1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
4 * Copyright (c) 2011, Microsoft Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
17 * Place - Suite 330, Boston, MA 02111-1307 USA.
20 * Haiyang Zhang <haiyangz@microsoft.com>
21 * Hank Janssen <hjanssen@microsoft.com>
22 * K. Y. Srinivasan <kys@microsoft.com>
26 #ifndef _UAPI_HYPERV_H
27 #define _UAPI_HYPERV_H
29 #include <linux/types.h>
32 * Framework version for util services.
34 #define UTIL_FW_MINOR 0
36 #define UTIL_WS2K8_FW_MAJOR 1
37 #define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
39 #define UTIL_FW_MAJOR 3
40 #define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
44 * Implementation of host controlled snapshot of the guest.
47 #define VSS_OP_REGISTER 128
50 Daemon code with full handshake support.
52 #define VSS_OP_REGISTER1 129
61 * Following operations are only supported with IC version >= 5.0
63 VSS_OP_FREEZE
, /* Freeze the file systems in the VM */
64 VSS_OP_THAW
, /* Unfreeze the file systems */
66 VSS_OP_COUNT
/* Number of operations, must be last */
71 * Header for all VSS messages.
76 } __attribute__((packed
));
80 * Flag values for the hv_vss_check_feature. Linux supports only
83 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
85 struct hv_vss_check_feature
{
87 } __attribute__((packed
));
89 struct hv_vss_check_dm_info
{
91 } __attribute__((packed
));
94 * struct hv_vss_msg encodes the fields that the Linux VSS
95 * driver accesses. However, FREEZE messages from Hyper-V contain
96 * additional LUN information that Linux doesn't use and are not
97 * represented in struct hv_vss_msg. A received FREEZE message may
98 * be as large as 6,260 bytes, so the driver must allocate at least
99 * that much space, not sizeof(struct hv_vss_msg). Other messages
100 * such as AUTO_RECOVER may be as large as 12,500 bytes. However,
101 * because the Linux VSS driver responds that it doesn't support
102 * auto-recovery, it should not receive such messages.
106 struct hv_vss_hdr vss_hdr
;
110 struct hv_vss_check_feature vss_cf
;
111 struct hv_vss_check_dm_info dm_info
;
113 } __attribute__((packed
));
116 * Implementation of a host to guest copy facility.
119 #define FCOPY_VERSION_0 0
120 #define FCOPY_VERSION_1 1
121 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
122 #define W_MAX_PATH 260
131 struct hv_fcopy_hdr
{
133 __u8 service_id0
[16]; /* currently unused */
134 __u8 service_id1
[16]; /* currently unused */
135 } __attribute__((packed
));
137 #define OVER_WRITE 0x1
138 #define CREATE_PATH 0x2
140 struct hv_start_fcopy
{
141 struct hv_fcopy_hdr hdr
;
142 __u16 file_name
[W_MAX_PATH
];
143 __u16 path_name
[W_MAX_PATH
];
146 } __attribute__((packed
));
149 * The file is chunked into fragments.
151 #define DATA_FRAGMENT (6 * 1024)
154 struct hv_fcopy_hdr hdr
;
158 __u8 data
[DATA_FRAGMENT
];
159 } __attribute__((packed
));
162 * An implementation of HyperV key value pair (KVP) functionality for Linux.
165 * Copyright (C) 2010, Novell, Inc.
166 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
171 * Maximum value size - used for both key names and value data, and includes
172 * any applicable NULL terminators.
174 * Note: This limit is somewhat arbitrary, but falls easily within what is
175 * supported for all native guests (back to Win 2000) and what is reasonable
176 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
177 * limited to 255 character key names.
179 * MSDN recommends not storing data values larger than 2048 bytes in the
182 * Note: This value is used in defining the KVP exchange message - this value
183 * cannot be modified without affecting the message size and compatibility.
187 * bytes, including any null terminators
189 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
193 * Maximum key size - the registry limit for the length of an entry name
194 * is 256 characters, including the null terminator
197 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
200 * In Linux, we implement the KVP functionality in two components:
201 * 1) The kernel component which is packaged as part of the hv_utils driver
202 * is responsible for communicating with the host and responsible for
203 * implementing the host/guest protocol. 2) A user level daemon that is
204 * responsible for data gathering.
206 * Host/Guest Protocol: The host iterates over an index and expects the guest
207 * to assign a key name to the index and also return the value corresponding to
208 * the key. The host will have atmost one KVP transaction outstanding at any
209 * given point in time. The host side iteration stops when the guest returns
210 * an error. Microsoft has specified the following mapping of key names to
211 * host specified index:
214 * 0 FullyQualifiedDomainName
215 * 1 IntegrationServicesVersion
216 * 2 NetworkAddressIPv4
217 * 3 NetworkAddressIPv6
223 * 9 ProcessorArchitecture
225 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
227 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
228 * data gathering functionality in a user mode daemon. The user level daemon
229 * is also responsible for binding the key name to the index as well. The
230 * kernel and user-level daemon communicate using a connector channel.
232 * The user mode component first registers with the
233 * kernel component. Subsequently, the kernel component requests, data
234 * for the specified keys. In response to this message the user mode component
235 * fills in the value corresponding to the specified key. We overload the
236 * sequence field in the cn_msg header to define our KVP message types.
239 * The kernel component simply acts as a conduit for communication between the
240 * Windows host and the user-level daemon. The kernel component passes up the
241 * index received from the Host to the user-level daemon. If the index is
242 * valid (supported), the corresponding key as well as its
243 * value (both are strings) is returned. If the index is invalid
244 * (not supported), a NULL key string is returned.
249 * Registry value types.
257 * As we look at expanding the KVP functionality to include
258 * IP injection functionality, we need to maintain binary
259 * compatibility with older daemons.
261 * The KVP opcodes are defined by the host and it was unfortunate
262 * that I chose to treat the registration operation as part of the
263 * KVP operations defined by the host.
264 * Here is the level of compatibility
265 * (between the user level daemon and the kernel KVP driver) that we
268 * An older daemon will always be supported on a newer driver.
269 * A given user level daemon will require a minimal version of the
271 * If we cannot handle the version differences, we will fail gracefully
272 * (this can happen when we have a user level daemon that is more
273 * advanced than the KVP driver.
275 * We will use values used in this handshake for determining if we have
276 * workable user level daemon and the kernel driver. We begin by taking the
277 * registration opcode out of the KVP opcode namespace. We will however,
278 * maintain compatibility with the existing user-level daemon code.
282 * Daemon code not supporting IP injection (legacy daemon).
285 #define KVP_OP_REGISTER 4
288 * Daemon code supporting IP injection.
289 * The KVP opcode field is used to communicate the
290 * registration information; so define a namespace that
291 * will be distinct from the host defined KVP opcode.
294 #define KVP_OP_REGISTER1 100
296 enum hv_kvp_exchg_op
{
303 KVP_OP_COUNT
/* Number of operations, must be last. */
306 enum hv_kvp_exchg_pool
{
307 KVP_POOL_EXTERNAL
= 0,
310 KVP_POOL_AUTO_EXTERNAL
,
311 KVP_POOL_AUTO_INTERNAL
,
312 KVP_POOL_COUNT
/* Number of pools, must be last. */
316 * Some Hyper-V status codes.
319 #define HV_S_OK 0x00000000
320 #define HV_E_FAIL 0x80004005
321 #define HV_S_CONT 0x80070103
322 #define HV_ERROR_NOT_SUPPORTED 0x80070032
323 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
324 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
325 #define HV_INVALIDARG 0x80070057
326 #define HV_GUID_NOTFOUND 0x80041002
327 #define HV_ERROR_ALREADY_EXISTS 0x80070050
328 #define HV_ERROR_DISK_FULL 0x80070070
330 #define ADDR_FAMILY_NONE 0x00
331 #define ADDR_FAMILY_IPV4 0x01
332 #define ADDR_FAMILY_IPV6 0x02
334 #define MAX_ADAPTER_ID_SIZE 128
335 #define MAX_IP_ADDR_SIZE 1024
336 #define MAX_GATEWAY_SIZE 512
339 struct hv_kvp_ipaddr_value
{
340 __u16 adapter_id
[MAX_ADAPTER_ID_SIZE
];
343 __u16 ip_addr
[MAX_IP_ADDR_SIZE
];
344 __u16 sub_net
[MAX_IP_ADDR_SIZE
];
345 __u16 gate_way
[MAX_GATEWAY_SIZE
];
346 __u16 dns_addr
[MAX_IP_ADDR_SIZE
];
347 } __attribute__((packed
));
354 } __attribute__((packed
));
356 struct hv_kvp_exchg_msg_value
{
360 __u8 key
[HV_KVP_EXCHANGE_MAX_KEY_SIZE
];
362 __u8 value
[HV_KVP_EXCHANGE_MAX_VALUE_SIZE
];
366 } __attribute__((packed
));
368 struct hv_kvp_msg_enumerate
{
370 struct hv_kvp_exchg_msg_value data
;
371 } __attribute__((packed
));
373 struct hv_kvp_msg_get
{
374 struct hv_kvp_exchg_msg_value data
;
377 struct hv_kvp_msg_set
{
378 struct hv_kvp_exchg_msg_value data
;
381 struct hv_kvp_msg_delete
{
383 __u8 key
[HV_KVP_EXCHANGE_MAX_KEY_SIZE
];
386 struct hv_kvp_register
{
387 __u8 version
[HV_KVP_EXCHANGE_MAX_KEY_SIZE
];
392 struct hv_kvp_hdr kvp_hdr
;
396 struct hv_kvp_msg_get kvp_get
;
397 struct hv_kvp_msg_set kvp_set
;
398 struct hv_kvp_msg_delete kvp_delete
;
399 struct hv_kvp_msg_enumerate kvp_enum_data
;
400 struct hv_kvp_ipaddr_value kvp_ip_val
;
401 struct hv_kvp_register kvp_register
;
403 } __attribute__((packed
));
405 struct hv_kvp_ip_msg
{
408 struct hv_kvp_ipaddr_value kvp_ip_val
;
409 } __attribute__((packed
));
411 #endif /* _UAPI_HYPERV_H */