2 * Copyright (c) 2013, Kenneth MacKay
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #include <crypto/ecc_curve.h>
30 #include <linux/unaligned.h>
32 /* One digit is u64 qword. */
33 #define ECC_CURVE_NIST_P192_DIGITS 3
34 #define ECC_CURVE_NIST_P256_DIGITS 4
35 #define ECC_CURVE_NIST_P384_DIGITS 6
36 #define ECC_CURVE_NIST_P521_DIGITS 9
37 #define ECC_MAX_DIGITS DIV_ROUND_UP(521, 64) /* NIST P521 */
39 #define ECC_DIGITS_TO_BYTES_SHIFT 3
41 #define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
43 #define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits }
46 * The integers r and s making up the signature are expected to be
47 * formatted as two consecutive u64 arrays of size ECC_MAX_BYTES.
48 * The bytes within each u64 digit are in native endianness,
49 * but the order of the u64 digits themselves is little endian.
50 * This format allows direct use by internal vli_*() functions.
52 struct ecdsa_raw_sig
{
53 u64 r
[ECC_MAX_DIGITS
];
54 u64 s
[ECC_MAX_DIGITS
];
58 * ecc_swap_digits() - Copy ndigits from big endian array to native array
61 * @ndigits: Number of digits to copy
63 static inline void ecc_swap_digits(const void *in
, u64
*out
, unsigned int ndigits
)
65 const __be64
*src
= (__force __be64
*)in
;
68 for (i
= 0; i
< ndigits
; i
++)
69 out
[i
] = get_unaligned_be64(&src
[ndigits
- 1 - i
]);
73 * ecc_digits_from_bytes() - Create ndigits-sized digits array from byte array
74 * @in: Input byte array
75 * @nbytes Size of input byte array
76 * @out Output digits array
77 * @ndigits: Number of digits to create from byte array
79 * The first byte in the input byte array is expected to hold the most
80 * significant bits of the large integer.
82 void ecc_digits_from_bytes(const u8
*in
, unsigned int nbytes
,
83 u64
*out
, unsigned int ndigits
);
86 * ecc_is_key_valid() - Validate a given ECDH private key
88 * @curve_id: id representing the curve to use
89 * @ndigits: curve's number of digits
90 * @private_key: private key to be used for the given curve
91 * @private_key_len: private key length
93 * Returns 0 if the key is acceptable, a negative value otherwise
95 int ecc_is_key_valid(unsigned int curve_id
, unsigned int ndigits
,
96 const u64
*private_key
, unsigned int private_key_len
);
99 * ecc_gen_privkey() - Generates an ECC private key.
100 * The private key is a random integer in the range 0 < random < n, where n is a
101 * prime that is the order of the cyclic subgroup generated by the distinguished
103 * @curve_id: id representing the curve to use
104 * @ndigits: curve number of digits
105 * @private_key: buffer for storing the generated private key
107 * Returns 0 if the private key was generated successfully, a negative value
108 * if an error occurred.
110 int ecc_gen_privkey(unsigned int curve_id
, unsigned int ndigits
,
114 * ecc_make_pub_key() - Compute an ECC public key
116 * @curve_id: id representing the curve to use
117 * @ndigits: curve's number of digits
118 * @private_key: pregenerated private key for the given curve
119 * @public_key: buffer for storing the generated public key
121 * Returns 0 if the public key was generated successfully, a negative value
122 * if an error occurred.
124 int ecc_make_pub_key(const unsigned int curve_id
, unsigned int ndigits
,
125 const u64
*private_key
, u64
*public_key
);
128 * crypto_ecdh_shared_secret() - Compute a shared secret
130 * @curve_id: id representing the curve to use
131 * @ndigits: curve's number of digits
132 * @private_key: private key of part A
133 * @public_key: public key of counterpart B
134 * @secret: buffer for storing the calculated shared secret
136 * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
137 * before using it for symmetric encryption or HMAC.
139 * Returns 0 if the shared secret was generated successfully, a negative value
140 * if an error occurred.
142 int crypto_ecdh_shared_secret(unsigned int curve_id
, unsigned int ndigits
,
143 const u64
*private_key
, const u64
*public_key
,
147 * ecc_is_pubkey_valid_partial() - Partial public key validation
149 * @curve: elliptic curve domain parameters
150 * @pk: public key as a point
152 * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
153 * Public-Key Validation Routine.
155 * Note: There is no check that the public key is in the correct elliptic curve
158 * Return: 0 if validation is successful, -EINVAL if validation is failed.
160 int ecc_is_pubkey_valid_partial(const struct ecc_curve
*curve
,
161 struct ecc_point
*pk
);
164 * ecc_is_pubkey_valid_full() - Full public key validation
166 * @curve: elliptic curve domain parameters
167 * @pk: public key as a point
169 * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
170 * Public-Key Validation Routine.
172 * Return: 0 if validation is successful, -EINVAL if validation is failed.
174 int ecc_is_pubkey_valid_full(const struct ecc_curve
*curve
,
175 struct ecc_point
*pk
);
178 * vli_is_zero() - Determine is vli is zero
180 * @vli: vli to check.
181 * @ndigits: length of the @vli
183 bool vli_is_zero(const u64
*vli
, unsigned int ndigits
);
186 * vli_cmp() - compare left and right vlis
190 * @ndigits: length of both vlis
192 * Returns sign of @left - @right, i.e. -1 if @left < @right,
193 * 0 if @left == @right, 1 if @left > @right.
195 int vli_cmp(const u64
*left
, const u64
*right
, unsigned int ndigits
);
198 * vli_sub() - Subtracts right from left
200 * @result: where to write result
203 * @ndigits: length of all vlis
205 * Note: can modify in-place.
209 u64
vli_sub(u64
*result
, const u64
*left
, const u64
*right
,
210 unsigned int ndigits
);
213 * vli_from_be64() - Load vli from big-endian u64 array
215 * @dest: destination vli
216 * @src: source array of u64 BE values
217 * @ndigits: length of both vli and array
219 void vli_from_be64(u64
*dest
, const void *src
, unsigned int ndigits
);
222 * vli_from_le64() - Load vli from little-endian u64 array
224 * @dest: destination vli
225 * @src: source array of u64 LE values
226 * @ndigits: length of both vli and array
228 void vli_from_le64(u64
*dest
, const void *src
, unsigned int ndigits
);
231 * vli_mod_inv() - Modular inversion
233 * @result: where to write vli number
234 * @input: vli value to operate on
236 * @ndigits: length of all vlis
238 void vli_mod_inv(u64
*result
, const u64
*input
, const u64
*mod
,
239 unsigned int ndigits
);
242 * vli_mod_mult_slow() - Modular multiplication
244 * @result: where to write result value
245 * @left: vli number to multiply with @right
246 * @right: vli number to multiply with @left
248 * @ndigits: length of all vlis
250 * Note: Assumes that mod is big enough curve order.
252 void vli_mod_mult_slow(u64
*result
, const u64
*left
, const u64
*right
,
253 const u64
*mod
, unsigned int ndigits
);
256 * vli_num_bits() - Counts the number of bits required for vli.
258 * @vli: vli to check.
259 * @ndigits: Length of the @vli
261 * Return: The number of bits required to represent @vli.
263 unsigned int vli_num_bits(const u64
*vli
, unsigned int ndigits
);
266 * ecc_aloc_point() - Allocate ECC point.
268 * @ndigits: Length of vlis in u64 qwords.
270 * Return: Pointer to the allocated point or NULL if allocation failed.
272 struct ecc_point
*ecc_alloc_point(unsigned int ndigits
);
275 * ecc_free_point() - Free ECC point.
277 * @p: The point to free.
279 void ecc_free_point(struct ecc_point
*p
);
282 * ecc_point_is_zero() - Check if point is zero.
284 * @p: Point to check for zero.
286 * Return: true if point is the point at infinity, false otherwise.
288 bool ecc_point_is_zero(const struct ecc_point
*point
);
291 * ecc_point_mult_shamir() - Add two points multiplied by scalars
293 * @result: resulting point
294 * @x: scalar to multiply with @p
295 * @p: point to multiply with @x
296 * @y: scalar to multiply with @q
297 * @q: point to multiply with @y
300 * Returns result = x * p + x * q over the curve.
301 * This works faster than two multiplications and addition.
303 void ecc_point_mult_shamir(const struct ecc_point
*result
,
304 const u64
*x
, const struct ecc_point
*p
,
305 const u64
*y
, const struct ecc_point
*q
,
306 const struct ecc_curve
*curve
);
308 extern struct crypto_template ecdsa_x962_tmpl
;
309 extern struct crypto_template ecdsa_p1363_tmpl
;