1 // SPDX-License-Identifier: GPL-2.0-only
4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
8 * PV guests under Xen are running in an non-contiguous memory architecture.
10 * When PCI pass-through is utilized, this necessitates an IOMMU for
11 * translating bus (DMA) to virtual and vice-versa and also providing a
12 * mechanism to have contiguous pages for device drivers operations (say DMA
15 * Specifically, under Xen the Linux idea of pages is an illusion. It
16 * assumes that pages start at zero and go up to the available memory. To
17 * help with that, the Linux Xen MMU provides a lookup mechanism to
18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20 * memory is not contiguous. Xen hypervisor stitches memory for guests
21 * from different pools, which means there is no guarantee that PFN==MFN
22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23 * allocated in descending order (high to low), meaning the guest might
24 * never get any MFN's under the 4GB mark.
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
38 #include <asm/dma-mapping.h>
40 #include <trace/events/swiotlb.h>
41 #define MAX_DMA_BITS 32
44 * Quick lookup value of the bus address of the IOTLB.
47 static inline phys_addr_t
xen_phys_to_bus(struct device
*dev
, phys_addr_t paddr
)
49 unsigned long bfn
= pfn_to_bfn(XEN_PFN_DOWN(paddr
));
50 phys_addr_t baddr
= (phys_addr_t
)bfn
<< XEN_PAGE_SHIFT
;
52 baddr
|= paddr
& ~XEN_PAGE_MASK
;
56 static inline dma_addr_t
xen_phys_to_dma(struct device
*dev
, phys_addr_t paddr
)
58 return phys_to_dma(dev
, xen_phys_to_bus(dev
, paddr
));
61 static inline phys_addr_t
xen_bus_to_phys(struct device
*dev
,
64 unsigned long xen_pfn
= bfn_to_pfn(XEN_PFN_DOWN(baddr
));
65 phys_addr_t paddr
= (xen_pfn
<< XEN_PAGE_SHIFT
) |
66 (baddr
& ~XEN_PAGE_MASK
);
71 static inline phys_addr_t
xen_dma_to_phys(struct device
*dev
,
74 return xen_bus_to_phys(dev
, dma_to_phys(dev
, dma_addr
));
77 static inline int range_straddles_page_boundary(phys_addr_t p
, size_t size
)
79 unsigned long next_bfn
, xen_pfn
= XEN_PFN_DOWN(p
);
80 unsigned int i
, nr_pages
= XEN_PFN_UP(xen_offset_in_page(p
) + size
);
81 phys_addr_t algn
= 1ULL << (get_order(size
) + PAGE_SHIFT
);
83 next_bfn
= pfn_to_bfn(xen_pfn
);
85 /* If buffer is physically aligned, ensure DMA alignment. */
86 if (IS_ALIGNED(p
, algn
) &&
87 !IS_ALIGNED((phys_addr_t
)next_bfn
<< XEN_PAGE_SHIFT
, algn
))
90 for (i
= 1; i
< nr_pages
; i
++)
91 if (pfn_to_bfn(++xen_pfn
) != ++next_bfn
)
97 static struct io_tlb_pool
*xen_swiotlb_find_pool(struct device
*dev
,
100 unsigned long bfn
= XEN_PFN_DOWN(dma_to_phys(dev
, dma_addr
));
101 unsigned long xen_pfn
= bfn_to_local_pfn(bfn
);
102 phys_addr_t paddr
= (phys_addr_t
)xen_pfn
<< XEN_PAGE_SHIFT
;
104 /* If the address is outside our domain, it CAN
105 * have the same virtual address as another address
106 * in our domain. Therefore _only_ check address within our domain.
108 if (pfn_valid(PFN_DOWN(paddr
)))
109 return swiotlb_find_pool(dev
, paddr
);
114 int xen_swiotlb_fixup(void *buf
, unsigned long nslabs
)
117 unsigned int order
= get_order(IO_TLB_SEGSIZE
<< IO_TLB_SHIFT
);
118 unsigned int i
, dma_bits
= order
+ PAGE_SHIFT
;
119 dma_addr_t dma_handle
;
120 phys_addr_t p
= virt_to_phys(buf
);
122 BUILD_BUG_ON(IO_TLB_SEGSIZE
& (IO_TLB_SEGSIZE
- 1));
123 BUG_ON(nslabs
% IO_TLB_SEGSIZE
);
128 rc
= xen_create_contiguous_region(
129 p
+ (i
<< IO_TLB_SHIFT
), order
,
130 dma_bits
, &dma_handle
);
131 } while (rc
&& dma_bits
++ < MAX_DMA_BITS
);
136 } while (i
< nslabs
);
141 xen_swiotlb_alloc_coherent(struct device
*dev
, size_t size
,
142 dma_addr_t
*dma_handle
, gfp_t flags
, unsigned long attrs
)
144 u64 dma_mask
= dev
->coherent_dma_mask
;
145 int order
= get_order(size
);
149 /* Align the allocation to the Xen page size */
150 size
= ALIGN(size
, XEN_PAGE_SIZE
);
152 ret
= (void *)__get_free_pages(flags
, get_order(size
));
155 phys
= virt_to_phys(ret
);
157 *dma_handle
= xen_phys_to_dma(dev
, phys
);
158 if (*dma_handle
+ size
- 1 > dma_mask
||
159 range_straddles_page_boundary(phys
, size
)) {
160 if (xen_create_contiguous_region(phys
, order
, fls64(dma_mask
),
163 SetPageXenRemapped(virt_to_page(ret
));
166 memset(ret
, 0, size
);
170 free_pages((unsigned long)ret
, get_order(size
));
175 xen_swiotlb_free_coherent(struct device
*dev
, size_t size
, void *vaddr
,
176 dma_addr_t dma_handle
, unsigned long attrs
)
178 phys_addr_t phys
= virt_to_phys(vaddr
);
179 int order
= get_order(size
);
181 /* Convert the size to actually allocated. */
182 size
= ALIGN(size
, XEN_PAGE_SIZE
);
184 if (WARN_ON_ONCE(dma_handle
+ size
- 1 > dev
->coherent_dma_mask
) ||
185 WARN_ON_ONCE(range_straddles_page_boundary(phys
, size
)))
188 if (TestClearPageXenRemapped(virt_to_page(vaddr
)))
189 xen_destroy_contiguous_region(phys
, order
);
190 free_pages((unsigned long)vaddr
, get_order(size
));
192 #endif /* CONFIG_X86 */
195 * Map a single buffer of the indicated size for DMA in streaming mode. The
196 * physical address to use is returned.
198 * Once the device is given the dma address, the device owns this memory until
199 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
201 static dma_addr_t
xen_swiotlb_map_page(struct device
*dev
, struct page
*page
,
202 unsigned long offset
, size_t size
,
203 enum dma_data_direction dir
,
206 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
207 dma_addr_t dev_addr
= xen_phys_to_dma(dev
, phys
);
209 BUG_ON(dir
== DMA_NONE
);
211 * If the address happens to be in the device's DMA window,
212 * we can safely return the device addr and not worry about bounce
215 if (dma_capable(dev
, dev_addr
, size
, true) &&
216 !range_straddles_page_boundary(phys
, size
) &&
217 !xen_arch_need_swiotlb(dev
, phys
, dev_addr
) &&
218 !is_swiotlb_force_bounce(dev
))
222 * Oh well, have to allocate and map a bounce buffer.
224 trace_swiotlb_bounced(dev
, dev_addr
, size
);
226 map
= swiotlb_tbl_map_single(dev
, phys
, size
, 0, dir
, attrs
);
227 if (map
== (phys_addr_t
)DMA_MAPPING_ERROR
)
228 return DMA_MAPPING_ERROR
;
231 dev_addr
= xen_phys_to_dma(dev
, map
);
234 * Ensure that the address returned is DMA'ble
236 if (unlikely(!dma_capable(dev
, dev_addr
, size
, true))) {
237 __swiotlb_tbl_unmap_single(dev
, map
, size
, dir
,
238 attrs
| DMA_ATTR_SKIP_CPU_SYNC
,
239 swiotlb_find_pool(dev
, map
));
240 return DMA_MAPPING_ERROR
;
244 if (!dev_is_dma_coherent(dev
) && !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
)) {
245 if (pfn_valid(PFN_DOWN(dma_to_phys(dev
, dev_addr
))))
246 arch_sync_dma_for_device(phys
, size
, dir
);
248 xen_dma_sync_for_device(dev
, dev_addr
, size
, dir
);
254 * Unmap a single streaming mode DMA translation. The dma_addr and size must
255 * match what was provided for in a previous xen_swiotlb_map_page call. All
256 * other usages are undefined.
258 * After this call, reads by the cpu to the buffer are guaranteed to see
259 * whatever the device wrote there.
261 static void xen_swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
262 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
264 phys_addr_t paddr
= xen_dma_to_phys(hwdev
, dev_addr
);
265 struct io_tlb_pool
*pool
;
267 BUG_ON(dir
== DMA_NONE
);
269 if (!dev_is_dma_coherent(hwdev
) && !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
)) {
270 if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev
, dev_addr
))))
271 arch_sync_dma_for_cpu(paddr
, size
, dir
);
273 xen_dma_sync_for_cpu(hwdev
, dev_addr
, size
, dir
);
276 /* NOTE: We use dev_addr here, not paddr! */
277 pool
= xen_swiotlb_find_pool(hwdev
, dev_addr
);
279 __swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
,
284 xen_swiotlb_sync_single_for_cpu(struct device
*dev
, dma_addr_t dma_addr
,
285 size_t size
, enum dma_data_direction dir
)
287 phys_addr_t paddr
= xen_dma_to_phys(dev
, dma_addr
);
288 struct io_tlb_pool
*pool
;
290 if (!dev_is_dma_coherent(dev
)) {
291 if (pfn_valid(PFN_DOWN(dma_to_phys(dev
, dma_addr
))))
292 arch_sync_dma_for_cpu(paddr
, size
, dir
);
294 xen_dma_sync_for_cpu(dev
, dma_addr
, size
, dir
);
297 pool
= xen_swiotlb_find_pool(dev
, dma_addr
);
299 __swiotlb_sync_single_for_cpu(dev
, paddr
, size
, dir
, pool
);
303 xen_swiotlb_sync_single_for_device(struct device
*dev
, dma_addr_t dma_addr
,
304 size_t size
, enum dma_data_direction dir
)
306 phys_addr_t paddr
= xen_dma_to_phys(dev
, dma_addr
);
307 struct io_tlb_pool
*pool
;
309 pool
= xen_swiotlb_find_pool(dev
, dma_addr
);
311 __swiotlb_sync_single_for_device(dev
, paddr
, size
, dir
, pool
);
313 if (!dev_is_dma_coherent(dev
)) {
314 if (pfn_valid(PFN_DOWN(dma_to_phys(dev
, dma_addr
))))
315 arch_sync_dma_for_device(paddr
, size
, dir
);
317 xen_dma_sync_for_device(dev
, dma_addr
, size
, dir
);
322 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
323 * concerning calls here are the same as for swiotlb_unmap_page() above.
326 xen_swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
327 enum dma_data_direction dir
, unsigned long attrs
)
329 struct scatterlist
*sg
;
332 BUG_ON(dir
== DMA_NONE
);
334 for_each_sg(sgl
, sg
, nelems
, i
)
335 xen_swiotlb_unmap_page(hwdev
, sg
->dma_address
, sg_dma_len(sg
),
341 xen_swiotlb_map_sg(struct device
*dev
, struct scatterlist
*sgl
, int nelems
,
342 enum dma_data_direction dir
, unsigned long attrs
)
344 struct scatterlist
*sg
;
347 BUG_ON(dir
== DMA_NONE
);
349 for_each_sg(sgl
, sg
, nelems
, i
) {
350 sg
->dma_address
= xen_swiotlb_map_page(dev
, sg_page(sg
),
351 sg
->offset
, sg
->length
, dir
, attrs
);
352 if (sg
->dma_address
== DMA_MAPPING_ERROR
)
354 sg_dma_len(sg
) = sg
->length
;
359 xen_swiotlb_unmap_sg(dev
, sgl
, i
, dir
, attrs
| DMA_ATTR_SKIP_CPU_SYNC
);
365 xen_swiotlb_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sgl
,
366 int nelems
, enum dma_data_direction dir
)
368 struct scatterlist
*sg
;
371 for_each_sg(sgl
, sg
, nelems
, i
) {
372 xen_swiotlb_sync_single_for_cpu(dev
, sg
->dma_address
,
378 xen_swiotlb_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sgl
,
379 int nelems
, enum dma_data_direction dir
)
381 struct scatterlist
*sg
;
384 for_each_sg(sgl
, sg
, nelems
, i
) {
385 xen_swiotlb_sync_single_for_device(dev
, sg
->dma_address
,
391 * Return whether the given device DMA address mask can be supported
392 * properly. For example, if your device can only drive the low 24-bits
393 * during bus mastering, then you would pass 0x00ffffff as the mask to
397 xen_swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
399 return xen_phys_to_dma(hwdev
, default_swiotlb_limit()) <= mask
;
402 const struct dma_map_ops xen_swiotlb_dma_ops
= {
404 .alloc
= xen_swiotlb_alloc_coherent
,
405 .free
= xen_swiotlb_free_coherent
,
407 .alloc
= dma_direct_alloc
,
408 .free
= dma_direct_free
,
410 .sync_single_for_cpu
= xen_swiotlb_sync_single_for_cpu
,
411 .sync_single_for_device
= xen_swiotlb_sync_single_for_device
,
412 .sync_sg_for_cpu
= xen_swiotlb_sync_sg_for_cpu
,
413 .sync_sg_for_device
= xen_swiotlb_sync_sg_for_device
,
414 .map_sg
= xen_swiotlb_map_sg
,
415 .unmap_sg
= xen_swiotlb_unmap_sg
,
416 .map_page
= xen_swiotlb_map_page
,
417 .unmap_page
= xen_swiotlb_unmap_page
,
418 .dma_supported
= xen_swiotlb_dma_supported
,
419 .mmap
= dma_common_mmap
,
420 .get_sgtable
= dma_common_get_sgtable
,
421 .alloc_pages_op
= dma_common_alloc_pages
,
422 .free_pages
= dma_common_free_pages
,
423 .max_mapping_size
= swiotlb_max_mapping_size
,