE_WAIT(wait);
1582 struct vhost_msg_node *node;
1583 ssize_t ret = 0;
1584 unsigned size = sizeof(struct vhost_msg);
1586 if (iov_iter_count(to) < size)
1587 return 0;
1589 while (1) {
1590 if (!noblock)
1591 prepare_to_wait(&dev->wait, &wait,
1592 TASK_INTERRUPTIBLE);
1594 node = vhost_dequeue_msg(dev, &dev->read_list);
1595 if (node)
1596 break;
1597 if (noblock) {
1598 ret = -EAGAIN;
1599 break;
1601 if (signal_pending(current)) {
1602 ret = -ERESTARTSYS;
1603 break;
1605 if (!dev->iotlb) {
1606 ret = -EBADFD;
1607 break;
1610 schedule();
1613 if (!noblock)
1614 finish_wait(&dev->wait, &wait);
1616 if (node) {
1617 struct vhost_iotlb_msg *msg;
1618 void *start = &node->msg;
1620 switch (node->msg.type) {
1621 case VHOST_IOTLB_MSG:
1622 size = sizeof(node->msg);
1623 msg = &node->msg.iotlb;
1624 break;
1625 case VHOST_IOTLB_MSG_V2:
1626 size = sizeof(node->msg_v2);
1627 msg = &node->msg_v2.iotlb;
1628 break;
1629 default:
1630 BUG();
1631 break;
1634 ret = copy_to_iter(start, size, to);
1635 if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1636 kfree(node);
1637 return ret;
1639 vhost_enqueue_msg(dev, &dev->pending_list, node);
1642 return ret;
1644 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1646 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1648 struct vhost_dev *dev = vq->dev;
1649 struct vhost_msg_node *node;
1650 struct vhost_iotlb_msg *msg;
1651 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1653 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1654 if (!node)
1655 return -ENOMEM;
1657 if (v2) {
1658 node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1659 msg = &node->msg_v2.iotlb;
1660 } else {
1661 msg = &node->msg.iotlb;
1664 msg->type = VHOST_IOTLB_MISS;
1665 msg->iova = iova;
1666 msg->perm = access;
1668 vhost_enqueue_msg(dev, &dev->read_list, node);
1670 return 0;
1673 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1674 vring_desc_t __user *desc,
1675 vring_avail_t __user *avail,
1676 vring_used_t __user *used)
1679 /* If an IOTLB device is present, the vring addresses are
1680 * GIOVAs. Access validation occurs at prefetch time. */
1681 if (vq->iotlb)
1682 return true;
1684 return access_ok(desc, vhost_get_desc_size(vq, num)) &&
1685 access_ok(avail, vhost_get_avail_size(vq, num)) &&
1686 access_ok(used, vhost_get_used_size(vq, num));
1689 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1690 const struct vhost_iotlb_map *map,
1691 int type)
1693 int access = (type == VHOST_ADDR_USED) ?
1694 VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1696 if (likely(map->perm & access))
1697 vq->meta_iotlb[type] = map;
1700 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1701 int access, u64 addr, u64 len, int type)
1703 const struct vhost_iotlb_map *map;
1704 struct vhost_iotlb *umem = vq->iotlb;
1705 u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1707 if (vhost_vq_meta_fetch(vq, addr, len, type))
1708 return true;
1710 while (len > s) {
1711 map = vhost_iotlb_itree_first(umem, addr, last);
1712 if (map == NULL || map->start > addr) {
1713 vhost_iotlb_miss(vq, addr, access);
1714 return false;
1715 } else if (!(map->perm & access)) {
1716 /* Report the possible access violation by
1717 * request another translation from userspace.
1719 return false;
1722 size = map->size - addr + map->start;
1724 if (orig_addr == addr && size >= len)
1725 vhost_vq_meta_update(vq, map, type);
1727 s += size;
1728 addr += size;
1731 return true;
1734 int vq_meta_prefetch(struct vhost_virtqueue *vq)
1736 unsigned int num = vq->num;
1738 if (!vq->iotlb)
1739 return 1;
1741 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc,
1742 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) &&
1743 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail,
1744 vhost_get_avail_size(vq, num),
1745 VHOST_ADDR_AVAIL) &&
1746 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used,
1747 vhost_get_used_size(vq, num), VHOST_ADDR_USED);
1749 EXPORT_SYMBOL_GPL(vq_meta_prefetch);
1751 /* Can we log writes? */
1752 /* Caller should have device mutex but not vq mutex */
1753 bool vhost_log_access_ok(struct vhost_dev *dev)
1755 return memory_access_ok(dev, dev->umem, 1);
1757 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1759 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq,
1760 void __user *log_base,
1761 bool log_used,
1762 u64 log_addr)
1764 /* If an IOTLB device is present, log_addr is a GIOVA that
1765 * will never be logged by log_used(). */
1766 if (vq->iotlb)
1767 return true;
1769 return !log_used || log_access_ok(log_base, log_addr,
1770 vhost_get_used_size(vq, vq->num));
1773 /* Verify access for write logging. */
1774 /* Caller should have vq mutex and device mutex */
1775 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1776 void __user *log_base)
1778 return vq_memory_access_ok(log_base, vq->umem,
1779 vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1780 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr);
1783 /* Can we start vq? */
1784 /* Caller should have vq mutex and device mutex */
1785 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1787 if (!vq_log_access_ok(vq, vq->log_base))
1788 return false;
1790 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1792 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1794 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1796 struct vhost_memory mem, *newmem;
1797 struct vhost_memory_region *region;
1798 struct vhost_iotlb *newumem, *oldumem;
1799 unsigned long size = offsetof(struct vhost_memory, regions);
1800 int i;
1802 if (copy_from_user(&mem, m, size))
1803 return -EFAULT;
1804 if (mem.padding)
1805 return -EOPNOTSUPP;
1806 if (mem.nregions > max_mem_regions)
1807 return -E2BIG;
1808 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1809 GFP_KERNEL);
1810 if (!newmem)
1811 return -ENOMEM;
1813 memcpy(newmem, &mem, size);
1814 if (copy_from_user(newmem->regions, m->regions,
1815 flex_array_size(newmem, regions, mem.nregions))) {
1816 kvfree(newmem);
1817 return -EFAULT;
1820 newumem = iotlb_alloc();
1821 if (!newumem) {
1822 kvfree(newmem);
1823 return -ENOMEM;
1826 for (region = newmem->regions;
1827 region < newmem->regions + mem.nregions;
1828 region++) {
1829 if (vhost_iotlb_add_range(newumem,
1830 region->guest_phys_addr,
1831 region->guest_phys_addr +
1832 region->memory_size - 1,
1833 region->userspace_addr,
1834 VHOST_MAP_RW))
1835 goto err;
1838 if (!memory_access_ok(d, newumem, 0))
1839 goto err;
1841 oldumem = d->umem;
1842 d->umem = newumem;
1844 /* All memory accesses are done under some VQ mutex. */
1845 for (i = 0; i < d->nvqs; ++i) {
1846 mutex_lock(&d->vqs[i]->mutex);
1847 d->vqs[i]->umem = newumem;
1848 mutex_unlock(&d->vqs[i]->mutex);
1851 kvfree(newmem);
1852 vhost_iotlb_free(oldumem);
1853 return 0;
1855 err:
1856 vhost_iotlb_free(newumem);
1857 kvfree(newmem);
1858 return -EFAULT;
1861 static long vhost_vring_set_num(struct vhost_dev *d,
1862 struct vhost_virtqueue *vq,
1863 void __user *argp)
1865 struct vhost_vring_state s;
1867 /* Resizing ring with an active backend?
1868 * You don't want to do that. */
1869 if (vq->private_data)
1870 return -EBUSY;
1872 if (copy_from_user(&s, argp, sizeof s))
1873 return -EFAULT;
1875 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1)))
1876 return -EINVAL;
1877 vq->num = s.num;
1879 return 0;
1882 static long vhost_vring_set_addr(struct vhost_dev *d,
1883 struct vhost_virtqueue *vq,
1884 void __user *argp)
1886 struct vhost_vring_addr a;
1888 if (copy_from_user(&a, argp, sizeof a))
1889 return -EFAULT;
1890 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG))
1891 return -EOPNOTSUPP;
1893 /* For 32bit, verify that the top 32bits of the user
1894 data are set to zero. */
1895 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1896 (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1897 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr)
1898 return -EFAULT;
1900 /* Make sure it's safe to cast pointers to vring types. */
1901 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1902 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1903 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1904 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1905 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1)))
1906 return -EINVAL;
1908 /* We only verify access here if backend is configured.
1909 * If it is not, we don't as size might not have been setup.
1910 * We will verify when backend is configured. */
1911 if (vq->private_data) {
1912 if (!vq_access_ok(vq, vq->num,
1913 (void __user *)(unsigned long)a.desc_user_addr,
1914 (void __user *)(unsigned long)a.avail_user_addr,
1915 (void __user *)(unsigned long)a.used_user_addr))
1916 return -EINVAL;
1918 /* Also validate log access for used ring if enabled. */
1919 if (!vq_log_used_access_ok(vq, vq->log_base,
1920 a.flags & (0x1 << VHOST_VRING_F_LOG),
1921 a.log_guest_addr))
1922 return -EINVAL;
1925 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1926 vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1927 vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1928 vq->log_addr = a.log_guest_addr;
1929 vq->used = (void __user *)(unsigned long)a.used_user_addr;
1931 return 0;
1934 static long vhost_vring_set_num_addr(struct vhost_dev *d,
1935 struct vhost_virtqueue *vq,
1936 unsigned int ioctl,
1937 void __user *argp)
1939 long r;
1941 mutex_lock(&vq->mutex);
1943 switch (ioctl) {
1944 case VHOST_SET_VRING_NUM:
1945 r = vhost_vring_set_num(d, vq, argp);
1946 break;
1947 case VHOST_SET_VRING_ADDR:
1948 r = vhost_vring_set_addr(d, vq, argp);
1949 break;
1950 default:
1951 BUG();
1954 mutex_unlock(&vq->mutex);
1956 return r;
1958 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1960 struct file *eventfp, *filep = NULL;
1961 bool pollstart = false, pollstop = false;
1962 struct eventfd_ctx *ctx = NULL;
1963 struct vhost_virtqueue *vq;
1964 struct vhost_vring_state s;
1965 struct vhost_vring_file f;
1966 u32 idx;
1967 long r;
1969 r = vhost_get_vq_from_user(d, argp, &vq, &idx);
1970 if (r < 0)
1971 return r;
1973 if (ioctl == VHOST_SET_VRING_NUM ||
1974 ioctl == VHOST_SET_VRING_ADDR) {
1975 return vhost_vring_set_num_addr(d, vq, ioctl, argp);
1978 mutex_lock(&vq->mutex);
1980 switch (ioctl) {
1981 case VHOST_SET_VRING_BASE:
1982 /* Moving base with an active backend?
1983 * You don't want to do that. */
1984 if (vq->private_data) {
1985 r = -EBUSY;
1986 break;
1988 if (copy_from_user(&s, argp, sizeof s)) {
1989 r = -EFAULT;
1990 break;
1992 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) {
1993 vq->last_avail_idx = s.num & 0xffff;
1994 vq->last_used_idx = (s.num >> 16) & 0xffff;
1995 } else {
1996 if (s.num > 0xffff) {
1997 r = -EINVAL;
1998 break;
2000 vq->last_avail_idx = s.num;
2002 /* Forget the cached index value. */
2003 vq->avail_idx = vq->last_avail_idx;
2004 break;
2005 case VHOST_GET_VRING_BASE:
2006 s.index = idx;
2007 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED))
2008 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16);
2009 else
2010 s.num = vq->last_avail_idx;
2011 if (copy_to_user(argp, &s, sizeof s))
2012 r = -EFAULT;
2013 break;
2014 case VHOST_SET_VRING_KICK:
2015 if (copy_from_user(&f, argp, sizeof f)) {
2016 r = -EFAULT;
2017 break;
2019 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd);
2020 if (IS_ERR(eventfp)) {
2021 r = PTR_ERR(eventfp);
2022 break;
2024 if (eventfp != vq->kick) {
2025 pollstop = (filep = vq->kick) != NULL;
2026 pollstart = (vq->kick = eventfp) != NULL;
2027 } else
2028 filep = eventfp;
2029 break;
2030 case VHOST_SET_VRING_CALL:
2031 if (copy_from_user(&f, argp, sizeof f)) {
2032 r = -EFAULT;
2033 break;
2035 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
2036 if (IS_ERR(ctx)) {
2037 r = PTR_ERR(ctx);
2038 break;
2041 swap(ctx, vq->call_ctx.ctx);
2042 break;
2043 case VHOST_SET_VRING_ERR:
2044 if (copy_from_user(&f, argp, sizeof f)) {
2045 r = -EFAULT;
2046 break;
2048 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
2049 if (IS_ERR(ctx)) {
2050 r = PTR_ERR(ctx);
2051 break;
2053 swap(ctx, vq->error_ctx);
2054 break;
2055 case VHOST_SET_VRING_ENDIAN:
2056 r = vhost_set_vring_endian(vq, argp);
2057 break;
2058 case VHOST_GET_VRING_ENDIAN:
2059 r = vhost_get_vring_endian(vq, idx, argp);
2060 break;
2061 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
2062 if (copy_from_user(&s, argp, sizeof(s))) {
2063 r = -EFAULT;
2064 break;
2066 vq->busyloop_timeout = s.num;
2067 break;
2068 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
2069 s.index = idx;
2070 s.num = vq->busyloop_timeout;
2071 if (copy_to_user(argp, &s, sizeof(s)))
2072 r = -EFAULT;
2073 break;
2074 default:
2075 r = -ENOIOCTLCMD;
2078 if (pollstop && vq->handle_kick)
2079 vhost_poll_stop(&vq->poll);
2081 if (!IS_ERR_OR_NULL(ctx))
2082 eventfd_ctx_put(ctx);
2083 if (filep)
2084 fput(filep);
2086 if (pollstart && vq->handle_kick)
2087 r = vhost_poll_start(&vq->poll, vq->kick);
2089 mutex_unlock(&vq->mutex);
2091 if (pollstop && vq->handle_kick)
2092 vhost_dev_flush(vq->poll.dev);
2093 return r;
2095 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
2097 int vhost_init_device_iotlb(struct vhost_dev *d)
2099 struct vhost_iotlb *niotlb, *oiotlb;
2100 int i;
2102 niotlb = iotlb_alloc();
2103 if (!niotlb)
2104 return -ENOMEM;
2106 oiotlb = d->iotlb;
2107 d->iotlb = niotlb;
2109 for (i = 0; i < d->nvqs; ++i) {
2110 struct vhost_virtqueue *vq = d->vqs[i];
2112 mutex_lock(&vq->mutex);
2113 vq->iotlb = niotlb;
2114 __vhost_vq_meta_reset(vq);
2115 mutex_unlock(&vq->mutex);
2118 vhost_iotlb_free(oiotlb);
2120 return 0;
2122 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
2124 /* Caller must have device mutex */
2125 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
2127 struct eventfd_ctx *ctx;
2128 u64 p;
2129 long r;
2130 int i, fd;
2132 /* If you are not the owner, you can become one */
2133 if (ioctl == VHOST_SET_OWNER) {
2134 r = vhost_dev_set_owner(d);
2135 goto done;
2138 /* You must be the owner to do anything else */
2139 r = vhost_dev_check_owner(d);
2140 if (r)
2141 goto done;
2143 switch (ioctl) {
2144 case VHOST_SET_MEM_TABLE:
2145 r = vhost_set_memory(d, argp);
2146 break;
2147 case VHOST_SET_LOG_BASE:
2148 if (copy_from_user(&p, argp, sizeof p)) {
2149 r = -EFAULT;
2150 break;
2152 if ((u64)(unsigned long)p != p) {
2153 r = -EFAULT;
2154 break;
2156 for (i = 0; i < d->nvqs; ++i) {
2157 struct vhost_virtqueue *vq;
2158 void __user *base = (void __user *)(unsigned long)p;
2159 vq = d->vqs[i];
2160 mutex_lock(&vq->mutex);
2161 /* If ring is inactive, will check when it's enabled. */
2162 if (vq->private_data && !vq_log_access_ok(vq, base))
2163 r = -EFAULT;
2164 else
2165 vq->log_base = base;
2166 mutex_unlock(&vq->mutex);
2168 break;
2169 case VHOST_SET_LOG_FD:
2170 r = get_user(fd, (int __user *)argp);
2171 if (r < 0)
2172 break;
2173 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd);
2174 if (IS_ERR(ctx)) {
2175 r = PTR_ERR(ctx);
2176 break;
2178 swap(ctx, d->log_ctx);
2179 for (i = 0; i < d->nvqs; ++i) {
2180 mutex_lock(&d->vqs[i]->mutex);
2181 d->vqs[i]->log_ctx = d->log_ctx;
2182 mutex_unlock(&d->vqs[i]->mutex);
2184 if (ctx)
2185 eventfd_ctx_put(ctx);
2186 break;
2187 default:
2188 r = -ENOIOCTLCMD;
2189 break;
2191 done:
2192 return r;
2194 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
2196 /* TODO: This is really inefficient. We need something like get_user()
2197 * (instruction directly accesses the data, with an exception table entry
2198 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst.
2200 static int set_bit_to_user(int nr, void __user *addr)
2202 unsigned long log = (unsigned long)addr;
2203 struct page *page;
2204 void *base;
2205 int bit = nr + (log % PAGE_SIZE) * 8;
2206 int r;
2208 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page);
2209 if (r < 0)
2210 return r;
2211 BUG_ON(r != 1);
2212 base = kmap_atomic(page);
2213 set_bit(bit, base);
2214 kunmap_atomic(base);
2215 unpin_user_pages_dirty_lock(&page, 1, true);
2216 return 0;
2219 static int log_write(void __user *log_base,
2220 u64 write_address, u64 write_length)
2222 u64 write_page = write_address / VHOST_PAGE_SIZE;
2223 int r;
2225 if (!write_length)
2226 return 0;
2227 write_length += write_address % VHOST_PAGE_SIZE;
2228 for (;;) {
2229 u64 base = (u64)(unsigned long)log_base;
2230 u64 log = base + write_page / 8;
2231 int bit = write_page % 8;
2232 if ((u64)(unsigned long)log != log)
2233 return -EFAULT;
2234 r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
2235 if (r < 0)
2236 return r;
2237 if (write_length <= VHOST_PAGE_SIZE)
2238 break;
2239 write_length -= VHOST_PAGE_SIZE;
2240 write_page += 1;
2242 return r;
2245 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
2247 struct vhost_iotlb *umem = vq->umem;
2248 struct vhost_iotlb_map *u;
2249 u64 start, end, l, min;
2250 int r;
2251 bool hit = false;
2253 while (len) {
2254 min = len;
2255 /* More than one GPAs can be mapped into a single HVA. So
2256 * iterate all possible umems here to be safe.
2258 list_for_each_entry(u, &umem->list, link) {
2259 if (u->addr > hva - 1 + len ||
2260 u->addr - 1 + u->size < hva)
2261 continue;
2262 start = max(u->addr, hva);
2263 end = min(u->addr - 1 + u->size, hva - 1 + len);
2264 l = end - start + 1;
2265 r = log_write(vq->log_base,
2266 u->start + start - u->addr,
2268 if (r < 0)
2269 return r;
2270 hit = true;
2271 min = min(l, min);
2274 if (!hit)
2275 return -EFAULT;
2277 len -= min;
2278 hva += min;
2281 return 0;
2284 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
2286 struct iovec *iov = vq->log_iov;
2287 int i, ret;
2289 if (!vq->iotlb)
2290 return log_write(vq->log_base, vq->log_addr + used_offset, len);
2292 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
2293 len, iov, 64, VHOST_ACCESS_WO);
2294 if (ret < 0)
2295 return ret;
2297 for (i = 0; i < ret; i++) {
2298 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
2299 iov[i].iov_len);
2300 if (ret)
2301 return ret;
2304 return 0;
2307 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
2308 unsigned int log_num, u64 len, struct iovec *iov, int count)
2310 int i, r;
2312 /* Make sure data written is seen before log. */
2313 smp_wmb();
2315 if (vq->iotlb) {
2316 for (i = 0; i < count; i++) {
2317 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
2318 iov[i].iov_len);
2319 if (r < 0)
2320 return r;
2322 return 0;
2325 for (i = 0; i < log_num; ++i) {
2326 u64 l = min(log[i].len, len);
2327 r = log_write(vq->log_base, log[i].addr, l);
2328 if (r < 0)
2329 return r;
2330 len -= l;
2331 if (!len) {
2332 if (vq->log_ctx)
2333 eventfd_signal(vq->log_ctx);
2334 return 0;
2337 /* Length written exceeds what we have stored. This is a bug. */
2338 BUG();
2339 return 0;
2341 EXPORT_SYMBOL_GPL(vhost_log_write);
2343 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
2345 void __user *used;
2346 if (vhost_put_used_flags(vq))
2347 return -EFAULT;
2348 if (unlikely(vq->log_used)) {
2349 /* Make sure the flag is seen before log. */
2350 smp_wmb();
2351 /* Log used flag write. */
2352 used = &vq->used->flags;
2353 log_used(vq, (used - (void __user *)vq->used),
2354 sizeof vq->used->flags);
2355 if (vq->log_ctx)
2356 eventfd_signal(vq->log_ctx);
2358 return 0;
2361 static int vhost_update_avail_event(struct vhost_virtqueue *vq)
2363 if (vhost_put_avail_event(vq))
2364 return -EFAULT;
2365 if (unlikely(vq->log_used)) {
2366 void __user *used;
2367 /* Make sure the event is seen before log. */
2368 smp_wmb();
2369 /* Log avail event write */
2370 used = vhost_avail_event(vq);
2371 log_used(vq, (used - (void __user *)vq->used),
2372 sizeof *vhost_avail_event(vq));
2373 if (vq->log_ctx)
2374 eventfd_signal(vq->log_ctx);
2376 return 0;
2379 int vhost_vq_init_access(struct vhost_virtqueue *vq)
2381 __virtio16 last_used_idx;
2382 int r;
2383 bool is_le = vq->is_le;
2385 if (!vq->private_data)
2386 return 0;
2388 vhost_init_is_le(vq);
2390 r = vhost_update_used_flags(vq);
2391 if (r)
2392 goto err;
2393 vq->signalled_used_valid = false;
2394 if (!vq->iotlb &&
2395 !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
2396 r = -EFAULT;
2397 goto err;
2399 r = vhost_get_used_idx(vq, &last_used_idx);
2400 if (r) {
2401 vq_err(vq, "Can't access used idx at %p\n",
2402 &vq->used->idx);
2403 goto err;
2405 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
2406 return 0;
2408 err:
2409 vq->is_le = is_le;
2410 return r;
2412 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
2414 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
2415 struct iovec iov[], int iov_size, int access)
2417 const struct vhost_iotlb_map *map;
2418 struct vhost_dev *dev = vq->dev;
2419 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem;
2420 struct iovec *_iov;
2421 u64 s = 0, last = addr + len - 1;
2422 int ret = 0;
2424 while ((u64)len > s) {
2425 u64 size;
2426 if (unlikely(ret >= iov_size)) {
2427 ret = -ENOBUFS;
2428 break;
2431 map = vhost_iotlb_itree_first(umem, addr, last);
2432 if (map == NULL || map->start > addr) {
2433 if (umem != dev->iotlb) {
2434 ret = -EFAULT;
2435 break;
2437 ret = -EAGAIN;
2438 break;
2439 } else if (!(map->perm & access)) {
2440 ret = -EPERM;
2441 break;
2444 _iov = iov + ret;
2445 size = map->size - addr + map->start;
2446 _iov->iov_len = min((u64)len - s, size);
2447 _iov->iov_base = (void __user *)(unsigned long)
2448 (map->addr + addr - map->start);
2449 s += size;
2450 addr += size;
2451 ++ret;
2454 if (ret == -EAGAIN)
2455 vhost_iotlb_miss(vq, addr, access);
2456 return ret;
2459 /* Each buffer in the virtqueues is actually a chain of descriptors. This
2460 * function returns the next descriptor in the chain,
2461 * or -1U if we're at the end. */
2462 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
2464 unsigned int next;
2466 /* If this descriptor says it doesn't chain, we're done. */
2467 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
2468 return -1U;
2470 /* Check they're not leading us off end of descriptors. */
2471 next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
2472 return next;
2475 static int get_indirect(struct vhost_virtqueue *vq,
2476 struct iovec iov[], unsigned int iov_size,
2477 unsigned int *out_num, unsigned int *in_num,
2478 struct vhost_log *log, unsigned int *log_num,
2479 struct vring_desc *indirect)
2481 struct vring_desc desc;
2482 unsigned int i = 0, count, found = 0;
2483 u32 len = vhost32_to_cpu(vq, indirect->len);
2484 struct iov_iter from;
2485 int ret, access;
2487 /* Sanity check */
2488 if (unlikely(len % sizeof desc)) {
2489 vq_err(vq, "Invalid length in indirect descriptor: "
2490 "len 0x%llx not multiple of 0x%zx\n",
2491 (unsigned long long)len,
2492 sizeof desc);
2493 return -EINVAL;
2496 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
2497 UIO_MAXIOV, VHOST_ACCESS_RO);
2498 if (unlikely(ret < 0)) {
2499 if (ret != -EAGAIN)
2500 vq_err(vq, "Translation failure %d in indirect.\n", ret);
2501 return ret;
2503 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len);
2504 count = len / sizeof desc;
2505 /* Buffers are chained via a 16 bit next field, so
2506 * we can have at most 2^16 of these. */
2507 if (unlikely(count > USHRT_MAX + 1)) {
2508 vq_err(vq, "Indirect buffer length too big: %d\n",
2509 indirect->len);
2510 return -E2BIG;
2513 do {
2514 unsigned iov_count = *in_num + *out_num;
2515 if (unlikely(++found > count)) {
2516 vq_err(vq, "Loop detected: last one at %u "
2517 "indirect size %u\n",
2518 i, count);
2519 return -EINVAL;
2521 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2522 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2523 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2524 return -EINVAL;
2526 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2527 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2528 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2529 return -EINVAL;
2532 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2533 access = VHOST_ACCESS_WO;
2534 else
2535 access = VHOST_ACCESS_RO;
2537 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2538 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2539 iov_size - iov_count, access);
2540 if (unlikely(ret < 0)) {
2541 if (ret != -EAGAIN)
2542 vq_err(vq, "Translation failure %d indirect idx %d\n",
2543 ret, i);
2544 return ret;
2546 /* If this is an input descriptor, increment that count. */
2547 if (access == VHOST_ACCESS_WO) {
2548 *in_num += ret;
2549 if (unlikely(log && ret)) {
2550 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2551 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2552 ++*log_num;
2554 } else {
2555 /* If it's an output descriptor, they're all supposed
2556 * to come before any input descriptors. */
2557 if (unlikely(*in_num)) {
2558 vq_err(vq, "Indirect descriptor "
2559 "has out after in: idx %d\n", i);
2560 return -EINVAL;
2562 *out_num += ret;
2564 } while ((i = next_desc(vq, &desc)) != -1);
2565 return 0;
2568 /* This looks in the virtqueue and for the first available buffer, and converts
2569 * it to an iovec for convenient access. Since descriptors consist of some
2570 * number of output then some number of input descriptors, it's actually two
2571 * iovecs, but we pack them into one and note how many of each there were.
2573 * This function returns the descriptor number found, or vq->num (which is
2574 * never a valid descriptor number) if none was found. A negative code is
2575 * returned on error. */
2576 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2577 struct iovec iov[], unsigned int iov_size,
2578 unsigned int *out_num, unsigned int *in_num,
2579 struct vhost_log *log, unsigned int *log_num)
2581 struct vring_desc desc;
2582 unsigned int i, head, found = 0;
2583 u16 last_avail_idx = vq->last_avail_idx;
2584 __virtio16 ring_head;
2585 int ret, access;
2587 if (vq->avail_idx == vq->last_avail_idx) {
2588 ret = vhost_get_avail_idx(vq);
2589 if (unlikely(ret < 0))
2590 return ret;
2592 if (!ret)
2593 return vq->num;
2596 /* Grab the next descriptor number they're advertising, and increment
2597 * the index we've seen. */
2598 if (unlikely(vhost_get_avail_head(vq, &ring_head, last_avail_idx))) {
2599 vq_err(vq, "Failed to read head: idx %d address %p\n",
2600 last_avail_idx,
2601 &vq->avail->ring[last_avail_idx % vq->num]);
2602 return -EFAULT;
2605 head = vhost16_to_cpu(vq, ring_head);
2607 /* If their number is silly, that's an error. */
2608 if (unlikely(head >= vq->num)) {
2609 vq_err(vq, "Guest says index %u > %u is available",
2610 head, vq->num);
2611 return -EINVAL;
2614 /* When we start there are none of either input nor output. */
2615 *out_num = *in_num = 0;
2616 if (unlikely(log))
2617 *log_num = 0;
2619 i = head;
2620 do {
2621 unsigned iov_count = *in_num + *out_num;
2622 if (unlikely(i >= vq->num)) {
2623 vq_err(vq, "Desc index is %u > %u, head = %u",
2624 i, vq->num, head);
2625 return -EINVAL;
2627 if (unlikely(++found > vq->num)) {
2628 vq_err(vq, "Loop detected: last one at %u "
2629 "vq size %u head %u\n",
2630 i, vq->num, head);
2631 return -EINVAL;
2633 ret = vhost_get_desc(vq, &desc, i);
2634 if (unlikely(ret)) {
2635 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2636 i, vq->desc + i);
2637 return -EFAULT;
2639 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2640 ret = get_indirect(vq, iov, iov_size,
2641 out_num, in_num,
2642 log, log_num, &desc);
2643 if (unlikely(ret < 0)) {
2644 if (ret != -EAGAIN)
2645 vq_err(vq, "Failure detected "
2646 "in indirect descriptor at idx %d\n", i);
2647 return ret;
2649 continue;
2652 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2653 access = VHOST_ACCESS_WO;
2654 else
2655 access = VHOST_ACCESS_RO;
2656 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2657 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2658 iov_size - iov_count, access);
2659 if (unlikely(ret < 0)) {
2660 if (ret != -EAGAIN)
2661 vq_err(vq, "Translation failure %d descriptor idx %d\n",
2662 ret, i);
2663 return ret;
2665 if (access == VHOST_ACCESS_WO) {
2666 /* If this is an input descriptor,
2667 * increment that count. */
2668 *in_num += ret;
2669 if (unlikely(log && ret)) {
2670 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2671 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2672 ++*log_num;
2674 } else {
2675 /* If it's an output descriptor, they're all supposed
2676 * to come before any input descriptors. */
2677 if (unlikely(*in_num)) {
2678 vq_err(vq, "Descriptor has out after in: "
2679 "idx %d\n", i);
2680 return -EINVAL;
2682 *out_num += ret;
2684 } while ((i = next_desc(vq, &desc)) != -1);
2686 /* On success, increment avail index. */
2687 vq->last_avail_idx++;
2689 /* Assume notifications from guest are disabled at this point,
2690 * if they aren't we would need to update avail_event index. */
2691 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2692 return head;
2694 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2696 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2697 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2699 vq->last_avail_idx -= n;
2701 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2703 /* After we've used one of their buffers, we tell them about it. We'll then
2704 * want to notify the guest, using eventfd. */
2705 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2707 struct vring_used_elem heads = {
2708 cpu_to_vhost32(vq, head),
2709 cpu_to_vhost32(vq, len)
2712 return vhost_add_used_n(vq, &heads, 1);
2714 EXPORT_SYMBOL_GPL(vhost_add_used);
2716 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2717 struct vring_used_elem *heads,
2718 unsigned count)
2720 vring_used_elem_t __user *used;
2721 u16 old, new;
2722 int start;
2724 start = vq->last_used_idx & (vq->num - 1);
2725 used = vq->used->ring + start;
2726 if (vhost_put_used(vq, heads, start, count)) {
2727 vq_err(vq, "Failed to write used");
2728 return -EFAULT;
2730 if (unlikely(vq->log_used)) {
2731 /* Make sure data is seen before log. */
2732 smp_wmb();
2733 /* Log used ring entry write. */
2734 log_used(vq, ((void __user *)used - (void __user *)vq->used),
2735 count * sizeof *used);
2737 old = vq->last_used_idx;
2738 new = (vq->last_used_idx += count);
2739 /* If the driver never bothers to signal in a very long while,
2740 * used index might wrap around. If that happens, invalidate
2741 * signalled_used index we stored. TODO: make sure driver
2742 * signals at least once in 2^16 and remove this. */
2743 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2744 vq->signalled_used_valid = false;
2745 return 0;
2748 /* After we've used one of their buffers, we tell them about it. We'll then
2749 * want to notify the guest, using eventfd. */
2750 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2751 unsigned count)
2753 int start, n, r;
2755 start = vq->last_used_idx & (vq->num - 1);
2756 n = vq->num - start;
2757 if (n < count) {
2758 r = __vhost_add_used_n(vq, heads, n);
2759 if (r < 0)
2760 return r;
2761 heads += n;
2762 count -= n;
2764 r = __vhost_add_used_n(vq, heads, count);
2766 /* Make sure buffer is written before we update index. */
2767 smp_wmb();
2768 if (vhost_put_used_idx(vq)) {
2769 vq_err(vq, "Failed to increment used idx");
2770 return -EFAULT;
2772 if (unlikely(vq->log_used)) {
2773 /* Make sure used idx is seen before log. */
2774 smp_wmb();
2775 /* Log used index update. */
2776 log_used(vq, offsetof(struct vring_used, idx),
2777 sizeof vq->used->idx);
2778 if (vq->log_ctx)
2779 eventfd_signal(vq->log_ctx);
2781 return r;
2783 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2785 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2787 __u16 old, new;
2788 __virtio16 event;
2789 bool v;
2790 /* Flush out used index updates. This is paired
2791 * with the barrier that the Guest executes when enabling
2792 * interrupts. */
2793 smp_mb();
2795 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2796 unlikely(vq->avail_idx == vq->last_avail_idx))
2797 return true;
2799 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2800 __virtio16 flags;
2801 if (vhost_get_avail_flags(vq, &flags)) {
2802 vq_err(vq, "Failed to get flags");
2803 return true;
2805 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2807 old = vq->signalled_used;
2808 v = vq->signalled_used_valid;
2809 new = vq->signalled_used = vq->last_used_idx;
2810 vq->signalled_used_valid = true;
2812 if (unlikely(!v))
2813 return true;
2815 if (vhost_get_used_event(vq, &event)) {
2816 vq_err(vq, "Failed to get used event idx");
2817 return true;
2819 return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2822 /* This actually signals the guest, using eventfd. */
2823 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2825 /* Signal the Guest tell them we used something up. */
2826 if (vq->call_ctx.ctx && vhost_notify(dev, vq))
2827 eventfd_signal(vq->call_ctx.ctx);
2829 EXPORT_SYMBOL_GPL(vhost_signal);
2831 /* And here's the combo meal deal. Supersize me! */
2832 void vhost_add_used_and_signal(struct vhost_dev *dev,
2833 struct vhost_virtqueue *vq,
2834 unsigned int head, int len)
2836 vhost_add_used(vq, head, len);
2837 vhost_signal(dev, vq);
2839 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2841 /* multi-buffer version of vhost_add_used_and_signal */
2842 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2843 struct vhost_virtqueue *vq,
2844 struct vring_used_elem *heads, unsigned count)
2846 vhost_add_used_n(vq, heads, count);
2847 vhost_signal(dev, vq);
2849 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2851 /* return true if we're sure that avaiable ring is empty */
2852 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2854 int r;
2856 if (vq->avail_idx != vq->last_avail_idx)
2857 return false;
2859 r = vhost_get_avail_idx(vq);
2861 /* Note: we treat error as non-empty here */
2862 return r == 0;
2864 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2866 /* OK, now we need to know about added descriptors. */
2867 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2869 int r;
2871 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2872 return false;
2873 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2874 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2875 r = vhost_update_used_flags(vq);
2876 if (r) {
2877 vq_err(vq, "Failed to enable notification at %p: %d\n",
2878 &vq->used->flags, r);
2879 return false;
2881 } else {
2882 r = vhost_update_avail_event(vq);
2883 if (r) {
2884 vq_err(vq, "Failed to update avail event index at %p: %d\n",
2885 vhost_avail_event(vq), r);
2886 return false;
2889 /* They could have slipped one in as we were doing that: make
2890 * sure it's written, then check again. */
2891 smp_mb();
2893 r = vhost_get_avail_idx(vq);
2894 /* Note: we treat error as empty here */
2895 if (unlikely(r < 0))
2896 return false;
2898 return r;
2900 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2902 /* We don't need to be notified again. */
2903 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2905 int r;
2907 if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2908 return;
2909 vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2910 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2911 r = vhost_update_used_flags(vq);
2912 if (r)
2913 vq_err(vq, "Failed to disable notification at %p: %d\n",
2914 &vq->used->flags, r);
2917 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2919 /* Create a new message. */
2920 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2922 /* Make sure all padding within the structure is initialized. */
2923 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL);
2924 if (!node)
2925 return NULL;
2927 node->vq = vq;
2928 node->msg.type = type;
2929 return node;
2931 EXPORT_SYMBOL_GPL(vhost_new_msg);
2933 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2934 struct vhost_msg_node *node)
2936 spin_lock(&dev->iotlb_lock);
2937 list_add_tail(&node->node, head);
2938 spin_unlock(&dev->iotlb_lock);
2940 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2942 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2944 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2945 struct list_head *head)
2947 struct vhost_msg_node *node = NULL;
2949 spin_lock(&dev->iotlb_lock);
2950 if (!list_empty(head)) {
2951 node = list_first_entry(head, struct vhost_msg_node,
2952 node);
2953 list_del(&node->node);
2955 spin_unlock(&dev->iotlb_lock);
2957 return node;
2959 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2961 void vhost_set_backend_features(struct vhost_dev *dev, u64 features)
2963 struct vhost_virtqueue *vq;
2964 int i;
2966 mutex_lock(&dev->mutex);
2967 for (i = 0; i < dev->nvqs; ++i) {
2968 vq = dev->vqs[i];
2969 mutex_lock(&vq->mutex);
2970 vq->acked_backend_features = features;
2971 mutex_unlock(&vq->mutex);
2973 mutex_unlock(&dev->mutex);
2975 EXPORT_SYMBOL_GPL(vhost_set_backend_features);
2977 static int __init vhost_init(void)
2979 return 0;
2982 static void __exit vhost_exit(void)
2986 module_init(vhost_init);
2987 module_exit(vhost_exit);
2989 MODULE_VERSION("0.0.1");
2990 MODULE_LICENSE("GPL v2");
2991 MODULE_AUTHOR("Michael S. Tsirkin");
2992 MODULE_DESCRIPTION("Host kernel accelerator for virtio");