4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
21 * Kernel-internal data types and definitions:
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
29 #define PERF_GUEST_ACTIVE 0x01
30 #define PERF_GUEST_USER 0x02
32 struct perf_guest_info_callbacks
{
33 unsigned int (*state
)(void);
34 unsigned long (*get_ip
)(void);
35 unsigned int (*handle_intel_pt_intr
)(void);
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
67 struct perf_callchain_entry
{
69 __u64 ip
[]; /* /proc/sys/kernel/perf_event_max_stack */
72 struct perf_callchain_entry_ctx
{
73 struct perf_callchain_entry
*entry
;
80 typedef unsigned long (*perf_copy_f
)(void *dst
, const void *src
,
81 unsigned long off
, unsigned long len
);
83 struct perf_raw_frag
{
85 struct perf_raw_frag
*next
;
93 struct perf_raw_record
{
94 struct perf_raw_frag frag
;
98 static __always_inline
bool perf_raw_frag_last(const struct perf_raw_frag
*frag
)
100 return frag
->pad
< sizeof(u64
);
104 * branch stack layout:
105 * nr: number of taken branches stored in entries[]
106 * hw_idx: The low level index of raw branch records
107 * for the most recent branch.
108 * -1ULL means invalid/unknown.
110 * Note that nr can vary from sample to sample
111 * branches (to, from) are stored from most recent
112 * to least recent, i.e., entries[0] contains the most
114 * The entries[] is an abstraction of raw branch records,
115 * which may not be stored in age order in HW, e.g. Intel LBR.
116 * The hw_idx is to expose the low level index of raw
117 * branch record for the most recent branch aka entries[0].
118 * The hw_idx index is between -1 (unknown) and max depth,
119 * which can be retrieved in /sys/devices/cpu/caps/branches.
120 * For the architectures whose raw branch records are
121 * already stored in age order, the hw_idx should be 0.
123 struct perf_branch_stack
{
126 struct perf_branch_entry entries
[];
132 * extra PMU register associated with an event
134 struct hw_perf_event_extra
{
135 u64 config
; /* register value */
136 unsigned int reg
; /* register address or index */
137 int alloc
; /* extra register already allocated */
138 int idx
; /* index in shared_regs->regs[] */
142 * hw_perf_event::flag values
144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
147 #define PERF_EVENT_FLAG_ARCH 0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT
& PERF_EVENT_FLAG_ARCH
) == 0);
153 * struct hw_perf_event - performance event hardware details:
155 struct hw_perf_event
{
156 #ifdef CONFIG_PERF_EVENTS
158 struct { /* hardware */
161 unsigned long config_base
;
162 unsigned long event_base
;
163 int event_base_rdpmc
;
168 struct hw_perf_event_extra extra_reg
;
169 struct hw_perf_event_extra branch_reg
;
171 struct { /* aux / Intel-PT */
174 * For AUX area events, aux_paused cannot be a state
175 * flag because it can be updated asynchronously to
178 unsigned int aux_paused
;
180 struct { /* software */
181 struct hrtimer hrtimer
;
183 struct { /* tracepoint */
184 /* for tp_event->class */
185 struct list_head tp_list
;
187 struct { /* amd_power */
191 #ifdef CONFIG_HAVE_HW_BREAKPOINT
192 struct { /* breakpoint */
194 * Crufty hack to avoid the chicken and egg
195 * problem hw_breakpoint has with context
196 * creation and event initalization.
198 struct arch_hw_breakpoint info
;
199 struct rhlist_head bp_list
;
202 struct { /* amd_iommu */
211 * If the event is a per task event, this will point to the task in
212 * question. See the comment in perf_event_alloc().
214 struct task_struct
*target
;
217 * PMU would store hardware filter configuration
222 /* Last sync'ed generation of filters */
223 unsigned long addr_filters_gen
;
226 * hw_perf_event::state flags; used to track the PERF_EF_* state.
228 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
229 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
230 #define PERF_HES_ARCH 0x04
235 * The last observed hardware counter value, updated with a
236 * local64_cmpxchg() such that pmu::read() can be called nested.
238 local64_t prev_count
;
241 * The period to start the next sample with.
246 struct { /* Sampling */
248 * The period we started this sample with.
253 * However much is left of the current period;
254 * note that this is a full 64bit value and
255 * allows for generation of periods longer
256 * than hardware might allow.
258 local64_t period_left
;
260 struct { /* Topdown events counting for context switch */
267 * State for throttling the event, see __perf_event_overflow() and
268 * perf_adjust_freq_unthr_context().
274 * State for freq target events, see __perf_event_overflow() and
275 * perf_adjust_freq_unthr_context().
278 u64 freq_count_stamp
;
283 struct perf_event_pmu_context
;
286 * Common implementation detail of pmu::{start,commit,cancel}_txn
288 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
289 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
292 * pmu::capabilities flags
294 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
295 #define PERF_PMU_CAP_NO_NMI 0x0002
296 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
297 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
298 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
299 #define PERF_PMU_CAP_ITRACE 0x0020
300 #define PERF_PMU_CAP_NO_EXCLUDE 0x0040
301 #define PERF_PMU_CAP_AUX_OUTPUT 0x0080
302 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100
303 #define PERF_PMU_CAP_AUX_PAUSE 0x0200
308 enum perf_pmu_scope
{
309 PERF_PMU_SCOPE_NONE
= 0,
312 PERF_PMU_SCOPE_CLUSTER
,
314 PERF_PMU_SCOPE_SYS_WIDE
,
318 struct perf_output_handle
;
320 #define PMU_NULL_DEV ((void *)(~0UL))
323 * struct pmu - generic performance monitoring unit
326 struct list_head entry
;
328 struct module
*module
;
330 struct device
*parent
;
331 const struct attribute_group
**attr_groups
;
332 const struct attribute_group
**attr_update
;
337 * various common per-pmu feature flags
346 int __percpu
*pmu_disable_count
;
347 struct perf_cpu_pmu_context __percpu
*cpu_pmu_context
;
348 atomic_t exclusive_cnt
; /* < 0: cpu; > 0: tsk */
350 int hrtimer_interval_ms
;
352 /* number of address filters this PMU can do */
353 unsigned int nr_addr_filters
;
356 * Fully disable/enable this PMU, can be used to protect from the PMI
357 * as well as for lazy/batch writing of the MSRs.
359 void (*pmu_enable
) (struct pmu
*pmu
); /* optional */
360 void (*pmu_disable
) (struct pmu
*pmu
); /* optional */
363 * Try and initialize the event for this PMU.
366 * -ENOENT -- @event is not for this PMU
368 * -ENODEV -- @event is for this PMU but PMU not present
369 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
370 * -EINVAL -- @event is for this PMU but @event is not valid
371 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
372 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
374 * 0 -- @event is for this PMU and valid
376 * Other error return values are allowed.
378 int (*event_init
) (struct perf_event
*event
);
381 * Notification that the event was mapped or unmapped. Called
382 * in the context of the mapping task.
384 void (*event_mapped
) (struct perf_event
*event
, struct mm_struct
*mm
); /* optional */
385 void (*event_unmapped
) (struct perf_event
*event
, struct mm_struct
*mm
); /* optional */
388 * Flags for ->add()/->del()/ ->start()/->stop(). There are
389 * matching hw_perf_event::state flags.
391 #define PERF_EF_START 0x01 /* start the counter when adding */
392 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
393 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
394 #define PERF_EF_PAUSE 0x08 /* AUX area event, pause tracing */
395 #define PERF_EF_RESUME 0x10 /* AUX area event, resume tracing */
398 * Adds/Removes a counter to/from the PMU, can be done inside a
399 * transaction, see the ->*_txn() methods.
401 * The add/del callbacks will reserve all hardware resources required
402 * to service the event, this includes any counter constraint
405 * Called with IRQs disabled and the PMU disabled on the CPU the event
408 * ->add() called without PERF_EF_START should result in the same state
409 * as ->add() followed by ->stop().
411 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
412 * ->stop() that must deal with already being stopped without
415 int (*add
) (struct perf_event
*event
, int flags
);
416 void (*del
) (struct perf_event
*event
, int flags
);
419 * Starts/Stops a counter present on the PMU.
421 * The PMI handler should stop the counter when perf_event_overflow()
422 * returns !0. ->start() will be used to continue.
424 * Also used to change the sample period.
426 * Called with IRQs disabled and the PMU disabled on the CPU the event
427 * is on -- will be called from NMI context with the PMU generates
430 * ->stop() with PERF_EF_UPDATE will read the counter and update
431 * period/count values like ->read() would.
433 * ->start() with PERF_EF_RELOAD will reprogram the counter
434 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
436 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not
437 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with
440 * ->start() with PERF_EF_RESUME will start as simply as possible but
441 * only if the counter is not otherwise stopped. Will not overlap
442 * another ->start() with PERF_EF_RESUME nor ->stop() with
445 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other
446 * ->stop()/->start() invocations, just not itself.
448 void (*start
) (struct perf_event
*event
, int flags
);
449 void (*stop
) (struct perf_event
*event
, int flags
);
452 * Updates the counter value of the event.
454 * For sampling capable PMUs this will also update the software period
455 * hw_perf_event::period_left field.
457 void (*read
) (struct perf_event
*event
);
460 * Group events scheduling is treated as a transaction, add
461 * group events as a whole and perform one schedulability test.
462 * If the test fails, roll back the whole group
464 * Start the transaction, after this ->add() doesn't need to
465 * do schedulability tests.
469 void (*start_txn
) (struct pmu
*pmu
, unsigned int txn_flags
);
471 * If ->start_txn() disabled the ->add() schedulability test
472 * then ->commit_txn() is required to perform one. On success
473 * the transaction is closed. On error the transaction is kept
474 * open until ->cancel_txn() is called.
478 int (*commit_txn
) (struct pmu
*pmu
);
480 * Will cancel the transaction, assumes ->del() is called
481 * for each successful ->add() during the transaction.
485 void (*cancel_txn
) (struct pmu
*pmu
);
488 * Will return the value for perf_event_mmap_page::index for this event,
489 * if no implementation is provided it will default to 0 (see
490 * perf_event_idx_default).
492 int (*event_idx
) (struct perf_event
*event
); /*optional */
495 * context-switches callback
497 void (*sched_task
) (struct perf_event_pmu_context
*pmu_ctx
,
501 * Kmem cache of PMU specific data
503 struct kmem_cache
*task_ctx_cache
;
506 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
507 * can be synchronized using this function. See Intel LBR callstack support
508 * implementation and Perf core context switch handling callbacks for usage
511 void (*swap_task_ctx
) (struct perf_event_pmu_context
*prev_epc
,
512 struct perf_event_pmu_context
*next_epc
);
516 * Set up pmu-private data structures for an AUX area
518 void *(*setup_aux
) (struct perf_event
*event
, void **pages
,
519 int nr_pages
, bool overwrite
);
523 * Free pmu-private AUX data structures
525 void (*free_aux
) (void *aux
); /* optional */
528 * Take a snapshot of the AUX buffer without touching the event
529 * state, so that preempting ->start()/->stop() callbacks does
530 * not interfere with their logic. Called in PMI context.
532 * Returns the size of AUX data copied to the output handle.
536 long (*snapshot_aux
) (struct perf_event
*event
,
537 struct perf_output_handle
*handle
,
541 * Validate address range filters: make sure the HW supports the
542 * requested configuration and number of filters; return 0 if the
543 * supplied filters are valid, -errno otherwise.
545 * Runs in the context of the ioctl()ing process and is not serialized
546 * with the rest of the PMU callbacks.
548 int (*addr_filters_validate
) (struct list_head
*filters
);
552 * Synchronize address range filter configuration:
553 * translate hw-agnostic filters into hardware configuration in
554 * event::hw::addr_filters.
556 * Runs as a part of filter sync sequence that is done in ->start()
557 * callback by calling perf_event_addr_filters_sync().
559 * May (and should) traverse event::addr_filters::list, for which its
560 * caller provides necessary serialization.
562 void (*addr_filters_sync
) (struct perf_event
*event
);
566 * Check if event can be used for aux_output purposes for
567 * events of this PMU.
569 * Runs from perf_event_open(). Should return 0 for "no match"
570 * or non-zero for "match".
572 int (*aux_output_match
) (struct perf_event
*event
);
576 * Skip programming this PMU on the given CPU. Typically needed for
579 bool (*filter
) (struct pmu
*pmu
, int cpu
); /* optional */
582 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
584 int (*check_period
) (struct perf_event
*event
, u64 value
); /* optional */
587 enum perf_addr_filter_action_t
{
588 PERF_ADDR_FILTER_ACTION_STOP
= 0,
589 PERF_ADDR_FILTER_ACTION_START
,
590 PERF_ADDR_FILTER_ACTION_FILTER
,
594 * struct perf_addr_filter - address range filter definition
595 * @entry: event's filter list linkage
596 * @path: object file's path for file-based filters
597 * @offset: filter range offset
598 * @size: filter range size (size==0 means single address trigger)
599 * @action: filter/start/stop
601 * This is a hardware-agnostic filter configuration as specified by the user.
603 struct perf_addr_filter
{
604 struct list_head entry
;
606 unsigned long offset
;
608 enum perf_addr_filter_action_t action
;
612 * struct perf_addr_filters_head - container for address range filters
613 * @list: list of filters for this event
614 * @lock: spinlock that serializes accesses to the @list and event's
615 * (and its children's) filter generations.
616 * @nr_file_filters: number of file-based filters
618 * A child event will use parent's @list (and therefore @lock), so they are
619 * bundled together; see perf_event_addr_filters().
621 struct perf_addr_filters_head
{
622 struct list_head list
;
624 unsigned int nr_file_filters
;
627 struct perf_addr_filter_range
{
633 * enum perf_event_state - the states of an event:
635 enum perf_event_state
{
636 PERF_EVENT_STATE_DEAD
= -4,
637 PERF_EVENT_STATE_EXIT
= -3,
638 PERF_EVENT_STATE_ERROR
= -2,
639 PERF_EVENT_STATE_OFF
= -1,
640 PERF_EVENT_STATE_INACTIVE
= 0,
641 PERF_EVENT_STATE_ACTIVE
= 1,
645 struct perf_sample_data
;
647 typedef void (*perf_overflow_handler_t
)(struct perf_event
*,
648 struct perf_sample_data
*,
649 struct pt_regs
*regs
);
652 * Event capabilities. For event_caps and groups caps.
654 * PERF_EV_CAP_SOFTWARE: Is a software event.
655 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
656 * from any CPU in the package where it is active.
657 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
658 * cannot be a group leader. If an event with this flag is detached from the
659 * group it is scheduled out and moved into an unrecoverable ERROR state.
660 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
661 * PMU scope where it is active.
663 #define PERF_EV_CAP_SOFTWARE BIT(0)
664 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
665 #define PERF_EV_CAP_SIBLING BIT(2)
666 #define PERF_EV_CAP_READ_SCOPE BIT(3)
668 #define SWEVENT_HLIST_BITS 8
669 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
671 struct swevent_hlist
{
672 struct hlist_head heads
[SWEVENT_HLIST_SIZE
];
673 struct rcu_head rcu_head
;
676 #define PERF_ATTACH_CONTEXT 0x01
677 #define PERF_ATTACH_GROUP 0x02
678 #define PERF_ATTACH_TASK 0x04
679 #define PERF_ATTACH_TASK_DATA 0x08
680 #define PERF_ATTACH_ITRACE 0x10
681 #define PERF_ATTACH_SCHED_CB 0x20
682 #define PERF_ATTACH_CHILD 0x40
688 struct pmu_event_list
{
690 struct list_head list
;
694 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
695 * as such iteration must hold either lock. However, since ctx->lock is an IRQ
696 * safe lock, and is only held by the CPU doing the modification, having IRQs
697 * disabled is sufficient since it will hold-off the IPIs.
699 #ifdef CONFIG_PROVE_LOCKING
700 #define lockdep_assert_event_ctx(event) \
701 WARN_ON_ONCE(__lockdep_enabled && \
702 (this_cpu_read(hardirqs_enabled) && \
703 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
705 #define lockdep_assert_event_ctx(event)
708 #define for_each_sibling_event(sibling, event) \
709 lockdep_assert_event_ctx(event); \
710 if ((event)->group_leader == (event)) \
711 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
714 * struct perf_event - performance event kernel representation:
717 #ifdef CONFIG_PERF_EVENTS
719 * entry onto perf_event_context::event_list;
720 * modifications require ctx->lock
721 * RCU safe iterations.
723 struct list_head event_entry
;
726 * Locked for modification by both ctx->mutex and ctx->lock; holding
727 * either sufficies for read.
729 struct list_head sibling_list
;
730 struct list_head active_list
;
732 * Node on the pinned or flexible tree located at the event context;
734 struct rb_node group_node
;
737 * We need storage to track the entries in perf_pmu_migrate_context; we
738 * cannot use the event_entry because of RCU and we want to keep the
739 * group in tact which avoids us using the other two entries.
741 struct list_head migrate_entry
;
743 struct hlist_node hlist_entry
;
744 struct list_head active_entry
;
747 /* Not serialized. Only written during event initialization. */
749 /* The cumulative AND of all event_caps for events in this group. */
752 unsigned int group_generation
;
753 struct perf_event
*group_leader
;
755 * event->pmu will always point to pmu in which this event belongs.
756 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
757 * different pmu events is created.
762 enum perf_event_state state
;
763 unsigned int attach_state
;
765 atomic64_t child_count
;
768 * These are the total time in nanoseconds that the event
769 * has been enabled (i.e. eligible to run, and the task has
770 * been scheduled in, if this is a per-task event)
771 * and running (scheduled onto the CPU), respectively.
773 u64 total_time_enabled
;
774 u64 total_time_running
;
777 struct perf_event_attr attr
;
781 struct hw_perf_event hw
;
783 struct perf_event_context
*ctx
;
785 * event->pmu_ctx points to perf_event_pmu_context in which the event
786 * is added. This pmu_ctx can be of other pmu for sw event when that
787 * sw event is part of a group which also contains non-sw events.
789 struct perf_event_pmu_context
*pmu_ctx
;
790 atomic_long_t refcount
;
793 * These accumulate total time (in nanoseconds) that children
794 * events have been enabled and running, respectively.
796 atomic64_t child_total_time_enabled
;
797 atomic64_t child_total_time_running
;
800 * Protect attach/detach and child_list:
802 struct mutex child_mutex
;
803 struct list_head child_list
;
804 struct perf_event
*parent
;
809 struct list_head owner_entry
;
810 struct task_struct
*owner
;
813 struct mutex mmap_mutex
;
816 struct perf_buffer
*rb
;
817 struct list_head rb_entry
;
818 unsigned long rcu_batches
;
822 wait_queue_head_t waitq
;
823 struct fasync_struct
*fasync
;
825 /* delayed work for NMIs and such */
826 unsigned int pending_wakeup
;
827 unsigned int pending_kill
;
828 unsigned int pending_disable
;
829 unsigned long pending_addr
; /* SIGTRAP */
830 struct irq_work pending_irq
;
831 struct irq_work pending_disable_irq
;
832 struct callback_head pending_task
;
833 unsigned int pending_work
;
834 struct rcuwait pending_work_wait
;
836 atomic_t event_limit
;
838 /* address range filters */
839 struct perf_addr_filters_head addr_filters
;
840 /* vma address array for file-based filders */
841 struct perf_addr_filter_range
*addr_filter_ranges
;
842 unsigned long addr_filters_gen
;
844 /* for aux_output events */
845 struct perf_event
*aux_event
;
847 void (*destroy
)(struct perf_event
*);
848 struct rcu_head rcu_head
;
850 struct pid_namespace
*ns
;
853 atomic64_t lost_samples
;
856 perf_overflow_handler_t overflow_handler
;
857 void *overflow_handler_context
;
858 struct bpf_prog
*prog
;
861 #ifdef CONFIG_EVENT_TRACING
862 struct trace_event_call
*tp_event
;
863 struct event_filter
*filter
;
864 #ifdef CONFIG_FUNCTION_TRACER
865 struct ftrace_ops ftrace_ops
;
869 #ifdef CONFIG_CGROUP_PERF
870 struct perf_cgroup
*cgrp
; /* cgroup event is attach to */
873 #ifdef CONFIG_SECURITY
876 struct list_head sb_list
;
879 * Certain events gets forwarded to another pmu internally by over-
880 * writing kernel copy of event->attr.type without user being aware
881 * of it. event->orig_type contains original 'type' requested by
885 #endif /* CONFIG_PERF_EVENTS */
889 * ,-----------------------[1:n]------------------------.
891 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
893 * `--[n:1]-> pmu <-[1:n]--'
896 * struct perf_event_pmu_context lifetime is refcount based and RCU freed
897 * (similar to perf_event_context). Locking is as if it were a member of
898 * perf_event_context; specifically:
900 * modification, both: ctx->mutex && ctx->lock
901 * reading, either: ctx->mutex || ctx->lock
903 * There is one exception to this; namely put_pmu_ctx() isn't always called
904 * with ctx->mutex held; this means that as long as we can guarantee the epc
905 * has events the above rules hold.
907 * Specificially, sys_perf_event_open()'s group_leader case depends on
908 * ctx->mutex pinning the configuration. Since we hold a reference on
909 * group_leader (through the filedesc) it can't go away, therefore it's
910 * associated pmu_ctx must exist and cannot change due to ctx->mutex.
912 * perf_event holds a refcount on perf_event_context
913 * perf_event holds a refcount on perf_event_pmu_context
915 struct perf_event_pmu_context
{
917 struct perf_event_context
*ctx
;
919 struct list_head pmu_ctx_entry
;
921 struct list_head pinned_active
;
922 struct list_head flexible_active
;
924 /* Used to avoid freeing per-cpu perf_event_pmu_context */
925 unsigned int embedded
: 1;
927 unsigned int nr_events
;
928 unsigned int nr_cgroups
;
929 unsigned int nr_freq
;
931 atomic_t refcount
; /* event <-> epc */
932 struct rcu_head rcu_head
;
934 void *task_ctx_data
; /* pmu specific data */
936 * Set when one or more (plausibly active) event can't be scheduled
937 * due to pmu overcommit or pmu constraints, except tolerant to
938 * events not necessary to be active due to scheduling constraints,
941 int rotate_necessary
;
944 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context
*epc
)
946 return !list_empty(&epc
->flexible_active
) || !list_empty(&epc
->pinned_active
);
949 struct perf_event_groups
{
956 * struct perf_event_context - event context structure
958 * Used as a container for task events and CPU events as well:
960 struct perf_event_context
{
962 * Protect the states of the events in the list,
963 * nr_active, and the list:
967 * Protect the list of events. Locking either mutex or lock
968 * is sufficient to ensure the list doesn't change; to change
969 * the list you need to lock both the mutex and the spinlock.
973 struct list_head pmu_ctx_list
;
974 struct perf_event_groups pinned_groups
;
975 struct perf_event_groups flexible_groups
;
976 struct list_head event_list
;
987 refcount_t refcount
; /* event <-> ctx */
988 struct task_struct
*task
;
991 * Context clock, runs when context enabled.
998 * These fields let us detect when two contexts have both
999 * been cloned (inherited) from a common ancestor.
1001 struct perf_event_context
*parent_ctx
;
1005 #ifdef CONFIG_CGROUP_PERF
1006 int nr_cgroups
; /* cgroup evts */
1008 struct rcu_head rcu_head
;
1011 * The count of events for which using the switch-out fast path
1012 * should be avoided.
1014 * Sum (event->pending_work + events with
1015 * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
1017 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
1018 * that until the signal is delivered.
1020 local_t nr_no_switch_fast
;
1023 struct perf_cpu_pmu_context
{
1024 struct perf_event_pmu_context epc
;
1025 struct perf_event_pmu_context
*task_epc
;
1027 struct list_head sched_cb_entry
;
1033 raw_spinlock_t hrtimer_lock
;
1034 struct hrtimer hrtimer
;
1035 ktime_t hrtimer_interval
;
1036 unsigned int hrtimer_active
;
1040 * struct perf_event_cpu_context - per cpu event context structure
1042 struct perf_cpu_context
{
1043 struct perf_event_context ctx
;
1044 struct perf_event_context
*task_ctx
;
1047 #ifdef CONFIG_CGROUP_PERF
1048 struct perf_cgroup
*cgrp
;
1052 * Per-CPU storage for iterators used in visit_groups_merge. The default
1053 * storage is of size 2 to hold the CPU and any CPU event iterators.
1056 struct perf_event
**heap
;
1057 struct perf_event
*heap_default
[2];
1060 struct perf_output_handle
{
1061 struct perf_event
*event
;
1062 struct perf_buffer
*rb
;
1063 unsigned long wakeup
;
1073 struct bpf_perf_event_data_kern
{
1074 bpf_user_pt_regs_t
*regs
;
1075 struct perf_sample_data
*data
;
1076 struct perf_event
*event
;
1079 #ifdef CONFIG_CGROUP_PERF
1082 * perf_cgroup_info keeps track of time_enabled for a cgroup.
1083 * This is a per-cpu dynamically allocated data structure.
1085 struct perf_cgroup_info
{
1092 struct perf_cgroup
{
1093 struct cgroup_subsys_state css
;
1094 struct perf_cgroup_info __percpu
*info
;
1098 * Must ensure cgroup is pinned (css_get) before calling
1099 * this function. In other words, we cannot call this function
1100 * if there is no cgroup event for the current CPU context.
1102 static inline struct perf_cgroup
*
1103 perf_cgroup_from_task(struct task_struct
*task
, struct perf_event_context
*ctx
)
1105 return container_of(task_css_check(task
, perf_event_cgrp_id
,
1106 ctx
? lockdep_is_held(&ctx
->lock
)
1108 struct perf_cgroup
, css
);
1110 #endif /* CONFIG_CGROUP_PERF */
1112 #ifdef CONFIG_PERF_EVENTS
1114 extern struct perf_event_context
*perf_cpu_task_ctx(void);
1116 extern void *perf_aux_output_begin(struct perf_output_handle
*handle
,
1117 struct perf_event
*event
);
1118 extern void perf_aux_output_end(struct perf_output_handle
*handle
,
1119 unsigned long size
);
1120 extern int perf_aux_output_skip(struct perf_output_handle
*handle
,
1121 unsigned long size
);
1122 extern void *perf_get_aux(struct perf_output_handle
*handle
);
1123 extern void perf_aux_output_flag(struct perf_output_handle
*handle
, u64 flags
);
1124 extern void perf_event_itrace_started(struct perf_event
*event
);
1126 extern int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
);
1127 extern void perf_pmu_unregister(struct pmu
*pmu
);
1129 extern void __perf_event_task_sched_in(struct task_struct
*prev
,
1130 struct task_struct
*task
);
1131 extern void __perf_event_task_sched_out(struct task_struct
*prev
,
1132 struct task_struct
*next
);
1133 extern int perf_event_init_task(struct task_struct
*child
, u64 clone_flags
);
1134 extern void perf_event_exit_task(struct task_struct
*child
);
1135 extern void perf_event_free_task(struct task_struct
*task
);
1136 extern void perf_event_delayed_put(struct task_struct
*task
);
1137 extern struct file
*perf_event_get(unsigned int fd
);
1138 extern const struct perf_event
*perf_get_event(struct file
*file
);
1139 extern const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
);
1140 extern void perf_event_print_debug(void);
1141 extern void perf_pmu_disable(struct pmu
*pmu
);
1142 extern void perf_pmu_enable(struct pmu
*pmu
);
1143 extern void perf_sched_cb_dec(struct pmu
*pmu
);
1144 extern void perf_sched_cb_inc(struct pmu
*pmu
);
1145 extern int perf_event_task_disable(void);
1146 extern int perf_event_task_enable(void);
1148 extern void perf_pmu_resched(struct pmu
*pmu
);
1150 extern int perf_event_refresh(struct perf_event
*event
, int refresh
);
1151 extern void perf_event_update_userpage(struct perf_event
*event
);
1152 extern int perf_event_release_kernel(struct perf_event
*event
);
1153 extern struct perf_event
*
1154 perf_event_create_kernel_counter(struct perf_event_attr
*attr
,
1156 struct task_struct
*task
,
1157 perf_overflow_handler_t callback
,
1159 extern void perf_pmu_migrate_context(struct pmu
*pmu
,
1160 int src_cpu
, int dst_cpu
);
1161 int perf_event_read_local(struct perf_event
*event
, u64
*value
,
1162 u64
*enabled
, u64
*running
);
1163 extern u64
perf_event_read_value(struct perf_event
*event
,
1164 u64
*enabled
, u64
*running
);
1166 extern struct perf_callchain_entry
*perf_callchain(struct perf_event
*event
, struct pt_regs
*regs
);
1168 static inline bool branch_sample_no_flags(const struct perf_event
*event
)
1170 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_NO_FLAGS
;
1173 static inline bool branch_sample_no_cycles(const struct perf_event
*event
)
1175 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_NO_CYCLES
;
1178 static inline bool branch_sample_type(const struct perf_event
*event
)
1180 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_TYPE_SAVE
;
1183 static inline bool branch_sample_hw_index(const struct perf_event
*event
)
1185 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_HW_INDEX
;
1188 static inline bool branch_sample_priv(const struct perf_event
*event
)
1190 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_PRIV_SAVE
;
1193 static inline bool branch_sample_counters(const struct perf_event
*event
)
1195 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_COUNTERS
;
1198 static inline bool branch_sample_call_stack(const struct perf_event
*event
)
1200 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_CALL_STACK
;
1203 struct perf_sample_data
{
1205 * Fields set by perf_sample_data_init() unconditionally,
1206 * group so as to minimize the cachelines touched.
1213 * Fields commonly set by __perf_event_header__init_id(),
1214 * group so as to minimize the cachelines touched.
1229 * The other fields, optionally {set,used} by
1230 * perf_{prepare,output}_sample().
1233 struct perf_callchain_entry
*callchain
;
1234 struct perf_raw_record
*raw
;
1235 struct perf_branch_stack
*br_stack
;
1237 union perf_sample_weight weight
;
1238 union perf_mem_data_src data_src
;
1241 struct perf_regs regs_user
;
1242 struct perf_regs regs_intr
;
1243 u64 stack_user_size
;
1252 } ____cacheline_aligned
;
1254 /* default value for data source */
1255 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1256 PERF_MEM_S(LVL, NA) |\
1257 PERF_MEM_S(SNOOP, NA) |\
1258 PERF_MEM_S(LOCK, NA) |\
1259 PERF_MEM_S(TLB, NA) |\
1260 PERF_MEM_S(LVLNUM, NA))
1262 static inline void perf_sample_data_init(struct perf_sample_data
*data
,
1263 u64 addr
, u64 period
)
1265 /* remaining struct members initialized in perf_prepare_sample() */
1266 data
->sample_flags
= PERF_SAMPLE_PERIOD
;
1267 data
->period
= period
;
1272 data
->sample_flags
|= PERF_SAMPLE_ADDR
;
1276 static inline void perf_sample_save_callchain(struct perf_sample_data
*data
,
1277 struct perf_event
*event
,
1278 struct pt_regs
*regs
)
1282 data
->callchain
= perf_callchain(event
, regs
);
1283 size
+= data
->callchain
->nr
;
1285 data
->dyn_size
+= size
* sizeof(u64
);
1286 data
->sample_flags
|= PERF_SAMPLE_CALLCHAIN
;
1289 static inline void perf_sample_save_raw_data(struct perf_sample_data
*data
,
1290 struct perf_raw_record
*raw
)
1292 struct perf_raw_frag
*frag
= &raw
->frag
;
1298 if (perf_raw_frag_last(frag
))
1303 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
1304 raw
->size
= size
- sizeof(u32
);
1305 frag
->pad
= raw
->size
- sum
;
1308 data
->dyn_size
+= size
;
1309 data
->sample_flags
|= PERF_SAMPLE_RAW
;
1312 static inline void perf_sample_save_brstack(struct perf_sample_data
*data
,
1313 struct perf_event
*event
,
1314 struct perf_branch_stack
*brs
,
1317 int size
= sizeof(u64
); /* nr */
1319 if (branch_sample_hw_index(event
))
1320 size
+= sizeof(u64
);
1321 size
+= brs
->nr
* sizeof(struct perf_branch_entry
);
1324 * The extension space for counters is appended after the
1325 * struct perf_branch_stack. It is used to store the occurrences
1326 * of events of each branch.
1329 size
+= brs
->nr
* sizeof(u64
);
1331 data
->br_stack
= brs
;
1332 data
->br_stack_cntr
= brs_cntr
;
1333 data
->dyn_size
+= size
;
1334 data
->sample_flags
|= PERF_SAMPLE_BRANCH_STACK
;
1337 static inline u32
perf_sample_data_size(struct perf_sample_data
*data
,
1338 struct perf_event
*event
)
1340 u32 size
= sizeof(struct perf_event_header
);
1342 size
+= event
->header_size
+ event
->id_header_size
;
1343 size
+= data
->dyn_size
;
1349 * Clear all bitfields in the perf_branch_entry.
1350 * The to and from fields are not cleared because they are
1351 * systematically modified by caller.
1353 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry
*br
)
1361 br
->spec
= PERF_BR_SPEC_NA
;
1365 extern void perf_output_sample(struct perf_output_handle
*handle
,
1366 struct perf_event_header
*header
,
1367 struct perf_sample_data
*data
,
1368 struct perf_event
*event
);
1369 extern void perf_prepare_sample(struct perf_sample_data
*data
,
1370 struct perf_event
*event
,
1371 struct pt_regs
*regs
);
1372 extern void perf_prepare_header(struct perf_event_header
*header
,
1373 struct perf_sample_data
*data
,
1374 struct perf_event
*event
,
1375 struct pt_regs
*regs
);
1377 extern int perf_event_overflow(struct perf_event
*event
,
1378 struct perf_sample_data
*data
,
1379 struct pt_regs
*regs
);
1381 extern void perf_event_output_forward(struct perf_event
*event
,
1382 struct perf_sample_data
*data
,
1383 struct pt_regs
*regs
);
1384 extern void perf_event_output_backward(struct perf_event
*event
,
1385 struct perf_sample_data
*data
,
1386 struct pt_regs
*regs
);
1387 extern int perf_event_output(struct perf_event
*event
,
1388 struct perf_sample_data
*data
,
1389 struct pt_regs
*regs
);
1392 is_default_overflow_handler(struct perf_event
*event
)
1394 perf_overflow_handler_t overflow_handler
= event
->overflow_handler
;
1396 if (likely(overflow_handler
== perf_event_output_forward
))
1398 if (unlikely(overflow_handler
== perf_event_output_backward
))
1404 perf_event_header__init_id(struct perf_event_header
*header
,
1405 struct perf_sample_data
*data
,
1406 struct perf_event
*event
);
1408 perf_event__output_id_sample(struct perf_event
*event
,
1409 struct perf_output_handle
*handle
,
1410 struct perf_sample_data
*sample
);
1413 perf_log_lost_samples(struct perf_event
*event
, u64 lost
);
1415 static inline bool event_has_any_exclude_flag(struct perf_event
*event
)
1417 struct perf_event_attr
*attr
= &event
->attr
;
1419 return attr
->exclude_idle
|| attr
->exclude_user
||
1420 attr
->exclude_kernel
|| attr
->exclude_hv
||
1421 attr
->exclude_guest
|| attr
->exclude_host
;
1424 static inline bool is_sampling_event(struct perf_event
*event
)
1426 return event
->attr
.sample_period
!= 0;
1430 * Return 1 for a software event, 0 for a hardware event
1432 static inline int is_software_event(struct perf_event
*event
)
1434 return event
->event_caps
& PERF_EV_CAP_SOFTWARE
;
1438 * Return 1 for event in sw context, 0 for event in hw context
1440 static inline int in_software_context(struct perf_event
*event
)
1442 return event
->pmu_ctx
->pmu
->task_ctx_nr
== perf_sw_context
;
1445 static inline int is_exclusive_pmu(struct pmu
*pmu
)
1447 return pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
;
1450 extern struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
1452 extern void ___perf_sw_event(u32
, u64
, struct pt_regs
*, u64
);
1453 extern void __perf_sw_event(u32
, u64
, struct pt_regs
*, u64
);
1455 #ifndef perf_arch_fetch_caller_regs
1456 static inline void perf_arch_fetch_caller_regs(struct pt_regs
*regs
, unsigned long ip
) { }
1460 * When generating a perf sample in-line, instead of from an interrupt /
1461 * exception, we lack a pt_regs. This is typically used from software events
1462 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1464 * We typically don't need a full set, but (for x86) do require:
1465 * - ip for PERF_SAMPLE_IP
1466 * - cs for user_mode() tests
1467 * - sp for PERF_SAMPLE_CALLCHAIN
1468 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1470 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1471 * things like PERF_SAMPLE_REGS_INTR.
1473 static inline void perf_fetch_caller_regs(struct pt_regs
*regs
)
1475 perf_arch_fetch_caller_regs(regs
, CALLER_ADDR0
);
1478 static __always_inline
void
1479 perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
1481 if (static_key_false(&perf_swevent_enabled
[event_id
]))
1482 __perf_sw_event(event_id
, nr
, regs
, addr
);
1485 DECLARE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
1488 * 'Special' version for the scheduler, it hard assumes no recursion,
1489 * which is guaranteed by us not actually scheduling inside other swevents
1490 * because those disable preemption.
1492 static __always_inline
void __perf_sw_event_sched(u32 event_id
, u64 nr
, u64 addr
)
1494 struct pt_regs
*regs
= this_cpu_ptr(&__perf_regs
[0]);
1496 perf_fetch_caller_regs(regs
);
1497 ___perf_sw_event(event_id
, nr
, regs
, addr
);
1500 extern struct static_key_false perf_sched_events
;
1502 static __always_inline
bool __perf_sw_enabled(int swevt
)
1504 return static_key_false(&perf_swevent_enabled
[swevt
]);
1507 static inline void perf_event_task_migrate(struct task_struct
*task
)
1509 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS
))
1510 task
->sched_migrated
= 1;
1513 static inline void perf_event_task_sched_in(struct task_struct
*prev
,
1514 struct task_struct
*task
)
1516 if (static_branch_unlikely(&perf_sched_events
))
1517 __perf_event_task_sched_in(prev
, task
);
1519 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS
) &&
1520 task
->sched_migrated
) {
1521 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 0);
1522 task
->sched_migrated
= 0;
1526 static inline void perf_event_task_sched_out(struct task_struct
*prev
,
1527 struct task_struct
*next
)
1529 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES
))
1530 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 0);
1532 #ifdef CONFIG_CGROUP_PERF
1533 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES
) &&
1534 perf_cgroup_from_task(prev
, NULL
) !=
1535 perf_cgroup_from_task(next
, NULL
))
1536 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES
, 1, 0);
1539 if (static_branch_unlikely(&perf_sched_events
))
1540 __perf_event_task_sched_out(prev
, next
);
1543 extern void perf_event_mmap(struct vm_area_struct
*vma
);
1545 extern void perf_event_ksymbol(u16 ksym_type
, u64 addr
, u32 len
,
1546 bool unregister
, const char *sym
);
1547 extern void perf_event_bpf_event(struct bpf_prog
*prog
,
1548 enum perf_bpf_event_type type
,
1551 #ifdef CONFIG_GUEST_PERF_EVENTS
1552 extern struct perf_guest_info_callbacks __rcu
*perf_guest_cbs
;
1554 DECLARE_STATIC_CALL(__perf_guest_state
, *perf_guest_cbs
->state
);
1555 DECLARE_STATIC_CALL(__perf_guest_get_ip
, *perf_guest_cbs
->get_ip
);
1556 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr
, *perf_guest_cbs
->handle_intel_pt_intr
);
1558 static inline unsigned int perf_guest_state(void)
1560 return static_call(__perf_guest_state
)();
1562 static inline unsigned long perf_guest_get_ip(void)
1564 return static_call(__perf_guest_get_ip
)();
1566 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1568 return static_call(__perf_guest_handle_intel_pt_intr
)();
1570 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
);
1571 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
);
1573 static inline unsigned int perf_guest_state(void) { return 0; }
1574 static inline unsigned long perf_guest_get_ip(void) { return 0; }
1575 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1576 #endif /* CONFIG_GUEST_PERF_EVENTS */
1578 extern void perf_event_exec(void);
1579 extern void perf_event_comm(struct task_struct
*tsk
, bool exec
);
1580 extern void perf_event_namespaces(struct task_struct
*tsk
);
1581 extern void perf_event_fork(struct task_struct
*tsk
);
1582 extern void perf_event_text_poke(const void *addr
,
1583 const void *old_bytes
, size_t old_len
,
1584 const void *new_bytes
, size_t new_len
);
1587 DECLARE_PER_CPU(struct perf_callchain_entry
, perf_callchain_entry
);
1589 extern void perf_callchain_user(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
);
1590 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
);
1591 extern struct perf_callchain_entry
*
1592 get_perf_callchain(struct pt_regs
*regs
, u32 init_nr
, bool kernel
, bool user
,
1593 u32 max_stack
, bool crosstask
, bool add_mark
);
1594 extern int get_callchain_buffers(int max_stack
);
1595 extern void put_callchain_buffers(void);
1596 extern struct perf_callchain_entry
*get_callchain_entry(int *rctx
);
1597 extern void put_callchain_entry(int rctx
);
1599 extern int sysctl_perf_event_max_stack
;
1600 extern int sysctl_perf_event_max_contexts_per_stack
;
1602 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx
*ctx
, u64 ip
)
1604 if (ctx
->contexts
< sysctl_perf_event_max_contexts_per_stack
) {
1605 struct perf_callchain_entry
*entry
= ctx
->entry
;
1606 entry
->ip
[entry
->nr
++] = ip
;
1610 ctx
->contexts_maxed
= true;
1611 return -1; /* no more room, stop walking the stack */
1615 static inline int perf_callchain_store(struct perf_callchain_entry_ctx
*ctx
, u64 ip
)
1617 if (ctx
->nr
< ctx
->max_stack
&& !ctx
->contexts_maxed
) {
1618 struct perf_callchain_entry
*entry
= ctx
->entry
;
1619 entry
->ip
[entry
->nr
++] = ip
;
1623 return -1; /* no more room, stop walking the stack */
1627 extern int sysctl_perf_event_paranoid
;
1628 extern int sysctl_perf_event_mlock
;
1629 extern int sysctl_perf_event_sample_rate
;
1630 extern int sysctl_perf_cpu_time_max_percent
;
1632 extern void perf_sample_event_took(u64 sample_len_ns
);
1634 int perf_event_max_sample_rate_handler(const struct ctl_table
*table
, int write
,
1635 void *buffer
, size_t *lenp
, loff_t
*ppos
);
1636 int perf_cpu_time_max_percent_handler(const struct ctl_table
*table
, int write
,
1637 void *buffer
, size_t *lenp
, loff_t
*ppos
);
1638 int perf_event_max_stack_handler(const struct ctl_table
*table
, int write
,
1639 void *buffer
, size_t *lenp
, loff_t
*ppos
);
1641 /* Access to perf_event_open(2) syscall. */
1642 #define PERF_SECURITY_OPEN 0
1644 /* Finer grained perf_event_open(2) access control. */
1645 #define PERF_SECURITY_CPU 1
1646 #define PERF_SECURITY_KERNEL 2
1647 #define PERF_SECURITY_TRACEPOINT 3
1649 static inline int perf_is_paranoid(void)
1651 return sysctl_perf_event_paranoid
> -1;
1654 int perf_allow_kernel(struct perf_event_attr
*attr
);
1656 static inline int perf_allow_cpu(struct perf_event_attr
*attr
)
1658 if (sysctl_perf_event_paranoid
> 0 && !perfmon_capable())
1661 return security_perf_event_open(attr
, PERF_SECURITY_CPU
);
1664 static inline int perf_allow_tracepoint(struct perf_event_attr
*attr
)
1666 if (sysctl_perf_event_paranoid
> -1 && !perfmon_capable())
1669 return security_perf_event_open(attr
, PERF_SECURITY_TRACEPOINT
);
1672 extern void perf_event_init(void);
1673 extern void perf_tp_event(u16 event_type
, u64 count
, void *record
,
1674 int entry_size
, struct pt_regs
*regs
,
1675 struct hlist_head
*head
, int rctx
,
1676 struct task_struct
*task
);
1677 extern void perf_bp_event(struct perf_event
*event
, void *data
);
1679 extern unsigned long perf_misc_flags(struct perf_event
*event
, struct pt_regs
*regs
);
1680 extern unsigned long perf_instruction_pointer(struct perf_event
*event
,
1681 struct pt_regs
*regs
);
1683 #ifndef perf_arch_misc_flags
1684 # define perf_arch_misc_flags(regs) \
1685 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1686 # define perf_arch_instruction_pointer(regs) instruction_pointer(regs)
1688 #ifndef perf_arch_bpf_user_pt_regs
1689 # define perf_arch_bpf_user_pt_regs(regs) regs
1692 #ifndef perf_arch_guest_misc_flags
1693 static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs
*regs
)
1695 unsigned long guest_state
= perf_guest_state();
1697 if (!(guest_state
& PERF_GUEST_ACTIVE
))
1700 if (guest_state
& PERF_GUEST_USER
)
1701 return PERF_RECORD_MISC_GUEST_USER
;
1703 return PERF_RECORD_MISC_GUEST_KERNEL
;
1705 # define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs)
1708 static inline bool has_branch_stack(struct perf_event
*event
)
1710 return event
->attr
.sample_type
& PERF_SAMPLE_BRANCH_STACK
;
1713 static inline bool needs_branch_stack(struct perf_event
*event
)
1715 return event
->attr
.branch_sample_type
!= 0;
1718 static inline bool has_aux(struct perf_event
*event
)
1720 return event
->pmu
->setup_aux
;
1723 static inline bool has_aux_action(struct perf_event
*event
)
1725 return event
->attr
.aux_sample_size
||
1726 event
->attr
.aux_pause
||
1727 event
->attr
.aux_resume
;
1730 static inline bool is_write_backward(struct perf_event
*event
)
1732 return !!event
->attr
.write_backward
;
1735 static inline bool has_addr_filter(struct perf_event
*event
)
1737 return event
->pmu
->nr_addr_filters
;
1741 * An inherited event uses parent's filters
1743 static inline struct perf_addr_filters_head
*
1744 perf_event_addr_filters(struct perf_event
*event
)
1746 struct perf_addr_filters_head
*ifh
= &event
->addr_filters
;
1749 ifh
= &event
->parent
->addr_filters
;
1754 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
1756 /* Only the parent has fasync state */
1758 event
= event
->parent
;
1759 return &event
->fasync
;
1762 extern void perf_event_addr_filters_sync(struct perf_event
*event
);
1763 extern void perf_report_aux_output_id(struct perf_event
*event
, u64 hw_id
);
1765 extern int perf_output_begin(struct perf_output_handle
*handle
,
1766 struct perf_sample_data
*data
,
1767 struct perf_event
*event
, unsigned int size
);
1768 extern int perf_output_begin_forward(struct perf_output_handle
*handle
,
1769 struct perf_sample_data
*data
,
1770 struct perf_event
*event
,
1772 extern int perf_output_begin_backward(struct perf_output_handle
*handle
,
1773 struct perf_sample_data
*data
,
1774 struct perf_event
*event
,
1777 extern void perf_output_end(struct perf_output_handle
*handle
);
1778 extern unsigned int perf_output_copy(struct perf_output_handle
*handle
,
1779 const void *buf
, unsigned int len
);
1780 extern unsigned int perf_output_skip(struct perf_output_handle
*handle
,
1782 extern long perf_output_copy_aux(struct perf_output_handle
*aux_handle
,
1783 struct perf_output_handle
*handle
,
1784 unsigned long from
, unsigned long to
);
1785 extern int perf_swevent_get_recursion_context(void);
1786 extern void perf_swevent_put_recursion_context(int rctx
);
1787 extern u64
perf_swevent_set_period(struct perf_event
*event
);
1788 extern void perf_event_enable(struct perf_event
*event
);
1789 extern void perf_event_disable(struct perf_event
*event
);
1790 extern void perf_event_disable_local(struct perf_event
*event
);
1791 extern void perf_event_disable_inatomic(struct perf_event
*event
);
1792 extern void perf_event_task_tick(void);
1793 extern int perf_event_account_interrupt(struct perf_event
*event
);
1794 extern int perf_event_period(struct perf_event
*event
, u64 value
);
1795 extern u64
perf_event_pause(struct perf_event
*event
, bool reset
);
1796 #else /* !CONFIG_PERF_EVENTS: */
1797 static inline void *
1798 perf_aux_output_begin(struct perf_output_handle
*handle
,
1799 struct perf_event
*event
) { return NULL
; }
1801 perf_aux_output_end(struct perf_output_handle
*handle
, unsigned long size
)
1804 perf_aux_output_skip(struct perf_output_handle
*handle
,
1805 unsigned long size
) { return -EINVAL
; }
1806 static inline void *
1807 perf_get_aux(struct perf_output_handle
*handle
) { return NULL
; }
1809 perf_event_task_migrate(struct task_struct
*task
) { }
1811 perf_event_task_sched_in(struct task_struct
*prev
,
1812 struct task_struct
*task
) { }
1814 perf_event_task_sched_out(struct task_struct
*prev
,
1815 struct task_struct
*next
) { }
1816 static inline int perf_event_init_task(struct task_struct
*child
,
1817 u64 clone_flags
) { return 0; }
1818 static inline void perf_event_exit_task(struct task_struct
*child
) { }
1819 static inline void perf_event_free_task(struct task_struct
*task
) { }
1820 static inline void perf_event_delayed_put(struct task_struct
*task
) { }
1821 static inline struct file
*perf_event_get(unsigned int fd
) { return ERR_PTR(-EINVAL
); }
1822 static inline const struct perf_event
*perf_get_event(struct file
*file
)
1824 return ERR_PTR(-EINVAL
);
1826 static inline const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
1828 return ERR_PTR(-EINVAL
);
1830 static inline int perf_event_read_local(struct perf_event
*event
, u64
*value
,
1831 u64
*enabled
, u64
*running
)
1835 static inline void perf_event_print_debug(void) { }
1836 static inline int perf_event_task_disable(void) { return -EINVAL
; }
1837 static inline int perf_event_task_enable(void) { return -EINVAL
; }
1838 static inline int perf_event_refresh(struct perf_event
*event
, int refresh
)
1844 perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
) { }
1846 perf_bp_event(struct perf_event
*event
, void *data
) { }
1848 static inline void perf_event_mmap(struct vm_area_struct
*vma
) { }
1850 typedef int (perf_ksymbol_get_name_f
)(char *name
, int name_len
, void *data
);
1851 static inline void perf_event_ksymbol(u16 ksym_type
, u64 addr
, u32 len
,
1852 bool unregister
, const char *sym
) { }
1853 static inline void perf_event_bpf_event(struct bpf_prog
*prog
,
1854 enum perf_bpf_event_type type
,
1856 static inline void perf_event_exec(void) { }
1857 static inline void perf_event_comm(struct task_struct
*tsk
, bool exec
) { }
1858 static inline void perf_event_namespaces(struct task_struct
*tsk
) { }
1859 static inline void perf_event_fork(struct task_struct
*tsk
) { }
1860 static inline void perf_event_text_poke(const void *addr
,
1861 const void *old_bytes
,
1863 const void *new_bytes
,
1865 static inline void perf_event_init(void) { }
1866 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1867 static inline void perf_swevent_put_recursion_context(int rctx
) { }
1868 static inline u64
perf_swevent_set_period(struct perf_event
*event
) { return 0; }
1869 static inline void perf_event_enable(struct perf_event
*event
) { }
1870 static inline void perf_event_disable(struct perf_event
*event
) { }
1871 static inline int __perf_event_disable(void *info
) { return -1; }
1872 static inline void perf_event_task_tick(void) { }
1873 static inline int perf_event_release_kernel(struct perf_event
*event
) { return 0; }
1874 static inline int perf_event_period(struct perf_event
*event
, u64 value
)
1878 static inline u64
perf_event_pause(struct perf_event
*event
, bool reset
)
1884 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1885 extern void perf_restore_debug_store(void);
1887 static inline void perf_restore_debug_store(void) { }
1890 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1892 struct perf_pmu_events_attr
{
1893 struct device_attribute attr
;
1895 const char *event_str
;
1898 struct perf_pmu_events_ht_attr
{
1899 struct device_attribute attr
;
1901 const char *event_str_ht
;
1902 const char *event_str_noht
;
1905 struct perf_pmu_events_hybrid_attr
{
1906 struct device_attribute attr
;
1908 const char *event_str
;
1912 struct perf_pmu_format_hybrid_attr
{
1913 struct device_attribute attr
;
1917 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
1920 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1921 static struct perf_pmu_events_attr _var = { \
1922 .attr = __ATTR(_name, 0444, _show, NULL), \
1926 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1927 static struct perf_pmu_events_attr _var = { \
1928 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1930 .event_str = _str, \
1933 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1934 (&((struct perf_pmu_events_attr[]) { \
1935 { .attr = __ATTR(_name, 0444, _show, NULL), \
1939 #define PMU_FORMAT_ATTR_SHOW(_name, _format) \
1941 _name##_show(struct device *dev, \
1942 struct device_attribute *attr, \
1945 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1946 return sprintf(page, _format "\n"); \
1949 #define PMU_FORMAT_ATTR(_name, _format) \
1950 PMU_FORMAT_ATTR_SHOW(_name, _format) \
1952 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1954 /* Performance counter hotplug functions */
1955 #ifdef CONFIG_PERF_EVENTS
1956 int perf_event_init_cpu(unsigned int cpu
);
1957 int perf_event_exit_cpu(unsigned int cpu
);
1959 #define perf_event_init_cpu NULL
1960 #define perf_event_exit_cpu NULL
1963 extern void arch_perf_update_userpage(struct perf_event
*event
,
1964 struct perf_event_mmap_page
*userpg
,
1968 * Snapshot branch stack on software events.
1970 * Branch stack can be very useful in understanding software events. For
1971 * example, when a long function, e.g. sys_perf_event_open, returns an
1972 * errno, it is not obvious why the function failed. Branch stack could
1973 * provide very helpful information in this type of scenarios.
1975 * On software event, it is necessary to stop the hardware branch recorder
1976 * fast. Otherwise, the hardware register/buffer will be flushed with
1977 * entries of the triggering event. Therefore, static call is used to
1978 * stop the hardware recorder.
1982 * cnt is the number of entries allocated for entries.
1983 * Return number of entries copied to .
1985 typedef int (perf_snapshot_branch_stack_t
)(struct perf_branch_entry
*entries
,
1987 DECLARE_STATIC_CALL(perf_snapshot_branch_stack
, perf_snapshot_branch_stack_t
);
1989 #ifndef PERF_NEEDS_LOPWR_CB
1990 static inline void perf_lopwr_cb(bool mode
)
1995 #endif /* _LINUX_PERF_EVENT_H */