1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright 2010-2011 Picochip Ltd., Jamie Iles
4 * https://www.picochip.com
6 * This file implements a driver for the Synopsys DesignWare watchdog device
7 * in the many subsystems. The watchdog has 16 different timeout periods
8 * and these are a function of the input clock frequency.
10 * The DesignWare watchdog cannot be stopped once it has been started so we
11 * do not implement a stop function. The watchdog core will continue to send
12 * heartbeat requests after the watchdog device has been closed.
15 #include <linux/bitops.h>
16 #include <linux/clk.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/limits.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
27 #include <linux/platform_device.h>
29 #include <linux/reset.h>
30 #include <linux/watchdog.h>
32 #define WDOG_CONTROL_REG_OFFSET 0x00
33 #define WDOG_CONTROL_REG_WDT_EN_MASK 0x01
34 #define WDOG_CONTROL_REG_RESP_MODE_MASK 0x02
35 #define WDOG_TIMEOUT_RANGE_REG_OFFSET 0x04
36 #define WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT 4
37 #define WDOG_CURRENT_COUNT_REG_OFFSET 0x08
38 #define WDOG_COUNTER_RESTART_REG_OFFSET 0x0c
39 #define WDOG_COUNTER_RESTART_KICK_VALUE 0x76
40 #define WDOG_INTERRUPT_STATUS_REG_OFFSET 0x10
41 #define WDOG_INTERRUPT_CLEAR_REG_OFFSET 0x14
42 #define WDOG_COMP_PARAMS_5_REG_OFFSET 0xe4
43 #define WDOG_COMP_PARAMS_4_REG_OFFSET 0xe8
44 #define WDOG_COMP_PARAMS_3_REG_OFFSET 0xec
45 #define WDOG_COMP_PARAMS_2_REG_OFFSET 0xf0
46 #define WDOG_COMP_PARAMS_1_REG_OFFSET 0xf4
47 #define WDOG_COMP_PARAMS_1_USE_FIX_TOP BIT(6)
48 #define WDOG_COMP_VERSION_REG_OFFSET 0xf8
49 #define WDOG_COMP_TYPE_REG_OFFSET 0xfc
51 /* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */
52 #define DW_WDT_NUM_TOPS 16
53 #define DW_WDT_FIX_TOP(_idx) (1U << (16 + _idx))
55 #define DW_WDT_DEFAULT_SECONDS 30
57 static const u32 dw_wdt_fix_tops
[DW_WDT_NUM_TOPS
] = {
58 DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2),
59 DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5),
60 DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8),
61 DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11),
62 DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14),
66 static bool nowayout
= WATCHDOG_NOWAYOUT
;
67 module_param(nowayout
, bool, 0);
68 MODULE_PARM_DESC(nowayout
, "Watchdog cannot be stopped once started "
69 "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT
) ")");
72 DW_WDT_RMOD_RESET
= 1,
76 struct dw_wdt_timeout
{
87 enum dw_wdt_rmod rmod
;
88 struct dw_wdt_timeout timeouts
[DW_WDT_NUM_TOPS
];
89 struct watchdog_device wdd
;
90 struct reset_control
*rst
;
95 #ifdef CONFIG_DEBUG_FS
96 struct dentry
*dbgfs_dir
;
100 #define to_dw_wdt(wdd) container_of(wdd, struct dw_wdt, wdd)
102 static inline int dw_wdt_is_enabled(struct dw_wdt
*dw_wdt
)
104 return readl(dw_wdt
->regs
+ WDOG_CONTROL_REG_OFFSET
) &
105 WDOG_CONTROL_REG_WDT_EN_MASK
;
108 static void dw_wdt_update_mode(struct dw_wdt
*dw_wdt
, enum dw_wdt_rmod rmod
)
112 val
= readl(dw_wdt
->regs
+ WDOG_CONTROL_REG_OFFSET
);
113 if (rmod
== DW_WDT_RMOD_IRQ
)
114 val
|= WDOG_CONTROL_REG_RESP_MODE_MASK
;
116 val
&= ~WDOG_CONTROL_REG_RESP_MODE_MASK
;
117 writel(val
, dw_wdt
->regs
+ WDOG_CONTROL_REG_OFFSET
);
122 static unsigned int dw_wdt_find_best_top(struct dw_wdt
*dw_wdt
,
123 unsigned int timeout
, u32
*top_val
)
128 * Find a TOP with timeout greater or equal to the requested number.
129 * Note we'll select a TOP with maximum timeout if the requested
130 * timeout couldn't be reached.
132 for (idx
= 0; idx
< DW_WDT_NUM_TOPS
; ++idx
) {
133 if (dw_wdt
->timeouts
[idx
].sec
>= timeout
)
137 if (idx
== DW_WDT_NUM_TOPS
)
140 *top_val
= dw_wdt
->timeouts
[idx
].top_val
;
142 return dw_wdt
->timeouts
[idx
].sec
;
145 static unsigned int dw_wdt_get_min_timeout(struct dw_wdt
*dw_wdt
)
150 * We'll find a timeout greater or equal to one second anyway because
151 * the driver probe would have failed if there was none.
153 for (idx
= 0; idx
< DW_WDT_NUM_TOPS
; ++idx
) {
154 if (dw_wdt
->timeouts
[idx
].sec
)
158 return dw_wdt
->timeouts
[idx
].sec
;
161 static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt
*dw_wdt
)
163 struct dw_wdt_timeout
*timeout
= &dw_wdt
->timeouts
[DW_WDT_NUM_TOPS
- 1];
166 msec
= (u64
)timeout
->sec
* MSEC_PER_SEC
+ timeout
->msec
;
168 return msec
< UINT_MAX
? msec
: UINT_MAX
;
171 static unsigned int dw_wdt_get_timeout(struct dw_wdt
*dw_wdt
)
173 int top_val
= readl(dw_wdt
->regs
+ WDOG_TIMEOUT_RANGE_REG_OFFSET
) & 0xF;
176 for (idx
= 0; idx
< DW_WDT_NUM_TOPS
; ++idx
) {
177 if (dw_wdt
->timeouts
[idx
].top_val
== top_val
)
182 * In IRQ mode due to the two stages counter, the actual timeout is
183 * twice greater than the TOP setting.
185 return dw_wdt
->timeouts
[idx
].sec
* dw_wdt
->rmod
;
188 static int dw_wdt_ping(struct watchdog_device
*wdd
)
190 struct dw_wdt
*dw_wdt
= to_dw_wdt(wdd
);
192 writel(WDOG_COUNTER_RESTART_KICK_VALUE
, dw_wdt
->regs
+
193 WDOG_COUNTER_RESTART_REG_OFFSET
);
198 static int dw_wdt_set_timeout(struct watchdog_device
*wdd
, unsigned int top_s
)
200 struct dw_wdt
*dw_wdt
= to_dw_wdt(wdd
);
201 unsigned int timeout
;
205 * Note IRQ mode being enabled means having a non-zero pre-timeout
206 * setup. In this case we try to find a TOP as close to the half of the
207 * requested timeout as possible since DW Watchdog IRQ mode is designed
208 * in two stages way - first timeout rises the pre-timeout interrupt,
209 * second timeout performs the system reset. So basically the effective
210 * watchdog-caused reset happens after two watchdog TOPs elapsed.
212 timeout
= dw_wdt_find_best_top(dw_wdt
, DIV_ROUND_UP(top_s
, dw_wdt
->rmod
),
214 if (dw_wdt
->rmod
== DW_WDT_RMOD_IRQ
)
215 wdd
->pretimeout
= timeout
;
220 * Set the new value in the watchdog. Some versions of dw_wdt
221 * have TOPINIT in the TIMEOUT_RANGE register (as per
222 * CP_WDT_DUAL_TOP in WDT_COMP_PARAMS_1). On those we
223 * effectively get a pat of the watchdog right here.
225 writel(top_val
| top_val
<< WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT
,
226 dw_wdt
->regs
+ WDOG_TIMEOUT_RANGE_REG_OFFSET
);
228 /* Kick new TOP value into the watchdog counter if activated. */
229 if (watchdog_active(wdd
))
233 * In case users set bigger timeout value than HW can support,
234 * kernel(watchdog_dev.c) helps to feed watchdog before
235 * wdd->max_hw_heartbeat_ms
237 if (top_s
* 1000 <= wdd
->max_hw_heartbeat_ms
)
238 wdd
->timeout
= timeout
* dw_wdt
->rmod
;
240 wdd
->timeout
= top_s
;
245 static int dw_wdt_set_pretimeout(struct watchdog_device
*wdd
, unsigned int req
)
247 struct dw_wdt
*dw_wdt
= to_dw_wdt(wdd
);
250 * We ignore actual value of the timeout passed from user-space
251 * using it as a flag whether the pretimeout functionality is intended
254 dw_wdt_update_mode(dw_wdt
, req
? DW_WDT_RMOD_IRQ
: DW_WDT_RMOD_RESET
);
255 dw_wdt_set_timeout(wdd
, wdd
->timeout
);
260 static void dw_wdt_arm_system_reset(struct dw_wdt
*dw_wdt
)
262 u32 val
= readl(dw_wdt
->regs
+ WDOG_CONTROL_REG_OFFSET
);
264 /* Disable/enable interrupt mode depending on the RMOD flag. */
265 if (dw_wdt
->rmod
== DW_WDT_RMOD_IRQ
)
266 val
|= WDOG_CONTROL_REG_RESP_MODE_MASK
;
268 val
&= ~WDOG_CONTROL_REG_RESP_MODE_MASK
;
269 /* Enable watchdog. */
270 val
|= WDOG_CONTROL_REG_WDT_EN_MASK
;
271 writel(val
, dw_wdt
->regs
+ WDOG_CONTROL_REG_OFFSET
);
274 static int dw_wdt_start(struct watchdog_device
*wdd
)
276 struct dw_wdt
*dw_wdt
= to_dw_wdt(wdd
);
278 dw_wdt_set_timeout(wdd
, wdd
->timeout
);
279 dw_wdt_ping(&dw_wdt
->wdd
);
280 dw_wdt_arm_system_reset(dw_wdt
);
285 static int dw_wdt_stop(struct watchdog_device
*wdd
)
287 struct dw_wdt
*dw_wdt
= to_dw_wdt(wdd
);
290 set_bit(WDOG_HW_RUNNING
, &wdd
->status
);
294 reset_control_assert(dw_wdt
->rst
);
295 reset_control_deassert(dw_wdt
->rst
);
300 static int dw_wdt_restart(struct watchdog_device
*wdd
,
301 unsigned long action
, void *data
)
303 struct dw_wdt
*dw_wdt
= to_dw_wdt(wdd
);
305 writel(0, dw_wdt
->regs
+ WDOG_TIMEOUT_RANGE_REG_OFFSET
);
306 dw_wdt_update_mode(dw_wdt
, DW_WDT_RMOD_RESET
);
307 if (dw_wdt_is_enabled(dw_wdt
))
308 writel(WDOG_COUNTER_RESTART_KICK_VALUE
,
309 dw_wdt
->regs
+ WDOG_COUNTER_RESTART_REG_OFFSET
);
311 dw_wdt_arm_system_reset(dw_wdt
);
313 /* wait for reset to assert... */
319 static unsigned int dw_wdt_get_timeleft(struct watchdog_device
*wdd
)
321 struct dw_wdt
*dw_wdt
= to_dw_wdt(wdd
);
325 val
= readl(dw_wdt
->regs
+ WDOG_CURRENT_COUNT_REG_OFFSET
);
326 sec
= val
/ dw_wdt
->rate
;
328 if (dw_wdt
->rmod
== DW_WDT_RMOD_IRQ
) {
329 val
= readl(dw_wdt
->regs
+ WDOG_INTERRUPT_STATUS_REG_OFFSET
);
331 sec
+= wdd
->pretimeout
;
337 static const struct watchdog_info dw_wdt_ident
= {
338 .options
= WDIOF_KEEPALIVEPING
| WDIOF_SETTIMEOUT
|
340 .identity
= "Synopsys DesignWare Watchdog",
343 static const struct watchdog_info dw_wdt_pt_ident
= {
344 .options
= WDIOF_KEEPALIVEPING
| WDIOF_SETTIMEOUT
|
345 WDIOF_PRETIMEOUT
| WDIOF_MAGICCLOSE
,
346 .identity
= "Synopsys DesignWare Watchdog",
349 static const struct watchdog_ops dw_wdt_ops
= {
350 .owner
= THIS_MODULE
,
351 .start
= dw_wdt_start
,
354 .set_timeout
= dw_wdt_set_timeout
,
355 .set_pretimeout
= dw_wdt_set_pretimeout
,
356 .get_timeleft
= dw_wdt_get_timeleft
,
357 .restart
= dw_wdt_restart
,
360 static irqreturn_t
dw_wdt_irq(int irq
, void *devid
)
362 struct dw_wdt
*dw_wdt
= devid
;
366 * We don't clear the IRQ status. It's supposed to be done by the
367 * following ping operations.
369 val
= readl(dw_wdt
->regs
+ WDOG_INTERRUPT_STATUS_REG_OFFSET
);
373 watchdog_notify_pretimeout(&dw_wdt
->wdd
);
378 static int dw_wdt_suspend(struct device
*dev
)
380 struct dw_wdt
*dw_wdt
= dev_get_drvdata(dev
);
382 dw_wdt
->control
= readl(dw_wdt
->regs
+ WDOG_CONTROL_REG_OFFSET
);
383 dw_wdt
->timeout
= readl(dw_wdt
->regs
+ WDOG_TIMEOUT_RANGE_REG_OFFSET
);
385 clk_disable_unprepare(dw_wdt
->pclk
);
386 clk_disable_unprepare(dw_wdt
->clk
);
391 static int dw_wdt_resume(struct device
*dev
)
393 struct dw_wdt
*dw_wdt
= dev_get_drvdata(dev
);
394 int err
= clk_prepare_enable(dw_wdt
->clk
);
399 err
= clk_prepare_enable(dw_wdt
->pclk
);
401 clk_disable_unprepare(dw_wdt
->clk
);
405 writel(dw_wdt
->timeout
, dw_wdt
->regs
+ WDOG_TIMEOUT_RANGE_REG_OFFSET
);
406 writel(dw_wdt
->control
, dw_wdt
->regs
+ WDOG_CONTROL_REG_OFFSET
);
408 dw_wdt_ping(&dw_wdt
->wdd
);
413 static DEFINE_SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops
, dw_wdt_suspend
, dw_wdt_resume
);
416 * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the
417 * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers
418 * depending on the system engineer imagination. The next method handles the
419 * passed TOPs array to pre-calculate the effective timeouts and to sort the
420 * TOP items out in the ascending order with respect to the timeouts.
423 static void dw_wdt_handle_tops(struct dw_wdt
*dw_wdt
, const u32
*tops
)
425 struct dw_wdt_timeout tout
, *dst
;
430 * We walk over the passed TOPs array and calculate corresponding
431 * timeouts in seconds and milliseconds. The milliseconds granularity
432 * is needed to distinguish the TOPs with very close timeouts and to
433 * set the watchdog max heartbeat setting further.
435 for (val
= 0; val
< DW_WDT_NUM_TOPS
; ++val
) {
437 tout
.sec
= tops
[val
] / dw_wdt
->rate
;
438 msec
= (u64
)tops
[val
] * MSEC_PER_SEC
;
439 do_div(msec
, dw_wdt
->rate
);
440 tout
.msec
= msec
- ((u64
)tout
.sec
* MSEC_PER_SEC
);
443 * Find a suitable place for the current TOP in the timeouts
444 * array so that the list is remained in the ascending order.
446 for (tidx
= 0; tidx
< val
; ++tidx
) {
447 dst
= &dw_wdt
->timeouts
[tidx
];
448 if (tout
.sec
> dst
->sec
|| (tout
.sec
== dst
->sec
&&
449 tout
.msec
>= dst
->msec
))
455 dw_wdt
->timeouts
[val
] = tout
;
459 static int dw_wdt_init_timeouts(struct dw_wdt
*dw_wdt
, struct device
*dev
)
461 u32 data
, of_tops
[DW_WDT_NUM_TOPS
];
466 * Retrieve custom or fixed counter values depending on the
467 * WDT_USE_FIX_TOP flag found in the component specific parameters
470 data
= readl(dw_wdt
->regs
+ WDOG_COMP_PARAMS_1_REG_OFFSET
);
471 if (data
& WDOG_COMP_PARAMS_1_USE_FIX_TOP
) {
472 tops
= dw_wdt_fix_tops
;
474 ret
= of_property_read_variable_u32_array(dev_of_node(dev
),
475 "snps,watchdog-tops", of_tops
, DW_WDT_NUM_TOPS
,
478 dev_warn(dev
, "No valid TOPs array specified\n");
479 tops
= dw_wdt_fix_tops
;
485 /* Convert the specified TOPs into an array of watchdog timeouts. */
486 dw_wdt_handle_tops(dw_wdt
, tops
);
487 if (!dw_wdt
->timeouts
[DW_WDT_NUM_TOPS
- 1].sec
) {
488 dev_err(dev
, "No any valid TOP detected\n");
495 #ifdef CONFIG_DEBUG_FS
497 #define DW_WDT_DBGFS_REG(_name, _off) \
503 static const struct debugfs_reg32 dw_wdt_dbgfs_regs
[] = {
504 DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET
),
505 DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET
),
506 DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET
),
507 DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET
),
508 DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET
),
509 DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET
),
510 DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET
),
511 DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET
),
512 DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET
),
513 DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET
),
514 DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET
),
515 DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET
)
518 static void dw_wdt_dbgfs_init(struct dw_wdt
*dw_wdt
)
520 struct device
*dev
= dw_wdt
->wdd
.parent
;
521 struct debugfs_regset32
*regset
;
523 regset
= devm_kzalloc(dev
, sizeof(*regset
), GFP_KERNEL
);
527 regset
->regs
= dw_wdt_dbgfs_regs
;
528 regset
->nregs
= ARRAY_SIZE(dw_wdt_dbgfs_regs
);
529 regset
->base
= dw_wdt
->regs
;
531 dw_wdt
->dbgfs_dir
= debugfs_create_dir(dev_name(dev
), NULL
);
533 debugfs_create_regset32("registers", 0444, dw_wdt
->dbgfs_dir
, regset
);
536 static void dw_wdt_dbgfs_clear(struct dw_wdt
*dw_wdt
)
538 debugfs_remove_recursive(dw_wdt
->dbgfs_dir
);
541 #else /* !CONFIG_DEBUG_FS */
543 static void dw_wdt_dbgfs_init(struct dw_wdt
*dw_wdt
) {}
544 static void dw_wdt_dbgfs_clear(struct dw_wdt
*dw_wdt
) {}
546 #endif /* !CONFIG_DEBUG_FS */
548 static int dw_wdt_drv_probe(struct platform_device
*pdev
)
550 struct device
*dev
= &pdev
->dev
;
551 struct watchdog_device
*wdd
;
552 struct dw_wdt
*dw_wdt
;
555 dw_wdt
= devm_kzalloc(dev
, sizeof(*dw_wdt
), GFP_KERNEL
);
559 dw_wdt
->regs
= devm_platform_ioremap_resource(pdev
, 0);
560 if (IS_ERR(dw_wdt
->regs
))
561 return PTR_ERR(dw_wdt
->regs
);
564 * Try to request the watchdog dedicated timer clock source. It must
565 * be supplied if asynchronous mode is enabled. Otherwise fallback
566 * to the common timer/bus clocks configuration, in which the very
567 * first found clock supply both timer and APB signals.
569 dw_wdt
->clk
= devm_clk_get_enabled(dev
, "tclk");
570 if (IS_ERR(dw_wdt
->clk
)) {
571 dw_wdt
->clk
= devm_clk_get_enabled(dev
, NULL
);
572 if (IS_ERR(dw_wdt
->clk
))
573 return PTR_ERR(dw_wdt
->clk
);
576 dw_wdt
->rate
= clk_get_rate(dw_wdt
->clk
);
577 if (dw_wdt
->rate
== 0)
581 * Request APB clock if device is configured with async clocks mode.
582 * In this case both tclk and pclk clocks are supposed to be specified.
583 * Alas we can't know for sure whether async mode was really activated,
584 * so the pclk phandle reference is left optional. If it couldn't be
585 * found we consider the device configured in synchronous clocks mode.
587 dw_wdt
->pclk
= devm_clk_get_optional_enabled(dev
, "pclk");
588 if (IS_ERR(dw_wdt
->pclk
))
589 return PTR_ERR(dw_wdt
->pclk
);
591 dw_wdt
->rst
= devm_reset_control_get_optional_shared(&pdev
->dev
, NULL
);
592 if (IS_ERR(dw_wdt
->rst
))
593 return PTR_ERR(dw_wdt
->rst
);
595 /* Enable normal reset without pre-timeout by default. */
596 dw_wdt_update_mode(dw_wdt
, DW_WDT_RMOD_RESET
);
599 * Pre-timeout IRQ is optional, since some hardware may lack support
600 * of it. Note we must request rising-edge IRQ, since the lane is left
601 * pending either until the next watchdog kick event or up to the
604 ret
= platform_get_irq_optional(pdev
, 0);
606 ret
= devm_request_irq(dev
, ret
, dw_wdt_irq
,
607 IRQF_SHARED
| IRQF_TRIGGER_RISING
,
612 dw_wdt
->wdd
.info
= &dw_wdt_pt_ident
;
614 if (ret
== -EPROBE_DEFER
)
617 dw_wdt
->wdd
.info
= &dw_wdt_ident
;
620 reset_control_deassert(dw_wdt
->rst
);
622 ret
= dw_wdt_init_timeouts(dw_wdt
, dev
);
627 wdd
->ops
= &dw_wdt_ops
;
628 wdd
->min_timeout
= dw_wdt_get_min_timeout(dw_wdt
);
629 wdd
->max_hw_heartbeat_ms
= dw_wdt_get_max_timeout_ms(dw_wdt
);
632 watchdog_set_drvdata(wdd
, dw_wdt
);
633 watchdog_set_nowayout(wdd
, nowayout
);
634 watchdog_init_timeout(wdd
, 0, dev
);
637 * If the watchdog is already running, use its already configured
638 * timeout. Otherwise use the default or the value provided through
641 if (dw_wdt_is_enabled(dw_wdt
)) {
642 wdd
->timeout
= dw_wdt_get_timeout(dw_wdt
);
643 set_bit(WDOG_HW_RUNNING
, &wdd
->status
);
645 wdd
->timeout
= DW_WDT_DEFAULT_SECONDS
;
646 watchdog_init_timeout(wdd
, 0, dev
);
649 platform_set_drvdata(pdev
, dw_wdt
);
651 watchdog_set_restart_priority(wdd
, 128);
652 watchdog_stop_on_reboot(wdd
);
654 ret
= watchdog_register_device(wdd
);
658 dw_wdt_dbgfs_init(dw_wdt
);
663 reset_control_assert(dw_wdt
->rst
);
667 static void dw_wdt_drv_remove(struct platform_device
*pdev
)
669 struct dw_wdt
*dw_wdt
= platform_get_drvdata(pdev
);
671 dw_wdt_dbgfs_clear(dw_wdt
);
673 watchdog_unregister_device(&dw_wdt
->wdd
);
674 reset_control_assert(dw_wdt
->rst
);
678 static const struct of_device_id dw_wdt_of_match
[] = {
679 { .compatible
= "snps,dw-wdt", },
682 MODULE_DEVICE_TABLE(of
, dw_wdt_of_match
);
685 static struct platform_driver dw_wdt_driver
= {
686 .probe
= dw_wdt_drv_probe
,
687 .remove_new
= dw_wdt_drv_remove
,
690 .of_match_table
= of_match_ptr(dw_wdt_of_match
),
691 .pm
= pm_sleep_ptr(&dw_wdt_pm_ops
),
695 module_platform_driver(dw_wdt_driver
);
697 MODULE_AUTHOR("Jamie Iles");
698 MODULE_DESCRIPTION("Synopsys DesignWare Watchdog Driver");
699 MODULE_LICENSE("GPL");