1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
8 #include <linux/pgalloc_tag.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
37 struct anon_vma_chain
;
42 extern int sysctl_page_lock_unfairness
;
44 void mm_core_init(void);
45 void init_mm_internals(void);
47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr
;
50 static inline void set_max_mapnr(unsigned long limit
)
55 static inline void set_max_mapnr(unsigned long limit
) { }
58 extern atomic_long_t _totalram_pages
;
59 static inline unsigned long totalram_pages(void)
61 return (unsigned long)atomic_long_read(&_totalram_pages
);
64 static inline void totalram_pages_inc(void)
66 atomic_long_inc(&_totalram_pages
);
69 static inline void totalram_pages_dec(void)
71 atomic_long_dec(&_totalram_pages
);
74 static inline void totalram_pages_add(long count
)
76 atomic_long_add(count
, &_totalram_pages
);
79 extern void * high_memory
;
80 extern int page_cluster
;
81 extern const int page_cluster_max
;
84 extern int sysctl_legacy_va_layout
;
86 #define sysctl_legacy_va_layout 0
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min
;
91 extern int mmap_rnd_bits_max __ro_after_init
;
92 extern int mmap_rnd_bits __read_mostly
;
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min
;
96 extern const int mmap_rnd_compat_bits_max
;
97 extern int mmap_rnd_compat_bits __read_mostly
;
100 #ifndef DIRECT_MAP_PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
104 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
108 #include <asm/page.h>
109 #include <asm/processor.h>
112 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
116 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
120 #define lm_alias(x) __va(__pa_symbol(x))
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X) (0)
135 * On some architectures it is expensive to call memset() for small sizes.
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 96
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
144 * combine write statements if they are both assignments and can be reordered,
145 * this can result in several of the writes here being dropped.
147 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148 static inline void __mm_zero_struct_page(struct page
*page
)
150 unsigned long *_pp
= (void *)page
;
152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 BUILD_BUG_ON(sizeof(struct page
) & 7);
154 BUILD_BUG_ON(sizeof(struct page
) < 56);
155 BUILD_BUG_ON(sizeof(struct page
) > 96);
157 switch (sizeof(struct page
)) {
184 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
203 #define MAPCOUNT_ELF_CORE_MARGIN (5)
204 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
206 extern int sysctl_max_map_count
;
208 extern unsigned long sysctl_user_reserve_kbytes
;
209 extern unsigned long sysctl_admin_reserve_kbytes
;
211 extern int sysctl_overcommit_memory
;
212 extern int sysctl_overcommit_ratio
;
213 extern unsigned long sysctl_overcommit_kbytes
;
215 int overcommit_ratio_handler(const struct ctl_table
*, int, void *, size_t *,
217 int overcommit_kbytes_handler(const struct ctl_table
*, int, void *, size_t *,
219 int overcommit_policy_handler(const struct ctl_table
*, int, void *, size_t *,
222 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
223 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
224 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
226 #define nth_page(page,n) ((page) + (n))
227 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
230 /* to align the pointer to the (next) page boundary */
231 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
233 /* to align the pointer to the (prev) page boundary */
234 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
239 static inline struct folio
*lru_to_folio(struct list_head
*head
)
241 return list_entry((head
)->prev
, struct folio
, lru
);
244 void setup_initial_init_mm(void *start_code
, void *end_code
,
245 void *end_data
, void *brk
);
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
256 struct vm_area_struct
*vm_area_alloc(struct mm_struct
*);
257 struct vm_area_struct
*vm_area_dup(struct vm_area_struct
*);
258 void vm_area_free(struct vm_area_struct
*);
259 /* Use only if VMA has no other users */
260 void __vm_area_free(struct vm_area_struct
*vma
);
263 extern struct rb_root nommu_region_tree
;
264 extern struct rw_semaphore nommu_region_sem
;
266 extern unsigned int kobjsize(const void *objp
);
270 * vm_flags in vm_area_struct, see mm_types.h.
271 * When changing, update also include/trace/events/mmflags.h
273 #define VM_NONE 0x00000000
275 #define VM_READ 0x00000001 /* currently active flags */
276 #define VM_WRITE 0x00000002
277 #define VM_EXEC 0x00000004
278 #define VM_SHARED 0x00000008
280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
282 #define VM_MAYWRITE 0x00000020
283 #define VM_MAYEXEC 0x00000040
284 #define VM_MAYSHARE 0x00000080
286 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
288 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
289 #else /* CONFIG_MMU */
290 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291 #define VM_UFFD_MISSING 0
292 #endif /* CONFIG_MMU */
293 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
294 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
296 #define VM_LOCKED 0x00002000
297 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
299 /* Used by sys_madvise() */
300 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
301 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
303 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
307 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
308 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
309 #define VM_SYNC 0x00800000 /* Synchronous page faults */
310 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
311 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
312 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
317 # define VM_SOFTDIRTY 0
320 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
334 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
335 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
336 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
337 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
338 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
339 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
340 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
342 #ifdef CONFIG_ARCH_HAS_PKEYS
343 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
344 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
345 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
346 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
347 #if CONFIG_ARCH_PKEY_BITS > 3
348 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
350 # define VM_PKEY_BIT3 0
352 #if CONFIG_ARCH_PKEY_BITS > 4
353 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
355 # define VM_PKEY_BIT4 0
357 #endif /* CONFIG_ARCH_HAS_PKEYS */
359 #ifdef CONFIG_X86_USER_SHADOW_STACK
361 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
364 * These VMAs will get a single end guard page. This helps userspace protect
365 * itself from attacks. A single page is enough for current shadow stack archs
366 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
367 * for more details on the guard size.
369 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
372 #if defined(CONFIG_ARM64_GCS)
374 * arm64's Guarded Control Stack implements similar functionality and
375 * has similar constraints to shadow stacks.
377 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
380 #ifndef VM_SHADOW_STACK
381 # define VM_SHADOW_STACK VM_NONE
384 #if defined(CONFIG_X86)
385 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
386 #elif defined(CONFIG_PPC64)
387 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
388 #elif defined(CONFIG_PARISC)
389 # define VM_GROWSUP VM_ARCH_1
390 #elif defined(CONFIG_SPARC64)
391 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
392 # define VM_ARCH_CLEAR VM_SPARC_ADI
393 #elif defined(CONFIG_ARM64)
394 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
395 # define VM_ARCH_CLEAR VM_ARM64_BTI
396 #elif !defined(CONFIG_MMU)
397 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
400 #if defined(CONFIG_ARM64_MTE)
401 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
402 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
404 # define VM_MTE VM_NONE
405 # define VM_MTE_ALLOWED VM_NONE
409 # define VM_GROWSUP VM_NONE
412 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
413 # define VM_UFFD_MINOR_BIT 38
414 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
415 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
416 # define VM_UFFD_MINOR VM_NONE
417 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
420 * This flag is used to connect VFIO to arch specific KVM code. It
421 * indicates that the memory under this VMA is safe for use with any
422 * non-cachable memory type inside KVM. Some VFIO devices, on some
423 * platforms, are thought to be unsafe and can cause machine crashes
424 * if KVM does not lock down the memory type.
427 #define VM_ALLOW_ANY_UNCACHED_BIT 39
428 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
430 #define VM_ALLOW_ANY_UNCACHED VM_NONE
434 #define VM_DROPPABLE_BIT 40
435 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
436 #elif defined(CONFIG_PPC32)
437 #define VM_DROPPABLE VM_ARCH_1
439 #define VM_DROPPABLE VM_NONE
443 /* VM is sealed, in vm_flags */
444 #define VM_SEALED _BITUL(63)
447 /* Bits set in the VMA until the stack is in its final location */
448 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
450 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
452 /* Common data flag combinations */
453 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
454 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
455 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
456 VM_MAYWRITE | VM_MAYEXEC)
457 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
458 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
460 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
461 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
464 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
465 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
468 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
470 #ifdef CONFIG_STACK_GROWSUP
471 #define VM_STACK VM_GROWSUP
472 #define VM_STACK_EARLY VM_GROWSDOWN
474 #define VM_STACK VM_GROWSDOWN
475 #define VM_STACK_EARLY 0
478 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
480 /* VMA basic access permission flags */
481 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
485 * Special vmas that are non-mergable, non-mlock()able.
487 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
489 /* This mask prevents VMA from being scanned with khugepaged */
490 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
492 /* This mask defines which mm->def_flags a process can inherit its parent */
493 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
495 /* This mask represents all the VMA flag bits used by mlock */
496 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
498 /* Arch-specific flags to clear when updating VM flags on protection change */
499 #ifndef VM_ARCH_CLEAR
500 # define VM_ARCH_CLEAR VM_NONE
502 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
505 * mapping from the currently active vm_flags protection bits (the
506 * low four bits) to a page protection mask..
510 * The default fault flags that should be used by most of the
511 * arch-specific page fault handlers.
513 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
514 FAULT_FLAG_KILLABLE | \
515 FAULT_FLAG_INTERRUPTIBLE)
518 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
519 * @flags: Fault flags.
521 * This is mostly used for places where we want to try to avoid taking
522 * the mmap_lock for too long a time when waiting for another condition
523 * to change, in which case we can try to be polite to release the
524 * mmap_lock in the first round to avoid potential starvation of other
525 * processes that would also want the mmap_lock.
527 * Return: true if the page fault allows retry and this is the first
528 * attempt of the fault handling; false otherwise.
530 static inline bool fault_flag_allow_retry_first(enum fault_flag flags
)
532 return (flags
& FAULT_FLAG_ALLOW_RETRY
) &&
533 (!(flags
& FAULT_FLAG_TRIED
));
536 #define FAULT_FLAG_TRACE \
537 { FAULT_FLAG_WRITE, "WRITE" }, \
538 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
539 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
540 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
541 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
542 { FAULT_FLAG_TRIED, "TRIED" }, \
543 { FAULT_FLAG_USER, "USER" }, \
544 { FAULT_FLAG_REMOTE, "REMOTE" }, \
545 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
546 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
547 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
550 * vm_fault is filled by the pagefault handler and passed to the vma's
551 * ->fault function. The vma's ->fault is responsible for returning a bitmask
552 * of VM_FAULT_xxx flags that give details about how the fault was handled.
554 * MM layer fills up gfp_mask for page allocations but fault handler might
555 * alter it if its implementation requires a different allocation context.
557 * pgoff should be used in favour of virtual_address, if possible.
561 struct vm_area_struct
*vma
; /* Target VMA */
562 gfp_t gfp_mask
; /* gfp mask to be used for allocations */
563 pgoff_t pgoff
; /* Logical page offset based on vma */
564 unsigned long address
; /* Faulting virtual address - masked */
565 unsigned long real_address
; /* Faulting virtual address - unmasked */
567 enum fault_flag flags
; /* FAULT_FLAG_xxx flags
568 * XXX: should really be 'const' */
569 pmd_t
*pmd
; /* Pointer to pmd entry matching
571 pud_t
*pud
; /* Pointer to pud entry matching
575 pte_t orig_pte
; /* Value of PTE at the time of fault */
576 pmd_t orig_pmd
; /* Value of PMD at the time of fault,
577 * used by PMD fault only.
581 struct page
*cow_page
; /* Page handler may use for COW fault */
582 struct page
*page
; /* ->fault handlers should return a
583 * page here, unless VM_FAULT_NOPAGE
584 * is set (which is also implied by
587 /* These three entries are valid only while holding ptl lock */
588 pte_t
*pte
; /* Pointer to pte entry matching
589 * the 'address'. NULL if the page
590 * table hasn't been allocated.
592 spinlock_t
*ptl
; /* Page table lock.
593 * Protects pte page table if 'pte'
594 * is not NULL, otherwise pmd.
596 pgtable_t prealloc_pte
; /* Pre-allocated pte page table.
597 * vm_ops->map_pages() sets up a page
598 * table from atomic context.
599 * do_fault_around() pre-allocates
600 * page table to avoid allocation from
606 * These are the virtual MM functions - opening of an area, closing and
607 * unmapping it (needed to keep files on disk up-to-date etc), pointer
608 * to the functions called when a no-page or a wp-page exception occurs.
610 struct vm_operations_struct
{
611 void (*open
)(struct vm_area_struct
* area
);
613 * @close: Called when the VMA is being removed from the MM.
614 * Context: User context. May sleep. Caller holds mmap_lock.
616 void (*close
)(struct vm_area_struct
* area
);
617 /* Called any time before splitting to check if it's allowed */
618 int (*may_split
)(struct vm_area_struct
*area
, unsigned long addr
);
619 int (*mremap
)(struct vm_area_struct
*area
);
621 * Called by mprotect() to make driver-specific permission
622 * checks before mprotect() is finalised. The VMA must not
623 * be modified. Returns 0 if mprotect() can proceed.
625 int (*mprotect
)(struct vm_area_struct
*vma
, unsigned long start
,
626 unsigned long end
, unsigned long newflags
);
627 vm_fault_t (*fault
)(struct vm_fault
*vmf
);
628 vm_fault_t (*huge_fault
)(struct vm_fault
*vmf
, unsigned int order
);
629 vm_fault_t (*map_pages
)(struct vm_fault
*vmf
,
630 pgoff_t start_pgoff
, pgoff_t end_pgoff
);
631 unsigned long (*pagesize
)(struct vm_area_struct
* area
);
633 /* notification that a previously read-only page is about to become
634 * writable, if an error is returned it will cause a SIGBUS */
635 vm_fault_t (*page_mkwrite
)(struct vm_fault
*vmf
);
637 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
638 vm_fault_t (*pfn_mkwrite
)(struct vm_fault
*vmf
);
640 /* called by access_process_vm when get_user_pages() fails, typically
641 * for use by special VMAs. See also generic_access_phys() for a generic
642 * implementation useful for any iomem mapping.
644 int (*access
)(struct vm_area_struct
*vma
, unsigned long addr
,
645 void *buf
, int len
, int write
);
647 /* Called by the /proc/PID/maps code to ask the vma whether it
648 * has a special name. Returning non-NULL will also cause this
649 * vma to be dumped unconditionally. */
650 const char *(*name
)(struct vm_area_struct
*vma
);
654 * set_policy() op must add a reference to any non-NULL @new mempolicy
655 * to hold the policy upon return. Caller should pass NULL @new to
656 * remove a policy and fall back to surrounding context--i.e. do not
657 * install a MPOL_DEFAULT policy, nor the task or system default
660 int (*set_policy
)(struct vm_area_struct
*vma
, struct mempolicy
*new);
663 * get_policy() op must add reference [mpol_get()] to any policy at
664 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
665 * in mm/mempolicy.c will do this automatically.
666 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
667 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
668 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
669 * must return NULL--i.e., do not "fallback" to task or system default
672 struct mempolicy
*(*get_policy
)(struct vm_area_struct
*vma
,
673 unsigned long addr
, pgoff_t
*ilx
);
676 * Called by vm_normal_page() for special PTEs to find the
677 * page for @addr. This is useful if the default behavior
678 * (using pte_page()) would not find the correct page.
680 struct page
*(*find_special_page
)(struct vm_area_struct
*vma
,
684 #ifdef CONFIG_NUMA_BALANCING
685 static inline void vma_numab_state_init(struct vm_area_struct
*vma
)
687 vma
->numab_state
= NULL
;
689 static inline void vma_numab_state_free(struct vm_area_struct
*vma
)
691 kfree(vma
->numab_state
);
694 static inline void vma_numab_state_init(struct vm_area_struct
*vma
) {}
695 static inline void vma_numab_state_free(struct vm_area_struct
*vma
) {}
696 #endif /* CONFIG_NUMA_BALANCING */
698 #ifdef CONFIG_PER_VMA_LOCK
700 * Try to read-lock a vma. The function is allowed to occasionally yield false
701 * locked result to avoid performance overhead, in which case we fall back to
702 * using mmap_lock. The function should never yield false unlocked result.
704 static inline bool vma_start_read(struct vm_area_struct
*vma
)
707 * Check before locking. A race might cause false locked result.
708 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
709 * ACQUIRE semantics, because this is just a lockless check whose result
710 * we don't rely on for anything - the mm_lock_seq read against which we
711 * need ordering is below.
713 if (READ_ONCE(vma
->vm_lock_seq
) == READ_ONCE(vma
->vm_mm
->mm_lock_seq
))
716 if (unlikely(down_read_trylock(&vma
->vm_lock
->lock
) == 0))
720 * Overflow might produce false locked result.
721 * False unlocked result is impossible because we modify and check
722 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
723 * modification invalidates all existing locks.
725 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
726 * racing with vma_end_write_all(), we only start reading from the VMA
727 * after it has been unlocked.
728 * This pairs with RELEASE semantics in vma_end_write_all().
730 if (unlikely(vma
->vm_lock_seq
== smp_load_acquire(&vma
->vm_mm
->mm_lock_seq
))) {
731 up_read(&vma
->vm_lock
->lock
);
737 static inline void vma_end_read(struct vm_area_struct
*vma
)
739 rcu_read_lock(); /* keeps vma alive till the end of up_read */
740 up_read(&vma
->vm_lock
->lock
);
744 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
745 static bool __is_vma_write_locked(struct vm_area_struct
*vma
, int *mm_lock_seq
)
747 mmap_assert_write_locked(vma
->vm_mm
);
750 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
751 * mm->mm_lock_seq can't be concurrently modified.
753 *mm_lock_seq
= vma
->vm_mm
->mm_lock_seq
;
754 return (vma
->vm_lock_seq
== *mm_lock_seq
);
758 * Begin writing to a VMA.
759 * Exclude concurrent readers under the per-VMA lock until the currently
760 * write-locked mmap_lock is dropped or downgraded.
762 static inline void vma_start_write(struct vm_area_struct
*vma
)
766 if (__is_vma_write_locked(vma
, &mm_lock_seq
))
769 down_write(&vma
->vm_lock
->lock
);
771 * We should use WRITE_ONCE() here because we can have concurrent reads
772 * from the early lockless pessimistic check in vma_start_read().
773 * We don't really care about the correctness of that early check, but
774 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
776 WRITE_ONCE(vma
->vm_lock_seq
, mm_lock_seq
);
777 up_write(&vma
->vm_lock
->lock
);
780 static inline void vma_assert_write_locked(struct vm_area_struct
*vma
)
784 VM_BUG_ON_VMA(!__is_vma_write_locked(vma
, &mm_lock_seq
), vma
);
787 static inline void vma_assert_locked(struct vm_area_struct
*vma
)
789 if (!rwsem_is_locked(&vma
->vm_lock
->lock
))
790 vma_assert_write_locked(vma
);
793 static inline void vma_mark_detached(struct vm_area_struct
*vma
, bool detached
)
795 /* When detaching vma should be write-locked */
797 vma_assert_write_locked(vma
);
798 vma
->detached
= detached
;
801 static inline void release_fault_lock(struct vm_fault
*vmf
)
803 if (vmf
->flags
& FAULT_FLAG_VMA_LOCK
)
804 vma_end_read(vmf
->vma
);
806 mmap_read_unlock(vmf
->vma
->vm_mm
);
809 static inline void assert_fault_locked(struct vm_fault
*vmf
)
811 if (vmf
->flags
& FAULT_FLAG_VMA_LOCK
)
812 vma_assert_locked(vmf
->vma
);
814 mmap_assert_locked(vmf
->vma
->vm_mm
);
817 struct vm_area_struct
*lock_vma_under_rcu(struct mm_struct
*mm
,
818 unsigned long address
);
820 #else /* CONFIG_PER_VMA_LOCK */
822 static inline bool vma_start_read(struct vm_area_struct
*vma
)
824 static inline void vma_end_read(struct vm_area_struct
*vma
) {}
825 static inline void vma_start_write(struct vm_area_struct
*vma
) {}
826 static inline void vma_assert_write_locked(struct vm_area_struct
*vma
)
827 { mmap_assert_write_locked(vma
->vm_mm
); }
828 static inline void vma_mark_detached(struct vm_area_struct
*vma
,
831 static inline struct vm_area_struct
*lock_vma_under_rcu(struct mm_struct
*mm
,
832 unsigned long address
)
837 static inline void vma_assert_locked(struct vm_area_struct
*vma
)
839 mmap_assert_locked(vma
->vm_mm
);
842 static inline void release_fault_lock(struct vm_fault
*vmf
)
844 mmap_read_unlock(vmf
->vma
->vm_mm
);
847 static inline void assert_fault_locked(struct vm_fault
*vmf
)
849 mmap_assert_locked(vmf
->vma
->vm_mm
);
852 #endif /* CONFIG_PER_VMA_LOCK */
854 extern const struct vm_operations_struct vma_dummy_vm_ops
;
857 * WARNING: vma_init does not initialize vma->vm_lock.
858 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
860 static inline void vma_init(struct vm_area_struct
*vma
, struct mm_struct
*mm
)
862 memset(vma
, 0, sizeof(*vma
));
864 vma
->vm_ops
= &vma_dummy_vm_ops
;
865 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
866 vma_mark_detached(vma
, false);
867 vma_numab_state_init(vma
);
870 /* Use when VMA is not part of the VMA tree and needs no locking */
871 static inline void vm_flags_init(struct vm_area_struct
*vma
,
874 ACCESS_PRIVATE(vma
, __vm_flags
) = flags
;
878 * Use when VMA is part of the VMA tree and modifications need coordination
879 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
880 * it should be locked explicitly beforehand.
882 static inline void vm_flags_reset(struct vm_area_struct
*vma
,
885 vma_assert_write_locked(vma
);
886 vm_flags_init(vma
, flags
);
889 static inline void vm_flags_reset_once(struct vm_area_struct
*vma
,
892 vma_assert_write_locked(vma
);
893 WRITE_ONCE(ACCESS_PRIVATE(vma
, __vm_flags
), flags
);
896 static inline void vm_flags_set(struct vm_area_struct
*vma
,
899 vma_start_write(vma
);
900 ACCESS_PRIVATE(vma
, __vm_flags
) |= flags
;
903 static inline void vm_flags_clear(struct vm_area_struct
*vma
,
906 vma_start_write(vma
);
907 ACCESS_PRIVATE(vma
, __vm_flags
) &= ~flags
;
911 * Use only if VMA is not part of the VMA tree or has no other users and
912 * therefore needs no locking.
914 static inline void __vm_flags_mod(struct vm_area_struct
*vma
,
915 vm_flags_t set
, vm_flags_t clear
)
917 vm_flags_init(vma
, (vma
->vm_flags
| set
) & ~clear
);
921 * Use only when the order of set/clear operations is unimportant, otherwise
922 * use vm_flags_{set|clear} explicitly.
924 static inline void vm_flags_mod(struct vm_area_struct
*vma
,
925 vm_flags_t set
, vm_flags_t clear
)
927 vma_start_write(vma
);
928 __vm_flags_mod(vma
, set
, clear
);
931 static inline void vma_set_anonymous(struct vm_area_struct
*vma
)
936 static inline bool vma_is_anonymous(struct vm_area_struct
*vma
)
942 * Indicate if the VMA is a heap for the given task; for
943 * /proc/PID/maps that is the heap of the main task.
945 static inline bool vma_is_initial_heap(const struct vm_area_struct
*vma
)
947 return vma
->vm_start
< vma
->vm_mm
->brk
&&
948 vma
->vm_end
> vma
->vm_mm
->start_brk
;
952 * Indicate if the VMA is a stack for the given task; for
953 * /proc/PID/maps that is the stack of the main task.
955 static inline bool vma_is_initial_stack(const struct vm_area_struct
*vma
)
958 * We make no effort to guess what a given thread considers to be
959 * its "stack". It's not even well-defined for programs written
962 return vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
963 vma
->vm_end
>= vma
->vm_mm
->start_stack
;
966 static inline bool vma_is_temporary_stack(struct vm_area_struct
*vma
)
968 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
973 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
974 VM_STACK_INCOMPLETE_SETUP
)
980 static inline bool vma_is_foreign(struct vm_area_struct
*vma
)
985 if (current
->mm
!= vma
->vm_mm
)
991 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
993 return vma
->vm_flags
& VM_ACCESS_FLAGS
;
996 static inline bool is_shared_maywrite(vm_flags_t vm_flags
)
998 return (vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) ==
999 (VM_SHARED
| VM_MAYWRITE
);
1002 static inline bool vma_is_shared_maywrite(struct vm_area_struct
*vma
)
1004 return is_shared_maywrite(vma
->vm_flags
);
1008 struct vm_area_struct
*vma_find(struct vma_iterator
*vmi
, unsigned long max
)
1010 return mas_find(&vmi
->mas
, max
- 1);
1013 static inline struct vm_area_struct
*vma_next(struct vma_iterator
*vmi
)
1016 * Uses mas_find() to get the first VMA when the iterator starts.
1017 * Calling mas_next() could skip the first entry.
1019 return mas_find(&vmi
->mas
, ULONG_MAX
);
1023 struct vm_area_struct
*vma_iter_next_range(struct vma_iterator
*vmi
)
1025 return mas_next_range(&vmi
->mas
, ULONG_MAX
);
1029 static inline struct vm_area_struct
*vma_prev(struct vma_iterator
*vmi
)
1031 return mas_prev(&vmi
->mas
, 0);
1034 static inline int vma_iter_clear_gfp(struct vma_iterator
*vmi
,
1035 unsigned long start
, unsigned long end
, gfp_t gfp
)
1037 __mas_set_range(&vmi
->mas
, start
, end
- 1);
1038 mas_store_gfp(&vmi
->mas
, NULL
, gfp
);
1039 if (unlikely(mas_is_err(&vmi
->mas
)))
1045 /* Free any unused preallocations */
1046 static inline void vma_iter_free(struct vma_iterator
*vmi
)
1048 mas_destroy(&vmi
->mas
);
1051 static inline int vma_iter_bulk_store(struct vma_iterator
*vmi
,
1052 struct vm_area_struct
*vma
)
1054 vmi
->mas
.index
= vma
->vm_start
;
1055 vmi
->mas
.last
= vma
->vm_end
- 1;
1056 mas_store(&vmi
->mas
, vma
);
1057 if (unlikely(mas_is_err(&vmi
->mas
)))
1063 static inline void vma_iter_invalidate(struct vma_iterator
*vmi
)
1065 mas_pause(&vmi
->mas
);
1068 static inline void vma_iter_set(struct vma_iterator
*vmi
, unsigned long addr
)
1070 mas_set(&vmi
->mas
, addr
);
1073 #define for_each_vma(__vmi, __vma) \
1074 while (((__vma) = vma_next(&(__vmi))) != NULL)
1076 /* The MM code likes to work with exclusive end addresses */
1077 #define for_each_vma_range(__vmi, __vma, __end) \
1078 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1082 * The vma_is_shmem is not inline because it is used only by slow
1083 * paths in userfault.
1085 bool vma_is_shmem(struct vm_area_struct
*vma
);
1086 bool vma_is_anon_shmem(struct vm_area_struct
*vma
);
1088 static inline bool vma_is_shmem(struct vm_area_struct
*vma
) { return false; }
1089 static inline bool vma_is_anon_shmem(struct vm_area_struct
*vma
) { return false; }
1092 int vma_is_stack_for_current(struct vm_area_struct
*vma
);
1094 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1095 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1101 * compound_order() can be called without holding a reference, which means
1102 * that niceties like page_folio() don't work. These callers should be
1103 * prepared to handle wild return values. For example, PG_head may be
1104 * set before the order is initialised, or this may be a tail page.
1105 * See compaction.c for some good examples.
1107 static inline unsigned int compound_order(struct page
*page
)
1109 struct folio
*folio
= (struct folio
*)page
;
1111 if (!test_bit(PG_head
, &folio
->flags
))
1113 return folio
->_flags_1
& 0xff;
1117 * folio_order - The allocation order of a folio.
1118 * @folio: The folio.
1120 * A folio is composed of 2^order pages. See get_order() for the definition
1123 * Return: The order of the folio.
1125 static inline unsigned int folio_order(const struct folio
*folio
)
1127 if (!folio_test_large(folio
))
1129 return folio
->_flags_1
& 0xff;
1132 #include <linux/huge_mm.h>
1135 * Methods to modify the page usage count.
1137 * What counts for a page usage:
1138 * - cache mapping (page->mapping)
1139 * - private data (page->private)
1140 * - page mapped in a task's page tables, each mapping
1141 * is counted separately
1143 * Also, many kernel routines increase the page count before a critical
1144 * routine so they can be sure the page doesn't go away from under them.
1148 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1150 static inline int put_page_testzero(struct page
*page
)
1152 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
1153 return page_ref_dec_and_test(page
);
1156 static inline int folio_put_testzero(struct folio
*folio
)
1158 return put_page_testzero(&folio
->page
);
1162 * Try to grab a ref unless the page has a refcount of zero, return false if
1164 * This can be called when MMU is off so it must not access
1165 * any of the virtual mappings.
1167 static inline bool get_page_unless_zero(struct page
*page
)
1169 return page_ref_add_unless(page
, 1, 0);
1172 static inline struct folio
*folio_get_nontail_page(struct page
*page
)
1174 if (unlikely(!get_page_unless_zero(page
)))
1176 return (struct folio
*)page
;
1179 extern int page_is_ram(unsigned long pfn
);
1187 int region_intersects(resource_size_t offset
, size_t size
, unsigned long flags
,
1188 unsigned long desc
);
1190 /* Support for virtually mapped pages */
1191 struct page
*vmalloc_to_page(const void *addr
);
1192 unsigned long vmalloc_to_pfn(const void *addr
);
1195 * Determine if an address is within the vmalloc range
1197 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1198 * is no special casing required.
1201 extern bool is_vmalloc_addr(const void *x
);
1202 extern int is_vmalloc_or_module_addr(const void *x
);
1204 static inline bool is_vmalloc_addr(const void *x
)
1208 static inline int is_vmalloc_or_module_addr(const void *x
)
1215 * How many times the entire folio is mapped as a single unit (eg by a
1216 * PMD or PUD entry). This is probably not what you want, except for
1217 * debugging purposes or implementation of other core folio_*() primitives.
1219 static inline int folio_entire_mapcount(const struct folio
*folio
)
1221 VM_BUG_ON_FOLIO(!folio_test_large(folio
), folio
);
1222 return atomic_read(&folio
->_entire_mapcount
) + 1;
1225 static inline int folio_large_mapcount(const struct folio
*folio
)
1227 VM_WARN_ON_FOLIO(!folio_test_large(folio
), folio
);
1228 return atomic_read(&folio
->_large_mapcount
) + 1;
1232 * folio_mapcount() - Number of mappings of this folio.
1233 * @folio: The folio.
1235 * The folio mapcount corresponds to the number of present user page table
1236 * entries that reference any part of a folio. Each such present user page
1237 * table entry must be paired with exactly on folio reference.
1239 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1242 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1243 * references the entire folio counts exactly once, even when such special
1244 * page table entries are comprised of multiple ordinary page table entries.
1246 * Will report 0 for pages which cannot be mapped into userspace, such as
1247 * slab, page tables and similar.
1249 * Return: The number of times this folio is mapped.
1251 static inline int folio_mapcount(const struct folio
*folio
)
1255 if (likely(!folio_test_large(folio
))) {
1256 mapcount
= atomic_read(&folio
->_mapcount
) + 1;
1257 if (page_mapcount_is_type(mapcount
))
1261 return folio_large_mapcount(folio
);
1265 * folio_mapped - Is this folio mapped into userspace?
1266 * @folio: The folio.
1268 * Return: True if any page in this folio is referenced by user page tables.
1270 static inline bool folio_mapped(const struct folio
*folio
)
1272 return folio_mapcount(folio
) >= 1;
1276 * Return true if this page is mapped into pagetables.
1277 * For compound page it returns true if any sub-page of compound page is mapped,
1278 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1280 static inline bool page_mapped(const struct page
*page
)
1282 return folio_mapped(page_folio(page
));
1285 static inline struct page
*virt_to_head_page(const void *x
)
1287 struct page
*page
= virt_to_page(x
);
1289 return compound_head(page
);
1292 static inline struct folio
*virt_to_folio(const void *x
)
1294 struct page
*page
= virt_to_page(x
);
1296 return page_folio(page
);
1299 void __folio_put(struct folio
*folio
);
1301 void split_page(struct page
*page
, unsigned int order
);
1302 void folio_copy(struct folio
*dst
, struct folio
*src
);
1303 int folio_mc_copy(struct folio
*dst
, struct folio
*src
);
1305 unsigned long nr_free_buffer_pages(void);
1307 /* Returns the number of bytes in this potentially compound page. */
1308 static inline unsigned long page_size(struct page
*page
)
1310 return PAGE_SIZE
<< compound_order(page
);
1313 /* Returns the number of bits needed for the number of bytes in a page */
1314 static inline unsigned int page_shift(struct page
*page
)
1316 return PAGE_SHIFT
+ compound_order(page
);
1320 * thp_order - Order of a transparent huge page.
1321 * @page: Head page of a transparent huge page.
1323 static inline unsigned int thp_order(struct page
*page
)
1325 VM_BUG_ON_PGFLAGS(PageTail(page
), page
);
1326 return compound_order(page
);
1330 * thp_size - Size of a transparent huge page.
1331 * @page: Head page of a transparent huge page.
1333 * Return: Number of bytes in this page.
1335 static inline unsigned long thp_size(struct page
*page
)
1337 return PAGE_SIZE
<< thp_order(page
);
1342 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1343 * servicing faults for write access. In the normal case, do always want
1344 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1345 * that do not have writing enabled, when used by access_process_vm.
1347 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1349 if (likely(vma
->vm_flags
& VM_WRITE
))
1350 pte
= pte_mkwrite(pte
, vma
);
1354 vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
);
1355 void set_pte_range(struct vm_fault
*vmf
, struct folio
*folio
,
1356 struct page
*page
, unsigned int nr
, unsigned long addr
);
1358 vm_fault_t
finish_fault(struct vm_fault
*vmf
);
1362 * Multiple processes may "see" the same page. E.g. for untouched
1363 * mappings of /dev/null, all processes see the same page full of
1364 * zeroes, and text pages of executables and shared libraries have
1365 * only one copy in memory, at most, normally.
1367 * For the non-reserved pages, page_count(page) denotes a reference count.
1368 * page_count() == 0 means the page is free. page->lru is then used for
1369 * freelist management in the buddy allocator.
1370 * page_count() > 0 means the page has been allocated.
1372 * Pages are allocated by the slab allocator in order to provide memory
1373 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1374 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1375 * unless a particular usage is carefully commented. (the responsibility of
1376 * freeing the kmalloc memory is the caller's, of course).
1378 * A page may be used by anyone else who does a __get_free_page().
1379 * In this case, page_count still tracks the references, and should only
1380 * be used through the normal accessor functions. The top bits of page->flags
1381 * and page->virtual store page management information, but all other fields
1382 * are unused and could be used privately, carefully. The management of this
1383 * page is the responsibility of the one who allocated it, and those who have
1384 * subsequently been given references to it.
1386 * The other pages (we may call them "pagecache pages") are completely
1387 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1388 * The following discussion applies only to them.
1390 * A pagecache page contains an opaque `private' member, which belongs to the
1391 * page's address_space. Usually, this is the address of a circular list of
1392 * the page's disk buffers. PG_private must be set to tell the VM to call
1393 * into the filesystem to release these pages.
1395 * A page may belong to an inode's memory mapping. In this case, page->mapping
1396 * is the pointer to the inode, and page->index is the file offset of the page,
1397 * in units of PAGE_SIZE.
1399 * If pagecache pages are not associated with an inode, they are said to be
1400 * anonymous pages. These may become associated with the swapcache, and in that
1401 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1403 * In either case (swapcache or inode backed), the pagecache itself holds one
1404 * reference to the page. Setting PG_private should also increment the
1405 * refcount. The each user mapping also has a reference to the page.
1407 * The pagecache pages are stored in a per-mapping radix tree, which is
1408 * rooted at mapping->i_pages, and indexed by offset.
1409 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1410 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1412 * All pagecache pages may be subject to I/O:
1413 * - inode pages may need to be read from disk,
1414 * - inode pages which have been modified and are MAP_SHARED may need
1415 * to be written back to the inode on disk,
1416 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1417 * modified may need to be swapped out to swap space and (later) to be read
1421 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1422 DECLARE_STATIC_KEY_FALSE(devmap_managed_key
);
1424 bool __put_devmap_managed_folio_refs(struct folio
*folio
, int refs
);
1425 static inline bool put_devmap_managed_folio_refs(struct folio
*folio
, int refs
)
1427 if (!static_branch_unlikely(&devmap_managed_key
))
1429 if (!folio_is_zone_device(folio
))
1431 return __put_devmap_managed_folio_refs(folio
, refs
);
1433 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1434 static inline bool put_devmap_managed_folio_refs(struct folio
*folio
, int refs
)
1438 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1440 /* 127: arbitrary random number, small enough to assemble well */
1441 #define folio_ref_zero_or_close_to_overflow(folio) \
1442 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1445 * folio_get - Increment the reference count on a folio.
1446 * @folio: The folio.
1448 * Context: May be called in any context, as long as you know that
1449 * you have a refcount on the folio. If you do not already have one,
1450 * folio_try_get() may be the right interface for you to use.
1452 static inline void folio_get(struct folio
*folio
)
1454 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio
), folio
);
1455 folio_ref_inc(folio
);
1458 static inline void get_page(struct page
*page
)
1460 folio_get(page_folio(page
));
1463 static inline __must_check
bool try_get_page(struct page
*page
)
1465 page
= compound_head(page
);
1466 if (WARN_ON_ONCE(page_ref_count(page
) <= 0))
1473 * folio_put - Decrement the reference count on a folio.
1474 * @folio: The folio.
1476 * If the folio's reference count reaches zero, the memory will be
1477 * released back to the page allocator and may be used by another
1478 * allocation immediately. Do not access the memory or the struct folio
1479 * after calling folio_put() unless you can be sure that it wasn't the
1482 * Context: May be called in process or interrupt context, but not in NMI
1483 * context. May be called while holding a spinlock.
1485 static inline void folio_put(struct folio
*folio
)
1487 if (folio_put_testzero(folio
))
1492 * folio_put_refs - Reduce the reference count on a folio.
1493 * @folio: The folio.
1494 * @refs: The amount to subtract from the folio's reference count.
1496 * If the folio's reference count reaches zero, the memory will be
1497 * released back to the page allocator and may be used by another
1498 * allocation immediately. Do not access the memory or the struct folio
1499 * after calling folio_put_refs() unless you can be sure that these weren't
1500 * the last references.
1502 * Context: May be called in process or interrupt context, but not in NMI
1503 * context. May be called while holding a spinlock.
1505 static inline void folio_put_refs(struct folio
*folio
, int refs
)
1507 if (folio_ref_sub_and_test(folio
, refs
))
1511 void folios_put_refs(struct folio_batch
*folios
, unsigned int *refs
);
1514 * union release_pages_arg - an array of pages or folios
1516 * release_pages() releases a simple array of multiple pages, and
1517 * accepts various different forms of said page array: either
1518 * a regular old boring array of pages, an array of folios, or
1519 * an array of encoded page pointers.
1521 * The transparent union syntax for this kind of "any of these
1522 * argument types" is all kinds of ugly, so look away.
1525 struct page
**pages
;
1526 struct folio
**folios
;
1527 struct encoded_page
**encoded_pages
;
1528 } release_pages_arg
__attribute__ ((__transparent_union__
));
1530 void release_pages(release_pages_arg
, int nr
);
1533 * folios_put - Decrement the reference count on an array of folios.
1534 * @folios: The folios.
1536 * Like folio_put(), but for a batch of folios. This is more efficient
1537 * than writing the loop yourself as it will optimise the locks which need
1538 * to be taken if the folios are freed. The folios batch is returned
1539 * empty and ready to be reused for another batch; there is no need to
1542 * Context: May be called in process or interrupt context, but not in NMI
1543 * context. May be called while holding a spinlock.
1545 static inline void folios_put(struct folio_batch
*folios
)
1547 folios_put_refs(folios
, NULL
);
1550 static inline void put_page(struct page
*page
)
1552 struct folio
*folio
= page_folio(page
);
1555 * For some devmap managed pages we need to catch refcount transition
1558 if (put_devmap_managed_folio_refs(folio
, 1))
1564 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1565 * the page's refcount so that two separate items are tracked: the original page
1566 * reference count, and also a new count of how many pin_user_pages() calls were
1567 * made against the page. ("gup-pinned" is another term for the latter).
1569 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1570 * distinct from normal pages. As such, the unpin_user_page() call (and its
1571 * variants) must be used in order to release gup-pinned pages.
1575 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1576 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1577 * simpler, due to the fact that adding an even power of two to the page
1578 * refcount has the effect of using only the upper N bits, for the code that
1579 * counts up using the bias value. This means that the lower bits are left for
1580 * the exclusive use of the original code that increments and decrements by one
1581 * (or at least, by much smaller values than the bias value).
1583 * Of course, once the lower bits overflow into the upper bits (and this is
1584 * OK, because subtraction recovers the original values), then visual inspection
1585 * no longer suffices to directly view the separate counts. However, for normal
1586 * applications that don't have huge page reference counts, this won't be an
1589 * Locking: the lockless algorithm described in folio_try_get_rcu()
1590 * provides safe operation for get_user_pages(), folio_mkclean() and
1591 * other calls that race to set up page table entries.
1593 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1595 void unpin_user_page(struct page
*page
);
1596 void unpin_folio(struct folio
*folio
);
1597 void unpin_user_pages_dirty_lock(struct page
**pages
, unsigned long npages
,
1599 void unpin_user_page_range_dirty_lock(struct page
*page
, unsigned long npages
,
1601 void unpin_user_pages(struct page
**pages
, unsigned long npages
);
1602 void unpin_user_folio(struct folio
*folio
, unsigned long npages
);
1603 void unpin_folios(struct folio
**folios
, unsigned long nfolios
);
1605 static inline bool is_cow_mapping(vm_flags_t flags
)
1607 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1611 static inline bool is_nommu_shared_mapping(vm_flags_t flags
)
1614 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1615 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1616 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1617 * underlying memory if ptrace is active, so this is only possible if
1618 * ptrace does not apply. Note that there is no mprotect() to upgrade
1619 * write permissions later.
1621 return flags
& (VM_MAYSHARE
| VM_MAYOVERLAY
);
1625 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1626 #define SECTION_IN_PAGE_FLAGS
1630 * The identification function is mainly used by the buddy allocator for
1631 * determining if two pages could be buddies. We are not really identifying
1632 * the zone since we could be using the section number id if we do not have
1633 * node id available in page flags.
1634 * We only guarantee that it will return the same value for two combinable
1637 static inline int page_zone_id(struct page
*page
)
1639 return (page
->flags
>> ZONEID_PGSHIFT
) & ZONEID_MASK
;
1642 #ifdef NODE_NOT_IN_PAGE_FLAGS
1643 int page_to_nid(const struct page
*page
);
1645 static inline int page_to_nid(const struct page
*page
)
1647 return (PF_POISONED_CHECK(page
)->flags
>> NODES_PGSHIFT
) & NODES_MASK
;
1651 static inline int folio_nid(const struct folio
*folio
)
1653 return page_to_nid(&folio
->page
);
1656 #ifdef CONFIG_NUMA_BALANCING
1657 /* page access time bits needs to hold at least 4 seconds */
1658 #define PAGE_ACCESS_TIME_MIN_BITS 12
1659 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1660 #define PAGE_ACCESS_TIME_BUCKETS \
1661 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1663 #define PAGE_ACCESS_TIME_BUCKETS 0
1666 #define PAGE_ACCESS_TIME_MASK \
1667 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1669 static inline int cpu_pid_to_cpupid(int cpu
, int pid
)
1671 return ((cpu
& LAST__CPU_MASK
) << LAST__PID_SHIFT
) | (pid
& LAST__PID_MASK
);
1674 static inline int cpupid_to_pid(int cpupid
)
1676 return cpupid
& LAST__PID_MASK
;
1679 static inline int cpupid_to_cpu(int cpupid
)
1681 return (cpupid
>> LAST__PID_SHIFT
) & LAST__CPU_MASK
;
1684 static inline int cpupid_to_nid(int cpupid
)
1686 return cpu_to_node(cpupid_to_cpu(cpupid
));
1689 static inline bool cpupid_pid_unset(int cpupid
)
1691 return cpupid_to_pid(cpupid
) == (-1 & LAST__PID_MASK
);
1694 static inline bool cpupid_cpu_unset(int cpupid
)
1696 return cpupid_to_cpu(cpupid
) == (-1 & LAST__CPU_MASK
);
1699 static inline bool __cpupid_match_pid(pid_t task_pid
, int cpupid
)
1701 return (task_pid
& LAST__PID_MASK
) == cpupid_to_pid(cpupid
);
1704 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1705 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1706 static inline int folio_xchg_last_cpupid(struct folio
*folio
, int cpupid
)
1708 return xchg(&folio
->_last_cpupid
, cpupid
& LAST_CPUPID_MASK
);
1711 static inline int folio_last_cpupid(struct folio
*folio
)
1713 return folio
->_last_cpupid
;
1715 static inline void page_cpupid_reset_last(struct page
*page
)
1717 page
->_last_cpupid
= -1 & LAST_CPUPID_MASK
;
1720 static inline int folio_last_cpupid(struct folio
*folio
)
1722 return (folio
->flags
>> LAST_CPUPID_PGSHIFT
) & LAST_CPUPID_MASK
;
1725 int folio_xchg_last_cpupid(struct folio
*folio
, int cpupid
);
1727 static inline void page_cpupid_reset_last(struct page
*page
)
1729 page
->flags
|= LAST_CPUPID_MASK
<< LAST_CPUPID_PGSHIFT
;
1731 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1733 static inline int folio_xchg_access_time(struct folio
*folio
, int time
)
1737 last_time
= folio_xchg_last_cpupid(folio
,
1738 time
>> PAGE_ACCESS_TIME_BUCKETS
);
1739 return last_time
<< PAGE_ACCESS_TIME_BUCKETS
;
1742 static inline void vma_set_access_pid_bit(struct vm_area_struct
*vma
)
1744 unsigned int pid_bit
;
1746 pid_bit
= hash_32(current
->pid
, ilog2(BITS_PER_LONG
));
1747 if (vma
->numab_state
&& !test_bit(pid_bit
, &vma
->numab_state
->pids_active
[1])) {
1748 __set_bit(pid_bit
, &vma
->numab_state
->pids_active
[1]);
1752 bool folio_use_access_time(struct folio
*folio
);
1753 #else /* !CONFIG_NUMA_BALANCING */
1754 static inline int folio_xchg_last_cpupid(struct folio
*folio
, int cpupid
)
1756 return folio_nid(folio
); /* XXX */
1759 static inline int folio_xchg_access_time(struct folio
*folio
, int time
)
1764 static inline int folio_last_cpupid(struct folio
*folio
)
1766 return folio_nid(folio
); /* XXX */
1769 static inline int cpupid_to_nid(int cpupid
)
1774 static inline int cpupid_to_pid(int cpupid
)
1779 static inline int cpupid_to_cpu(int cpupid
)
1784 static inline int cpu_pid_to_cpupid(int nid
, int pid
)
1789 static inline bool cpupid_pid_unset(int cpupid
)
1794 static inline void page_cpupid_reset_last(struct page
*page
)
1798 static inline bool cpupid_match_pid(struct task_struct
*task
, int cpupid
)
1803 static inline void vma_set_access_pid_bit(struct vm_area_struct
*vma
)
1806 static inline bool folio_use_access_time(struct folio
*folio
)
1810 #endif /* CONFIG_NUMA_BALANCING */
1812 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1815 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1816 * setting tags for all pages to native kernel tag value 0xff, as the default
1817 * value 0x00 maps to 0xff.
1820 static inline u8
page_kasan_tag(const struct page
*page
)
1822 u8 tag
= KASAN_TAG_KERNEL
;
1824 if (kasan_enabled()) {
1825 tag
= (page
->flags
>> KASAN_TAG_PGSHIFT
) & KASAN_TAG_MASK
;
1832 static inline void page_kasan_tag_set(struct page
*page
, u8 tag
)
1834 unsigned long old_flags
, flags
;
1836 if (!kasan_enabled())
1840 old_flags
= READ_ONCE(page
->flags
);
1843 flags
&= ~(KASAN_TAG_MASK
<< KASAN_TAG_PGSHIFT
);
1844 flags
|= (tag
& KASAN_TAG_MASK
) << KASAN_TAG_PGSHIFT
;
1845 } while (unlikely(!try_cmpxchg(&page
->flags
, &old_flags
, flags
)));
1848 static inline void page_kasan_tag_reset(struct page
*page
)
1850 if (kasan_enabled())
1851 page_kasan_tag_set(page
, KASAN_TAG_KERNEL
);
1854 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1856 static inline u8
page_kasan_tag(const struct page
*page
)
1861 static inline void page_kasan_tag_set(struct page
*page
, u8 tag
) { }
1862 static inline void page_kasan_tag_reset(struct page
*page
) { }
1864 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1866 static inline struct zone
*page_zone(const struct page
*page
)
1868 return &NODE_DATA(page_to_nid(page
))->node_zones
[page_zonenum(page
)];
1871 static inline pg_data_t
*page_pgdat(const struct page
*page
)
1873 return NODE_DATA(page_to_nid(page
));
1876 static inline struct zone
*folio_zone(const struct folio
*folio
)
1878 return page_zone(&folio
->page
);
1881 static inline pg_data_t
*folio_pgdat(const struct folio
*folio
)
1883 return page_pgdat(&folio
->page
);
1886 #ifdef SECTION_IN_PAGE_FLAGS
1887 static inline void set_page_section(struct page
*page
, unsigned long section
)
1889 page
->flags
&= ~(SECTIONS_MASK
<< SECTIONS_PGSHIFT
);
1890 page
->flags
|= (section
& SECTIONS_MASK
) << SECTIONS_PGSHIFT
;
1893 static inline unsigned long page_to_section(const struct page
*page
)
1895 return (page
->flags
>> SECTIONS_PGSHIFT
) & SECTIONS_MASK
;
1900 * folio_pfn - Return the Page Frame Number of a folio.
1901 * @folio: The folio.
1903 * A folio may contain multiple pages. The pages have consecutive
1904 * Page Frame Numbers.
1906 * Return: The Page Frame Number of the first page in the folio.
1908 static inline unsigned long folio_pfn(const struct folio
*folio
)
1910 return page_to_pfn(&folio
->page
);
1913 static inline struct folio
*pfn_folio(unsigned long pfn
)
1915 return page_folio(pfn_to_page(pfn
));
1919 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1920 * @folio: The folio.
1922 * This function checks if a folio has been pinned via a call to
1923 * a function in the pin_user_pages() family.
1925 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1926 * because it means "definitely not pinned for DMA", but true means "probably
1927 * pinned for DMA, but possibly a false positive due to having at least
1928 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1930 * False positives are OK, because: a) it's unlikely for a folio to
1931 * get that many refcounts, and b) all the callers of this routine are
1932 * expected to be able to deal gracefully with a false positive.
1934 * For large folios, the result will be exactly correct. That's because
1935 * we have more tracking data available: the _pincount field is used
1936 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1938 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1940 * Return: True, if it is likely that the folio has been "dma-pinned".
1941 * False, if the folio is definitely not dma-pinned.
1943 static inline bool folio_maybe_dma_pinned(struct folio
*folio
)
1945 if (folio_test_large(folio
))
1946 return atomic_read(&folio
->_pincount
) > 0;
1949 * folio_ref_count() is signed. If that refcount overflows, then
1950 * folio_ref_count() returns a negative value, and callers will avoid
1951 * further incrementing the refcount.
1953 * Here, for that overflow case, use the sign bit to count a little
1954 * bit higher via unsigned math, and thus still get an accurate result.
1956 return ((unsigned int)folio_ref_count(folio
)) >=
1957 GUP_PIN_COUNTING_BIAS
;
1961 * This should most likely only be called during fork() to see whether we
1962 * should break the cow immediately for an anon page on the src mm.
1964 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1966 static inline bool folio_needs_cow_for_dma(struct vm_area_struct
*vma
,
1967 struct folio
*folio
)
1969 VM_BUG_ON(!(raw_read_seqcount(&vma
->vm_mm
->write_protect_seq
) & 1));
1971 if (!test_bit(MMF_HAS_PINNED
, &vma
->vm_mm
->flags
))
1974 return folio_maybe_dma_pinned(folio
);
1978 * is_zero_page - Query if a page is a zero page
1979 * @page: The page to query
1981 * This returns true if @page is one of the permanent zero pages.
1983 static inline bool is_zero_page(const struct page
*page
)
1985 return is_zero_pfn(page_to_pfn(page
));
1989 * is_zero_folio - Query if a folio is a zero page
1990 * @folio: The folio to query
1992 * This returns true if @folio is one of the permanent zero pages.
1994 static inline bool is_zero_folio(const struct folio
*folio
)
1996 return is_zero_page(&folio
->page
);
1999 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2000 #ifdef CONFIG_MIGRATION
2001 static inline bool folio_is_longterm_pinnable(struct folio
*folio
)
2004 int mt
= folio_migratetype(folio
);
2006 if (mt
== MIGRATE_CMA
|| mt
== MIGRATE_ISOLATE
)
2009 /* The zero page can be "pinned" but gets special handling. */
2010 if (is_zero_folio(folio
))
2013 /* Coherent device memory must always allow eviction. */
2014 if (folio_is_device_coherent(folio
))
2017 /* Otherwise, non-movable zone folios can be pinned. */
2018 return !folio_is_zone_movable(folio
);
2022 static inline bool folio_is_longterm_pinnable(struct folio
*folio
)
2028 static inline void set_page_zone(struct page
*page
, enum zone_type zone
)
2030 page
->flags
&= ~(ZONES_MASK
<< ZONES_PGSHIFT
);
2031 page
->flags
|= (zone
& ZONES_MASK
) << ZONES_PGSHIFT
;
2034 static inline void set_page_node(struct page
*page
, unsigned long node
)
2036 page
->flags
&= ~(NODES_MASK
<< NODES_PGSHIFT
);
2037 page
->flags
|= (node
& NODES_MASK
) << NODES_PGSHIFT
;
2040 static inline void set_page_links(struct page
*page
, enum zone_type zone
,
2041 unsigned long node
, unsigned long pfn
)
2043 set_page_zone(page
, zone
);
2044 set_page_node(page
, node
);
2045 #ifdef SECTION_IN_PAGE_FLAGS
2046 set_page_section(page
, pfn_to_section_nr(pfn
));
2051 * folio_nr_pages - The number of pages in the folio.
2052 * @folio: The folio.
2054 * Return: A positive power of two.
2056 static inline long folio_nr_pages(const struct folio
*folio
)
2058 if (!folio_test_large(folio
))
2061 return folio
->_folio_nr_pages
;
2063 return 1L << (folio
->_flags_1
& 0xff);
2067 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2068 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2069 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2071 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2075 * compound_nr() returns the number of pages in this potentially compound
2076 * page. compound_nr() can be called on a tail page, and is defined to
2077 * return 1 in that case.
2079 static inline unsigned long compound_nr(struct page
*page
)
2081 struct folio
*folio
= (struct folio
*)page
;
2083 if (!test_bit(PG_head
, &folio
->flags
))
2086 return folio
->_folio_nr_pages
;
2088 return 1L << (folio
->_flags_1
& 0xff);
2093 * thp_nr_pages - The number of regular pages in this huge page.
2094 * @page: The head page of a huge page.
2096 static inline int thp_nr_pages(struct page
*page
)
2098 return folio_nr_pages((struct folio
*)page
);
2102 * folio_next - Move to the next physical folio.
2103 * @folio: The folio we're currently operating on.
2105 * If you have physically contiguous memory which may span more than
2106 * one folio (eg a &struct bio_vec), use this function to move from one
2107 * folio to the next. Do not use it if the memory is only virtually
2108 * contiguous as the folios are almost certainly not adjacent to each
2109 * other. This is the folio equivalent to writing ``page++``.
2111 * Context: We assume that the folios are refcounted and/or locked at a
2112 * higher level and do not adjust the reference counts.
2113 * Return: The next struct folio.
2115 static inline struct folio
*folio_next(struct folio
*folio
)
2117 return (struct folio
*)folio_page(folio
, folio_nr_pages(folio
));
2121 * folio_shift - The size of the memory described by this folio.
2122 * @folio: The folio.
2124 * A folio represents a number of bytes which is a power-of-two in size.
2125 * This function tells you which power-of-two the folio is. See also
2126 * folio_size() and folio_order().
2128 * Context: The caller should have a reference on the folio to prevent
2129 * it from being split. It is not necessary for the folio to be locked.
2130 * Return: The base-2 logarithm of the size of this folio.
2132 static inline unsigned int folio_shift(const struct folio
*folio
)
2134 return PAGE_SHIFT
+ folio_order(folio
);
2138 * folio_size - The number of bytes in a folio.
2139 * @folio: The folio.
2141 * Context: The caller should have a reference on the folio to prevent
2142 * it from being split. It is not necessary for the folio to be locked.
2143 * Return: The number of bytes in this folio.
2145 static inline size_t folio_size(const struct folio
*folio
)
2147 return PAGE_SIZE
<< folio_order(folio
);
2151 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2152 * tables of more than one MM
2153 * @folio: The folio.
2155 * This function checks if the folio is currently mapped into more than one
2156 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2157 * ("mapped exclusively").
2159 * For KSM folios, this function also returns "mapped shared" when a folio is
2160 * mapped multiple times into the same MM, because the individual page mappings
2163 * As precise information is not easily available for all folios, this function
2164 * estimates the number of MMs ("sharers") that are currently mapping a folio
2165 * using the number of times the first page of the folio is currently mapped
2168 * For small anonymous folios and anonymous hugetlb folios, the return
2169 * value will be exactly correct: non-KSM folios can only be mapped at most once
2170 * into an MM, and they cannot be partially mapped. KSM folios are
2171 * considered shared even if mapped multiple times into the same MM.
2173 * For other folios, the result can be fuzzy:
2174 * #. For partially-mappable large folios (THP), the return value can wrongly
2175 * indicate "mapped exclusively" (false negative) when the folio is
2176 * only partially mapped into at least one MM.
2177 * #. For pagecache folios (including hugetlb), the return value can wrongly
2178 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2179 * cover the same file range.
2181 * Further, this function only considers current page table mappings that
2182 * are tracked using the folio mapcount(s).
2184 * This function does not consider:
2185 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2186 * pagecache, temporary unmapping for migration).
2187 * #. If the folio is mapped differently (VM_PFNMAP).
2188 * #. If hugetlb page table sharing applies. Callers might want to check
2189 * hugetlb_pmd_shared().
2191 * Return: Whether the folio is estimated to be mapped into more than one MM.
2193 static inline bool folio_likely_mapped_shared(struct folio
*folio
)
2195 int mapcount
= folio_mapcount(folio
);
2197 /* Only partially-mappable folios require more care. */
2198 if (!folio_test_large(folio
) || unlikely(folio_test_hugetlb(folio
)))
2199 return mapcount
> 1;
2201 /* A single mapping implies "mapped exclusively". */
2205 /* If any page is mapped more than once we treat it "mapped shared". */
2206 if (folio_entire_mapcount(folio
) || mapcount
> folio_nr_pages(folio
))
2209 /* Let's guess based on the first subpage. */
2210 return atomic_read(&folio
->_mapcount
) > 0;
2213 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2214 static inline int arch_make_folio_accessible(struct folio
*folio
)
2221 * Some inline functions in vmstat.h depend on page_zone()
2223 #include <linux/vmstat.h>
2225 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2226 #define HASHED_PAGE_VIRTUAL
2229 #if defined(WANT_PAGE_VIRTUAL)
2230 static inline void *page_address(const struct page
*page
)
2232 return page
->virtual;
2234 static inline void set_page_address(struct page
*page
, void *address
)
2236 page
->virtual = address
;
2238 #define page_address_init() do { } while(0)
2241 #if defined(HASHED_PAGE_VIRTUAL)
2242 void *page_address(const struct page
*page
);
2243 void set_page_address(struct page
*page
, void *virtual);
2244 void page_address_init(void);
2247 static __always_inline
void *lowmem_page_address(const struct page
*page
)
2249 return page_to_virt(page
);
2252 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2253 #define page_address(page) lowmem_page_address(page)
2254 #define set_page_address(page, address) do { } while(0)
2255 #define page_address_init() do { } while(0)
2258 static inline void *folio_address(const struct folio
*folio
)
2260 return page_address(&folio
->page
);
2264 * Return true only if the page has been allocated with
2265 * ALLOC_NO_WATERMARKS and the low watermark was not
2266 * met implying that the system is under some pressure.
2268 static inline bool page_is_pfmemalloc(const struct page
*page
)
2271 * lru.next has bit 1 set if the page is allocated from the
2272 * pfmemalloc reserves. Callers may simply overwrite it if
2273 * they do not need to preserve that information.
2275 return (uintptr_t)page
->lru
.next
& BIT(1);
2279 * Return true only if the folio has been allocated with
2280 * ALLOC_NO_WATERMARKS and the low watermark was not
2281 * met implying that the system is under some pressure.
2283 static inline bool folio_is_pfmemalloc(const struct folio
*folio
)
2286 * lru.next has bit 1 set if the page is allocated from the
2287 * pfmemalloc reserves. Callers may simply overwrite it if
2288 * they do not need to preserve that information.
2290 return (uintptr_t)folio
->lru
.next
& BIT(1);
2294 * Only to be called by the page allocator on a freshly allocated
2297 static inline void set_page_pfmemalloc(struct page
*page
)
2299 page
->lru
.next
= (void *)BIT(1);
2302 static inline void clear_page_pfmemalloc(struct page
*page
)
2304 page
->lru
.next
= NULL
;
2308 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2310 extern void pagefault_out_of_memory(void);
2312 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2313 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2314 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2317 * Parameter block passed down to zap_pte_range in exceptional cases.
2319 struct zap_details
{
2320 struct folio
*single_folio
; /* Locked folio to be unmapped */
2321 bool even_cows
; /* Zap COWed private pages too? */
2322 zap_flags_t zap_flags
; /* Extra flags for zapping */
2326 * Whether to drop the pte markers, for example, the uffd-wp information for
2327 * file-backed memory. This should only be specified when we will completely
2328 * drop the page in the mm, either by truncation or unmapping of the vma. By
2329 * default, the flag is not set.
2331 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2332 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2333 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2335 #ifdef CONFIG_SCHED_MM_CID
2336 void sched_mm_cid_before_execve(struct task_struct
*t
);
2337 void sched_mm_cid_after_execve(struct task_struct
*t
);
2338 void sched_mm_cid_fork(struct task_struct
*t
);
2339 void sched_mm_cid_exit_signals(struct task_struct
*t
);
2340 static inline int task_mm_cid(struct task_struct
*t
)
2345 static inline void sched_mm_cid_before_execve(struct task_struct
*t
) { }
2346 static inline void sched_mm_cid_after_execve(struct task_struct
*t
) { }
2347 static inline void sched_mm_cid_fork(struct task_struct
*t
) { }
2348 static inline void sched_mm_cid_exit_signals(struct task_struct
*t
) { }
2349 static inline int task_mm_cid(struct task_struct
*t
)
2352 * Use the processor id as a fall-back when the mm cid feature is
2353 * disabled. This provides functional per-cpu data structure accesses
2354 * in user-space, althrough it won't provide the memory usage benefits.
2356 return raw_smp_processor_id();
2361 extern bool can_do_mlock(void);
2363 static inline bool can_do_mlock(void) { return false; }
2365 extern int user_shm_lock(size_t, struct ucounts
*);
2366 extern void user_shm_unlock(size_t, struct ucounts
*);
2368 struct folio
*vm_normal_folio(struct vm_area_struct
*vma
, unsigned long addr
,
2370 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
2372 struct folio
*vm_normal_folio_pmd(struct vm_area_struct
*vma
,
2373 unsigned long addr
, pmd_t pmd
);
2374 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2377 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
2378 unsigned long size
);
2379 void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
2380 unsigned long size
, struct zap_details
*details
);
2381 static inline void zap_vma_pages(struct vm_area_struct
*vma
)
2383 zap_page_range_single(vma
, vma
->vm_start
,
2384 vma
->vm_end
- vma
->vm_start
, NULL
);
2386 void unmap_vmas(struct mmu_gather
*tlb
, struct ma_state
*mas
,
2387 struct vm_area_struct
*start_vma
, unsigned long start
,
2388 unsigned long end
, unsigned long tree_end
, bool mm_wr_locked
);
2390 struct mmu_notifier_range
;
2392 void free_pgd_range(struct mmu_gather
*tlb
, unsigned long addr
,
2393 unsigned long end
, unsigned long floor
, unsigned long ceiling
);
2395 copy_page_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
);
2396 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
2397 void *buf
, int len
, int write
);
2399 struct follow_pfnmap_args
{
2402 * @vma: Pointer to @vm_area_struct struct
2403 * @address: the virtual address to walk
2405 struct vm_area_struct
*vma
;
2406 unsigned long address
;
2410 * The caller shouldn't touch any of these.
2417 * @pfn: the PFN of the address
2418 * @pgprot: the pgprot_t of the mapping
2419 * @writable: whether the mapping is writable
2420 * @special: whether the mapping is a special mapping (real PFN maps)
2427 int follow_pfnmap_start(struct follow_pfnmap_args
*args
);
2428 void follow_pfnmap_end(struct follow_pfnmap_args
*args
);
2430 extern void truncate_pagecache(struct inode
*inode
, loff_t
new);
2431 extern void truncate_setsize(struct inode
*inode
, loff_t newsize
);
2432 void pagecache_isize_extended(struct inode
*inode
, loff_t from
, loff_t to
);
2433 void truncate_pagecache_range(struct inode
*inode
, loff_t offset
, loff_t end
);
2434 int generic_error_remove_folio(struct address_space
*mapping
,
2435 struct folio
*folio
);
2437 struct vm_area_struct
*lock_mm_and_find_vma(struct mm_struct
*mm
,
2438 unsigned long address
, struct pt_regs
*regs
);
2441 extern vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
,
2442 unsigned long address
, unsigned int flags
,
2443 struct pt_regs
*regs
);
2444 extern int fixup_user_fault(struct mm_struct
*mm
,
2445 unsigned long address
, unsigned int fault_flags
,
2447 void unmap_mapping_pages(struct address_space
*mapping
,
2448 pgoff_t start
, pgoff_t nr
, bool even_cows
);
2449 void unmap_mapping_range(struct address_space
*mapping
,
2450 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
);
2452 static inline vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
,
2453 unsigned long address
, unsigned int flags
,
2454 struct pt_regs
*regs
)
2456 /* should never happen if there's no MMU */
2458 return VM_FAULT_SIGBUS
;
2460 static inline int fixup_user_fault(struct mm_struct
*mm
, unsigned long address
,
2461 unsigned int fault_flags
, bool *unlocked
)
2463 /* should never happen if there's no MMU */
2467 static inline void unmap_mapping_pages(struct address_space
*mapping
,
2468 pgoff_t start
, pgoff_t nr
, bool even_cows
) { }
2469 static inline void unmap_mapping_range(struct address_space
*mapping
,
2470 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
) { }
2473 static inline void unmap_shared_mapping_range(struct address_space
*mapping
,
2474 loff_t
const holebegin
, loff_t
const holelen
)
2476 unmap_mapping_range(mapping
, holebegin
, holelen
, 0);
2479 static inline struct vm_area_struct
*vma_lookup(struct mm_struct
*mm
,
2480 unsigned long addr
);
2482 extern int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
2483 void *buf
, int len
, unsigned int gup_flags
);
2484 extern int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2485 void *buf
, int len
, unsigned int gup_flags
);
2487 long get_user_pages_remote(struct mm_struct
*mm
,
2488 unsigned long start
, unsigned long nr_pages
,
2489 unsigned int gup_flags
, struct page
**pages
,
2491 long pin_user_pages_remote(struct mm_struct
*mm
,
2492 unsigned long start
, unsigned long nr_pages
,
2493 unsigned int gup_flags
, struct page
**pages
,
2497 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2499 static inline struct page
*get_user_page_vma_remote(struct mm_struct
*mm
,
2502 struct vm_area_struct
**vmap
)
2505 struct vm_area_struct
*vma
;
2508 if (WARN_ON_ONCE(unlikely(gup_flags
& FOLL_NOWAIT
)))
2509 return ERR_PTR(-EINVAL
);
2511 got
= get_user_pages_remote(mm
, addr
, 1, gup_flags
, &page
, NULL
);
2514 return ERR_PTR(got
);
2516 vma
= vma_lookup(mm
, addr
);
2517 if (WARN_ON_ONCE(!vma
)) {
2519 return ERR_PTR(-EINVAL
);
2526 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
2527 unsigned int gup_flags
, struct page
**pages
);
2528 long pin_user_pages(unsigned long start
, unsigned long nr_pages
,
2529 unsigned int gup_flags
, struct page
**pages
);
2530 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
2531 struct page
**pages
, unsigned int gup_flags
);
2532 long pin_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
2533 struct page
**pages
, unsigned int gup_flags
);
2534 long memfd_pin_folios(struct file
*memfd
, loff_t start
, loff_t end
,
2535 struct folio
**folios
, unsigned int max_folios
,
2537 int folio_add_pins(struct folio
*folio
, unsigned int pins
);
2539 int get_user_pages_fast(unsigned long start
, int nr_pages
,
2540 unsigned int gup_flags
, struct page
**pages
);
2541 int pin_user_pages_fast(unsigned long start
, int nr_pages
,
2542 unsigned int gup_flags
, struct page
**pages
);
2543 void folio_add_pin(struct folio
*folio
);
2545 int account_locked_vm(struct mm_struct
*mm
, unsigned long pages
, bool inc
);
2546 int __account_locked_vm(struct mm_struct
*mm
, unsigned long pages
, bool inc
,
2547 struct task_struct
*task
, bool bypass_rlim
);
2550 struct page
*get_dump_page(unsigned long addr
);
2552 bool folio_mark_dirty(struct folio
*folio
);
2553 bool folio_mark_dirty_lock(struct folio
*folio
);
2554 bool set_page_dirty(struct page
*page
);
2555 int set_page_dirty_lock(struct page
*page
);
2557 int get_cmdline(struct task_struct
*task
, char *buffer
, int buflen
);
2560 * Flags used by change_protection(). For now we make it a bitmap so
2561 * that we can pass in multiple flags just like parameters. However
2562 * for now all the callers are only use one of the flags at the same
2566 * Whether we should manually check if we can map individual PTEs writable,
2567 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2568 * PTEs automatically in a writable mapping.
2570 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2571 /* Whether this protection change is for NUMA hints */
2572 #define MM_CP_PROT_NUMA (1UL << 1)
2573 /* Whether this change is for write protecting */
2574 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2575 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2576 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2577 MM_CP_UFFD_WP_RESOLVE)
2579 bool can_change_pte_writable(struct vm_area_struct
*vma
, unsigned long addr
,
2581 extern long change_protection(struct mmu_gather
*tlb
,
2582 struct vm_area_struct
*vma
, unsigned long start
,
2583 unsigned long end
, unsigned long cp_flags
);
2584 extern int mprotect_fixup(struct vma_iterator
*vmi
, struct mmu_gather
*tlb
,
2585 struct vm_area_struct
*vma
, struct vm_area_struct
**pprev
,
2586 unsigned long start
, unsigned long end
, unsigned long newflags
);
2589 * doesn't attempt to fault and will return short.
2591 int get_user_pages_fast_only(unsigned long start
, int nr_pages
,
2592 unsigned int gup_flags
, struct page
**pages
);
2594 static inline bool get_user_page_fast_only(unsigned long addr
,
2595 unsigned int gup_flags
, struct page
**pagep
)
2597 return get_user_pages_fast_only(addr
, 1, gup_flags
, pagep
) == 1;
2600 * per-process(per-mm_struct) statistics.
2602 static inline unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
2604 return percpu_counter_read_positive(&mm
->rss_stat
[member
]);
2607 void mm_trace_rss_stat(struct mm_struct
*mm
, int member
);
2609 static inline void add_mm_counter(struct mm_struct
*mm
, int member
, long value
)
2611 percpu_counter_add(&mm
->rss_stat
[member
], value
);
2613 mm_trace_rss_stat(mm
, member
);
2616 static inline void inc_mm_counter(struct mm_struct
*mm
, int member
)
2618 percpu_counter_inc(&mm
->rss_stat
[member
]);
2620 mm_trace_rss_stat(mm
, member
);
2623 static inline void dec_mm_counter(struct mm_struct
*mm
, int member
)
2625 percpu_counter_dec(&mm
->rss_stat
[member
]);
2627 mm_trace_rss_stat(mm
, member
);
2630 /* Optimized variant when folio is already known not to be anon */
2631 static inline int mm_counter_file(struct folio
*folio
)
2633 if (folio_test_swapbacked(folio
))
2634 return MM_SHMEMPAGES
;
2635 return MM_FILEPAGES
;
2638 static inline int mm_counter(struct folio
*folio
)
2640 if (folio_test_anon(folio
))
2641 return MM_ANONPAGES
;
2642 return mm_counter_file(folio
);
2645 static inline unsigned long get_mm_rss(struct mm_struct
*mm
)
2647 return get_mm_counter(mm
, MM_FILEPAGES
) +
2648 get_mm_counter(mm
, MM_ANONPAGES
) +
2649 get_mm_counter(mm
, MM_SHMEMPAGES
);
2652 static inline unsigned long get_mm_hiwater_rss(struct mm_struct
*mm
)
2654 return max(mm
->hiwater_rss
, get_mm_rss(mm
));
2657 static inline unsigned long get_mm_hiwater_vm(struct mm_struct
*mm
)
2659 return max(mm
->hiwater_vm
, mm
->total_vm
);
2662 static inline void update_hiwater_rss(struct mm_struct
*mm
)
2664 unsigned long _rss
= get_mm_rss(mm
);
2666 if ((mm
)->hiwater_rss
< _rss
)
2667 (mm
)->hiwater_rss
= _rss
;
2670 static inline void update_hiwater_vm(struct mm_struct
*mm
)
2672 if (mm
->hiwater_vm
< mm
->total_vm
)
2673 mm
->hiwater_vm
= mm
->total_vm
;
2676 static inline void reset_mm_hiwater_rss(struct mm_struct
*mm
)
2678 mm
->hiwater_rss
= get_mm_rss(mm
);
2681 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss
,
2682 struct mm_struct
*mm
)
2684 unsigned long hiwater_rss
= get_mm_hiwater_rss(mm
);
2686 if (*maxrss
< hiwater_rss
)
2687 *maxrss
= hiwater_rss
;
2690 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2691 static inline int pte_special(pte_t pte
)
2696 static inline pte_t
pte_mkspecial(pte_t pte
)
2702 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2703 static inline bool pmd_special(pmd_t pmd
)
2708 static inline pmd_t
pmd_mkspecial(pmd_t pmd
)
2712 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2714 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2715 static inline bool pud_special(pud_t pud
)
2720 static inline pud_t
pud_mkspecial(pud_t pud
)
2724 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2726 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2727 static inline int pte_devmap(pte_t pte
)
2733 extern pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2735 static inline pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2739 __cond_lock(*ptl
, ptep
= __get_locked_pte(mm
, addr
, ptl
));
2743 #ifdef __PAGETABLE_P4D_FOLDED
2744 static inline int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
,
2745 unsigned long address
)
2750 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
);
2753 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2754 static inline int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
,
2755 unsigned long address
)
2759 static inline void mm_inc_nr_puds(struct mm_struct
*mm
) {}
2760 static inline void mm_dec_nr_puds(struct mm_struct
*mm
) {}
2763 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
);
2765 static inline void mm_inc_nr_puds(struct mm_struct
*mm
)
2767 if (mm_pud_folded(mm
))
2769 atomic_long_add(PTRS_PER_PUD
* sizeof(pud_t
), &mm
->pgtables_bytes
);
2772 static inline void mm_dec_nr_puds(struct mm_struct
*mm
)
2774 if (mm_pud_folded(mm
))
2776 atomic_long_sub(PTRS_PER_PUD
* sizeof(pud_t
), &mm
->pgtables_bytes
);
2780 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2781 static inline int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
,
2782 unsigned long address
)
2787 static inline void mm_inc_nr_pmds(struct mm_struct
*mm
) {}
2788 static inline void mm_dec_nr_pmds(struct mm_struct
*mm
) {}
2791 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
);
2793 static inline void mm_inc_nr_pmds(struct mm_struct
*mm
)
2795 if (mm_pmd_folded(mm
))
2797 atomic_long_add(PTRS_PER_PMD
* sizeof(pmd_t
), &mm
->pgtables_bytes
);
2800 static inline void mm_dec_nr_pmds(struct mm_struct
*mm
)
2802 if (mm_pmd_folded(mm
))
2804 atomic_long_sub(PTRS_PER_PMD
* sizeof(pmd_t
), &mm
->pgtables_bytes
);
2809 static inline void mm_pgtables_bytes_init(struct mm_struct
*mm
)
2811 atomic_long_set(&mm
->pgtables_bytes
, 0);
2814 static inline unsigned long mm_pgtables_bytes(const struct mm_struct
*mm
)
2816 return atomic_long_read(&mm
->pgtables_bytes
);
2819 static inline void mm_inc_nr_ptes(struct mm_struct
*mm
)
2821 atomic_long_add(PTRS_PER_PTE
* sizeof(pte_t
), &mm
->pgtables_bytes
);
2824 static inline void mm_dec_nr_ptes(struct mm_struct
*mm
)
2826 atomic_long_sub(PTRS_PER_PTE
* sizeof(pte_t
), &mm
->pgtables_bytes
);
2830 static inline void mm_pgtables_bytes_init(struct mm_struct
*mm
) {}
2831 static inline unsigned long mm_pgtables_bytes(const struct mm_struct
*mm
)
2836 static inline void mm_inc_nr_ptes(struct mm_struct
*mm
) {}
2837 static inline void mm_dec_nr_ptes(struct mm_struct
*mm
) {}
2840 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
);
2841 int __pte_alloc_kernel(pmd_t
*pmd
);
2843 #if defined(CONFIG_MMU)
2845 static inline p4d_t
*p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
,
2846 unsigned long address
)
2848 return (unlikely(pgd_none(*pgd
)) && __p4d_alloc(mm
, pgd
, address
)) ?
2849 NULL
: p4d_offset(pgd
, address
);
2852 static inline pud_t
*pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
,
2853 unsigned long address
)
2855 return (unlikely(p4d_none(*p4d
)) && __pud_alloc(mm
, p4d
, address
)) ?
2856 NULL
: pud_offset(p4d
, address
);
2859 static inline pmd_t
*pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2861 return (unlikely(pud_none(*pud
)) && __pmd_alloc(mm
, pud
, address
))?
2862 NULL
: pmd_offset(pud
, address
);
2864 #endif /* CONFIG_MMU */
2866 static inline struct ptdesc
*virt_to_ptdesc(const void *x
)
2868 return page_ptdesc(virt_to_page(x
));
2871 static inline void *ptdesc_to_virt(const struct ptdesc
*pt
)
2873 return page_to_virt(ptdesc_page(pt
));
2876 static inline void *ptdesc_address(const struct ptdesc
*pt
)
2878 return folio_address(ptdesc_folio(pt
));
2881 static inline bool pagetable_is_reserved(struct ptdesc
*pt
)
2883 return folio_test_reserved(ptdesc_folio(pt
));
2887 * pagetable_alloc - Allocate pagetables
2889 * @order: desired pagetable order
2891 * pagetable_alloc allocates memory for page tables as well as a page table
2892 * descriptor to describe that memory.
2894 * Return: The ptdesc describing the allocated page tables.
2896 static inline struct ptdesc
*pagetable_alloc_noprof(gfp_t gfp
, unsigned int order
)
2898 struct page
*page
= alloc_pages_noprof(gfp
| __GFP_COMP
, order
);
2900 return page_ptdesc(page
);
2902 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2905 * pagetable_free - Free pagetables
2906 * @pt: The page table descriptor
2908 * pagetable_free frees the memory of all page tables described by a page
2909 * table descriptor and the memory for the descriptor itself.
2911 static inline void pagetable_free(struct ptdesc
*pt
)
2913 struct page
*page
= ptdesc_page(pt
);
2915 __free_pages(page
, compound_order(page
));
2918 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2919 #if ALLOC_SPLIT_PTLOCKS
2920 void __init
ptlock_cache_init(void);
2921 bool ptlock_alloc(struct ptdesc
*ptdesc
);
2922 void ptlock_free(struct ptdesc
*ptdesc
);
2924 static inline spinlock_t
*ptlock_ptr(struct ptdesc
*ptdesc
)
2928 #else /* ALLOC_SPLIT_PTLOCKS */
2929 static inline void ptlock_cache_init(void)
2933 static inline bool ptlock_alloc(struct ptdesc
*ptdesc
)
2938 static inline void ptlock_free(struct ptdesc
*ptdesc
)
2942 static inline spinlock_t
*ptlock_ptr(struct ptdesc
*ptdesc
)
2944 return &ptdesc
->ptl
;
2946 #endif /* ALLOC_SPLIT_PTLOCKS */
2948 static inline spinlock_t
*pte_lockptr(struct mm_struct
*mm
, pmd_t
*pmd
)
2950 return ptlock_ptr(page_ptdesc(pmd_page(*pmd
)));
2953 static inline spinlock_t
*ptep_lockptr(struct mm_struct
*mm
, pte_t
*pte
)
2955 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE
));
2956 BUILD_BUG_ON(MAX_PTRS_PER_PTE
* sizeof(pte_t
) > PAGE_SIZE
);
2957 return ptlock_ptr(virt_to_ptdesc(pte
));
2960 static inline bool ptlock_init(struct ptdesc
*ptdesc
)
2963 * prep_new_page() initialize page->private (and therefore page->ptl)
2964 * with 0. Make sure nobody took it in use in between.
2966 * It can happen if arch try to use slab for page table allocation:
2967 * slab code uses page->slab_cache, which share storage with page->ptl.
2969 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc
->ptl
, ptdesc_page(ptdesc
));
2970 if (!ptlock_alloc(ptdesc
))
2972 spin_lock_init(ptlock_ptr(ptdesc
));
2976 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2978 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2980 static inline spinlock_t
*pte_lockptr(struct mm_struct
*mm
, pmd_t
*pmd
)
2982 return &mm
->page_table_lock
;
2984 static inline spinlock_t
*ptep_lockptr(struct mm_struct
*mm
, pte_t
*pte
)
2986 return &mm
->page_table_lock
;
2988 static inline void ptlock_cache_init(void) {}
2989 static inline bool ptlock_init(struct ptdesc
*ptdesc
) { return true; }
2990 static inline void ptlock_free(struct ptdesc
*ptdesc
) {}
2991 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2993 static inline bool pagetable_pte_ctor(struct ptdesc
*ptdesc
)
2995 struct folio
*folio
= ptdesc_folio(ptdesc
);
2997 if (!ptlock_init(ptdesc
))
2999 __folio_set_pgtable(folio
);
3000 lruvec_stat_add_folio(folio
, NR_PAGETABLE
);
3004 static inline void pagetable_pte_dtor(struct ptdesc
*ptdesc
)
3006 struct folio
*folio
= ptdesc_folio(ptdesc
);
3008 ptlock_free(ptdesc
);
3009 __folio_clear_pgtable(folio
);
3010 lruvec_stat_sub_folio(folio
, NR_PAGETABLE
);
3013 pte_t
*__pte_offset_map(pmd_t
*pmd
, unsigned long addr
, pmd_t
*pmdvalp
);
3014 static inline pte_t
*pte_offset_map(pmd_t
*pmd
, unsigned long addr
)
3016 return __pte_offset_map(pmd
, addr
, NULL
);
3019 pte_t
*__pte_offset_map_lock(struct mm_struct
*mm
, pmd_t
*pmd
,
3020 unsigned long addr
, spinlock_t
**ptlp
);
3021 static inline pte_t
*pte_offset_map_lock(struct mm_struct
*mm
, pmd_t
*pmd
,
3022 unsigned long addr
, spinlock_t
**ptlp
)
3026 __cond_lock(*ptlp
, pte
= __pte_offset_map_lock(mm
, pmd
, addr
, ptlp
));
3030 pte_t
*pte_offset_map_ro_nolock(struct mm_struct
*mm
, pmd_t
*pmd
,
3031 unsigned long addr
, spinlock_t
**ptlp
);
3032 pte_t
*pte_offset_map_rw_nolock(struct mm_struct
*mm
, pmd_t
*pmd
,
3033 unsigned long addr
, pmd_t
*pmdvalp
,
3036 #define pte_unmap_unlock(pte, ptl) do { \
3041 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3043 #define pte_alloc_map(mm, pmd, address) \
3044 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3046 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3047 (pte_alloc(mm, pmd) ? \
3048 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3050 #define pte_alloc_kernel(pmd, address) \
3051 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3052 NULL: pte_offset_kernel(pmd, address))
3054 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3056 static inline struct page
*pmd_pgtable_page(pmd_t
*pmd
)
3058 unsigned long mask
= ~(PTRS_PER_PMD
* sizeof(pmd_t
) - 1);
3059 return virt_to_page((void *)((unsigned long) pmd
& mask
));
3062 static inline struct ptdesc
*pmd_ptdesc(pmd_t
*pmd
)
3064 return page_ptdesc(pmd_pgtable_page(pmd
));
3067 static inline spinlock_t
*pmd_lockptr(struct mm_struct
*mm
, pmd_t
*pmd
)
3069 return ptlock_ptr(pmd_ptdesc(pmd
));
3072 static inline bool pmd_ptlock_init(struct ptdesc
*ptdesc
)
3074 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3075 ptdesc
->pmd_huge_pte
= NULL
;
3077 return ptlock_init(ptdesc
);
3080 static inline void pmd_ptlock_free(struct ptdesc
*ptdesc
)
3082 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3083 VM_BUG_ON_PAGE(ptdesc
->pmd_huge_pte
, ptdesc_page(ptdesc
));
3085 ptlock_free(ptdesc
);
3088 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3092 static inline spinlock_t
*pmd_lockptr(struct mm_struct
*mm
, pmd_t
*pmd
)
3094 return &mm
->page_table_lock
;
3097 static inline bool pmd_ptlock_init(struct ptdesc
*ptdesc
) { return true; }
3098 static inline void pmd_ptlock_free(struct ptdesc
*ptdesc
) {}
3100 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3104 static inline spinlock_t
*pmd_lock(struct mm_struct
*mm
, pmd_t
*pmd
)
3106 spinlock_t
*ptl
= pmd_lockptr(mm
, pmd
);
3111 static inline bool pagetable_pmd_ctor(struct ptdesc
*ptdesc
)
3113 struct folio
*folio
= ptdesc_folio(ptdesc
);
3115 if (!pmd_ptlock_init(ptdesc
))
3117 __folio_set_pgtable(folio
);
3118 lruvec_stat_add_folio(folio
, NR_PAGETABLE
);
3122 static inline void pagetable_pmd_dtor(struct ptdesc
*ptdesc
)
3124 struct folio
*folio
= ptdesc_folio(ptdesc
);
3126 pmd_ptlock_free(ptdesc
);
3127 __folio_clear_pgtable(folio
);
3128 lruvec_stat_sub_folio(folio
, NR_PAGETABLE
);
3132 * No scalability reason to split PUD locks yet, but follow the same pattern
3133 * as the PMD locks to make it easier if we decide to. The VM should not be
3134 * considered ready to switch to split PUD locks yet; there may be places
3135 * which need to be converted from page_table_lock.
3137 static inline spinlock_t
*pud_lockptr(struct mm_struct
*mm
, pud_t
*pud
)
3139 return &mm
->page_table_lock
;
3142 static inline spinlock_t
*pud_lock(struct mm_struct
*mm
, pud_t
*pud
)
3144 spinlock_t
*ptl
= pud_lockptr(mm
, pud
);
3150 static inline void pagetable_pud_ctor(struct ptdesc
*ptdesc
)
3152 struct folio
*folio
= ptdesc_folio(ptdesc
);
3154 __folio_set_pgtable(folio
);
3155 lruvec_stat_add_folio(folio
, NR_PAGETABLE
);
3158 static inline void pagetable_pud_dtor(struct ptdesc
*ptdesc
)
3160 struct folio
*folio
= ptdesc_folio(ptdesc
);
3162 __folio_clear_pgtable(folio
);
3163 lruvec_stat_sub_folio(folio
, NR_PAGETABLE
);
3166 extern void __init
pagecache_init(void);
3167 extern void free_initmem(void);
3170 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3171 * into the buddy system. The freed pages will be poisoned with pattern
3172 * "poison" if it's within range [0, UCHAR_MAX].
3173 * Return pages freed into the buddy system.
3175 extern unsigned long free_reserved_area(void *start
, void *end
,
3176 int poison
, const char *s
);
3178 extern void adjust_managed_page_count(struct page
*page
, long count
);
3180 extern void reserve_bootmem_region(phys_addr_t start
,
3181 phys_addr_t end
, int nid
);
3183 /* Free the reserved page into the buddy system, so it gets managed. */
3184 void free_reserved_page(struct page
*page
);
3185 #define free_highmem_page(page) free_reserved_page(page)
3187 static inline void mark_page_reserved(struct page
*page
)
3189 SetPageReserved(page
);
3190 adjust_managed_page_count(page
, -1);
3193 static inline void free_reserved_ptdesc(struct ptdesc
*pt
)
3195 free_reserved_page(ptdesc_page(pt
));
3199 * Default method to free all the __init memory into the buddy system.
3200 * The freed pages will be poisoned with pattern "poison" if it's within
3201 * range [0, UCHAR_MAX].
3202 * Return pages freed into the buddy system.
3204 static inline unsigned long free_initmem_default(int poison
)
3206 extern char __init_begin
[], __init_end
[];
3208 return free_reserved_area(&__init_begin
, &__init_end
,
3209 poison
, "unused kernel image (initmem)");
3212 static inline unsigned long get_num_physpages(void)
3215 unsigned long phys_pages
= 0;
3217 for_each_online_node(nid
)
3218 phys_pages
+= node_present_pages(nid
);
3224 * Using memblock node mappings, an architecture may initialise its
3225 * zones, allocate the backing mem_map and account for memory holes in an
3226 * architecture independent manner.
3228 * An architecture is expected to register range of page frames backed by
3229 * physical memory with memblock_add[_node]() before calling
3230 * free_area_init() passing in the PFN each zone ends at. At a basic
3231 * usage, an architecture is expected to do something like
3233 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3235 * for_each_valid_physical_page_range()
3236 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3237 * free_area_init(max_zone_pfns);
3239 void free_area_init(unsigned long *max_zone_pfn
);
3240 unsigned long node_map_pfn_alignment(void);
3241 extern unsigned long absent_pages_in_range(unsigned long start_pfn
,
3242 unsigned long end_pfn
);
3243 extern void get_pfn_range_for_nid(unsigned int nid
,
3244 unsigned long *start_pfn
, unsigned long *end_pfn
);
3247 static inline int early_pfn_to_nid(unsigned long pfn
)
3252 /* please see mm/page_alloc.c */
3253 extern int __meminit
early_pfn_to_nid(unsigned long pfn
);
3256 extern void mem_init(void);
3257 extern void __init
mmap_init(void);
3259 extern void __show_mem(unsigned int flags
, nodemask_t
*nodemask
, int max_zone_idx
);
3260 static inline void show_mem(void)
3262 __show_mem(0, NULL
, MAX_NR_ZONES
- 1);
3264 extern long si_mem_available(void);
3265 extern void si_meminfo(struct sysinfo
* val
);
3266 extern void si_meminfo_node(struct sysinfo
*val
, int nid
);
3268 extern __printf(3, 4)
3269 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...);
3271 extern void setup_per_cpu_pageset(void);
3274 extern atomic_long_t mmap_pages_allocated
;
3275 extern int nommu_shrink_inode_mappings(struct inode
*, size_t, size_t);
3277 /* interval_tree.c */
3278 void vma_interval_tree_insert(struct vm_area_struct
*node
,
3279 struct rb_root_cached
*root
);
3280 void vma_interval_tree_insert_after(struct vm_area_struct
*node
,
3281 struct vm_area_struct
*prev
,
3282 struct rb_root_cached
*root
);
3283 void vma_interval_tree_remove(struct vm_area_struct
*node
,
3284 struct rb_root_cached
*root
);
3285 struct vm_area_struct
*vma_interval_tree_iter_first(struct rb_root_cached
*root
,
3286 unsigned long start
, unsigned long last
);
3287 struct vm_area_struct
*vma_interval_tree_iter_next(struct vm_area_struct
*node
,
3288 unsigned long start
, unsigned long last
);
3290 #define vma_interval_tree_foreach(vma, root, start, last) \
3291 for (vma = vma_interval_tree_iter_first(root, start, last); \
3292 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3294 void anon_vma_interval_tree_insert(struct anon_vma_chain
*node
,
3295 struct rb_root_cached
*root
);
3296 void anon_vma_interval_tree_remove(struct anon_vma_chain
*node
,
3297 struct rb_root_cached
*root
);
3298 struct anon_vma_chain
*
3299 anon_vma_interval_tree_iter_first(struct rb_root_cached
*root
,
3300 unsigned long start
, unsigned long last
);
3301 struct anon_vma_chain
*anon_vma_interval_tree_iter_next(
3302 struct anon_vma_chain
*node
, unsigned long start
, unsigned long last
);
3303 #ifdef CONFIG_DEBUG_VM_RB
3304 void anon_vma_interval_tree_verify(struct anon_vma_chain
*node
);
3307 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3308 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3309 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3312 extern int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
);
3313 extern int insert_vm_struct(struct mm_struct
*, struct vm_area_struct
*);
3314 extern void exit_mmap(struct mm_struct
*);
3315 int relocate_vma_down(struct vm_area_struct
*vma
, unsigned long shift
);
3317 static inline int check_data_rlimit(unsigned long rlim
,
3319 unsigned long start
,
3320 unsigned long end_data
,
3321 unsigned long start_data
)
3323 if (rlim
< RLIM_INFINITY
) {
3324 if (((new - start
) + (end_data
- start_data
)) > rlim
)
3331 extern int mm_take_all_locks(struct mm_struct
*mm
);
3332 extern void mm_drop_all_locks(struct mm_struct
*mm
);
3334 extern int set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
);
3335 extern int replace_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
);
3336 extern struct file
*get_mm_exe_file(struct mm_struct
*mm
);
3337 extern struct file
*get_task_exe_file(struct task_struct
*task
);
3339 extern bool may_expand_vm(struct mm_struct
*, vm_flags_t
, unsigned long npages
);
3340 extern void vm_stat_account(struct mm_struct
*, vm_flags_t
, long npages
);
3342 extern bool vma_is_special_mapping(const struct vm_area_struct
*vma
,
3343 const struct vm_special_mapping
*sm
);
3344 extern struct vm_area_struct
*_install_special_mapping(struct mm_struct
*mm
,
3345 unsigned long addr
, unsigned long len
,
3346 unsigned long flags
,
3347 const struct vm_special_mapping
*spec
);
3349 unsigned long randomize_stack_top(unsigned long stack_top
);
3350 unsigned long randomize_page(unsigned long start
, unsigned long range
);
3353 __get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
3354 unsigned long pgoff
, unsigned long flags
, vm_flags_t vm_flags
);
3356 static inline unsigned long
3357 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
3358 unsigned long pgoff
, unsigned long flags
)
3360 return __get_unmapped_area(file
, addr
, len
, pgoff
, flags
, 0);
3363 extern unsigned long mmap_region(struct file
*file
, unsigned long addr
,
3364 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
,
3365 struct list_head
*uf
);
3366 extern unsigned long do_mmap(struct file
*file
, unsigned long addr
,
3367 unsigned long len
, unsigned long prot
, unsigned long flags
,
3368 vm_flags_t vm_flags
, unsigned long pgoff
, unsigned long *populate
,
3369 struct list_head
*uf
);
3370 extern int do_vmi_munmap(struct vma_iterator
*vmi
, struct mm_struct
*mm
,
3371 unsigned long start
, size_t len
, struct list_head
*uf
,
3373 int do_vmi_align_munmap(struct vma_iterator
*vmi
, struct vm_area_struct
*vma
,
3374 struct mm_struct
*mm
, unsigned long start
,
3375 unsigned long end
, struct list_head
*uf
, bool unlock
);
3376 extern int do_munmap(struct mm_struct
*, unsigned long, size_t,
3377 struct list_head
*uf
);
3378 extern int do_madvise(struct mm_struct
*mm
, unsigned long start
, size_t len_in
, int behavior
);
3381 extern int __mm_populate(unsigned long addr
, unsigned long len
,
3383 static inline void mm_populate(unsigned long addr
, unsigned long len
)
3386 (void) __mm_populate(addr
, len
, 1);
3389 static inline void mm_populate(unsigned long addr
, unsigned long len
) {}
3392 /* This takes the mm semaphore itself */
3393 extern int __must_check
vm_brk_flags(unsigned long, unsigned long, unsigned long);
3394 extern int vm_munmap(unsigned long, size_t);
3395 extern unsigned long __must_check
vm_mmap(struct file
*, unsigned long,
3396 unsigned long, unsigned long,
3397 unsigned long, unsigned long);
3399 struct vm_unmapped_area_info
{
3400 #define VM_UNMAPPED_AREA_TOPDOWN 1
3401 unsigned long flags
;
3402 unsigned long length
;
3403 unsigned long low_limit
;
3404 unsigned long high_limit
;
3405 unsigned long align_mask
;
3406 unsigned long align_offset
;
3407 unsigned long start_gap
;
3410 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info
*info
);
3413 extern void truncate_inode_pages(struct address_space
*, loff_t
);
3414 extern void truncate_inode_pages_range(struct address_space
*,
3415 loff_t lstart
, loff_t lend
);
3416 extern void truncate_inode_pages_final(struct address_space
*);
3418 /* generic vm_area_ops exported for stackable file systems */
3419 extern vm_fault_t
filemap_fault(struct vm_fault
*vmf
);
3420 extern vm_fault_t
filemap_map_pages(struct vm_fault
*vmf
,
3421 pgoff_t start_pgoff
, pgoff_t end_pgoff
);
3422 extern vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
);
3424 extern unsigned long stack_guard_gap
;
3425 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3426 int expand_stack_locked(struct vm_area_struct
*vma
, unsigned long address
);
3427 struct vm_area_struct
*expand_stack(struct mm_struct
* mm
, unsigned long addr
);
3429 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3430 int expand_downwards(struct vm_area_struct
*vma
, unsigned long address
);
3432 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3433 extern struct vm_area_struct
* find_vma(struct mm_struct
* mm
, unsigned long addr
);
3434 extern struct vm_area_struct
* find_vma_prev(struct mm_struct
* mm
, unsigned long addr
,
3435 struct vm_area_struct
**pprev
);
3438 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3439 * NULL if none. Assume start_addr < end_addr.
3441 struct vm_area_struct
*find_vma_intersection(struct mm_struct
*mm
,
3442 unsigned long start_addr
, unsigned long end_addr
);
3445 * vma_lookup() - Find a VMA at a specific address
3446 * @mm: The process address space.
3447 * @addr: The user address.
3449 * Return: The vm_area_struct at the given address, %NULL otherwise.
3452 struct vm_area_struct
*vma_lookup(struct mm_struct
*mm
, unsigned long addr
)
3454 return mtree_load(&mm
->mm_mt
, addr
);
3457 static inline unsigned long stack_guard_start_gap(struct vm_area_struct
*vma
)
3459 if (vma
->vm_flags
& VM_GROWSDOWN
)
3460 return stack_guard_gap
;
3462 /* See reasoning around the VM_SHADOW_STACK definition */
3463 if (vma
->vm_flags
& VM_SHADOW_STACK
)
3469 static inline unsigned long vm_start_gap(struct vm_area_struct
*vma
)
3471 unsigned long gap
= stack_guard_start_gap(vma
);
3472 unsigned long vm_start
= vma
->vm_start
;
3475 if (vm_start
> vma
->vm_start
)
3480 static inline unsigned long vm_end_gap(struct vm_area_struct
*vma
)
3482 unsigned long vm_end
= vma
->vm_end
;
3484 if (vma
->vm_flags
& VM_GROWSUP
) {
3485 vm_end
+= stack_guard_gap
;
3486 if (vm_end
< vma
->vm_end
)
3487 vm_end
= -PAGE_SIZE
;
3492 static inline unsigned long vma_pages(struct vm_area_struct
*vma
)
3494 return (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
3497 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3498 static inline struct vm_area_struct
*find_exact_vma(struct mm_struct
*mm
,
3499 unsigned long vm_start
, unsigned long vm_end
)
3501 struct vm_area_struct
*vma
= vma_lookup(mm
, vm_start
);
3503 if (vma
&& (vma
->vm_start
!= vm_start
|| vma
->vm_end
!= vm_end
))
3509 static inline bool range_in_vma(struct vm_area_struct
*vma
,
3510 unsigned long start
, unsigned long end
)
3512 return (vma
&& vma
->vm_start
<= start
&& end
<= vma
->vm_end
);
3516 pgprot_t
vm_get_page_prot(unsigned long vm_flags
);
3517 void vma_set_page_prot(struct vm_area_struct
*vma
);
3519 static inline pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
3523 static inline void vma_set_page_prot(struct vm_area_struct
*vma
)
3525 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3529 void vma_set_file(struct vm_area_struct
*vma
, struct file
*file
);
3531 #ifdef CONFIG_NUMA_BALANCING
3532 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
3533 unsigned long start
, unsigned long end
);
3536 struct vm_area_struct
*find_extend_vma_locked(struct mm_struct
*,
3537 unsigned long addr
);
3538 int remap_pfn_range(struct vm_area_struct
*, unsigned long addr
,
3539 unsigned long pfn
, unsigned long size
, pgprot_t
);
3540 int remap_pfn_range_notrack(struct vm_area_struct
*vma
, unsigned long addr
,
3541 unsigned long pfn
, unsigned long size
, pgprot_t prot
);
3542 int vm_insert_page(struct vm_area_struct
*, unsigned long addr
, struct page
*);
3543 int vm_insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
3544 struct page
**pages
, unsigned long *num
);
3545 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
3547 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
3549 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
3551 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
3552 unsigned long pfn
, pgprot_t pgprot
);
3553 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
3555 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
3556 unsigned long addr
, pfn_t pfn
);
3557 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
);
3559 static inline vm_fault_t
vmf_insert_page(struct vm_area_struct
*vma
,
3560 unsigned long addr
, struct page
*page
)
3562 int err
= vm_insert_page(vma
, addr
, page
);
3565 return VM_FAULT_OOM
;
3566 if (err
< 0 && err
!= -EBUSY
)
3567 return VM_FAULT_SIGBUS
;
3569 return VM_FAULT_NOPAGE
;
3572 #ifndef io_remap_pfn_range
3573 static inline int io_remap_pfn_range(struct vm_area_struct
*vma
,
3574 unsigned long addr
, unsigned long pfn
,
3575 unsigned long size
, pgprot_t prot
)
3577 return remap_pfn_range(vma
, addr
, pfn
, size
, pgprot_decrypted(prot
));
3581 static inline vm_fault_t
vmf_error(int err
)
3584 return VM_FAULT_OOM
;
3585 else if (err
== -EHWPOISON
)
3586 return VM_FAULT_HWPOISON
;
3587 return VM_FAULT_SIGBUS
;
3591 * Convert errno to return value for ->page_mkwrite() calls.
3593 * This should eventually be merged with vmf_error() above, but will need a
3594 * careful audit of all vmf_error() callers.
3596 static inline vm_fault_t
vmf_fs_error(int err
)
3599 return VM_FAULT_LOCKED
;
3600 if (err
== -EFAULT
|| err
== -EAGAIN
)
3601 return VM_FAULT_NOPAGE
;
3603 return VM_FAULT_OOM
;
3604 /* -ENOSPC, -EDQUOT, -EIO ... */
3605 return VM_FAULT_SIGBUS
;
3608 static inline int vm_fault_to_errno(vm_fault_t vm_fault
, int foll_flags
)
3610 if (vm_fault
& VM_FAULT_OOM
)
3612 if (vm_fault
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
3613 return (foll_flags
& FOLL_HWPOISON
) ? -EHWPOISON
: -EFAULT
;
3614 if (vm_fault
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
3620 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3621 * a (NUMA hinting) fault is required.
3623 static inline bool gup_can_follow_protnone(struct vm_area_struct
*vma
,
3627 * If callers don't want to honor NUMA hinting faults, no need to
3628 * determine if we would actually have to trigger a NUMA hinting fault.
3630 if (!(flags
& FOLL_HONOR_NUMA_FAULT
))
3634 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3636 * Requiring a fault here even for inaccessible VMAs would mean that
3637 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3638 * refuses to process NUMA hinting faults in inaccessible VMAs.
3640 return !vma_is_accessible(vma
);
3643 typedef int (*pte_fn_t
)(pte_t
*pte
, unsigned long addr
, void *data
);
3644 extern int apply_to_page_range(struct mm_struct
*mm
, unsigned long address
,
3645 unsigned long size
, pte_fn_t fn
, void *data
);
3646 extern int apply_to_existing_page_range(struct mm_struct
*mm
,
3647 unsigned long address
, unsigned long size
,
3648 pte_fn_t fn
, void *data
);
3650 #ifdef CONFIG_PAGE_POISONING
3651 extern void __kernel_poison_pages(struct page
*page
, int numpages
);
3652 extern void __kernel_unpoison_pages(struct page
*page
, int numpages
);
3653 extern bool _page_poisoning_enabled_early
;
3654 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled
);
3655 static inline bool page_poisoning_enabled(void)
3657 return _page_poisoning_enabled_early
;
3660 * For use in fast paths after init_mem_debugging() has run, or when a
3661 * false negative result is not harmful when called too early.
3663 static inline bool page_poisoning_enabled_static(void)
3665 return static_branch_unlikely(&_page_poisoning_enabled
);
3667 static inline void kernel_poison_pages(struct page
*page
, int numpages
)
3669 if (page_poisoning_enabled_static())
3670 __kernel_poison_pages(page
, numpages
);
3672 static inline void kernel_unpoison_pages(struct page
*page
, int numpages
)
3674 if (page_poisoning_enabled_static())
3675 __kernel_unpoison_pages(page
, numpages
);
3678 static inline bool page_poisoning_enabled(void) { return false; }
3679 static inline bool page_poisoning_enabled_static(void) { return false; }
3680 static inline void __kernel_poison_pages(struct page
*page
, int nunmpages
) { }
3681 static inline void kernel_poison_pages(struct page
*page
, int numpages
) { }
3682 static inline void kernel_unpoison_pages(struct page
*page
, int numpages
) { }
3685 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON
, init_on_alloc
);
3686 static inline bool want_init_on_alloc(gfp_t flags
)
3688 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON
,
3691 return flags
& __GFP_ZERO
;
3694 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON
, init_on_free
);
3695 static inline bool want_init_on_free(void)
3697 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON
,
3701 extern bool _debug_pagealloc_enabled_early
;
3702 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled
);
3704 static inline bool debug_pagealloc_enabled(void)
3706 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
3707 _debug_pagealloc_enabled_early
;
3711 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3712 * or when a false negative result is not harmful when called too early.
3714 static inline bool debug_pagealloc_enabled_static(void)
3716 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
))
3719 return static_branch_unlikely(&_debug_pagealloc_enabled
);
3723 * To support DEBUG_PAGEALLOC architecture must ensure that
3724 * __kernel_map_pages() never fails
3726 extern void __kernel_map_pages(struct page
*page
, int numpages
, int enable
);
3727 #ifdef CONFIG_DEBUG_PAGEALLOC
3728 static inline void debug_pagealloc_map_pages(struct page
*page
, int numpages
)
3730 if (debug_pagealloc_enabled_static())
3731 __kernel_map_pages(page
, numpages
, 1);
3734 static inline void debug_pagealloc_unmap_pages(struct page
*page
, int numpages
)
3736 if (debug_pagealloc_enabled_static())
3737 __kernel_map_pages(page
, numpages
, 0);
3740 extern unsigned int _debug_guardpage_minorder
;
3741 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled
);
3743 static inline unsigned int debug_guardpage_minorder(void)
3745 return _debug_guardpage_minorder
;
3748 static inline bool debug_guardpage_enabled(void)
3750 return static_branch_unlikely(&_debug_guardpage_enabled
);
3753 static inline bool page_is_guard(struct page
*page
)
3755 if (!debug_guardpage_enabled())
3758 return PageGuard(page
);
3761 bool __set_page_guard(struct zone
*zone
, struct page
*page
, unsigned int order
);
3762 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
3765 if (!debug_guardpage_enabled())
3767 return __set_page_guard(zone
, page
, order
);
3770 void __clear_page_guard(struct zone
*zone
, struct page
*page
, unsigned int order
);
3771 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
3774 if (!debug_guardpage_enabled())
3776 __clear_page_guard(zone
, page
, order
);
3779 #else /* CONFIG_DEBUG_PAGEALLOC */
3780 static inline void debug_pagealloc_map_pages(struct page
*page
, int numpages
) {}
3781 static inline void debug_pagealloc_unmap_pages(struct page
*page
, int numpages
) {}
3782 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3783 static inline bool debug_guardpage_enabled(void) { return false; }
3784 static inline bool page_is_guard(struct page
*page
) { return false; }
3785 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
3786 unsigned int order
) { return false; }
3787 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
3788 unsigned int order
) {}
3789 #endif /* CONFIG_DEBUG_PAGEALLOC */
3791 #ifdef __HAVE_ARCH_GATE_AREA
3792 extern struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
);
3793 extern int in_gate_area_no_mm(unsigned long addr
);
3794 extern int in_gate_area(struct mm_struct
*mm
, unsigned long addr
);
3796 static inline struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
3800 static inline int in_gate_area_no_mm(unsigned long addr
) { return 0; }
3801 static inline int in_gate_area(struct mm_struct
*mm
, unsigned long addr
)
3805 #endif /* __HAVE_ARCH_GATE_AREA */
3807 extern bool process_shares_mm(struct task_struct
*p
, struct mm_struct
*mm
);
3809 #ifdef CONFIG_SYSCTL
3810 extern int sysctl_drop_caches
;
3811 int drop_caches_sysctl_handler(const struct ctl_table
*, int, void *, size_t *,
3815 void drop_slab(void);
3818 #define randomize_va_space 0
3820 extern int randomize_va_space
;
3823 const char * arch_vma_name(struct vm_area_struct
*vma
);
3825 void print_vma_addr(char *prefix
, unsigned long rip
);
3827 static inline void print_vma_addr(char *prefix
, unsigned long rip
)
3832 void *sparse_buffer_alloc(unsigned long size
);
3833 struct page
* __populate_section_memmap(unsigned long pfn
,
3834 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
,
3835 struct dev_pagemap
*pgmap
);
3836 pgd_t
*vmemmap_pgd_populate(unsigned long addr
, int node
);
3837 p4d_t
*vmemmap_p4d_populate(pgd_t
*pgd
, unsigned long addr
, int node
);
3838 pud_t
*vmemmap_pud_populate(p4d_t
*p4d
, unsigned long addr
, int node
);
3839 pmd_t
*vmemmap_pmd_populate(pud_t
*pud
, unsigned long addr
, int node
);
3840 pte_t
*vmemmap_pte_populate(pmd_t
*pmd
, unsigned long addr
, int node
,
3841 struct vmem_altmap
*altmap
, struct page
*reuse
);
3842 void *vmemmap_alloc_block(unsigned long size
, int node
);
3844 void *vmemmap_alloc_block_buf(unsigned long size
, int node
,
3845 struct vmem_altmap
*altmap
);
3846 void vmemmap_verify(pte_t
*, int, unsigned long, unsigned long);
3847 void vmemmap_set_pmd(pmd_t
*pmd
, void *p
, int node
,
3848 unsigned long addr
, unsigned long next
);
3849 int vmemmap_check_pmd(pmd_t
*pmd
, int node
,
3850 unsigned long addr
, unsigned long next
);
3851 int vmemmap_populate_basepages(unsigned long start
, unsigned long end
,
3852 int node
, struct vmem_altmap
*altmap
);
3853 int vmemmap_populate_hugepages(unsigned long start
, unsigned long end
,
3854 int node
, struct vmem_altmap
*altmap
);
3855 int vmemmap_populate(unsigned long start
, unsigned long end
, int node
,
3856 struct vmem_altmap
*altmap
);
3857 void vmemmap_populate_print_last(void);
3858 #ifdef CONFIG_MEMORY_HOTPLUG
3859 void vmemmap_free(unsigned long start
, unsigned long end
,
3860 struct vmem_altmap
*altmap
);
3863 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3864 static inline unsigned long vmem_altmap_offset(struct vmem_altmap
*altmap
)
3866 /* number of pfns from base where pfn_to_page() is valid */
3868 return altmap
->reserve
+ altmap
->free
;
3872 static inline void vmem_altmap_free(struct vmem_altmap
*altmap
,
3873 unsigned long nr_pfns
)
3875 altmap
->alloc
-= nr_pfns
;
3878 static inline unsigned long vmem_altmap_offset(struct vmem_altmap
*altmap
)
3883 static inline void vmem_altmap_free(struct vmem_altmap
*altmap
,
3884 unsigned long nr_pfns
)
3889 #define VMEMMAP_RESERVE_NR 2
3890 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3891 static inline bool __vmemmap_can_optimize(struct vmem_altmap
*altmap
,
3892 struct dev_pagemap
*pgmap
)
3894 unsigned long nr_pages
;
3895 unsigned long nr_vmemmap_pages
;
3897 if (!pgmap
|| !is_power_of_2(sizeof(struct page
)))
3900 nr_pages
= pgmap_vmemmap_nr(pgmap
);
3901 nr_vmemmap_pages
= ((nr_pages
* sizeof(struct page
)) >> PAGE_SHIFT
);
3903 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3904 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3906 return !altmap
&& (nr_vmemmap_pages
> VMEMMAP_RESERVE_NR
);
3909 * If we don't have an architecture override, use the generic rule
3911 #ifndef vmemmap_can_optimize
3912 #define vmemmap_can_optimize __vmemmap_can_optimize
3916 static inline bool vmemmap_can_optimize(struct vmem_altmap
*altmap
,
3917 struct dev_pagemap
*pgmap
)
3923 void register_page_bootmem_memmap(unsigned long section_nr
, struct page
*map
,
3924 unsigned long nr_pages
);
3927 MF_COUNT_INCREASED
= 1 << 0,
3928 MF_ACTION_REQUIRED
= 1 << 1,
3929 MF_MUST_KILL
= 1 << 2,
3930 MF_SOFT_OFFLINE
= 1 << 3,
3931 MF_UNPOISON
= 1 << 4,
3932 MF_SW_SIMULATED
= 1 << 5,
3933 MF_NO_RETRY
= 1 << 6,
3934 MF_MEM_PRE_REMOVE
= 1 << 7,
3936 int mf_dax_kill_procs(struct address_space
*mapping
, pgoff_t index
,
3937 unsigned long count
, int mf_flags
);
3938 extern int memory_failure(unsigned long pfn
, int flags
);
3939 extern void memory_failure_queue_kick(int cpu
);
3940 extern int unpoison_memory(unsigned long pfn
);
3941 extern atomic_long_t num_poisoned_pages __read_mostly
;
3942 extern int soft_offline_page(unsigned long pfn
, int flags
);
3943 #ifdef CONFIG_MEMORY_FAILURE
3945 * Sysfs entries for memory failure handling statistics.
3947 extern const struct attribute_group memory_failure_attr_group
;
3948 extern void memory_failure_queue(unsigned long pfn
, int flags
);
3949 extern int __get_huge_page_for_hwpoison(unsigned long pfn
, int flags
,
3950 bool *migratable_cleared
);
3951 void num_poisoned_pages_inc(unsigned long pfn
);
3952 void num_poisoned_pages_sub(unsigned long pfn
, long i
);
3954 static inline void memory_failure_queue(unsigned long pfn
, int flags
)
3958 static inline int __get_huge_page_for_hwpoison(unsigned long pfn
, int flags
,
3959 bool *migratable_cleared
)
3964 static inline void num_poisoned_pages_inc(unsigned long pfn
)
3968 static inline void num_poisoned_pages_sub(unsigned long pfn
, long i
)
3973 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3974 extern void memblk_nr_poison_inc(unsigned long pfn
);
3975 extern void memblk_nr_poison_sub(unsigned long pfn
, long i
);
3977 static inline void memblk_nr_poison_inc(unsigned long pfn
)
3981 static inline void memblk_nr_poison_sub(unsigned long pfn
, long i
)
3986 #ifndef arch_memory_failure
3987 static inline int arch_memory_failure(unsigned long pfn
, int flags
)
3993 #ifndef arch_is_platform_page
3994 static inline bool arch_is_platform_page(u64 paddr
)
4001 * Error handlers for various types of pages.
4004 MF_IGNORED
, /* Error: cannot be handled */
4005 MF_FAILED
, /* Error: handling failed */
4006 MF_DELAYED
, /* Will be handled later */
4007 MF_RECOVERED
, /* Successfully recovered */
4010 enum mf_action_page_type
{
4012 MF_MSG_KERNEL_HIGH_ORDER
,
4013 MF_MSG_DIFFERENT_COMPOUND
,
4016 MF_MSG_GET_HWPOISON
,
4017 MF_MSG_UNMAP_FAILED
,
4018 MF_MSG_DIRTY_SWAPCACHE
,
4019 MF_MSG_CLEAN_SWAPCACHE
,
4020 MF_MSG_DIRTY_MLOCKED_LRU
,
4021 MF_MSG_CLEAN_MLOCKED_LRU
,
4022 MF_MSG_DIRTY_UNEVICTABLE_LRU
,
4023 MF_MSG_CLEAN_UNEVICTABLE_LRU
,
4026 MF_MSG_TRUNCATED_LRU
,
4030 MF_MSG_ALREADY_POISONED
,
4034 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4035 void folio_zero_user(struct folio
*folio
, unsigned long addr_hint
);
4036 int copy_user_large_folio(struct folio
*dst
, struct folio
*src
,
4037 unsigned long addr_hint
,
4038 struct vm_area_struct
*vma
);
4039 long copy_folio_from_user(struct folio
*dst_folio
,
4040 const void __user
*usr_src
,
4041 bool allow_pagefault
);
4044 * vma_is_special_huge - Are transhuge page-table entries considered special?
4045 * @vma: Pointer to the struct vm_area_struct to consider
4047 * Whether transhuge page-table entries are considered "special" following
4048 * the definition in vm_normal_page().
4050 * Return: true if transhuge page-table entries should be considered special,
4053 static inline bool vma_is_special_huge(const struct vm_area_struct
*vma
)
4055 return vma_is_dax(vma
) || (vma
->vm_file
&&
4056 (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
)));
4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4061 #if MAX_NUMNODES > 1
4062 void __init
setup_nr_node_ids(void);
4064 static inline void setup_nr_node_ids(void) {}
4067 extern int memcmp_pages(struct page
*page1
, struct page
*page2
);
4069 static inline int pages_identical(struct page
*page1
, struct page
*page2
)
4071 return !memcmp_pages(page1
, page2
);
4074 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4075 unsigned long clean_record_shared_mapping_range(struct address_space
*mapping
,
4076 pgoff_t first_index
, pgoff_t nr
,
4077 pgoff_t bitmap_pgoff
,
4078 unsigned long *bitmap
,
4082 unsigned long wp_shared_mapping_range(struct address_space
*mapping
,
4083 pgoff_t first_index
, pgoff_t nr
);
4086 extern int sysctl_nr_trim_pages
;
4088 #ifdef CONFIG_PRINTK
4089 void mem_dump_obj(void *object
);
4091 static inline void mem_dump_obj(void *object
) {}
4095 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4097 * @seals: the seals to check
4098 * @vma: the vma to operate on
4100 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4101 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4103 static inline int seal_check_write(int seals
, struct vm_area_struct
*vma
)
4105 if (seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
4107 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4108 * write seals are active.
4110 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_WRITE
))
4114 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4115 * MAP_SHARED and read-only, take care to not allow mprotect to
4116 * revert protections on such mappings. Do this only for shared
4117 * mappings. For private mappings, don't need to mask
4118 * VM_MAYWRITE as we still want them to be COW-writable.
4120 if (vma
->vm_flags
& VM_SHARED
)
4121 vm_flags_clear(vma
, VM_MAYWRITE
);
4127 #ifdef CONFIG_ANON_VMA_NAME
4128 int madvise_set_anon_name(struct mm_struct
*mm
, unsigned long start
,
4129 unsigned long len_in
,
4130 struct anon_vma_name
*anon_name
);
4133 madvise_set_anon_name(struct mm_struct
*mm
, unsigned long start
,
4134 unsigned long len_in
, struct anon_vma_name
*anon_name
) {
4139 #ifdef CONFIG_UNACCEPTED_MEMORY
4141 bool range_contains_unaccepted_memory(phys_addr_t start
, unsigned long size
);
4142 void accept_memory(phys_addr_t start
, unsigned long size
);
4146 static inline bool range_contains_unaccepted_memory(phys_addr_t start
,
4152 static inline void accept_memory(phys_addr_t start
, unsigned long size
)
4158 static inline bool pfn_is_unaccepted_memory(unsigned long pfn
)
4160 return range_contains_unaccepted_memory(pfn
<< PAGE_SHIFT
, PAGE_SIZE
);
4163 void vma_pgtable_walk_begin(struct vm_area_struct
*vma
);
4164 void vma_pgtable_walk_end(struct vm_area_struct
*vma
);
4166 int reserve_mem_find_by_name(const char *name
, phys_addr_t
*start
, phys_addr_t
*size
);
4169 int do_mseal(unsigned long start
, size_t len_in
, unsigned long flags
);
4171 static inline int do_mseal(unsigned long start
, size_t len_in
, unsigned long flags
)
4173 /* noop on 32 bit */
4178 int arch_get_shadow_stack_status(struct task_struct
*t
, unsigned long __user
*status
);
4179 int arch_set_shadow_stack_status(struct task_struct
*t
, unsigned long status
);
4180 int arch_lock_shadow_stack_status(struct task_struct
*t
, unsigned long status
);
4182 #endif /* _LINUX_MM_H */