1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/video/cyber2000fb.c
5 * Copyright (C) 1998-2002 Russell King
7 * MIPS and 50xx clock support
8 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
10 * 32 bit support, text color and panning fixes for modes != 8 bit
11 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
13 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
17 * Note that we now use the new fbcon fix, var and cmap scheme. We do
18 * still have to check which console is the currently displayed one
19 * however, especially for the colourmap stuff.
21 * We also use the new hotplug PCI subsystem. I'm not sure if there
22 * are any such cards, but I'm erring on the side of caution. We don't
23 * want to go pop just because someone does have one.
25 * Note that this doesn't work fully in the case of multiple CyberPro
26 * cards with grabbers. We currently can only attach to the first
27 * CyberPro card found.
29 * When we're in truecolour mode, we power down the LUT RAM as a power
30 * saving feature. Also, when we enter any of the powersaving modes
31 * (except soft blanking) we power down the RAMDACs. This saves about
32 * 1W, which is roughly 8% of the power consumption of a NetWinder
33 * (which, incidentally, is about the same saving as a 2.5in hard disk
34 * entering standby mode.)
36 #include <linux/aperture.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
48 #include <linux/i2c.h>
49 #include <linux/i2c-algo-bit.h>
52 #include <asm/mach-types.h>
55 #include "cyber2000fb.h"
59 struct display_switch
*dispsw
;
60 unsigned char __iomem
*region
;
61 unsigned char __iomem
*regs
;
74 } palette
[NR_PALETTE
];
81 * RAMDAC control register is both of these or'ed together
84 u_char ramdac_powerdown
;
86 u32 pseudo_palette
[16];
88 spinlock_t reg_b0_lock
;
90 #ifdef CONFIG_FB_CYBER2000_DDC
92 struct i2c_adapter ddc_adapter
;
93 struct i2c_algo_bit_data ddc_algo
;
96 #ifdef CONFIG_FB_CYBER2000_I2C
97 struct i2c_adapter i2c_adapter
;
98 struct i2c_algo_bit_data i2c_algo
;
102 static char *default_font
= "Acorn8x8";
103 module_param(default_font
, charp
, 0);
104 MODULE_PARM_DESC(default_font
, "Default font name");
107 * Our access methods.
109 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
110 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
111 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
113 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
116 cyber2000_crtcw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
118 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3d4, cfb
);
122 cyber2000_grphw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
124 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3ce, cfb
);
127 static inline unsigned int
128 cyber2000_grphr(unsigned int reg
, struct cfb_info
*cfb
)
130 cyber2000fb_writeb(reg
, 0x3ce, cfb
);
131 return cyber2000fb_readb(0x3cf, cfb
);
135 cyber2000_attrw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
137 cyber2000fb_readb(0x3da, cfb
);
138 cyber2000fb_writeb(reg
, 0x3c0, cfb
);
139 cyber2000fb_readb(0x3c1, cfb
);
140 cyber2000fb_writeb(val
, 0x3c0, cfb
);
144 cyber2000_seqw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
146 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3c4, cfb
);
149 /* -------------------- Hardware specific routines ------------------------- */
152 * Hardware Cyber2000 Acceleration
155 cyber2000fb_fillrect(struct fb_info
*info
, const struct fb_fillrect
*rect
)
157 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
158 unsigned long dst
, col
;
160 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
)) {
161 cfb_fillrect(info
, rect
);
165 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
166 cyber2000fb_writew(rect
->width
- 1, CO_REG_PIXWIDTH
, cfb
);
167 cyber2000fb_writew(rect
->height
- 1, CO_REG_PIXHEIGHT
, cfb
);
170 if (cfb
->fb
.var
.bits_per_pixel
> 8)
171 col
= ((u32
*)cfb
->fb
.pseudo_palette
)[col
];
172 cyber2000fb_writel(col
, CO_REG_FGCOLOUR
, cfb
);
174 dst
= rect
->dx
+ rect
->dy
* cfb
->fb
.var
.xres_virtual
;
175 if (cfb
->fb
.var
.bits_per_pixel
== 24) {
176 cyber2000fb_writeb(dst
, CO_REG_X_PHASE
, cfb
);
180 cyber2000fb_writel(dst
, CO_REG_DEST_PTR
, cfb
);
181 cyber2000fb_writeb(CO_FG_MIX_SRC
, CO_REG_FGMIX
, cfb
);
182 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL
, CO_REG_CMD_L
, cfb
);
183 cyber2000fb_writew(CO_CMD_H_BLITTER
, CO_REG_CMD_H
, cfb
);
187 cyber2000fb_copyarea(struct fb_info
*info
, const struct fb_copyarea
*region
)
189 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
190 unsigned int cmd
= CO_CMD_L_PATTERN_FGCOL
;
191 unsigned long src
, dst
;
193 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
)) {
194 cfb_copyarea(info
, region
);
198 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
199 cyber2000fb_writew(region
->width
- 1, CO_REG_PIXWIDTH
, cfb
);
200 cyber2000fb_writew(region
->height
- 1, CO_REG_PIXHEIGHT
, cfb
);
202 src
= region
->sx
+ region
->sy
* cfb
->fb
.var
.xres_virtual
;
203 dst
= region
->dx
+ region
->dy
* cfb
->fb
.var
.xres_virtual
;
205 if (region
->sx
< region
->dx
) {
206 src
+= region
->width
- 1;
207 dst
+= region
->width
- 1;
208 cmd
|= CO_CMD_L_INC_LEFT
;
211 if (region
->sy
< region
->dy
) {
212 src
+= (region
->height
- 1) * cfb
->fb
.var
.xres_virtual
;
213 dst
+= (region
->height
- 1) * cfb
->fb
.var
.xres_virtual
;
214 cmd
|= CO_CMD_L_INC_UP
;
217 if (cfb
->fb
.var
.bits_per_pixel
== 24) {
218 cyber2000fb_writeb(dst
, CO_REG_X_PHASE
, cfb
);
222 cyber2000fb_writel(src
, CO_REG_SRC1_PTR
, cfb
);
223 cyber2000fb_writel(dst
, CO_REG_DEST_PTR
, cfb
);
224 cyber2000fb_writew(CO_FG_MIX_SRC
, CO_REG_FGMIX
, cfb
);
225 cyber2000fb_writew(cmd
, CO_REG_CMD_L
, cfb
);
226 cyber2000fb_writew(CO_CMD_H_FGSRCMAP
| CO_CMD_H_BLITTER
,
230 static int cyber2000fb_sync(struct fb_info
*info
)
232 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
235 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
))
238 while (cyber2000fb_readb(CO_REG_CONTROL
, cfb
) & CO_CTRL_BUSY
) {
240 debug_printf("accel_wait timed out\n");
241 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
250 * ===========================================================================
253 static inline u32
convert_bitfield(u_int val
, struct fb_bitfield
*bf
)
255 u_int mask
= (1 << bf
->length
) - 1;
257 return (val
>> (16 - bf
->length
) & mask
) << bf
->offset
;
261 * Set a single color register. Return != 0 for invalid regno.
264 cyber2000fb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
265 u_int transp
, struct fb_info
*info
)
267 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
268 struct fb_var_screeninfo
*var
= &cfb
->fb
.var
;
272 switch (cfb
->fb
.fix
.visual
) {
279 * pixel --/--+--/--> red lut --> red dac
281 * +--/--> green lut --> green dac
283 * +--/--> blue lut --> blue dac
285 case FB_VISUAL_PSEUDOCOLOR
:
286 if (regno
>= NR_PALETTE
)
293 cfb
->palette
[regno
].red
= red
;
294 cfb
->palette
[regno
].green
= green
;
295 cfb
->palette
[regno
].blue
= blue
;
297 cyber2000fb_writeb(regno
, 0x3c8, cfb
);
298 cyber2000fb_writeb(red
, 0x3c9, cfb
);
299 cyber2000fb_writeb(green
, 0x3c9, cfb
);
300 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
306 * pixel --/--+--/--> red lut --> red dac
308 * +--/--> green lut --> green dac
310 * +--/--> blue lut --> blue dac
311 * n = bpp, rl = red length, gl = green length, bl = blue length
313 case FB_VISUAL_DIRECTCOLOR
:
318 if (var
->green
.length
== 6 && regno
< 64) {
319 cfb
->palette
[regno
<< 2].green
= green
;
322 * The 6 bits of the green component are applied
323 * to the high 6 bits of the LUT.
325 cyber2000fb_writeb(regno
<< 2, 0x3c8, cfb
);
326 cyber2000fb_writeb(cfb
->palette
[regno
>> 1].red
,
328 cyber2000fb_writeb(green
, 0x3c9, cfb
);
329 cyber2000fb_writeb(cfb
->palette
[regno
>> 1].blue
,
332 green
= cfb
->palette
[regno
<< 3].green
;
337 if (var
->green
.length
>= 5 && regno
< 32) {
338 cfb
->palette
[regno
<< 3].red
= red
;
339 cfb
->palette
[regno
<< 3].green
= green
;
340 cfb
->palette
[regno
<< 3].blue
= blue
;
343 * The 5 bits of each colour component are
344 * applied to the high 5 bits of the LUT.
346 cyber2000fb_writeb(regno
<< 3, 0x3c8, cfb
);
347 cyber2000fb_writeb(red
, 0x3c9, cfb
);
348 cyber2000fb_writeb(green
, 0x3c9, cfb
);
349 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
353 if (var
->green
.length
== 4 && regno
< 16) {
354 cfb
->palette
[regno
<< 4].red
= red
;
355 cfb
->palette
[regno
<< 4].green
= green
;
356 cfb
->palette
[regno
<< 4].blue
= blue
;
359 * The 5 bits of each colour component are
360 * applied to the high 5 bits of the LUT.
362 cyber2000fb_writeb(regno
<< 4, 0x3c8, cfb
);
363 cyber2000fb_writeb(red
, 0x3c9, cfb
);
364 cyber2000fb_writeb(green
, 0x3c9, cfb
);
365 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
370 * Since this is only used for the first 16 colours, we
371 * don't have to care about overflowing for regno >= 32
373 pseudo_val
= regno
<< var
->red
.offset
|
374 regno
<< var
->green
.offset
|
375 regno
<< var
->blue
.offset
;
381 * pixel --/--+--/--> red dac
386 * n = bpp, rl = red length, gl = green length, bl = blue length
388 case FB_VISUAL_TRUECOLOR
:
389 pseudo_val
= convert_bitfield(transp
^ 0xffff, &var
->transp
);
390 pseudo_val
|= convert_bitfield(red
, &var
->red
);
391 pseudo_val
|= convert_bitfield(green
, &var
->green
);
392 pseudo_val
|= convert_bitfield(blue
, &var
->blue
);
398 * Now set our pseudo palette for the CFB16/24/32 drivers.
401 ((u32
*)cfb
->fb
.pseudo_palette
)[regno
] = pseudo_val
;
426 static const u_char crtc_idx
[] = {
427 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
429 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
432 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info
*cfb
)
435 unsigned int val
= cfb
->ramdac_ctrl
| cfb
->ramdac_powerdown
;
437 cyber2000fb_writeb(0x56, 0x3ce, cfb
);
438 i
= cyber2000fb_readb(0x3cf, cfb
);
439 cyber2000fb_writeb(i
| 4, 0x3cf, cfb
);
440 cyber2000fb_writeb(val
, 0x3c6, cfb
);
441 cyber2000fb_writeb(i
, 0x3cf, cfb
);
442 /* prevent card lock-up observed on x86 with CyberPro 2000 */
443 cyber2000fb_readb(0x3cf, cfb
);
446 static void cyber2000fb_set_timing(struct cfb_info
*cfb
, struct par_info
*hw
)
453 for (i
= 0; i
< NR_PALETTE
; i
++) {
454 cyber2000fb_writeb(i
, 0x3c8, cfb
);
455 cyber2000fb_writeb(0, 0x3c9, cfb
);
456 cyber2000fb_writeb(0, 0x3c9, cfb
);
457 cyber2000fb_writeb(0, 0x3c9, cfb
);
460 cyber2000fb_writeb(0xef, 0x3c2, cfb
);
461 cyber2000_crtcw(0x11, 0x0b, cfb
);
462 cyber2000_attrw(0x11, 0x00, cfb
);
464 cyber2000_seqw(0x00, 0x01, cfb
);
465 cyber2000_seqw(0x01, 0x01, cfb
);
466 cyber2000_seqw(0x02, 0x0f, cfb
);
467 cyber2000_seqw(0x03, 0x00, cfb
);
468 cyber2000_seqw(0x04, 0x0e, cfb
);
469 cyber2000_seqw(0x00, 0x03, cfb
);
471 for (i
= 0; i
< sizeof(crtc_idx
); i
++)
472 cyber2000_crtcw(crtc_idx
[i
], hw
->crtc
[i
], cfb
);
474 for (i
= 0x0a; i
< 0x10; i
++)
475 cyber2000_crtcw(i
, 0, cfb
);
477 cyber2000_grphw(EXT_CRT_VRTOFL
, hw
->crtc_ofl
, cfb
);
478 cyber2000_grphw(0x00, 0x00, cfb
);
479 cyber2000_grphw(0x01, 0x00, cfb
);
480 cyber2000_grphw(0x02, 0x00, cfb
);
481 cyber2000_grphw(0x03, 0x00, cfb
);
482 cyber2000_grphw(0x04, 0x00, cfb
);
483 cyber2000_grphw(0x05, 0x60, cfb
);
484 cyber2000_grphw(0x06, 0x05, cfb
);
485 cyber2000_grphw(0x07, 0x0f, cfb
);
486 cyber2000_grphw(0x08, 0xff, cfb
);
488 /* Attribute controller registers */
489 for (i
= 0; i
< 16; i
++)
490 cyber2000_attrw(i
, i
, cfb
);
492 cyber2000_attrw(0x10, 0x01, cfb
);
493 cyber2000_attrw(0x11, 0x00, cfb
);
494 cyber2000_attrw(0x12, 0x0f, cfb
);
495 cyber2000_attrw(0x13, 0x00, cfb
);
496 cyber2000_attrw(0x14, 0x00, cfb
);
499 spin_lock(&cfb
->reg_b0_lock
);
500 cyber2000_grphw(EXT_DCLK_MULT
, hw
->clock_mult
, cfb
);
501 cyber2000_grphw(EXT_DCLK_DIV
, hw
->clock_div
, cfb
);
502 cyber2000_grphw(EXT_MCLK_MULT
, cfb
->mclk_mult
, cfb
);
503 cyber2000_grphw(EXT_MCLK_DIV
, cfb
->mclk_div
, cfb
);
504 cyber2000_grphw(0x90, 0x01, cfb
);
505 cyber2000_grphw(0xb9, 0x80, cfb
);
506 cyber2000_grphw(0xb9, 0x00, cfb
);
507 spin_unlock(&cfb
->reg_b0_lock
);
509 cfb
->ramdac_ctrl
= hw
->ramdac
;
510 cyber2000fb_write_ramdac_ctrl(cfb
);
512 cyber2000fb_writeb(0x20, 0x3c0, cfb
);
513 cyber2000fb_writeb(0xff, 0x3c6, cfb
);
515 cyber2000_grphw(0x14, hw
->fetch
, cfb
);
516 cyber2000_grphw(0x15, ((hw
->fetch
>> 8) & 0x03) |
517 ((hw
->pitch
>> 4) & 0x30), cfb
);
518 cyber2000_grphw(EXT_SEQ_MISC
, hw
->extseqmisc
, cfb
);
521 * Set up accelerator registers
523 cyber2000fb_writew(hw
->width
, CO_REG_SRC_WIDTH
, cfb
);
524 cyber2000fb_writew(hw
->width
, CO_REG_DEST_WIDTH
, cfb
);
525 cyber2000fb_writeb(hw
->co_pixfmt
, CO_REG_PIXFMT
, cfb
);
529 cyber2000fb_update_start(struct cfb_info
*cfb
, struct fb_var_screeninfo
*var
)
531 u_int base
= var
->yoffset
* var
->xres_virtual
+ var
->xoffset
;
533 base
*= var
->bits_per_pixel
;
536 * Convert to bytes and shift two extra bits because DAC
537 * can only start on 4 byte aligned data.
544 cyber2000_grphw(0x10, base
>> 16 | 0x10, cfb
);
545 cyber2000_crtcw(0x0c, base
>> 8, cfb
);
546 cyber2000_crtcw(0x0d, base
, cfb
);
552 cyber2000fb_decode_crtc(struct par_info
*hw
, struct cfb_info
*cfb
,
553 struct fb_var_screeninfo
*var
)
555 u_int Htotal
, Hblankend
, Hsyncend
;
556 u_int Vtotal
, Vdispend
, Vblankstart
, Vblankend
, Vsyncstart
, Vsyncend
;
557 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
559 hw
->crtc
[13] = hw
->pitch
;
564 Htotal
= var
->xres
+ var
->right_margin
+
565 var
->hsync_len
+ var
->left_margin
;
570 hw
->crtc
[0] = (Htotal
>> 3) - 5;
571 hw
->crtc
[1] = (var
->xres
>> 3) - 1;
572 hw
->crtc
[2] = var
->xres
>> 3;
573 hw
->crtc
[4] = (var
->xres
+ var
->right_margin
) >> 3;
575 Hblankend
= (Htotal
- 4 * 8) >> 3;
577 hw
->crtc
[3] = ENCODE_BIT(Hblankend
, 0, 0x1f, 0) |
578 ENCODE_BIT(1, 0, 0x01, 7);
580 Hsyncend
= (var
->xres
+ var
->right_margin
+ var
->hsync_len
) >> 3;
582 hw
->crtc
[5] = ENCODE_BIT(Hsyncend
, 0, 0x1f, 0) |
583 ENCODE_BIT(Hblankend
, 5, 0x01, 7);
585 Vdispend
= var
->yres
- 1;
586 Vsyncstart
= var
->yres
+ var
->lower_margin
;
587 Vsyncend
= var
->yres
+ var
->lower_margin
+ var
->vsync_len
;
588 Vtotal
= var
->yres
+ var
->lower_margin
+ var
->vsync_len
+
589 var
->upper_margin
- 2;
594 Vblankstart
= var
->yres
+ 6;
595 Vblankend
= Vtotal
- 10;
597 hw
->crtc
[6] = Vtotal
;
598 hw
->crtc
[7] = ENCODE_BIT(Vtotal
, 8, 0x01, 0) |
599 ENCODE_BIT(Vdispend
, 8, 0x01, 1) |
600 ENCODE_BIT(Vsyncstart
, 8, 0x01, 2) |
601 ENCODE_BIT(Vblankstart
, 8, 0x01, 3) |
602 ENCODE_BIT(1, 0, 0x01, 4) |
603 ENCODE_BIT(Vtotal
, 9, 0x01, 5) |
604 ENCODE_BIT(Vdispend
, 9, 0x01, 6) |
605 ENCODE_BIT(Vsyncstart
, 9, 0x01, 7);
606 hw
->crtc
[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
607 ENCODE_BIT(Vblankstart
, 9, 0x01, 5) |
608 ENCODE_BIT(1, 0, 0x01, 6);
609 hw
->crtc
[10] = Vsyncstart
;
610 hw
->crtc
[11] = ENCODE_BIT(Vsyncend
, 0, 0x0f, 0) |
611 ENCODE_BIT(1, 0, 0x01, 7);
612 hw
->crtc
[12] = Vdispend
;
613 hw
->crtc
[15] = Vblankstart
;
614 hw
->crtc
[16] = Vblankend
;
618 * overflow - graphics reg 0x11
619 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
620 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
623 ENCODE_BIT(Vtotal
, 10, 0x01, 0) |
624 ENCODE_BIT(Vdispend
, 10, 0x01, 1) |
625 ENCODE_BIT(Vsyncstart
, 10, 0x01, 2) |
626 ENCODE_BIT(Vblankstart
, 10, 0x01, 3) |
627 EXT_CRT_VRTOFL_LINECOMP10
;
629 /* woody: set the interlaced bit... */
630 /* FIXME: what about doublescan? */
631 if ((var
->vmode
& FB_VMODE_MASK
) == FB_VMODE_INTERLACED
)
632 hw
->crtc_ofl
|= EXT_CRT_VRTOFL_INTERLACE
;
638 * The following was discovered by a good monitor, bit twiddling, theorising
639 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
642 * fclock = fpll / div2
643 * fpll = fref * mult / div1
645 * fref = 14.318MHz (69842ps)
647 * div1 = (reg0xb1.5:0 + 1)
648 * div2 = 2^(reg0xb1.7:6)
649 * fpll should be between 115 and 260 MHz
650 * (8696ps and 3846ps)
653 cyber2000fb_decode_clock(struct par_info
*hw
, struct cfb_info
*cfb
,
654 struct fb_var_screeninfo
*var
)
656 u_long pll_ps
= var
->pixclock
;
657 const u_long ref_ps
= cfb
->ref_ps
;
658 u_int div2
, t_div1
, best_div1
, best_mult
;
664 * find div2 such that 115MHz < fpll < 260MHz
667 for (div2
= 0; div2
< 4; div2
++) {
670 new_pll
= pll_ps
/ cfb
->divisors
[div2
];
671 if (8696 > new_pll
&& new_pll
> 3846) {
682 * Given pll_ps and ref_ps, find:
683 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
684 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
685 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
687 best_diff
= 0x7fffffff;
690 for (t_div1
= 2; t_div1
< 32; t_div1
+= 1) {
691 u_int rr
, t_mult
, t_pll_ps
;
695 * Find the multiplier for this divisor
697 rr
= ref_ps
* t_div1
;
698 t_mult
= (rr
+ pll_ps
/ 2) / pll_ps
;
701 * Is the multiplier within the correct range?
703 if (t_mult
> 256 || t_mult
< 2)
707 * Calculate the actual clock period from this multiplier
708 * and divisor, and estimate the error.
710 t_pll_ps
= (rr
+ t_mult
/ 2) / t_mult
;
711 diff
= pll_ps
- t_pll_ps
;
715 if (diff
< best_diff
) {
722 * If we hit an exact value, there is no point in continuing.
732 hw
->clock_mult
= best_mult
- 1;
733 hw
->clock_div
= div2
<< 6 | (best_div1
- 1);
735 vco
= ref_ps
* best_div1
/ best_mult
;
736 if ((ref_ps
== 40690) && (vco
< 5556))
737 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
738 hw
->clock_div
|= EXT_DCLK_DIV_VFSEL
;
744 * Set the User Defined Part of the Display
747 cyber2000fb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
749 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
754 var
->transp
.msb_right
= 0;
755 var
->red
.msb_right
= 0;
756 var
->green
.msb_right
= 0;
757 var
->blue
.msb_right
= 0;
758 var
->transp
.offset
= 0;
759 var
->transp
.length
= 0;
761 switch (var
->bits_per_pixel
) {
762 case 8: /* PSEUDOCOLOUR, 256 */
765 var
->green
.offset
= 0;
766 var
->green
.length
= 8;
767 var
->blue
.offset
= 0;
768 var
->blue
.length
= 8;
771 case 16:/* DIRECTCOLOUR, 64k or 32k */
772 switch (var
->green
.length
) {
773 case 6: /* RGB565, 64k */
774 var
->red
.offset
= 11;
776 var
->green
.offset
= 5;
777 var
->green
.length
= 6;
778 var
->blue
.offset
= 0;
779 var
->blue
.length
= 5;
783 case 5: /* RGB555, 32k */
784 var
->red
.offset
= 10;
786 var
->green
.offset
= 5;
787 var
->green
.length
= 5;
788 var
->blue
.offset
= 0;
789 var
->blue
.length
= 5;
792 case 4: /* RGB444, 4k + transparency? */
793 var
->transp
.offset
= 12;
794 var
->transp
.length
= 4;
797 var
->green
.offset
= 4;
798 var
->green
.length
= 4;
799 var
->blue
.offset
= 0;
800 var
->blue
.length
= 4;
805 case 24:/* TRUECOLOUR, 16m */
806 var
->red
.offset
= 16;
808 var
->green
.offset
= 8;
809 var
->green
.length
= 8;
810 var
->blue
.offset
= 0;
811 var
->blue
.length
= 8;
814 case 32:/* TRUECOLOUR, 16m */
815 var
->transp
.offset
= 24;
816 var
->transp
.length
= 8;
817 var
->red
.offset
= 16;
819 var
->green
.offset
= 8;
820 var
->green
.length
= 8;
821 var
->blue
.offset
= 0;
822 var
->blue
.length
= 8;
829 mem
= var
->xres_virtual
* var
->yres_virtual
* (var
->bits_per_pixel
/ 8);
830 if (mem
> cfb
->fb
.fix
.smem_len
)
831 var
->yres_virtual
= cfb
->fb
.fix
.smem_len
* 8 /
832 (var
->bits_per_pixel
* var
->xres_virtual
);
834 if (var
->yres
> var
->yres_virtual
)
835 var
->yres
= var
->yres_virtual
;
836 if (var
->xres
> var
->xres_virtual
)
837 var
->xres
= var
->xres_virtual
;
839 err
= cyber2000fb_decode_clock(&hw
, cfb
, var
);
843 err
= cyber2000fb_decode_crtc(&hw
, cfb
, var
);
850 static int cyber2000fb_set_par(struct fb_info
*info
)
852 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
853 struct fb_var_screeninfo
*var
= &cfb
->fb
.var
;
857 hw
.width
= var
->xres_virtual
;
858 hw
.ramdac
= RAMDAC_VREFEN
| RAMDAC_DAC8BIT
;
860 switch (var
->bits_per_pixel
) {
862 hw
.co_pixfmt
= CO_PIXFMT_8BPP
;
863 hw
.pitch
= hw
.width
>> 3;
864 hw
.extseqmisc
= EXT_SEQ_MISC_8
;
868 hw
.co_pixfmt
= CO_PIXFMT_16BPP
;
869 hw
.pitch
= hw
.width
>> 2;
871 switch (var
->green
.length
) {
872 case 6: /* RGB565, 64k */
873 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB565
;
875 case 5: /* RGB555, 32k */
876 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB555
;
878 case 4: /* RGB444, 4k + transparency? */
879 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB444
;
886 case 24:/* TRUECOLOUR, 16m */
887 hw
.co_pixfmt
= CO_PIXFMT_24BPP
;
889 hw
.pitch
= hw
.width
>> 3;
890 hw
.ramdac
|= (RAMDAC_BYPASS
| RAMDAC_RAMPWRDN
);
891 hw
.extseqmisc
= EXT_SEQ_MISC_24_RGB888
;
894 case 32:/* TRUECOLOUR, 16m */
895 hw
.co_pixfmt
= CO_PIXFMT_32BPP
;
896 hw
.pitch
= hw
.width
>> 1;
897 hw
.ramdac
|= (RAMDAC_BYPASS
| RAMDAC_RAMPWRDN
);
898 hw
.extseqmisc
= EXT_SEQ_MISC_32
;
906 * Sigh, this is absolutely disgusting, but caused by
907 * the way the fbcon developers want to separate out
908 * the "checking" and the "setting" of the video mode.
910 * If the mode is not suitable for the hardware here,
911 * we can't prevent it being set by returning an error.
913 * In theory, since NetWinders contain just one VGA card,
914 * we should never end up hitting this problem.
916 BUG_ON(cyber2000fb_decode_clock(&hw
, cfb
, var
) != 0);
917 BUG_ON(cyber2000fb_decode_crtc(&hw
, cfb
, var
) != 0);
921 if (!(cfb
->mem_ctl2
& MEM_CTL2_64BIT
))
925 cfb
->fb
.fix
.line_length
= var
->xres_virtual
* var
->bits_per_pixel
/ 8;
928 * Same here - if the size of the video mode exceeds the
929 * available RAM, we can't prevent this mode being set.
931 * In theory, since NetWinders contain just one VGA card,
932 * we should never end up hitting this problem.
934 mem
= cfb
->fb
.fix
.line_length
* var
->yres_virtual
;
935 BUG_ON(mem
> cfb
->fb
.fix
.smem_len
);
938 * 8bpp displays are always pseudo colour. 16bpp and above
939 * are direct colour or true colour, depending on whether
940 * the RAMDAC palettes are bypassed. (Direct colour has
941 * palettes, true colour does not.)
943 if (var
->bits_per_pixel
== 8)
944 cfb
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
945 else if (hw
.ramdac
& RAMDAC_BYPASS
)
946 cfb
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
948 cfb
->fb
.fix
.visual
= FB_VISUAL_DIRECTCOLOR
;
950 cyber2000fb_set_timing(cfb
, &hw
);
951 cyber2000fb_update_start(cfb
, var
);
957 * Pan or Wrap the Display
960 cyber2000fb_pan_display(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
962 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
964 if (cyber2000fb_update_start(cfb
, var
))
967 cfb
->fb
.var
.xoffset
= var
->xoffset
;
968 cfb
->fb
.var
.yoffset
= var
->yoffset
;
970 if (var
->vmode
& FB_VMODE_YWRAP
) {
971 cfb
->fb
.var
.vmode
|= FB_VMODE_YWRAP
;
973 cfb
->fb
.var
.vmode
&= ~FB_VMODE_YWRAP
;
980 * (Un)Blank the display.
982 * Blank the screen if blank_mode != 0, else unblank. If
983 * blank == NULL then the caller blanks by setting the CLUT
984 * (Color Look Up Table) to all black. Return 0 if blanking
985 * succeeded, != 0 if un-/blanking failed due to e.g. a
986 * video mode which doesn't support it. Implements VESA
987 * suspend and powerdown modes on hardware that supports
988 * disabling hsync/vsync:
989 * blank_mode == 2: suspend vsync
990 * blank_mode == 3: suspend hsync
991 * blank_mode == 4: powerdown
993 * wms...Enable VESA DMPS compatible powerdown mode
994 * run "setterm -powersave powerdown" to take advantage
996 static int cyber2000fb_blank(int blank
, struct fb_info
*info
)
998 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
999 unsigned int sync
= 0;
1003 case FB_BLANK_POWERDOWN
: /* powerdown - both sync lines down */
1004 sync
= EXT_SYNC_CTL_VS_0
| EXT_SYNC_CTL_HS_0
;
1006 case FB_BLANK_HSYNC_SUSPEND
: /* hsync off */
1007 sync
= EXT_SYNC_CTL_VS_NORMAL
| EXT_SYNC_CTL_HS_0
;
1009 case FB_BLANK_VSYNC_SUSPEND
: /* vsync off */
1010 sync
= EXT_SYNC_CTL_VS_0
| EXT_SYNC_CTL_HS_NORMAL
;
1012 case FB_BLANK_NORMAL
: /* soft blank */
1013 default: /* unblank */
1017 cyber2000_grphw(EXT_SYNC_CTL
, sync
, cfb
);
1020 /* turn on ramdacs */
1021 cfb
->ramdac_powerdown
&= ~(RAMDAC_DACPWRDN
| RAMDAC_BYPASS
|
1023 cyber2000fb_write_ramdac_ctrl(cfb
);
1027 * Soft blank/unblank the display.
1029 if (blank
) { /* soft blank */
1030 for (i
= 0; i
< NR_PALETTE
; i
++) {
1031 cyber2000fb_writeb(i
, 0x3c8, cfb
);
1032 cyber2000fb_writeb(0, 0x3c9, cfb
);
1033 cyber2000fb_writeb(0, 0x3c9, cfb
);
1034 cyber2000fb_writeb(0, 0x3c9, cfb
);
1036 } else { /* unblank */
1037 for (i
= 0; i
< NR_PALETTE
; i
++) {
1038 cyber2000fb_writeb(i
, 0x3c8, cfb
);
1039 cyber2000fb_writeb(cfb
->palette
[i
].red
, 0x3c9, cfb
);
1040 cyber2000fb_writeb(cfb
->palette
[i
].green
, 0x3c9, cfb
);
1041 cyber2000fb_writeb(cfb
->palette
[i
].blue
, 0x3c9, cfb
);
1046 /* turn off ramdacs */
1047 cfb
->ramdac_powerdown
|= RAMDAC_DACPWRDN
| RAMDAC_BYPASS
|
1049 cyber2000fb_write_ramdac_ctrl(cfb
);
1055 static const struct fb_ops cyber2000fb_ops
= {
1056 .owner
= THIS_MODULE
,
1057 __FB_DEFAULT_IOMEM_OPS_RDWR
,
1058 .fb_check_var
= cyber2000fb_check_var
,
1059 .fb_set_par
= cyber2000fb_set_par
,
1060 .fb_setcolreg
= cyber2000fb_setcolreg
,
1061 .fb_blank
= cyber2000fb_blank
,
1062 .fb_pan_display
= cyber2000fb_pan_display
,
1063 .fb_fillrect
= cyber2000fb_fillrect
,
1064 .fb_copyarea
= cyber2000fb_copyarea
,
1065 .fb_imageblit
= cfb_imageblit
,
1066 .fb_sync
= cyber2000fb_sync
,
1067 __FB_DEFAULT_IOMEM_OPS_MMAP
,
1071 * This is the only "static" reference to the internal data structures
1072 * of this driver. It is here solely at the moment to support the other
1073 * CyberPro modules external to this driver.
1075 static struct cfb_info
*int_cfb_info
;
1078 * Enable access to the extended registers
1080 void cyber2000fb_enable_extregs(struct cfb_info
*cfb
)
1082 cfb
->func_use_count
+= 1;
1084 if (cfb
->func_use_count
== 1) {
1087 old
= cyber2000_grphr(EXT_FUNC_CTL
, cfb
);
1088 old
|= EXT_FUNC_CTL_EXTREGENBL
;
1089 cyber2000_grphw(EXT_FUNC_CTL
, old
, cfb
);
1092 EXPORT_SYMBOL(cyber2000fb_enable_extregs
);
1095 * Disable access to the extended registers
1097 void cyber2000fb_disable_extregs(struct cfb_info
*cfb
)
1099 if (cfb
->func_use_count
== 1) {
1102 old
= cyber2000_grphr(EXT_FUNC_CTL
, cfb
);
1103 old
&= ~EXT_FUNC_CTL_EXTREGENBL
;
1104 cyber2000_grphw(EXT_FUNC_CTL
, old
, cfb
);
1107 if (cfb
->func_use_count
== 0)
1108 printk(KERN_ERR
"disable_extregs: count = 0\n");
1110 cfb
->func_use_count
-= 1;
1112 EXPORT_SYMBOL(cyber2000fb_disable_extregs
);
1115 * Attach a capture/tv driver to the core CyberX0X0 driver.
1117 int cyber2000fb_attach(struct cyberpro_info
*info
, int idx
)
1119 if (int_cfb_info
!= NULL
) {
1120 info
->dev
= int_cfb_info
->fb
.device
;
1121 #ifdef CONFIG_FB_CYBER2000_I2C
1122 info
->i2c
= &int_cfb_info
->i2c_adapter
;
1126 info
->regs
= int_cfb_info
->regs
;
1127 info
->irq
= int_cfb_info
->irq
;
1128 info
->fb
= int_cfb_info
->fb
.screen_base
;
1129 info
->fb_size
= int_cfb_info
->fb
.fix
.smem_len
;
1130 info
->info
= int_cfb_info
;
1132 strscpy(info
->dev_name
, int_cfb_info
->fb
.fix
.id
,
1133 sizeof(info
->dev_name
));
1136 return int_cfb_info
!= NULL
;
1138 EXPORT_SYMBOL(cyber2000fb_attach
);
1141 * Detach a capture/tv driver from the core CyberX0X0 driver.
1143 void cyber2000fb_detach(int idx
)
1146 EXPORT_SYMBOL(cyber2000fb_detach
);
1148 #ifdef CONFIG_FB_CYBER2000_DDC
1150 #define DDC_REG 0xb0
1151 #define DDC_SCL_OUT (1 << 0)
1152 #define DDC_SDA_OUT (1 << 4)
1153 #define DDC_SCL_IN (1 << 2)
1154 #define DDC_SDA_IN (1 << 6)
1156 static void cyber2000fb_enable_ddc(struct cfb_info
*cfb
)
1157 __acquires(&cfb
->reg_b0_lock
)
1159 spin_lock(&cfb
->reg_b0_lock
);
1160 cyber2000fb_writew(0x1bf, 0x3ce, cfb
);
1163 static void cyber2000fb_disable_ddc(struct cfb_info
*cfb
)
1164 __releases(&cfb
->reg_b0_lock
)
1166 cyber2000fb_writew(0x0bf, 0x3ce, cfb
);
1167 spin_unlock(&cfb
->reg_b0_lock
);
1171 static void cyber2000fb_ddc_setscl(void *data
, int val
)
1173 struct cfb_info
*cfb
= data
;
1176 cyber2000fb_enable_ddc(cfb
);
1177 reg
= cyber2000_grphr(DDC_REG
, cfb
);
1178 if (!val
) /* bit is inverted */
1181 reg
&= ~DDC_SCL_OUT
;
1182 cyber2000_grphw(DDC_REG
, reg
, cfb
);
1183 cyber2000fb_disable_ddc(cfb
);
1186 static void cyber2000fb_ddc_setsda(void *data
, int val
)
1188 struct cfb_info
*cfb
= data
;
1191 cyber2000fb_enable_ddc(cfb
);
1192 reg
= cyber2000_grphr(DDC_REG
, cfb
);
1193 if (!val
) /* bit is inverted */
1196 reg
&= ~DDC_SDA_OUT
;
1197 cyber2000_grphw(DDC_REG
, reg
, cfb
);
1198 cyber2000fb_disable_ddc(cfb
);
1201 static int cyber2000fb_ddc_getscl(void *data
)
1203 struct cfb_info
*cfb
= data
;
1206 cyber2000fb_enable_ddc(cfb
);
1207 retval
= !!(cyber2000_grphr(DDC_REG
, cfb
) & DDC_SCL_IN
);
1208 cyber2000fb_disable_ddc(cfb
);
1213 static int cyber2000fb_ddc_getsda(void *data
)
1215 struct cfb_info
*cfb
= data
;
1218 cyber2000fb_enable_ddc(cfb
);
1219 retval
= !!(cyber2000_grphr(DDC_REG
, cfb
) & DDC_SDA_IN
);
1220 cyber2000fb_disable_ddc(cfb
);
1225 static int cyber2000fb_setup_ddc_bus(struct cfb_info
*cfb
)
1227 strscpy(cfb
->ddc_adapter
.name
, cfb
->fb
.fix
.id
,
1228 sizeof(cfb
->ddc_adapter
.name
));
1229 cfb
->ddc_adapter
.owner
= THIS_MODULE
;
1230 cfb
->ddc_adapter
.algo_data
= &cfb
->ddc_algo
;
1231 cfb
->ddc_adapter
.dev
.parent
= cfb
->fb
.device
;
1232 cfb
->ddc_algo
.setsda
= cyber2000fb_ddc_setsda
;
1233 cfb
->ddc_algo
.setscl
= cyber2000fb_ddc_setscl
;
1234 cfb
->ddc_algo
.getsda
= cyber2000fb_ddc_getsda
;
1235 cfb
->ddc_algo
.getscl
= cyber2000fb_ddc_getscl
;
1236 cfb
->ddc_algo
.udelay
= 10;
1237 cfb
->ddc_algo
.timeout
= 20;
1238 cfb
->ddc_algo
.data
= cfb
;
1240 i2c_set_adapdata(&cfb
->ddc_adapter
, cfb
);
1242 return i2c_bit_add_bus(&cfb
->ddc_adapter
);
1244 #endif /* CONFIG_FB_CYBER2000_DDC */
1246 #ifdef CONFIG_FB_CYBER2000_I2C
1247 static void cyber2000fb_i2c_setsda(void *data
, int state
)
1249 struct cfb_info
*cfb
= data
;
1250 unsigned int latch2
;
1252 spin_lock(&cfb
->reg_b0_lock
);
1253 latch2
= cyber2000_grphr(EXT_LATCH2
, cfb
);
1254 latch2
&= EXT_LATCH2_I2C_CLKEN
;
1256 latch2
|= EXT_LATCH2_I2C_DATEN
;
1257 cyber2000_grphw(EXT_LATCH2
, latch2
, cfb
);
1258 spin_unlock(&cfb
->reg_b0_lock
);
1261 static void cyber2000fb_i2c_setscl(void *data
, int state
)
1263 struct cfb_info
*cfb
= data
;
1264 unsigned int latch2
;
1266 spin_lock(&cfb
->reg_b0_lock
);
1267 latch2
= cyber2000_grphr(EXT_LATCH2
, cfb
);
1268 latch2
&= EXT_LATCH2_I2C_DATEN
;
1270 latch2
|= EXT_LATCH2_I2C_CLKEN
;
1271 cyber2000_grphw(EXT_LATCH2
, latch2
, cfb
);
1272 spin_unlock(&cfb
->reg_b0_lock
);
1275 static int cyber2000fb_i2c_getsda(void *data
)
1277 struct cfb_info
*cfb
= data
;
1280 spin_lock(&cfb
->reg_b0_lock
);
1281 ret
= !!(cyber2000_grphr(EXT_LATCH2
, cfb
) & EXT_LATCH2_I2C_DAT
);
1282 spin_unlock(&cfb
->reg_b0_lock
);
1287 static int cyber2000fb_i2c_getscl(void *data
)
1289 struct cfb_info
*cfb
= data
;
1292 spin_lock(&cfb
->reg_b0_lock
);
1293 ret
= !!(cyber2000_grphr(EXT_LATCH2
, cfb
) & EXT_LATCH2_I2C_CLK
);
1294 spin_unlock(&cfb
->reg_b0_lock
);
1299 static int cyber2000fb_i2c_register(struct cfb_info
*cfb
)
1301 strscpy(cfb
->i2c_adapter
.name
, cfb
->fb
.fix
.id
,
1302 sizeof(cfb
->i2c_adapter
.name
));
1303 cfb
->i2c_adapter
.owner
= THIS_MODULE
;
1304 cfb
->i2c_adapter
.algo_data
= &cfb
->i2c_algo
;
1305 cfb
->i2c_adapter
.dev
.parent
= cfb
->fb
.device
;
1306 cfb
->i2c_algo
.setsda
= cyber2000fb_i2c_setsda
;
1307 cfb
->i2c_algo
.setscl
= cyber2000fb_i2c_setscl
;
1308 cfb
->i2c_algo
.getsda
= cyber2000fb_i2c_getsda
;
1309 cfb
->i2c_algo
.getscl
= cyber2000fb_i2c_getscl
;
1310 cfb
->i2c_algo
.udelay
= 5;
1311 cfb
->i2c_algo
.timeout
= msecs_to_jiffies(100);
1312 cfb
->i2c_algo
.data
= cfb
;
1314 return i2c_bit_add_bus(&cfb
->i2c_adapter
);
1317 static void cyber2000fb_i2c_unregister(struct cfb_info
*cfb
)
1319 i2c_del_adapter(&cfb
->i2c_adapter
);
1322 #define cyber2000fb_i2c_register(cfb) (0)
1323 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1327 * These parameters give
1328 * 640x480, hsync 31.5kHz, vsync 60Hz
1330 static const struct fb_videomode cyber2000fb_default_mode
= {
1341 .sync
= FB_SYNC_COMP_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
1342 .vmode
= FB_VMODE_NONINTERLACED
1345 static char igs_regs
[] = {
1349 EXT_SEG_WRITE_PTR
, 0,
1350 EXT_SEG_READ_PTR
, 0,
1351 EXT_BIU_MISC
, EXT_BIU_MISC_LIN_ENABLE
|
1352 EXT_BIU_MISC_COP_ENABLE
|
1353 EXT_BIU_MISC_COP_BFC
,
1356 CURS_H_START
+ 1, 0,
1359 CURS_V_START
+ 1, 0,
1362 EXT_ATTRIB_CTL
, EXT_ATTRIB_CTL_EXT
,
1363 EXT_OVERSCAN_RED
, 0,
1364 EXT_OVERSCAN_GREEN
, 0,
1365 EXT_OVERSCAN_BLUE
, 0,
1367 /* some of these are questionable when we have a BIOS */
1368 EXT_MEM_CTL0
, EXT_MEM_CTL0_7CLK
|
1369 EXT_MEM_CTL0_RAS_1
|
1370 EXT_MEM_CTL0_MULTCAS
,
1371 EXT_HIDDEN_CTL1
, 0x30,
1373 EXT_FIFO_CTL
+ 1, 0x17,
1375 EXT_HIDDEN_CTL4
, 0xc8
1379 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1380 * ensure that we're using the correct PLL (5XXX's may be
1381 * programmed to use an additional set of PLLs.)
1383 static void cyberpro_init_hw(struct cfb_info
*cfb
)
1387 for (i
= 0; i
< sizeof(igs_regs
); i
+= 2)
1388 cyber2000_grphw(igs_regs
[i
], igs_regs
[i
+ 1], cfb
);
1390 if (cfb
->id
== ID_CYBERPRO_5000
) {
1392 cyber2000fb_writeb(0xba, 0x3ce, cfb
);
1393 val
= cyber2000fb_readb(0x3cf, cfb
) & 0x80;
1394 cyber2000fb_writeb(val
, 0x3cf, cfb
);
1398 static struct cfb_info
*cyberpro_alloc_fb_info(unsigned int id
, char *name
)
1400 struct cfb_info
*cfb
;
1402 cfb
= kzalloc(sizeof(struct cfb_info
), GFP_KERNEL
);
1409 if (id
== ID_CYBERPRO_5000
)
1410 cfb
->ref_ps
= 40690; /* 24.576 MHz */
1412 cfb
->ref_ps
= 69842; /* 14.31818 MHz (69841?) */
1414 cfb
->divisors
[0] = 1;
1415 cfb
->divisors
[1] = 2;
1416 cfb
->divisors
[2] = 4;
1418 if (id
== ID_CYBERPRO_2000
)
1419 cfb
->divisors
[3] = 8;
1421 cfb
->divisors
[3] = 6;
1423 strcpy(cfb
->fb
.fix
.id
, name
);
1425 cfb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1426 cfb
->fb
.fix
.type_aux
= 0;
1427 cfb
->fb
.fix
.xpanstep
= 0;
1428 cfb
->fb
.fix
.ypanstep
= 1;
1429 cfb
->fb
.fix
.ywrapstep
= 0;
1433 cfb
->fb
.fix
.accel
= 0;
1436 case ID_CYBERPRO_2000
:
1437 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER2000
;
1440 case ID_CYBERPRO_2010
:
1441 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER2010
;
1444 case ID_CYBERPRO_5000
:
1445 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER5000
;
1449 cfb
->fb
.var
.nonstd
= 0;
1450 cfb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1451 cfb
->fb
.var
.height
= -1;
1452 cfb
->fb
.var
.width
= -1;
1453 cfb
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1455 cfb
->fb
.fbops
= &cyber2000fb_ops
;
1456 cfb
->fb
.flags
= FBINFO_HWACCEL_YPAN
;
1457 cfb
->fb
.pseudo_palette
= cfb
->pseudo_palette
;
1459 spin_lock_init(&cfb
->reg_b0_lock
);
1461 fb_alloc_cmap(&cfb
->fb
.cmap
, NR_PALETTE
, 0);
1466 static void cyberpro_free_fb_info(struct cfb_info
*cfb
)
1470 * Free the colourmap
1472 fb_alloc_cmap(&cfb
->fb
.cmap
, 0, 0);
1479 * Parse Cyber2000fb options. Usage:
1480 * video=cyber2000:font:fontname
1483 static int cyber2000fb_setup(char *options
)
1487 if (!options
|| !*options
)
1490 while ((opt
= strsep(&options
, ",")) != NULL
) {
1494 if (strncmp(opt
, "font:", 5) == 0) {
1495 static char default_font_storage
[40];
1497 strscpy(default_font_storage
, opt
+ 5,
1498 sizeof(default_font_storage
));
1499 default_font
= default_font_storage
;
1503 printk(KERN_ERR
"CyberPro20x0: unknown parameter: %s\n", opt
);
1510 * The CyberPro chips can be placed on many different bus types.
1511 * This probe function is common to all bus types. The bus-specific
1512 * probe function is expected to have:
1513 * - enabled access to the linear memory region
1514 * - memory mapped access to the registers
1515 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1517 static int cyberpro_common_probe(struct cfb_info
*cfb
)
1520 u_int h_sync
, v_sync
;
1523 cyberpro_init_hw(cfb
);
1526 * Get the video RAM size and width from the VGA register.
1527 * This should have been already initialised by the BIOS,
1528 * but if it's garbage, claim default 1MB VRAM (woody)
1530 cfb
->mem_ctl1
= cyber2000_grphr(EXT_MEM_CTL1
, cfb
);
1531 cfb
->mem_ctl2
= cyber2000_grphr(EXT_MEM_CTL2
, cfb
);
1534 * Determine the size of the memory.
1536 switch (cfb
->mem_ctl2
& MEM_CTL2_SIZE_MASK
) {
1537 case MEM_CTL2_SIZE_4MB
:
1538 smem_size
= 0x00400000;
1540 case MEM_CTL2_SIZE_2MB
:
1541 smem_size
= 0x00200000;
1543 case MEM_CTL2_SIZE_1MB
:
1544 smem_size
= 0x00100000;
1547 smem_size
= 0x00100000;
1551 cfb
->fb
.fix
.smem_len
= smem_size
;
1552 cfb
->fb
.fix
.mmio_len
= MMIO_SIZE
;
1553 cfb
->fb
.screen_base
= cfb
->region
;
1555 #ifdef CONFIG_FB_CYBER2000_DDC
1556 if (cyber2000fb_setup_ddc_bus(cfb
) == 0)
1557 cfb
->ddc_registered
= true;
1561 if (!fb_find_mode(&cfb
->fb
.var
, &cfb
->fb
, NULL
, NULL
, 0,
1562 &cyber2000fb_default_mode
, 8)) {
1563 printk(KERN_ERR
"%s: no valid mode found\n", cfb
->fb
.fix
.id
);
1567 cfb
->fb
.var
.yres_virtual
= cfb
->fb
.fix
.smem_len
* 8 /
1568 (cfb
->fb
.var
.bits_per_pixel
* cfb
->fb
.var
.xres_virtual
);
1570 if (cfb
->fb
.var
.yres_virtual
< cfb
->fb
.var
.yres
)
1571 cfb
->fb
.var
.yres_virtual
= cfb
->fb
.var
.yres
;
1573 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1576 * Calculate the hsync and vsync frequencies. Note that
1577 * we split the 1e12 constant up so that we can preserve
1578 * the precision and fit the results into 32-bit registers.
1579 * (1953125000 * 512 = 1e12)
1581 h_sync
= 1953125000 / cfb
->fb
.var
.pixclock
;
1582 h_sync
= h_sync
* 512 / (cfb
->fb
.var
.xres
+ cfb
->fb
.var
.left_margin
+
1583 cfb
->fb
.var
.right_margin
+ cfb
->fb
.var
.hsync_len
);
1584 v_sync
= h_sync
/ (cfb
->fb
.var
.yres
+ cfb
->fb
.var
.upper_margin
+
1585 cfb
->fb
.var
.lower_margin
+ cfb
->fb
.var
.vsync_len
);
1587 printk(KERN_INFO
"%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1588 cfb
->fb
.fix
.id
, cfb
->fb
.fix
.smem_len
>> 10,
1589 cfb
->fb
.var
.xres
, cfb
->fb
.var
.yres
,
1590 h_sync
/ 1000, h_sync
% 1000, v_sync
);
1592 err
= cyber2000fb_i2c_register(cfb
);
1596 err
= register_framebuffer(&cfb
->fb
);
1598 cyber2000fb_i2c_unregister(cfb
);
1601 #ifdef CONFIG_FB_CYBER2000_DDC
1602 if (err
&& cfb
->ddc_registered
)
1603 i2c_del_adapter(&cfb
->ddc_adapter
);
1608 static void cyberpro_common_remove(struct cfb_info
*cfb
)
1610 unregister_framebuffer(&cfb
->fb
);
1611 #ifdef CONFIG_FB_CYBER2000_DDC
1612 if (cfb
->ddc_registered
)
1613 i2c_del_adapter(&cfb
->ddc_adapter
);
1615 cyber2000fb_i2c_unregister(cfb
);
1618 static void cyberpro_common_resume(struct cfb_info
*cfb
)
1620 cyberpro_init_hw(cfb
);
1623 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1625 cyber2000_grphw(EXT_MEM_CTL1
, cfb
->mem_ctl1
, cfb
);
1626 cyber2000_grphw(EXT_MEM_CTL2
, cfb
->mem_ctl2
, cfb
);
1629 * Restore the old video mode and the palette.
1630 * We also need to tell fbcon to redraw the console.
1632 cyber2000fb_set_par(&cfb
->fb
);
1636 * We need to wake up the CyberPro, and make sure its in linear memory
1637 * mode. Unfortunately, this is specific to the platform and card that
1638 * we are running on.
1640 * On x86 and ARM, should we be initialising the CyberPro first via the
1641 * IO registers, and then the MMIO registers to catch all cases? Can we
1642 * end up in the situation where the chip is in MMIO mode, but not awake
1645 static int cyberpro_pci_enable_mmio(struct cfb_info
*cfb
)
1649 #if defined(__sparc_v9__)
1650 #error "You lose, consult DaveM."
1651 #elif defined(__sparc__)
1653 * SPARC does not have an "outb" instruction, so we generate
1654 * I/O cycles storing into a reserved memory space at
1655 * physical address 0x3000000
1657 unsigned char __iomem
*iop
;
1659 iop
= ioremap(0x3000000, 0x5000);
1661 printk(KERN_ERR
"iga5000: cannot map I/O\n");
1665 writeb(0x18, iop
+ 0x46e8);
1666 writeb(0x01, iop
+ 0x102);
1667 writeb(0x08, iop
+ 0x46e8);
1668 writeb(EXT_BIU_MISC
, iop
+ 0x3ce);
1669 writeb(EXT_BIU_MISC_LIN_ENABLE
, iop
+ 0x3cf);
1674 * Most other machine types are "normal", so
1675 * we use the standard IO-based wakeup.
1680 outb(EXT_BIU_MISC
, 0x3ce);
1681 outb(EXT_BIU_MISC_LIN_ENABLE
, 0x3cf);
1685 * Allow the CyberPro to accept PCI burst accesses
1687 if (cfb
->id
== ID_CYBERPRO_2010
) {
1688 printk(KERN_INFO
"%s: NOT enabling PCI bursts\n",
1691 val
= cyber2000_grphr(EXT_BUS_CTL
, cfb
);
1692 if (!(val
& EXT_BUS_CTL_PCIBURST_WRITE
)) {
1693 printk(KERN_INFO
"%s: enabling PCI bursts\n",
1696 val
|= EXT_BUS_CTL_PCIBURST_WRITE
;
1698 if (cfb
->id
== ID_CYBERPRO_5000
)
1699 val
|= EXT_BUS_CTL_PCIBURST_READ
;
1701 cyber2000_grphw(EXT_BUS_CTL
, val
, cfb
);
1708 static int cyberpro_pci_probe(struct pci_dev
*dev
,
1709 const struct pci_device_id
*id
)
1711 struct cfb_info
*cfb
;
1715 sprintf(name
, "CyberPro%4X", id
->device
);
1717 err
= aperture_remove_conflicting_pci_devices(dev
, name
);
1721 err
= pci_enable_device(dev
);
1726 cfb
= cyberpro_alloc_fb_info(id
->driver_data
, name
);
1728 goto failed_release
;
1730 err
= pci_request_regions(dev
, cfb
->fb
.fix
.id
);
1732 goto failed_regions
;
1734 cfb
->irq
= dev
->irq
;
1735 cfb
->region
= pci_ioremap_bar(dev
, 0);
1738 goto failed_ioremap
;
1741 cfb
->regs
= cfb
->region
+ MMIO_OFFSET
;
1742 cfb
->fb
.device
= &dev
->dev
;
1743 cfb
->fb
.fix
.mmio_start
= pci_resource_start(dev
, 0) + MMIO_OFFSET
;
1744 cfb
->fb
.fix
.smem_start
= pci_resource_start(dev
, 0);
1747 * Bring up the hardware. This is expected to enable access
1748 * to the linear memory region, and allow access to the memory
1749 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1752 err
= cyberpro_pci_enable_mmio(cfb
);
1757 * Use MCLK from BIOS. FIXME: what about hotplug?
1759 cfb
->mclk_mult
= cyber2000_grphr(EXT_MCLK_MULT
, cfb
);
1760 cfb
->mclk_div
= cyber2000_grphr(EXT_MCLK_DIV
, cfb
);
1764 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1766 if (machine_is_netwinder()) {
1767 cfb
->mclk_mult
= 0xdb;
1768 cfb
->mclk_div
= 0x54;
1772 err
= cyberpro_common_probe(cfb
);
1779 pci_set_drvdata(dev
, cfb
);
1780 if (int_cfb_info
== NULL
)
1786 iounmap(cfb
->region
);
1788 pci_release_regions(dev
);
1790 cyberpro_free_fb_info(cfb
);
1792 pci_disable_device(dev
);
1796 static void cyberpro_pci_remove(struct pci_dev
*dev
)
1798 struct cfb_info
*cfb
= pci_get_drvdata(dev
);
1801 cyberpro_common_remove(cfb
);
1802 iounmap(cfb
->region
);
1803 cyberpro_free_fb_info(cfb
);
1805 if (cfb
== int_cfb_info
)
1806 int_cfb_info
= NULL
;
1808 pci_release_regions(dev
);
1809 pci_disable_device(dev
);
1813 static int __maybe_unused
cyberpro_pci_suspend(struct device
*dev
)
1819 * Re-initialise the CyberPro hardware
1821 static int __maybe_unused
cyberpro_pci_resume(struct device
*dev
)
1823 struct cfb_info
*cfb
= dev_get_drvdata(dev
);
1826 cyberpro_pci_enable_mmio(cfb
);
1827 cyberpro_common_resume(cfb
);
1833 static struct pci_device_id cyberpro_pci_table
[] = {
1835 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1836 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1838 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_2000
,
1839 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_2000
},
1840 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_2010
,
1841 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_2010
},
1842 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_5000
,
1843 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_5000
},
1847 MODULE_DEVICE_TABLE(pci
, cyberpro_pci_table
);
1849 static SIMPLE_DEV_PM_OPS(cyberpro_pci_pm_ops
,
1850 cyberpro_pci_suspend
,
1851 cyberpro_pci_resume
);
1853 static struct pci_driver cyberpro_driver
= {
1855 .probe
= cyberpro_pci_probe
,
1856 .remove
= cyberpro_pci_remove
,
1857 .driver
.pm
= &cyberpro_pci_pm_ops
,
1858 .id_table
= cyberpro_pci_table
1862 * I don't think we can use the "module_init" stuff here because
1863 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1864 * around module_init.
1866 * Tony: "module_init" is now required
1868 static int __init
cyber2000fb_init(void)
1873 char *option
= NULL
;
1876 if (fb_modesetting_disabled("CyberPro"))
1880 if (fb_get_options("cyber2000fb", &option
))
1882 cyber2000fb_setup(option
);
1885 err
= pci_register_driver(&cyberpro_driver
);
1889 return ret
? err
: 0;
1891 module_init(cyber2000fb_init
);
1893 static void __exit
cyberpro_exit(void)
1895 pci_unregister_driver(&cyberpro_driver
);
1897 module_exit(cyberpro_exit
);
1899 MODULE_AUTHOR("Russell King");
1900 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1901 MODULE_LICENSE("GPL");