Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / io_uring / io_uring.c
blob06ff41484e29c6e7d8779bd7ff8317ebae003a8d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
78 #include <uapi/linux/io_uring.h>
80 #include "io-wq.h"
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 REQ_F_ASYNC_DATA)
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 IO_REQ_CLEAN_FLAGS)
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124 #define IO_LOCAL_TW_DEFAULT_MAX 20
126 struct io_defer_entry {
127 struct list_head list;
128 struct io_kiocb *req;
129 u32 seq;
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137 * No waiters. It's larger than any valid value of the tw counter
138 * so that tests against ->cq_wait_nr would fail and skip wake_up().
140 #define IO_CQ_WAKE_INIT (-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct io_uring_task *tctx,
146 bool cancel_all);
148 static void io_queue_sqe(struct io_kiocb *req);
150 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
161 .procname = "io_uring_disabled",
162 .data = &sysctl_io_uring_disabled,
163 .maxlen = sizeof(sysctl_io_uring_disabled),
164 .mode = 0644,
165 .proc_handler = proc_dointvec_minmax,
166 .extra1 = SYSCTL_ZERO,
167 .extra2 = SYSCTL_TWO,
170 .procname = "io_uring_group",
171 .data = &sysctl_io_uring_group,
172 .maxlen = sizeof(gid_t),
173 .mode = 0644,
174 .proc_handler = proc_dointvec,
177 #endif
179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
189 static bool io_match_linked(struct io_kiocb *head)
191 struct io_kiocb *req;
193 io_for_each_link(req, head) {
194 if (req->flags & REQ_F_INFLIGHT)
195 return true;
197 return false;
201 * As io_match_task() but protected against racing with linked timeouts.
202 * User must not hold timeout_lock.
204 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
205 bool cancel_all)
207 bool matched;
209 if (tctx && head->tctx != tctx)
210 return false;
211 if (cancel_all)
212 return true;
214 if (head->flags & REQ_F_LINK_TIMEOUT) {
215 struct io_ring_ctx *ctx = head->ctx;
217 /* protect against races with linked timeouts */
218 spin_lock_irq(&ctx->timeout_lock);
219 matched = io_match_linked(head);
220 spin_unlock_irq(&ctx->timeout_lock);
221 } else {
222 matched = io_match_linked(head);
224 return matched;
227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
229 req_set_fail(req);
230 io_req_set_res(req, res, 0);
233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
242 complete(&ctx->ref_comp);
245 static __cold void io_fallback_req_func(struct work_struct *work)
247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 fallback_work.work);
249 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 struct io_kiocb *req, *tmp;
251 struct io_tw_state ts = {};
253 percpu_ref_get(&ctx->refs);
254 mutex_lock(&ctx->uring_lock);
255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 req->io_task_work.func(req, &ts);
257 io_submit_flush_completions(ctx);
258 mutex_unlock(&ctx->uring_lock);
259 percpu_ref_put(&ctx->refs);
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
264 unsigned int hash_buckets;
265 int i;
267 do {
268 hash_buckets = 1U << bits;
269 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
270 GFP_KERNEL_ACCOUNT);
271 if (table->hbs)
272 break;
273 if (bits == 1)
274 return -ENOMEM;
275 bits--;
276 } while (1);
278 table->hash_bits = bits;
279 for (i = 0; i < hash_buckets; i++)
280 INIT_HLIST_HEAD(&table->hbs[i].list);
281 return 0;
284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
286 struct io_ring_ctx *ctx;
287 int hash_bits;
288 bool ret;
290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
291 if (!ctx)
292 return NULL;
294 xa_init(&ctx->io_bl_xa);
297 * Use 5 bits less than the max cq entries, that should give us around
298 * 32 entries per hash list if totally full and uniformly spread, but
299 * don't keep too many buckets to not overconsume memory.
301 hash_bits = ilog2(p->cq_entries) - 5;
302 hash_bits = clamp(hash_bits, 1, 8);
303 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
304 goto err;
305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 0, GFP_KERNEL))
307 goto err;
309 ctx->flags = p->flags;
310 ctx->hybrid_poll_time = LLONG_MAX;
311 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
312 init_waitqueue_head(&ctx->sqo_sq_wait);
313 INIT_LIST_HEAD(&ctx->sqd_list);
314 INIT_LIST_HEAD(&ctx->cq_overflow_list);
315 INIT_LIST_HEAD(&ctx->io_buffers_cache);
316 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
317 sizeof(struct async_poll));
318 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
319 sizeof(struct io_async_msghdr));
320 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_async_rw));
322 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
323 sizeof(struct uring_cache));
324 spin_lock_init(&ctx->msg_lock);
325 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
326 sizeof(struct io_kiocb));
327 ret |= io_futex_cache_init(ctx);
328 if (ret)
329 goto free_ref;
330 init_completion(&ctx->ref_comp);
331 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
332 mutex_init(&ctx->uring_lock);
333 init_waitqueue_head(&ctx->cq_wait);
334 init_waitqueue_head(&ctx->poll_wq);
335 spin_lock_init(&ctx->completion_lock);
336 spin_lock_init(&ctx->timeout_lock);
337 INIT_WQ_LIST(&ctx->iopoll_list);
338 INIT_LIST_HEAD(&ctx->io_buffers_comp);
339 INIT_LIST_HEAD(&ctx->defer_list);
340 INIT_LIST_HEAD(&ctx->timeout_list);
341 INIT_LIST_HEAD(&ctx->ltimeout_list);
342 init_llist_head(&ctx->work_llist);
343 INIT_LIST_HEAD(&ctx->tctx_list);
344 ctx->submit_state.free_list.next = NULL;
345 INIT_HLIST_HEAD(&ctx->waitid_list);
346 #ifdef CONFIG_FUTEX
347 INIT_HLIST_HEAD(&ctx->futex_list);
348 #endif
349 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
350 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
351 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
352 io_napi_init(ctx);
353 mutex_init(&ctx->resize_lock);
355 return ctx;
357 free_ref:
358 percpu_ref_exit(&ctx->refs);
359 err:
360 io_alloc_cache_free(&ctx->apoll_cache, kfree);
361 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
362 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
363 io_alloc_cache_free(&ctx->uring_cache, kfree);
364 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
365 io_futex_cache_free(ctx);
366 kvfree(ctx->cancel_table.hbs);
367 xa_destroy(&ctx->io_bl_xa);
368 kfree(ctx);
369 return NULL;
372 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
374 struct io_rings *r = ctx->rings;
376 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
377 ctx->cq_extra--;
380 static bool req_need_defer(struct io_kiocb *req, u32 seq)
382 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
383 struct io_ring_ctx *ctx = req->ctx;
385 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
388 return false;
391 static void io_clean_op(struct io_kiocb *req)
393 if (req->flags & REQ_F_BUFFER_SELECTED) {
394 spin_lock(&req->ctx->completion_lock);
395 io_kbuf_drop(req);
396 spin_unlock(&req->ctx->completion_lock);
399 if (req->flags & REQ_F_NEED_CLEANUP) {
400 const struct io_cold_def *def = &io_cold_defs[req->opcode];
402 if (def->cleanup)
403 def->cleanup(req);
405 if ((req->flags & REQ_F_POLLED) && req->apoll) {
406 kfree(req->apoll->double_poll);
407 kfree(req->apoll);
408 req->apoll = NULL;
410 if (req->flags & REQ_F_INFLIGHT)
411 atomic_dec(&req->tctx->inflight_tracked);
412 if (req->flags & REQ_F_CREDS)
413 put_cred(req->creds);
414 if (req->flags & REQ_F_ASYNC_DATA) {
415 kfree(req->async_data);
416 req->async_data = NULL;
418 req->flags &= ~IO_REQ_CLEAN_FLAGS;
421 static inline void io_req_track_inflight(struct io_kiocb *req)
423 if (!(req->flags & REQ_F_INFLIGHT)) {
424 req->flags |= REQ_F_INFLIGHT;
425 atomic_inc(&req->tctx->inflight_tracked);
429 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
431 if (WARN_ON_ONCE(!req->link))
432 return NULL;
434 req->flags &= ~REQ_F_ARM_LTIMEOUT;
435 req->flags |= REQ_F_LINK_TIMEOUT;
437 /* linked timeouts should have two refs once prep'ed */
438 io_req_set_refcount(req);
439 __io_req_set_refcount(req->link, 2);
440 return req->link;
443 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
445 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
446 return NULL;
447 return __io_prep_linked_timeout(req);
450 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
452 io_queue_linked_timeout(__io_prep_linked_timeout(req));
455 static inline void io_arm_ltimeout(struct io_kiocb *req)
457 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
458 __io_arm_ltimeout(req);
461 static void io_prep_async_work(struct io_kiocb *req)
463 const struct io_issue_def *def = &io_issue_defs[req->opcode];
464 struct io_ring_ctx *ctx = req->ctx;
466 if (!(req->flags & REQ_F_CREDS)) {
467 req->flags |= REQ_F_CREDS;
468 req->creds = get_current_cred();
471 req->work.list.next = NULL;
472 atomic_set(&req->work.flags, 0);
473 if (req->flags & REQ_F_FORCE_ASYNC)
474 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
476 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
477 req->flags |= io_file_get_flags(req->file);
479 if (req->file && (req->flags & REQ_F_ISREG)) {
480 bool should_hash = def->hash_reg_file;
482 /* don't serialize this request if the fs doesn't need it */
483 if (should_hash && (req->file->f_flags & O_DIRECT) &&
484 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
485 should_hash = false;
486 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
487 io_wq_hash_work(&req->work, file_inode(req->file));
488 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
489 if (def->unbound_nonreg_file)
490 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
494 static void io_prep_async_link(struct io_kiocb *req)
496 struct io_kiocb *cur;
498 if (req->flags & REQ_F_LINK_TIMEOUT) {
499 struct io_ring_ctx *ctx = req->ctx;
501 spin_lock_irq(&ctx->timeout_lock);
502 io_for_each_link(cur, req)
503 io_prep_async_work(cur);
504 spin_unlock_irq(&ctx->timeout_lock);
505 } else {
506 io_for_each_link(cur, req)
507 io_prep_async_work(cur);
511 static void io_queue_iowq(struct io_kiocb *req)
513 struct io_kiocb *link = io_prep_linked_timeout(req);
514 struct io_uring_task *tctx = req->tctx;
516 BUG_ON(!tctx);
517 BUG_ON(!tctx->io_wq);
519 /* init ->work of the whole link before punting */
520 io_prep_async_link(req);
523 * Not expected to happen, but if we do have a bug where this _can_
524 * happen, catch it here and ensure the request is marked as
525 * canceled. That will make io-wq go through the usual work cancel
526 * procedure rather than attempt to run this request (or create a new
527 * worker for it).
529 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
530 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
532 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
533 io_wq_enqueue(tctx->io_wq, &req->work);
534 if (link)
535 io_queue_linked_timeout(link);
538 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
540 io_queue_iowq(req);
543 void io_req_queue_iowq(struct io_kiocb *req)
545 req->io_task_work.func = io_req_queue_iowq_tw;
546 io_req_task_work_add(req);
549 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
551 while (!list_empty(&ctx->defer_list)) {
552 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
553 struct io_defer_entry, list);
555 if (req_need_defer(de->req, de->seq))
556 break;
557 list_del_init(&de->list);
558 io_req_task_queue(de->req);
559 kfree(de);
563 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
565 if (ctx->poll_activated)
566 io_poll_wq_wake(ctx);
567 if (ctx->off_timeout_used)
568 io_flush_timeouts(ctx);
569 if (ctx->drain_active) {
570 spin_lock(&ctx->completion_lock);
571 io_queue_deferred(ctx);
572 spin_unlock(&ctx->completion_lock);
574 if (ctx->has_evfd)
575 io_eventfd_flush_signal(ctx);
578 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
580 if (!ctx->lockless_cq)
581 spin_lock(&ctx->completion_lock);
584 static inline void io_cq_lock(struct io_ring_ctx *ctx)
585 __acquires(ctx->completion_lock)
587 spin_lock(&ctx->completion_lock);
590 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
592 io_commit_cqring(ctx);
593 if (!ctx->task_complete) {
594 if (!ctx->lockless_cq)
595 spin_unlock(&ctx->completion_lock);
596 /* IOPOLL rings only need to wake up if it's also SQPOLL */
597 if (!ctx->syscall_iopoll)
598 io_cqring_wake(ctx);
600 io_commit_cqring_flush(ctx);
603 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
604 __releases(ctx->completion_lock)
606 io_commit_cqring(ctx);
607 spin_unlock(&ctx->completion_lock);
608 io_cqring_wake(ctx);
609 io_commit_cqring_flush(ctx);
612 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
614 size_t cqe_size = sizeof(struct io_uring_cqe);
616 lockdep_assert_held(&ctx->uring_lock);
618 /* don't abort if we're dying, entries must get freed */
619 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
620 return;
622 if (ctx->flags & IORING_SETUP_CQE32)
623 cqe_size <<= 1;
625 io_cq_lock(ctx);
626 while (!list_empty(&ctx->cq_overflow_list)) {
627 struct io_uring_cqe *cqe;
628 struct io_overflow_cqe *ocqe;
630 ocqe = list_first_entry(&ctx->cq_overflow_list,
631 struct io_overflow_cqe, list);
633 if (!dying) {
634 if (!io_get_cqe_overflow(ctx, &cqe, true))
635 break;
636 memcpy(cqe, &ocqe->cqe, cqe_size);
638 list_del(&ocqe->list);
639 kfree(ocqe);
642 * For silly syzbot cases that deliberately overflow by huge
643 * amounts, check if we need to resched and drop and
644 * reacquire the locks if so. Nothing real would ever hit this.
645 * Ideally we'd have a non-posting unlock for this, but hard
646 * to care for a non-real case.
648 if (need_resched()) {
649 io_cq_unlock_post(ctx);
650 mutex_unlock(&ctx->uring_lock);
651 cond_resched();
652 mutex_lock(&ctx->uring_lock);
653 io_cq_lock(ctx);
657 if (list_empty(&ctx->cq_overflow_list)) {
658 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
659 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
661 io_cq_unlock_post(ctx);
664 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
666 if (ctx->rings)
667 __io_cqring_overflow_flush(ctx, true);
670 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
672 mutex_lock(&ctx->uring_lock);
673 __io_cqring_overflow_flush(ctx, false);
674 mutex_unlock(&ctx->uring_lock);
677 /* must to be called somewhat shortly after putting a request */
678 static inline void io_put_task(struct io_kiocb *req)
680 struct io_uring_task *tctx = req->tctx;
682 if (likely(tctx->task == current)) {
683 tctx->cached_refs++;
684 } else {
685 percpu_counter_sub(&tctx->inflight, 1);
686 if (unlikely(atomic_read(&tctx->in_cancel)))
687 wake_up(&tctx->wait);
688 put_task_struct(tctx->task);
692 void io_task_refs_refill(struct io_uring_task *tctx)
694 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
696 percpu_counter_add(&tctx->inflight, refill);
697 refcount_add(refill, &current->usage);
698 tctx->cached_refs += refill;
701 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
703 struct io_uring_task *tctx = task->io_uring;
704 unsigned int refs = tctx->cached_refs;
706 if (refs) {
707 tctx->cached_refs = 0;
708 percpu_counter_sub(&tctx->inflight, refs);
709 put_task_struct_many(task, refs);
713 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
714 s32 res, u32 cflags, u64 extra1, u64 extra2)
716 struct io_overflow_cqe *ocqe;
717 size_t ocq_size = sizeof(struct io_overflow_cqe);
718 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
720 lockdep_assert_held(&ctx->completion_lock);
722 if (is_cqe32)
723 ocq_size += sizeof(struct io_uring_cqe);
725 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
726 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
727 if (!ocqe) {
729 * If we're in ring overflow flush mode, or in task cancel mode,
730 * or cannot allocate an overflow entry, then we need to drop it
731 * on the floor.
733 io_account_cq_overflow(ctx);
734 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
735 return false;
737 if (list_empty(&ctx->cq_overflow_list)) {
738 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
739 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
742 ocqe->cqe.user_data = user_data;
743 ocqe->cqe.res = res;
744 ocqe->cqe.flags = cflags;
745 if (is_cqe32) {
746 ocqe->cqe.big_cqe[0] = extra1;
747 ocqe->cqe.big_cqe[1] = extra2;
749 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
750 return true;
753 static void io_req_cqe_overflow(struct io_kiocb *req)
755 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
756 req->cqe.res, req->cqe.flags,
757 req->big_cqe.extra1, req->big_cqe.extra2);
758 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
762 * writes to the cq entry need to come after reading head; the
763 * control dependency is enough as we're using WRITE_ONCE to
764 * fill the cq entry
766 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
768 struct io_rings *rings = ctx->rings;
769 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
770 unsigned int free, queued, len;
773 * Posting into the CQ when there are pending overflowed CQEs may break
774 * ordering guarantees, which will affect links, F_MORE users and more.
775 * Force overflow the completion.
777 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
778 return false;
780 /* userspace may cheat modifying the tail, be safe and do min */
781 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
782 free = ctx->cq_entries - queued;
783 /* we need a contiguous range, limit based on the current array offset */
784 len = min(free, ctx->cq_entries - off);
785 if (!len)
786 return false;
788 if (ctx->flags & IORING_SETUP_CQE32) {
789 off <<= 1;
790 len <<= 1;
793 ctx->cqe_cached = &rings->cqes[off];
794 ctx->cqe_sentinel = ctx->cqe_cached + len;
795 return true;
798 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
799 u32 cflags)
801 struct io_uring_cqe *cqe;
803 ctx->cq_extra++;
806 * If we can't get a cq entry, userspace overflowed the
807 * submission (by quite a lot). Increment the overflow count in
808 * the ring.
810 if (likely(io_get_cqe(ctx, &cqe))) {
811 WRITE_ONCE(cqe->user_data, user_data);
812 WRITE_ONCE(cqe->res, res);
813 WRITE_ONCE(cqe->flags, cflags);
815 if (ctx->flags & IORING_SETUP_CQE32) {
816 WRITE_ONCE(cqe->big_cqe[0], 0);
817 WRITE_ONCE(cqe->big_cqe[1], 0);
820 trace_io_uring_complete(ctx, NULL, cqe);
821 return true;
823 return false;
826 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
827 u32 cflags)
829 bool filled;
831 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
832 if (!filled)
833 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
835 return filled;
838 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
840 bool filled;
842 io_cq_lock(ctx);
843 filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
844 io_cq_unlock_post(ctx);
845 return filled;
849 * Must be called from inline task_work so we now a flush will happen later,
850 * and obviously with ctx->uring_lock held (tw always has that).
852 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
854 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
855 spin_lock(&ctx->completion_lock);
856 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
857 spin_unlock(&ctx->completion_lock);
859 ctx->submit_state.cq_flush = true;
863 * A helper for multishot requests posting additional CQEs.
864 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
866 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
868 struct io_ring_ctx *ctx = req->ctx;
869 bool posted;
871 lockdep_assert(!io_wq_current_is_worker());
872 lockdep_assert_held(&ctx->uring_lock);
874 __io_cq_lock(ctx);
875 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
876 ctx->submit_state.cq_flush = true;
877 __io_cq_unlock_post(ctx);
878 return posted;
881 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
883 struct io_ring_ctx *ctx = req->ctx;
886 * All execution paths but io-wq use the deferred completions by
887 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
889 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
890 return;
893 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
894 * the submitter task context, IOPOLL protects with uring_lock.
896 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
897 req->io_task_work.func = io_req_task_complete;
898 io_req_task_work_add(req);
899 return;
902 io_cq_lock(ctx);
903 if (!(req->flags & REQ_F_CQE_SKIP)) {
904 if (!io_fill_cqe_req(ctx, req))
905 io_req_cqe_overflow(req);
907 io_cq_unlock_post(ctx);
910 * We don't free the request here because we know it's called from
911 * io-wq only, which holds a reference, so it cannot be the last put.
913 req_ref_put(req);
916 void io_req_defer_failed(struct io_kiocb *req, s32 res)
917 __must_hold(&ctx->uring_lock)
919 const struct io_cold_def *def = &io_cold_defs[req->opcode];
921 lockdep_assert_held(&req->ctx->uring_lock);
923 req_set_fail(req);
924 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
925 if (def->fail)
926 def->fail(req);
927 io_req_complete_defer(req);
931 * Don't initialise the fields below on every allocation, but do that in
932 * advance and keep them valid across allocations.
934 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
936 req->ctx = ctx;
937 req->buf_node = NULL;
938 req->file_node = NULL;
939 req->link = NULL;
940 req->async_data = NULL;
941 /* not necessary, but safer to zero */
942 memset(&req->cqe, 0, sizeof(req->cqe));
943 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
947 * A request might get retired back into the request caches even before opcode
948 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
949 * Because of that, io_alloc_req() should be called only under ->uring_lock
950 * and with extra caution to not get a request that is still worked on.
952 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
953 __must_hold(&ctx->uring_lock)
955 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
956 void *reqs[IO_REQ_ALLOC_BATCH];
957 int ret;
959 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
962 * Bulk alloc is all-or-nothing. If we fail to get a batch,
963 * retry single alloc to be on the safe side.
965 if (unlikely(ret <= 0)) {
966 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
967 if (!reqs[0])
968 return false;
969 ret = 1;
972 percpu_ref_get_many(&ctx->refs, ret);
973 while (ret--) {
974 struct io_kiocb *req = reqs[ret];
976 io_preinit_req(req, ctx);
977 io_req_add_to_cache(req, ctx);
979 return true;
982 __cold void io_free_req(struct io_kiocb *req)
984 /* refs were already put, restore them for io_req_task_complete() */
985 req->flags &= ~REQ_F_REFCOUNT;
986 /* we only want to free it, don't post CQEs */
987 req->flags |= REQ_F_CQE_SKIP;
988 req->io_task_work.func = io_req_task_complete;
989 io_req_task_work_add(req);
992 static void __io_req_find_next_prep(struct io_kiocb *req)
994 struct io_ring_ctx *ctx = req->ctx;
996 spin_lock(&ctx->completion_lock);
997 io_disarm_next(req);
998 spin_unlock(&ctx->completion_lock);
1001 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1003 struct io_kiocb *nxt;
1006 * If LINK is set, we have dependent requests in this chain. If we
1007 * didn't fail this request, queue the first one up, moving any other
1008 * dependencies to the next request. In case of failure, fail the rest
1009 * of the chain.
1011 if (unlikely(req->flags & IO_DISARM_MASK))
1012 __io_req_find_next_prep(req);
1013 nxt = req->link;
1014 req->link = NULL;
1015 return nxt;
1018 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1020 if (!ctx)
1021 return;
1022 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1023 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1025 io_submit_flush_completions(ctx);
1026 mutex_unlock(&ctx->uring_lock);
1027 percpu_ref_put(&ctx->refs);
1031 * Run queued task_work, returning the number of entries processed in *count.
1032 * If more entries than max_entries are available, stop processing once this
1033 * is reached and return the rest of the list.
1035 struct llist_node *io_handle_tw_list(struct llist_node *node,
1036 unsigned int *count,
1037 unsigned int max_entries)
1039 struct io_ring_ctx *ctx = NULL;
1040 struct io_tw_state ts = { };
1042 do {
1043 struct llist_node *next = node->next;
1044 struct io_kiocb *req = container_of(node, struct io_kiocb,
1045 io_task_work.node);
1047 if (req->ctx != ctx) {
1048 ctx_flush_and_put(ctx, &ts);
1049 ctx = req->ctx;
1050 mutex_lock(&ctx->uring_lock);
1051 percpu_ref_get(&ctx->refs);
1053 INDIRECT_CALL_2(req->io_task_work.func,
1054 io_poll_task_func, io_req_rw_complete,
1055 req, &ts);
1056 node = next;
1057 (*count)++;
1058 if (unlikely(need_resched())) {
1059 ctx_flush_and_put(ctx, &ts);
1060 ctx = NULL;
1061 cond_resched();
1063 } while (node && *count < max_entries);
1065 ctx_flush_and_put(ctx, &ts);
1066 return node;
1069 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1071 struct io_ring_ctx *last_ctx = NULL;
1072 struct io_kiocb *req;
1074 while (node) {
1075 req = container_of(node, struct io_kiocb, io_task_work.node);
1076 node = node->next;
1077 if (sync && last_ctx != req->ctx) {
1078 if (last_ctx) {
1079 flush_delayed_work(&last_ctx->fallback_work);
1080 percpu_ref_put(&last_ctx->refs);
1082 last_ctx = req->ctx;
1083 percpu_ref_get(&last_ctx->refs);
1085 if (llist_add(&req->io_task_work.node,
1086 &req->ctx->fallback_llist))
1087 schedule_delayed_work(&req->ctx->fallback_work, 1);
1090 if (last_ctx) {
1091 flush_delayed_work(&last_ctx->fallback_work);
1092 percpu_ref_put(&last_ctx->refs);
1096 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1098 struct llist_node *node = llist_del_all(&tctx->task_list);
1100 __io_fallback_tw(node, sync);
1103 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1104 unsigned int max_entries,
1105 unsigned int *count)
1107 struct llist_node *node;
1109 if (unlikely(current->flags & PF_EXITING)) {
1110 io_fallback_tw(tctx, true);
1111 return NULL;
1114 node = llist_del_all(&tctx->task_list);
1115 if (node) {
1116 node = llist_reverse_order(node);
1117 node = io_handle_tw_list(node, count, max_entries);
1120 /* relaxed read is enough as only the task itself sets ->in_cancel */
1121 if (unlikely(atomic_read(&tctx->in_cancel)))
1122 io_uring_drop_tctx_refs(current);
1124 trace_io_uring_task_work_run(tctx, *count);
1125 return node;
1128 void tctx_task_work(struct callback_head *cb)
1130 struct io_uring_task *tctx;
1131 struct llist_node *ret;
1132 unsigned int count = 0;
1134 tctx = container_of(cb, struct io_uring_task, task_work);
1135 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1136 /* can't happen */
1137 WARN_ON_ONCE(ret);
1140 static inline void io_req_local_work_add(struct io_kiocb *req,
1141 struct io_ring_ctx *ctx,
1142 unsigned flags)
1144 unsigned nr_wait, nr_tw, nr_tw_prev;
1145 struct llist_node *head;
1147 /* See comment above IO_CQ_WAKE_INIT */
1148 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1151 * We don't know how many reuqests is there in the link and whether
1152 * they can even be queued lazily, fall back to non-lazy.
1154 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1155 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1157 guard(rcu)();
1159 head = READ_ONCE(ctx->work_llist.first);
1160 do {
1161 nr_tw_prev = 0;
1162 if (head) {
1163 struct io_kiocb *first_req = container_of(head,
1164 struct io_kiocb,
1165 io_task_work.node);
1167 * Might be executed at any moment, rely on
1168 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1170 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1174 * Theoretically, it can overflow, but that's fine as one of
1175 * previous adds should've tried to wake the task.
1177 nr_tw = nr_tw_prev + 1;
1178 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1179 nr_tw = IO_CQ_WAKE_FORCE;
1181 req->nr_tw = nr_tw;
1182 req->io_task_work.node.next = head;
1183 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1184 &req->io_task_work.node));
1187 * cmpxchg implies a full barrier, which pairs with the barrier
1188 * in set_current_state() on the io_cqring_wait() side. It's used
1189 * to ensure that either we see updated ->cq_wait_nr, or waiters
1190 * going to sleep will observe the work added to the list, which
1191 * is similar to the wait/wawke task state sync.
1194 if (!head) {
1195 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1196 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1197 if (ctx->has_evfd)
1198 io_eventfd_signal(ctx);
1201 nr_wait = atomic_read(&ctx->cq_wait_nr);
1202 /* not enough or no one is waiting */
1203 if (nr_tw < nr_wait)
1204 return;
1205 /* the previous add has already woken it up */
1206 if (nr_tw_prev >= nr_wait)
1207 return;
1208 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1211 static void io_req_normal_work_add(struct io_kiocb *req)
1213 struct io_uring_task *tctx = req->tctx;
1214 struct io_ring_ctx *ctx = req->ctx;
1216 /* task_work already pending, we're done */
1217 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1218 return;
1220 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1221 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1223 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1224 if (ctx->flags & IORING_SETUP_SQPOLL) {
1225 struct io_sq_data *sqd = ctx->sq_data;
1227 if (sqd->thread)
1228 __set_notify_signal(sqd->thread);
1229 return;
1232 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1233 return;
1235 io_fallback_tw(tctx, false);
1238 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1240 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1241 io_req_local_work_add(req, req->ctx, flags);
1242 else
1243 io_req_normal_work_add(req);
1246 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1247 unsigned flags)
1249 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1250 return;
1251 io_req_local_work_add(req, ctx, flags);
1254 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1256 struct llist_node *node = llist_del_all(&ctx->work_llist);
1258 __io_fallback_tw(node, false);
1259 node = llist_del_all(&ctx->retry_llist);
1260 __io_fallback_tw(node, false);
1263 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1264 int min_events)
1266 if (!io_local_work_pending(ctx))
1267 return false;
1268 if (events < min_events)
1269 return true;
1270 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1271 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1272 return false;
1275 static int __io_run_local_work_loop(struct llist_node **node,
1276 struct io_tw_state *ts,
1277 int events)
1279 int ret = 0;
1281 while (*node) {
1282 struct llist_node *next = (*node)->next;
1283 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1284 io_task_work.node);
1285 INDIRECT_CALL_2(req->io_task_work.func,
1286 io_poll_task_func, io_req_rw_complete,
1287 req, ts);
1288 *node = next;
1289 if (++ret >= events)
1290 break;
1293 return ret;
1296 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1297 int min_events, int max_events)
1299 struct llist_node *node;
1300 unsigned int loops = 0;
1301 int ret = 0;
1303 if (WARN_ON_ONCE(ctx->submitter_task != current))
1304 return -EEXIST;
1305 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1306 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1307 again:
1308 min_events -= ret;
1309 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1310 if (ctx->retry_llist.first)
1311 goto retry_done;
1314 * llists are in reverse order, flip it back the right way before
1315 * running the pending items.
1317 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1318 ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1319 ctx->retry_llist.first = node;
1320 loops++;
1322 if (io_run_local_work_continue(ctx, ret, min_events))
1323 goto again;
1324 retry_done:
1325 io_submit_flush_completions(ctx);
1326 if (io_run_local_work_continue(ctx, ret, min_events))
1327 goto again;
1329 trace_io_uring_local_work_run(ctx, ret, loops);
1330 return ret;
1333 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1334 int min_events)
1336 struct io_tw_state ts = {};
1338 if (!io_local_work_pending(ctx))
1339 return 0;
1340 return __io_run_local_work(ctx, &ts, min_events,
1341 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1344 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1345 int max_events)
1347 struct io_tw_state ts = {};
1348 int ret;
1350 mutex_lock(&ctx->uring_lock);
1351 ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1352 mutex_unlock(&ctx->uring_lock);
1353 return ret;
1356 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1358 io_tw_lock(req->ctx, ts);
1359 io_req_defer_failed(req, req->cqe.res);
1362 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1364 io_tw_lock(req->ctx, ts);
1365 if (unlikely(io_should_terminate_tw()))
1366 io_req_defer_failed(req, -EFAULT);
1367 else if (req->flags & REQ_F_FORCE_ASYNC)
1368 io_queue_iowq(req);
1369 else
1370 io_queue_sqe(req);
1373 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1375 io_req_set_res(req, ret, 0);
1376 req->io_task_work.func = io_req_task_cancel;
1377 io_req_task_work_add(req);
1380 void io_req_task_queue(struct io_kiocb *req)
1382 req->io_task_work.func = io_req_task_submit;
1383 io_req_task_work_add(req);
1386 void io_queue_next(struct io_kiocb *req)
1388 struct io_kiocb *nxt = io_req_find_next(req);
1390 if (nxt)
1391 io_req_task_queue(nxt);
1394 static void io_free_batch_list(struct io_ring_ctx *ctx,
1395 struct io_wq_work_node *node)
1396 __must_hold(&ctx->uring_lock)
1398 do {
1399 struct io_kiocb *req = container_of(node, struct io_kiocb,
1400 comp_list);
1402 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1403 if (req->flags & REQ_F_REFCOUNT) {
1404 node = req->comp_list.next;
1405 if (!req_ref_put_and_test(req))
1406 continue;
1408 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1409 struct async_poll *apoll = req->apoll;
1411 if (apoll->double_poll)
1412 kfree(apoll->double_poll);
1413 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1414 kfree(apoll);
1415 req->flags &= ~REQ_F_POLLED;
1417 if (req->flags & IO_REQ_LINK_FLAGS)
1418 io_queue_next(req);
1419 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1420 io_clean_op(req);
1422 io_put_file(req);
1423 io_req_put_rsrc_nodes(req);
1424 io_put_task(req);
1426 node = req->comp_list.next;
1427 io_req_add_to_cache(req, ctx);
1428 } while (node);
1431 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1432 __must_hold(&ctx->uring_lock)
1434 struct io_submit_state *state = &ctx->submit_state;
1435 struct io_wq_work_node *node;
1437 __io_cq_lock(ctx);
1438 __wq_list_for_each(node, &state->compl_reqs) {
1439 struct io_kiocb *req = container_of(node, struct io_kiocb,
1440 comp_list);
1442 if (!(req->flags & REQ_F_CQE_SKIP) &&
1443 unlikely(!io_fill_cqe_req(ctx, req))) {
1444 if (ctx->lockless_cq) {
1445 spin_lock(&ctx->completion_lock);
1446 io_req_cqe_overflow(req);
1447 spin_unlock(&ctx->completion_lock);
1448 } else {
1449 io_req_cqe_overflow(req);
1453 __io_cq_unlock_post(ctx);
1455 if (!wq_list_empty(&state->compl_reqs)) {
1456 io_free_batch_list(ctx, state->compl_reqs.first);
1457 INIT_WQ_LIST(&state->compl_reqs);
1459 ctx->submit_state.cq_flush = false;
1462 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1464 /* See comment at the top of this file */
1465 smp_rmb();
1466 return __io_cqring_events(ctx);
1470 * We can't just wait for polled events to come to us, we have to actively
1471 * find and complete them.
1473 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1475 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1476 return;
1478 mutex_lock(&ctx->uring_lock);
1479 while (!wq_list_empty(&ctx->iopoll_list)) {
1480 /* let it sleep and repeat later if can't complete a request */
1481 if (io_do_iopoll(ctx, true) == 0)
1482 break;
1484 * Ensure we allow local-to-the-cpu processing to take place,
1485 * in this case we need to ensure that we reap all events.
1486 * Also let task_work, etc. to progress by releasing the mutex
1488 if (need_resched()) {
1489 mutex_unlock(&ctx->uring_lock);
1490 cond_resched();
1491 mutex_lock(&ctx->uring_lock);
1494 mutex_unlock(&ctx->uring_lock);
1497 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1499 unsigned int nr_events = 0;
1500 unsigned long check_cq;
1502 lockdep_assert_held(&ctx->uring_lock);
1504 if (!io_allowed_run_tw(ctx))
1505 return -EEXIST;
1507 check_cq = READ_ONCE(ctx->check_cq);
1508 if (unlikely(check_cq)) {
1509 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1510 __io_cqring_overflow_flush(ctx, false);
1512 * Similarly do not spin if we have not informed the user of any
1513 * dropped CQE.
1515 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1516 return -EBADR;
1519 * Don't enter poll loop if we already have events pending.
1520 * If we do, we can potentially be spinning for commands that
1521 * already triggered a CQE (eg in error).
1523 if (io_cqring_events(ctx))
1524 return 0;
1526 do {
1527 int ret = 0;
1530 * If a submit got punted to a workqueue, we can have the
1531 * application entering polling for a command before it gets
1532 * issued. That app will hold the uring_lock for the duration
1533 * of the poll right here, so we need to take a breather every
1534 * now and then to ensure that the issue has a chance to add
1535 * the poll to the issued list. Otherwise we can spin here
1536 * forever, while the workqueue is stuck trying to acquire the
1537 * very same mutex.
1539 if (wq_list_empty(&ctx->iopoll_list) ||
1540 io_task_work_pending(ctx)) {
1541 u32 tail = ctx->cached_cq_tail;
1543 (void) io_run_local_work_locked(ctx, min);
1545 if (task_work_pending(current) ||
1546 wq_list_empty(&ctx->iopoll_list)) {
1547 mutex_unlock(&ctx->uring_lock);
1548 io_run_task_work();
1549 mutex_lock(&ctx->uring_lock);
1551 /* some requests don't go through iopoll_list */
1552 if (tail != ctx->cached_cq_tail ||
1553 wq_list_empty(&ctx->iopoll_list))
1554 break;
1556 ret = io_do_iopoll(ctx, !min);
1557 if (unlikely(ret < 0))
1558 return ret;
1560 if (task_sigpending(current))
1561 return -EINTR;
1562 if (need_resched())
1563 break;
1565 nr_events += ret;
1566 } while (nr_events < min);
1568 return 0;
1571 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1573 io_req_complete_defer(req);
1577 * After the iocb has been issued, it's safe to be found on the poll list.
1578 * Adding the kiocb to the list AFTER submission ensures that we don't
1579 * find it from a io_do_iopoll() thread before the issuer is done
1580 * accessing the kiocb cookie.
1582 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1584 struct io_ring_ctx *ctx = req->ctx;
1585 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1587 /* workqueue context doesn't hold uring_lock, grab it now */
1588 if (unlikely(needs_lock))
1589 mutex_lock(&ctx->uring_lock);
1592 * Track whether we have multiple files in our lists. This will impact
1593 * how we do polling eventually, not spinning if we're on potentially
1594 * different devices.
1596 if (wq_list_empty(&ctx->iopoll_list)) {
1597 ctx->poll_multi_queue = false;
1598 } else if (!ctx->poll_multi_queue) {
1599 struct io_kiocb *list_req;
1601 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1602 comp_list);
1603 if (list_req->file != req->file)
1604 ctx->poll_multi_queue = true;
1608 * For fast devices, IO may have already completed. If it has, add
1609 * it to the front so we find it first.
1611 if (READ_ONCE(req->iopoll_completed))
1612 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1613 else
1614 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1616 if (unlikely(needs_lock)) {
1618 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1619 * in sq thread task context or in io worker task context. If
1620 * current task context is sq thread, we don't need to check
1621 * whether should wake up sq thread.
1623 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1624 wq_has_sleeper(&ctx->sq_data->wait))
1625 wake_up(&ctx->sq_data->wait);
1627 mutex_unlock(&ctx->uring_lock);
1631 io_req_flags_t io_file_get_flags(struct file *file)
1633 io_req_flags_t res = 0;
1635 if (S_ISREG(file_inode(file)->i_mode))
1636 res |= REQ_F_ISREG;
1637 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1638 res |= REQ_F_SUPPORT_NOWAIT;
1639 return res;
1642 bool io_alloc_async_data(struct io_kiocb *req)
1644 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1646 WARN_ON_ONCE(!def->async_size);
1647 req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1648 if (req->async_data) {
1649 req->flags |= REQ_F_ASYNC_DATA;
1650 return false;
1652 return true;
1655 static u32 io_get_sequence(struct io_kiocb *req)
1657 u32 seq = req->ctx->cached_sq_head;
1658 struct io_kiocb *cur;
1660 /* need original cached_sq_head, but it was increased for each req */
1661 io_for_each_link(cur, req)
1662 seq--;
1663 return seq;
1666 static __cold void io_drain_req(struct io_kiocb *req)
1667 __must_hold(&ctx->uring_lock)
1669 struct io_ring_ctx *ctx = req->ctx;
1670 struct io_defer_entry *de;
1671 int ret;
1672 u32 seq = io_get_sequence(req);
1674 /* Still need defer if there is pending req in defer list. */
1675 spin_lock(&ctx->completion_lock);
1676 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1677 spin_unlock(&ctx->completion_lock);
1678 queue:
1679 ctx->drain_active = false;
1680 io_req_task_queue(req);
1681 return;
1683 spin_unlock(&ctx->completion_lock);
1685 io_prep_async_link(req);
1686 de = kmalloc(sizeof(*de), GFP_KERNEL);
1687 if (!de) {
1688 ret = -ENOMEM;
1689 io_req_defer_failed(req, ret);
1690 return;
1693 spin_lock(&ctx->completion_lock);
1694 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1695 spin_unlock(&ctx->completion_lock);
1696 kfree(de);
1697 goto queue;
1700 trace_io_uring_defer(req);
1701 de->req = req;
1702 de->seq = seq;
1703 list_add_tail(&de->list, &ctx->defer_list);
1704 spin_unlock(&ctx->completion_lock);
1707 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1708 unsigned int issue_flags)
1710 if (req->file || !def->needs_file)
1711 return true;
1713 if (req->flags & REQ_F_FIXED_FILE)
1714 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1715 else
1716 req->file = io_file_get_normal(req, req->cqe.fd);
1718 return !!req->file;
1721 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1723 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1724 const struct cred *creds = NULL;
1725 int ret;
1727 if (unlikely(!io_assign_file(req, def, issue_flags)))
1728 return -EBADF;
1730 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1731 creds = override_creds(req->creds);
1733 if (!def->audit_skip)
1734 audit_uring_entry(req->opcode);
1736 ret = def->issue(req, issue_flags);
1738 if (!def->audit_skip)
1739 audit_uring_exit(!ret, ret);
1741 if (creds)
1742 revert_creds(creds);
1744 if (ret == IOU_OK) {
1745 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1746 io_req_complete_defer(req);
1747 else
1748 io_req_complete_post(req, issue_flags);
1750 return 0;
1753 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1754 ret = 0;
1755 io_arm_ltimeout(req);
1757 /* If the op doesn't have a file, we're not polling for it */
1758 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1759 io_iopoll_req_issued(req, issue_flags);
1761 return ret;
1764 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1766 io_tw_lock(req->ctx, ts);
1767 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1768 IO_URING_F_COMPLETE_DEFER);
1771 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1773 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1774 struct io_kiocb *nxt = NULL;
1776 if (req_ref_put_and_test(req)) {
1777 if (req->flags & IO_REQ_LINK_FLAGS)
1778 nxt = io_req_find_next(req);
1779 io_free_req(req);
1781 return nxt ? &nxt->work : NULL;
1784 void io_wq_submit_work(struct io_wq_work *work)
1786 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1787 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1788 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1789 bool needs_poll = false;
1790 int ret = 0, err = -ECANCELED;
1792 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1793 if (!(req->flags & REQ_F_REFCOUNT))
1794 __io_req_set_refcount(req, 2);
1795 else
1796 req_ref_get(req);
1798 io_arm_ltimeout(req);
1800 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1801 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1802 fail:
1803 io_req_task_queue_fail(req, err);
1804 return;
1806 if (!io_assign_file(req, def, issue_flags)) {
1807 err = -EBADF;
1808 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1809 goto fail;
1813 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1814 * submitter task context. Final request completions are handed to the
1815 * right context, however this is not the case of auxiliary CQEs,
1816 * which is the main mean of operation for multishot requests.
1817 * Don't allow any multishot execution from io-wq. It's more restrictive
1818 * than necessary and also cleaner.
1820 if (req->flags & REQ_F_APOLL_MULTISHOT) {
1821 err = -EBADFD;
1822 if (!io_file_can_poll(req))
1823 goto fail;
1824 if (req->file->f_flags & O_NONBLOCK ||
1825 req->file->f_mode & FMODE_NOWAIT) {
1826 err = -ECANCELED;
1827 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1828 goto fail;
1829 return;
1830 } else {
1831 req->flags &= ~REQ_F_APOLL_MULTISHOT;
1835 if (req->flags & REQ_F_FORCE_ASYNC) {
1836 bool opcode_poll = def->pollin || def->pollout;
1838 if (opcode_poll && io_file_can_poll(req)) {
1839 needs_poll = true;
1840 issue_flags |= IO_URING_F_NONBLOCK;
1844 do {
1845 ret = io_issue_sqe(req, issue_flags);
1846 if (ret != -EAGAIN)
1847 break;
1850 * If REQ_F_NOWAIT is set, then don't wait or retry with
1851 * poll. -EAGAIN is final for that case.
1853 if (req->flags & REQ_F_NOWAIT)
1854 break;
1857 * We can get EAGAIN for iopolled IO even though we're
1858 * forcing a sync submission from here, since we can't
1859 * wait for request slots on the block side.
1861 if (!needs_poll) {
1862 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1863 break;
1864 if (io_wq_worker_stopped())
1865 break;
1866 cond_resched();
1867 continue;
1870 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1871 return;
1872 /* aborted or ready, in either case retry blocking */
1873 needs_poll = false;
1874 issue_flags &= ~IO_URING_F_NONBLOCK;
1875 } while (1);
1877 /* avoid locking problems by failing it from a clean context */
1878 if (ret)
1879 io_req_task_queue_fail(req, ret);
1882 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1883 unsigned int issue_flags)
1885 struct io_ring_ctx *ctx = req->ctx;
1886 struct io_rsrc_node *node;
1887 struct file *file = NULL;
1889 io_ring_submit_lock(ctx, issue_flags);
1890 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1891 if (node) {
1892 io_req_assign_rsrc_node(&req->file_node, node);
1893 req->flags |= io_slot_flags(node);
1894 file = io_slot_file(node);
1896 io_ring_submit_unlock(ctx, issue_flags);
1897 return file;
1900 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1902 struct file *file = fget(fd);
1904 trace_io_uring_file_get(req, fd);
1906 /* we don't allow fixed io_uring files */
1907 if (file && io_is_uring_fops(file))
1908 io_req_track_inflight(req);
1909 return file;
1912 static void io_queue_async(struct io_kiocb *req, int ret)
1913 __must_hold(&req->ctx->uring_lock)
1915 struct io_kiocb *linked_timeout;
1917 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1918 io_req_defer_failed(req, ret);
1919 return;
1922 linked_timeout = io_prep_linked_timeout(req);
1924 switch (io_arm_poll_handler(req, 0)) {
1925 case IO_APOLL_READY:
1926 io_kbuf_recycle(req, 0);
1927 io_req_task_queue(req);
1928 break;
1929 case IO_APOLL_ABORTED:
1930 io_kbuf_recycle(req, 0);
1931 io_queue_iowq(req);
1932 break;
1933 case IO_APOLL_OK:
1934 break;
1937 if (linked_timeout)
1938 io_queue_linked_timeout(linked_timeout);
1941 static inline void io_queue_sqe(struct io_kiocb *req)
1942 __must_hold(&req->ctx->uring_lock)
1944 int ret;
1946 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1949 * We async punt it if the file wasn't marked NOWAIT, or if the file
1950 * doesn't support non-blocking read/write attempts
1952 if (unlikely(ret))
1953 io_queue_async(req, ret);
1956 static void io_queue_sqe_fallback(struct io_kiocb *req)
1957 __must_hold(&req->ctx->uring_lock)
1959 if (unlikely(req->flags & REQ_F_FAIL)) {
1961 * We don't submit, fail them all, for that replace hardlinks
1962 * with normal links. Extra REQ_F_LINK is tolerated.
1964 req->flags &= ~REQ_F_HARDLINK;
1965 req->flags |= REQ_F_LINK;
1966 io_req_defer_failed(req, req->cqe.res);
1967 } else {
1968 if (unlikely(req->ctx->drain_active))
1969 io_drain_req(req);
1970 else
1971 io_queue_iowq(req);
1976 * Check SQE restrictions (opcode and flags).
1978 * Returns 'true' if SQE is allowed, 'false' otherwise.
1980 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1981 struct io_kiocb *req,
1982 unsigned int sqe_flags)
1984 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1985 return false;
1987 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1988 ctx->restrictions.sqe_flags_required)
1989 return false;
1991 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1992 ctx->restrictions.sqe_flags_required))
1993 return false;
1995 return true;
1998 static void io_init_req_drain(struct io_kiocb *req)
2000 struct io_ring_ctx *ctx = req->ctx;
2001 struct io_kiocb *head = ctx->submit_state.link.head;
2003 ctx->drain_active = true;
2004 if (head) {
2006 * If we need to drain a request in the middle of a link, drain
2007 * the head request and the next request/link after the current
2008 * link. Considering sequential execution of links,
2009 * REQ_F_IO_DRAIN will be maintained for every request of our
2010 * link.
2012 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2013 ctx->drain_next = true;
2017 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2019 /* ensure per-opcode data is cleared if we fail before prep */
2020 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2021 return err;
2024 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2025 const struct io_uring_sqe *sqe)
2026 __must_hold(&ctx->uring_lock)
2028 const struct io_issue_def *def;
2029 unsigned int sqe_flags;
2030 int personality;
2031 u8 opcode;
2033 /* req is partially pre-initialised, see io_preinit_req() */
2034 req->opcode = opcode = READ_ONCE(sqe->opcode);
2035 /* same numerical values with corresponding REQ_F_*, safe to copy */
2036 sqe_flags = READ_ONCE(sqe->flags);
2037 req->flags = (__force io_req_flags_t) sqe_flags;
2038 req->cqe.user_data = READ_ONCE(sqe->user_data);
2039 req->file = NULL;
2040 req->tctx = current->io_uring;
2041 req->cancel_seq_set = false;
2043 if (unlikely(opcode >= IORING_OP_LAST)) {
2044 req->opcode = 0;
2045 return io_init_fail_req(req, -EINVAL);
2047 def = &io_issue_defs[opcode];
2048 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2049 /* enforce forwards compatibility on users */
2050 if (sqe_flags & ~SQE_VALID_FLAGS)
2051 return io_init_fail_req(req, -EINVAL);
2052 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2053 if (!def->buffer_select)
2054 return io_init_fail_req(req, -EOPNOTSUPP);
2055 req->buf_index = READ_ONCE(sqe->buf_group);
2057 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2058 ctx->drain_disabled = true;
2059 if (sqe_flags & IOSQE_IO_DRAIN) {
2060 if (ctx->drain_disabled)
2061 return io_init_fail_req(req, -EOPNOTSUPP);
2062 io_init_req_drain(req);
2065 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2066 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2067 return io_init_fail_req(req, -EACCES);
2068 /* knock it to the slow queue path, will be drained there */
2069 if (ctx->drain_active)
2070 req->flags |= REQ_F_FORCE_ASYNC;
2071 /* if there is no link, we're at "next" request and need to drain */
2072 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2073 ctx->drain_next = false;
2074 ctx->drain_active = true;
2075 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2079 if (!def->ioprio && sqe->ioprio)
2080 return io_init_fail_req(req, -EINVAL);
2081 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2082 return io_init_fail_req(req, -EINVAL);
2084 if (def->needs_file) {
2085 struct io_submit_state *state = &ctx->submit_state;
2087 req->cqe.fd = READ_ONCE(sqe->fd);
2090 * Plug now if we have more than 2 IO left after this, and the
2091 * target is potentially a read/write to block based storage.
2093 if (state->need_plug && def->plug) {
2094 state->plug_started = true;
2095 state->need_plug = false;
2096 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2100 personality = READ_ONCE(sqe->personality);
2101 if (personality) {
2102 int ret;
2104 req->creds = xa_load(&ctx->personalities, personality);
2105 if (!req->creds)
2106 return io_init_fail_req(req, -EINVAL);
2107 get_cred(req->creds);
2108 ret = security_uring_override_creds(req->creds);
2109 if (ret) {
2110 put_cred(req->creds);
2111 return io_init_fail_req(req, ret);
2113 req->flags |= REQ_F_CREDS;
2116 return def->prep(req, sqe);
2119 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2120 struct io_kiocb *req, int ret)
2122 struct io_ring_ctx *ctx = req->ctx;
2123 struct io_submit_link *link = &ctx->submit_state.link;
2124 struct io_kiocb *head = link->head;
2126 trace_io_uring_req_failed(sqe, req, ret);
2129 * Avoid breaking links in the middle as it renders links with SQPOLL
2130 * unusable. Instead of failing eagerly, continue assembling the link if
2131 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2132 * should find the flag and handle the rest.
2134 req_fail_link_node(req, ret);
2135 if (head && !(head->flags & REQ_F_FAIL))
2136 req_fail_link_node(head, -ECANCELED);
2138 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2139 if (head) {
2140 link->last->link = req;
2141 link->head = NULL;
2142 req = head;
2144 io_queue_sqe_fallback(req);
2145 return ret;
2148 if (head)
2149 link->last->link = req;
2150 else
2151 link->head = req;
2152 link->last = req;
2153 return 0;
2156 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2157 const struct io_uring_sqe *sqe)
2158 __must_hold(&ctx->uring_lock)
2160 struct io_submit_link *link = &ctx->submit_state.link;
2161 int ret;
2163 ret = io_init_req(ctx, req, sqe);
2164 if (unlikely(ret))
2165 return io_submit_fail_init(sqe, req, ret);
2167 trace_io_uring_submit_req(req);
2170 * If we already have a head request, queue this one for async
2171 * submittal once the head completes. If we don't have a head but
2172 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2173 * submitted sync once the chain is complete. If none of those
2174 * conditions are true (normal request), then just queue it.
2176 if (unlikely(link->head)) {
2177 trace_io_uring_link(req, link->last);
2178 link->last->link = req;
2179 link->last = req;
2181 if (req->flags & IO_REQ_LINK_FLAGS)
2182 return 0;
2183 /* last request of the link, flush it */
2184 req = link->head;
2185 link->head = NULL;
2186 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2187 goto fallback;
2189 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2190 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2191 if (req->flags & IO_REQ_LINK_FLAGS) {
2192 link->head = req;
2193 link->last = req;
2194 } else {
2195 fallback:
2196 io_queue_sqe_fallback(req);
2198 return 0;
2201 io_queue_sqe(req);
2202 return 0;
2206 * Batched submission is done, ensure local IO is flushed out.
2208 static void io_submit_state_end(struct io_ring_ctx *ctx)
2210 struct io_submit_state *state = &ctx->submit_state;
2212 if (unlikely(state->link.head))
2213 io_queue_sqe_fallback(state->link.head);
2214 /* flush only after queuing links as they can generate completions */
2215 io_submit_flush_completions(ctx);
2216 if (state->plug_started)
2217 blk_finish_plug(&state->plug);
2221 * Start submission side cache.
2223 static void io_submit_state_start(struct io_submit_state *state,
2224 unsigned int max_ios)
2226 state->plug_started = false;
2227 state->need_plug = max_ios > 2;
2228 state->submit_nr = max_ios;
2229 /* set only head, no need to init link_last in advance */
2230 state->link.head = NULL;
2233 static void io_commit_sqring(struct io_ring_ctx *ctx)
2235 struct io_rings *rings = ctx->rings;
2238 * Ensure any loads from the SQEs are done at this point,
2239 * since once we write the new head, the application could
2240 * write new data to them.
2242 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2246 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2247 * that is mapped by userspace. This means that care needs to be taken to
2248 * ensure that reads are stable, as we cannot rely on userspace always
2249 * being a good citizen. If members of the sqe are validated and then later
2250 * used, it's important that those reads are done through READ_ONCE() to
2251 * prevent a re-load down the line.
2253 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2255 unsigned mask = ctx->sq_entries - 1;
2256 unsigned head = ctx->cached_sq_head++ & mask;
2258 if (static_branch_unlikely(&io_key_has_sqarray) &&
2259 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2260 head = READ_ONCE(ctx->sq_array[head]);
2261 if (unlikely(head >= ctx->sq_entries)) {
2262 /* drop invalid entries */
2263 spin_lock(&ctx->completion_lock);
2264 ctx->cq_extra--;
2265 spin_unlock(&ctx->completion_lock);
2266 WRITE_ONCE(ctx->rings->sq_dropped,
2267 READ_ONCE(ctx->rings->sq_dropped) + 1);
2268 return false;
2270 head = array_index_nospec(head, ctx->sq_entries);
2274 * The cached sq head (or cq tail) serves two purposes:
2276 * 1) allows us to batch the cost of updating the user visible
2277 * head updates.
2278 * 2) allows the kernel side to track the head on its own, even
2279 * though the application is the one updating it.
2282 /* double index for 128-byte SQEs, twice as long */
2283 if (ctx->flags & IORING_SETUP_SQE128)
2284 head <<= 1;
2285 *sqe = &ctx->sq_sqes[head];
2286 return true;
2289 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2290 __must_hold(&ctx->uring_lock)
2292 unsigned int entries = io_sqring_entries(ctx);
2293 unsigned int left;
2294 int ret;
2296 if (unlikely(!entries))
2297 return 0;
2298 /* make sure SQ entry isn't read before tail */
2299 ret = left = min(nr, entries);
2300 io_get_task_refs(left);
2301 io_submit_state_start(&ctx->submit_state, left);
2303 do {
2304 const struct io_uring_sqe *sqe;
2305 struct io_kiocb *req;
2307 if (unlikely(!io_alloc_req(ctx, &req)))
2308 break;
2309 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2310 io_req_add_to_cache(req, ctx);
2311 break;
2315 * Continue submitting even for sqe failure if the
2316 * ring was setup with IORING_SETUP_SUBMIT_ALL
2318 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2319 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2320 left--;
2321 break;
2323 } while (--left);
2325 if (unlikely(left)) {
2326 ret -= left;
2327 /* try again if it submitted nothing and can't allocate a req */
2328 if (!ret && io_req_cache_empty(ctx))
2329 ret = -EAGAIN;
2330 current->io_uring->cached_refs += left;
2333 io_submit_state_end(ctx);
2334 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2335 io_commit_sqring(ctx);
2336 return ret;
2339 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2340 int wake_flags, void *key)
2342 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2345 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2346 * the task, and the next invocation will do it.
2348 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2349 return autoremove_wake_function(curr, mode, wake_flags, key);
2350 return -1;
2353 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2355 if (io_local_work_pending(ctx)) {
2356 __set_current_state(TASK_RUNNING);
2357 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2358 return 0;
2360 if (io_run_task_work() > 0)
2361 return 0;
2362 if (task_sigpending(current))
2363 return -EINTR;
2364 return 0;
2367 static bool current_pending_io(void)
2369 struct io_uring_task *tctx = current->io_uring;
2371 if (!tctx)
2372 return false;
2373 return percpu_counter_read_positive(&tctx->inflight);
2376 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2378 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2380 WRITE_ONCE(iowq->hit_timeout, 1);
2381 iowq->min_timeout = 0;
2382 wake_up_process(iowq->wq.private);
2383 return HRTIMER_NORESTART;
2387 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2388 * wake up. If not, and we have a normal timeout, switch to that and keep
2389 * sleeping.
2391 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2393 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2394 struct io_ring_ctx *ctx = iowq->ctx;
2396 /* no general timeout, or shorter (or equal), we are done */
2397 if (iowq->timeout == KTIME_MAX ||
2398 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2399 goto out_wake;
2400 /* work we may need to run, wake function will see if we need to wake */
2401 if (io_has_work(ctx))
2402 goto out_wake;
2403 /* got events since we started waiting, min timeout is done */
2404 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2405 goto out_wake;
2406 /* if we have any events and min timeout expired, we're done */
2407 if (io_cqring_events(ctx))
2408 goto out_wake;
2411 * If using deferred task_work running and application is waiting on
2412 * more than one request, ensure we reset it now where we are switching
2413 * to normal sleeps. Any request completion post min_wait should wake
2414 * the task and return.
2416 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2417 atomic_set(&ctx->cq_wait_nr, 1);
2418 smp_mb();
2419 if (!llist_empty(&ctx->work_llist))
2420 goto out_wake;
2423 iowq->t.function = io_cqring_timer_wakeup;
2424 hrtimer_set_expires(timer, iowq->timeout);
2425 return HRTIMER_RESTART;
2426 out_wake:
2427 return io_cqring_timer_wakeup(timer);
2430 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2431 clockid_t clock_id, ktime_t start_time)
2433 ktime_t timeout;
2435 if (iowq->min_timeout) {
2436 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2437 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2438 HRTIMER_MODE_ABS);
2439 } else {
2440 timeout = iowq->timeout;
2441 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2442 HRTIMER_MODE_ABS);
2445 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2446 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2448 if (!READ_ONCE(iowq->hit_timeout))
2449 schedule();
2451 hrtimer_cancel(&iowq->t);
2452 destroy_hrtimer_on_stack(&iowq->t);
2453 __set_current_state(TASK_RUNNING);
2455 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2458 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2459 struct io_wait_queue *iowq,
2460 ktime_t start_time)
2462 int ret = 0;
2465 * Mark us as being in io_wait if we have pending requests, so cpufreq
2466 * can take into account that the task is waiting for IO - turns out
2467 * to be important for low QD IO.
2469 if (current_pending_io())
2470 current->in_iowait = 1;
2471 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2472 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2473 else
2474 schedule();
2475 current->in_iowait = 0;
2476 return ret;
2479 /* If this returns > 0, the caller should retry */
2480 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2481 struct io_wait_queue *iowq,
2482 ktime_t start_time)
2484 if (unlikely(READ_ONCE(ctx->check_cq)))
2485 return 1;
2486 if (unlikely(io_local_work_pending(ctx)))
2487 return 1;
2488 if (unlikely(task_work_pending(current)))
2489 return 1;
2490 if (unlikely(task_sigpending(current)))
2491 return -EINTR;
2492 if (unlikely(io_should_wake(iowq)))
2493 return 0;
2495 return __io_cqring_wait_schedule(ctx, iowq, start_time);
2498 struct ext_arg {
2499 size_t argsz;
2500 struct timespec64 ts;
2501 const sigset_t __user *sig;
2502 ktime_t min_time;
2503 bool ts_set;
2507 * Wait until events become available, if we don't already have some. The
2508 * application must reap them itself, as they reside on the shared cq ring.
2510 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2511 struct ext_arg *ext_arg)
2513 struct io_wait_queue iowq;
2514 struct io_rings *rings = ctx->rings;
2515 ktime_t start_time;
2516 int ret;
2518 if (!io_allowed_run_tw(ctx))
2519 return -EEXIST;
2520 if (io_local_work_pending(ctx))
2521 io_run_local_work(ctx, min_events,
2522 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2523 io_run_task_work();
2525 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2526 io_cqring_do_overflow_flush(ctx);
2527 if (__io_cqring_events_user(ctx) >= min_events)
2528 return 0;
2530 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2531 iowq.wq.private = current;
2532 INIT_LIST_HEAD(&iowq.wq.entry);
2533 iowq.ctx = ctx;
2534 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2535 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2536 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2537 iowq.hit_timeout = 0;
2538 iowq.min_timeout = ext_arg->min_time;
2539 iowq.timeout = KTIME_MAX;
2540 start_time = io_get_time(ctx);
2542 if (ext_arg->ts_set) {
2543 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2544 if (!(flags & IORING_ENTER_ABS_TIMER))
2545 iowq.timeout = ktime_add(iowq.timeout, start_time);
2548 if (ext_arg->sig) {
2549 #ifdef CONFIG_COMPAT
2550 if (in_compat_syscall())
2551 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2552 ext_arg->argsz);
2553 else
2554 #endif
2555 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2557 if (ret)
2558 return ret;
2561 io_napi_busy_loop(ctx, &iowq);
2563 trace_io_uring_cqring_wait(ctx, min_events);
2564 do {
2565 unsigned long check_cq;
2566 int nr_wait;
2568 /* if min timeout has been hit, don't reset wait count */
2569 if (!iowq.hit_timeout)
2570 nr_wait = (int) iowq.cq_tail -
2571 READ_ONCE(ctx->rings->cq.tail);
2572 else
2573 nr_wait = 1;
2575 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2576 atomic_set(&ctx->cq_wait_nr, nr_wait);
2577 set_current_state(TASK_INTERRUPTIBLE);
2578 } else {
2579 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2580 TASK_INTERRUPTIBLE);
2583 ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2584 __set_current_state(TASK_RUNNING);
2585 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2588 * Run task_work after scheduling and before io_should_wake().
2589 * If we got woken because of task_work being processed, run it
2590 * now rather than let the caller do another wait loop.
2592 if (io_local_work_pending(ctx))
2593 io_run_local_work(ctx, nr_wait, nr_wait);
2594 io_run_task_work();
2597 * Non-local task_work will be run on exit to userspace, but
2598 * if we're using DEFER_TASKRUN, then we could have waited
2599 * with a timeout for a number of requests. If the timeout
2600 * hits, we could have some requests ready to process. Ensure
2601 * this break is _after_ we have run task_work, to avoid
2602 * deferring running potentially pending requests until the
2603 * next time we wait for events.
2605 if (ret < 0)
2606 break;
2608 check_cq = READ_ONCE(ctx->check_cq);
2609 if (unlikely(check_cq)) {
2610 /* let the caller flush overflows, retry */
2611 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2612 io_cqring_do_overflow_flush(ctx);
2613 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2614 ret = -EBADR;
2615 break;
2619 if (io_should_wake(&iowq)) {
2620 ret = 0;
2621 break;
2623 cond_resched();
2624 } while (1);
2626 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2627 finish_wait(&ctx->cq_wait, &iowq.wq);
2628 restore_saved_sigmask_unless(ret == -EINTR);
2630 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2633 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2634 size_t size)
2636 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2637 size);
2640 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2641 size_t size)
2643 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2644 size);
2647 static void io_rings_free(struct io_ring_ctx *ctx)
2649 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2650 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2651 true);
2652 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2653 true);
2654 } else {
2655 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2656 ctx->n_ring_pages = 0;
2657 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2658 ctx->n_sqe_pages = 0;
2659 vunmap(ctx->rings);
2660 vunmap(ctx->sq_sqes);
2663 ctx->rings = NULL;
2664 ctx->sq_sqes = NULL;
2667 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2668 unsigned int cq_entries, size_t *sq_offset)
2670 struct io_rings *rings;
2671 size_t off, sq_array_size;
2673 off = struct_size(rings, cqes, cq_entries);
2674 if (off == SIZE_MAX)
2675 return SIZE_MAX;
2676 if (flags & IORING_SETUP_CQE32) {
2677 if (check_shl_overflow(off, 1, &off))
2678 return SIZE_MAX;
2681 #ifdef CONFIG_SMP
2682 off = ALIGN(off, SMP_CACHE_BYTES);
2683 if (off == 0)
2684 return SIZE_MAX;
2685 #endif
2687 if (flags & IORING_SETUP_NO_SQARRAY) {
2688 *sq_offset = SIZE_MAX;
2689 return off;
2692 *sq_offset = off;
2694 sq_array_size = array_size(sizeof(u32), sq_entries);
2695 if (sq_array_size == SIZE_MAX)
2696 return SIZE_MAX;
2698 if (check_add_overflow(off, sq_array_size, &off))
2699 return SIZE_MAX;
2701 return off;
2704 static void io_req_caches_free(struct io_ring_ctx *ctx)
2706 struct io_kiocb *req;
2707 int nr = 0;
2709 mutex_lock(&ctx->uring_lock);
2711 while (!io_req_cache_empty(ctx)) {
2712 req = io_extract_req(ctx);
2713 kmem_cache_free(req_cachep, req);
2714 nr++;
2716 if (nr)
2717 percpu_ref_put_many(&ctx->refs, nr);
2718 mutex_unlock(&ctx->uring_lock);
2721 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2723 io_sq_thread_finish(ctx);
2725 mutex_lock(&ctx->uring_lock);
2726 io_sqe_buffers_unregister(ctx);
2727 io_sqe_files_unregister(ctx);
2728 io_cqring_overflow_kill(ctx);
2729 io_eventfd_unregister(ctx);
2730 io_alloc_cache_free(&ctx->apoll_cache, kfree);
2731 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2732 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2733 io_alloc_cache_free(&ctx->uring_cache, kfree);
2734 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2735 io_futex_cache_free(ctx);
2736 io_destroy_buffers(ctx);
2737 io_free_region(ctx, &ctx->param_region);
2738 mutex_unlock(&ctx->uring_lock);
2739 if (ctx->sq_creds)
2740 put_cred(ctx->sq_creds);
2741 if (ctx->submitter_task)
2742 put_task_struct(ctx->submitter_task);
2744 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2746 if (ctx->mm_account) {
2747 mmdrop(ctx->mm_account);
2748 ctx->mm_account = NULL;
2750 io_rings_free(ctx);
2752 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2753 static_branch_dec(&io_key_has_sqarray);
2755 percpu_ref_exit(&ctx->refs);
2756 free_uid(ctx->user);
2757 io_req_caches_free(ctx);
2758 if (ctx->hash_map)
2759 io_wq_put_hash(ctx->hash_map);
2760 io_napi_free(ctx);
2761 kvfree(ctx->cancel_table.hbs);
2762 xa_destroy(&ctx->io_bl_xa);
2763 kfree(ctx);
2766 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2768 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2769 poll_wq_task_work);
2771 mutex_lock(&ctx->uring_lock);
2772 ctx->poll_activated = true;
2773 mutex_unlock(&ctx->uring_lock);
2776 * Wake ups for some events between start of polling and activation
2777 * might've been lost due to loose synchronisation.
2779 wake_up_all(&ctx->poll_wq);
2780 percpu_ref_put(&ctx->refs);
2783 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2785 spin_lock(&ctx->completion_lock);
2786 /* already activated or in progress */
2787 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2788 goto out;
2789 if (WARN_ON_ONCE(!ctx->task_complete))
2790 goto out;
2791 if (!ctx->submitter_task)
2792 goto out;
2794 * with ->submitter_task only the submitter task completes requests, we
2795 * only need to sync with it, which is done by injecting a tw
2797 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2798 percpu_ref_get(&ctx->refs);
2799 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2800 percpu_ref_put(&ctx->refs);
2801 out:
2802 spin_unlock(&ctx->completion_lock);
2805 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2807 struct io_ring_ctx *ctx = file->private_data;
2808 __poll_t mask = 0;
2810 if (unlikely(!ctx->poll_activated))
2811 io_activate_pollwq(ctx);
2813 poll_wait(file, &ctx->poll_wq, wait);
2815 * synchronizes with barrier from wq_has_sleeper call in
2816 * io_commit_cqring
2818 smp_rmb();
2819 if (!io_sqring_full(ctx))
2820 mask |= EPOLLOUT | EPOLLWRNORM;
2823 * Don't flush cqring overflow list here, just do a simple check.
2824 * Otherwise there could possible be ABBA deadlock:
2825 * CPU0 CPU1
2826 * ---- ----
2827 * lock(&ctx->uring_lock);
2828 * lock(&ep->mtx);
2829 * lock(&ctx->uring_lock);
2830 * lock(&ep->mtx);
2832 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2833 * pushes them to do the flush.
2836 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2837 mask |= EPOLLIN | EPOLLRDNORM;
2839 return mask;
2842 struct io_tctx_exit {
2843 struct callback_head task_work;
2844 struct completion completion;
2845 struct io_ring_ctx *ctx;
2848 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2850 struct io_uring_task *tctx = current->io_uring;
2851 struct io_tctx_exit *work;
2853 work = container_of(cb, struct io_tctx_exit, task_work);
2855 * When @in_cancel, we're in cancellation and it's racy to remove the
2856 * node. It'll be removed by the end of cancellation, just ignore it.
2857 * tctx can be NULL if the queueing of this task_work raced with
2858 * work cancelation off the exec path.
2860 if (tctx && !atomic_read(&tctx->in_cancel))
2861 io_uring_del_tctx_node((unsigned long)work->ctx);
2862 complete(&work->completion);
2865 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2867 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2869 return req->ctx == data;
2872 static __cold void io_ring_exit_work(struct work_struct *work)
2874 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2875 unsigned long timeout = jiffies + HZ * 60 * 5;
2876 unsigned long interval = HZ / 20;
2877 struct io_tctx_exit exit;
2878 struct io_tctx_node *node;
2879 int ret;
2882 * If we're doing polled IO and end up having requests being
2883 * submitted async (out-of-line), then completions can come in while
2884 * we're waiting for refs to drop. We need to reap these manually,
2885 * as nobody else will be looking for them.
2887 do {
2888 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2889 mutex_lock(&ctx->uring_lock);
2890 io_cqring_overflow_kill(ctx);
2891 mutex_unlock(&ctx->uring_lock);
2894 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2895 io_move_task_work_from_local(ctx);
2897 while (io_uring_try_cancel_requests(ctx, NULL, true))
2898 cond_resched();
2900 if (ctx->sq_data) {
2901 struct io_sq_data *sqd = ctx->sq_data;
2902 struct task_struct *tsk;
2904 io_sq_thread_park(sqd);
2905 tsk = sqd->thread;
2906 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2907 io_wq_cancel_cb(tsk->io_uring->io_wq,
2908 io_cancel_ctx_cb, ctx, true);
2909 io_sq_thread_unpark(sqd);
2912 io_req_caches_free(ctx);
2914 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2915 /* there is little hope left, don't run it too often */
2916 interval = HZ * 60;
2919 * This is really an uninterruptible wait, as it has to be
2920 * complete. But it's also run from a kworker, which doesn't
2921 * take signals, so it's fine to make it interruptible. This
2922 * avoids scenarios where we knowingly can wait much longer
2923 * on completions, for example if someone does a SIGSTOP on
2924 * a task that needs to finish task_work to make this loop
2925 * complete. That's a synthetic situation that should not
2926 * cause a stuck task backtrace, and hence a potential panic
2927 * on stuck tasks if that is enabled.
2929 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2931 init_completion(&exit.completion);
2932 init_task_work(&exit.task_work, io_tctx_exit_cb);
2933 exit.ctx = ctx;
2935 mutex_lock(&ctx->uring_lock);
2936 while (!list_empty(&ctx->tctx_list)) {
2937 WARN_ON_ONCE(time_after(jiffies, timeout));
2939 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2940 ctx_node);
2941 /* don't spin on a single task if cancellation failed */
2942 list_rotate_left(&ctx->tctx_list);
2943 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2944 if (WARN_ON_ONCE(ret))
2945 continue;
2947 mutex_unlock(&ctx->uring_lock);
2949 * See comment above for
2950 * wait_for_completion_interruptible_timeout() on why this
2951 * wait is marked as interruptible.
2953 wait_for_completion_interruptible(&exit.completion);
2954 mutex_lock(&ctx->uring_lock);
2956 mutex_unlock(&ctx->uring_lock);
2957 spin_lock(&ctx->completion_lock);
2958 spin_unlock(&ctx->completion_lock);
2960 /* pairs with RCU read section in io_req_local_work_add() */
2961 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2962 synchronize_rcu();
2964 io_ring_ctx_free(ctx);
2967 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2969 unsigned long index;
2970 struct creds *creds;
2972 mutex_lock(&ctx->uring_lock);
2973 percpu_ref_kill(&ctx->refs);
2974 xa_for_each(&ctx->personalities, index, creds)
2975 io_unregister_personality(ctx, index);
2976 mutex_unlock(&ctx->uring_lock);
2978 flush_delayed_work(&ctx->fallback_work);
2980 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2982 * Use system_unbound_wq to avoid spawning tons of event kworkers
2983 * if we're exiting a ton of rings at the same time. It just adds
2984 * noise and overhead, there's no discernable change in runtime
2985 * over using system_wq.
2987 queue_work(iou_wq, &ctx->exit_work);
2990 static int io_uring_release(struct inode *inode, struct file *file)
2992 struct io_ring_ctx *ctx = file->private_data;
2994 file->private_data = NULL;
2995 io_ring_ctx_wait_and_kill(ctx);
2996 return 0;
2999 struct io_task_cancel {
3000 struct io_uring_task *tctx;
3001 bool all;
3004 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3006 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3007 struct io_task_cancel *cancel = data;
3009 return io_match_task_safe(req, cancel->tctx, cancel->all);
3012 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3013 struct io_uring_task *tctx,
3014 bool cancel_all)
3016 struct io_defer_entry *de;
3017 LIST_HEAD(list);
3019 spin_lock(&ctx->completion_lock);
3020 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3021 if (io_match_task_safe(de->req, tctx, cancel_all)) {
3022 list_cut_position(&list, &ctx->defer_list, &de->list);
3023 break;
3026 spin_unlock(&ctx->completion_lock);
3027 if (list_empty(&list))
3028 return false;
3030 while (!list_empty(&list)) {
3031 de = list_first_entry(&list, struct io_defer_entry, list);
3032 list_del_init(&de->list);
3033 io_req_task_queue_fail(de->req, -ECANCELED);
3034 kfree(de);
3036 return true;
3039 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3041 struct io_tctx_node *node;
3042 enum io_wq_cancel cret;
3043 bool ret = false;
3045 mutex_lock(&ctx->uring_lock);
3046 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3047 struct io_uring_task *tctx = node->task->io_uring;
3050 * io_wq will stay alive while we hold uring_lock, because it's
3051 * killed after ctx nodes, which requires to take the lock.
3053 if (!tctx || !tctx->io_wq)
3054 continue;
3055 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3056 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3058 mutex_unlock(&ctx->uring_lock);
3060 return ret;
3063 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3064 struct io_uring_task *tctx,
3065 bool cancel_all)
3067 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3068 enum io_wq_cancel cret;
3069 bool ret = false;
3071 /* set it so io_req_local_work_add() would wake us up */
3072 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3073 atomic_set(&ctx->cq_wait_nr, 1);
3074 smp_mb();
3077 /* failed during ring init, it couldn't have issued any requests */
3078 if (!ctx->rings)
3079 return false;
3081 if (!tctx) {
3082 ret |= io_uring_try_cancel_iowq(ctx);
3083 } else if (tctx->io_wq) {
3085 * Cancels requests of all rings, not only @ctx, but
3086 * it's fine as the task is in exit/exec.
3088 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3089 &cancel, true);
3090 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3093 /* SQPOLL thread does its own polling */
3094 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3095 (ctx->sq_data && ctx->sq_data->thread == current)) {
3096 while (!wq_list_empty(&ctx->iopoll_list)) {
3097 io_iopoll_try_reap_events(ctx);
3098 ret = true;
3099 cond_resched();
3103 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3104 io_allowed_defer_tw_run(ctx))
3105 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3106 ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3107 mutex_lock(&ctx->uring_lock);
3108 ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3109 ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3110 ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3111 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3112 mutex_unlock(&ctx->uring_lock);
3113 ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3114 if (tctx)
3115 ret |= io_run_task_work() > 0;
3116 else
3117 ret |= flush_delayed_work(&ctx->fallback_work);
3118 return ret;
3121 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3123 if (tracked)
3124 return atomic_read(&tctx->inflight_tracked);
3125 return percpu_counter_sum(&tctx->inflight);
3129 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3130 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3132 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3134 struct io_uring_task *tctx = current->io_uring;
3135 struct io_ring_ctx *ctx;
3136 struct io_tctx_node *node;
3137 unsigned long index;
3138 s64 inflight;
3139 DEFINE_WAIT(wait);
3141 WARN_ON_ONCE(sqd && sqd->thread != current);
3143 if (!current->io_uring)
3144 return;
3145 if (tctx->io_wq)
3146 io_wq_exit_start(tctx->io_wq);
3148 atomic_inc(&tctx->in_cancel);
3149 do {
3150 bool loop = false;
3152 io_uring_drop_tctx_refs(current);
3153 if (!tctx_inflight(tctx, !cancel_all))
3154 break;
3156 /* read completions before cancelations */
3157 inflight = tctx_inflight(tctx, false);
3158 if (!inflight)
3159 break;
3161 if (!sqd) {
3162 xa_for_each(&tctx->xa, index, node) {
3163 /* sqpoll task will cancel all its requests */
3164 if (node->ctx->sq_data)
3165 continue;
3166 loop |= io_uring_try_cancel_requests(node->ctx,
3167 current->io_uring,
3168 cancel_all);
3170 } else {
3171 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3172 loop |= io_uring_try_cancel_requests(ctx,
3173 current->io_uring,
3174 cancel_all);
3177 if (loop) {
3178 cond_resched();
3179 continue;
3182 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3183 io_run_task_work();
3184 io_uring_drop_tctx_refs(current);
3185 xa_for_each(&tctx->xa, index, node) {
3186 if (io_local_work_pending(node->ctx)) {
3187 WARN_ON_ONCE(node->ctx->submitter_task &&
3188 node->ctx->submitter_task != current);
3189 goto end_wait;
3193 * If we've seen completions, retry without waiting. This
3194 * avoids a race where a completion comes in before we did
3195 * prepare_to_wait().
3197 if (inflight == tctx_inflight(tctx, !cancel_all))
3198 schedule();
3199 end_wait:
3200 finish_wait(&tctx->wait, &wait);
3201 } while (1);
3203 io_uring_clean_tctx(tctx);
3204 if (cancel_all) {
3206 * We shouldn't run task_works after cancel, so just leave
3207 * ->in_cancel set for normal exit.
3209 atomic_dec(&tctx->in_cancel);
3210 /* for exec all current's requests should be gone, kill tctx */
3211 __io_uring_free(current);
3215 void __io_uring_cancel(bool cancel_all)
3217 io_uring_cancel_generic(cancel_all, NULL);
3220 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3221 const struct io_uring_getevents_arg __user *uarg)
3223 unsigned long size = sizeof(struct io_uring_reg_wait);
3224 unsigned long offset = (uintptr_t)uarg;
3225 unsigned long end;
3227 if (unlikely(offset % sizeof(long)))
3228 return ERR_PTR(-EFAULT);
3230 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3231 if (unlikely(check_add_overflow(offset, size, &end) ||
3232 end > ctx->cq_wait_size))
3233 return ERR_PTR(-EFAULT);
3235 return ctx->cq_wait_arg + offset;
3238 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3239 const void __user *argp, size_t argsz)
3241 struct io_uring_getevents_arg arg;
3243 if (!(flags & IORING_ENTER_EXT_ARG))
3244 return 0;
3245 if (flags & IORING_ENTER_EXT_ARG_REG)
3246 return -EINVAL;
3247 if (argsz != sizeof(arg))
3248 return -EINVAL;
3249 if (copy_from_user(&arg, argp, sizeof(arg)))
3250 return -EFAULT;
3251 return 0;
3254 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3255 const void __user *argp, struct ext_arg *ext_arg)
3257 const struct io_uring_getevents_arg __user *uarg = argp;
3258 struct io_uring_getevents_arg arg;
3261 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3262 * is just a pointer to the sigset_t.
3264 if (!(flags & IORING_ENTER_EXT_ARG)) {
3265 ext_arg->sig = (const sigset_t __user *) argp;
3266 return 0;
3269 if (flags & IORING_ENTER_EXT_ARG_REG) {
3270 struct io_uring_reg_wait *w;
3272 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3273 return -EINVAL;
3274 w = io_get_ext_arg_reg(ctx, argp);
3275 if (IS_ERR(w))
3276 return PTR_ERR(w);
3278 if (w->flags & ~IORING_REG_WAIT_TS)
3279 return -EINVAL;
3280 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3281 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3282 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3283 if (w->flags & IORING_REG_WAIT_TS) {
3284 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3285 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3286 ext_arg->ts_set = true;
3288 return 0;
3292 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3293 * timespec and sigset_t pointers if good.
3295 if (ext_arg->argsz != sizeof(arg))
3296 return -EINVAL;
3297 #ifdef CONFIG_64BIT
3298 if (!user_access_begin(uarg, sizeof(*uarg)))
3299 return -EFAULT;
3300 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3301 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3302 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3303 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3304 user_access_end();
3305 #else
3306 if (copy_from_user(&arg, uarg, sizeof(arg)))
3307 return -EFAULT;
3308 #endif
3309 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3310 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3311 ext_arg->argsz = arg.sigmask_sz;
3312 if (arg.ts) {
3313 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3314 return -EFAULT;
3315 ext_arg->ts_set = true;
3317 return 0;
3318 #ifdef CONFIG_64BIT
3319 uaccess_end:
3320 user_access_end();
3321 return -EFAULT;
3322 #endif
3325 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3326 u32, min_complete, u32, flags, const void __user *, argp,
3327 size_t, argsz)
3329 struct io_ring_ctx *ctx;
3330 struct file *file;
3331 long ret;
3333 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3334 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3335 IORING_ENTER_REGISTERED_RING |
3336 IORING_ENTER_ABS_TIMER |
3337 IORING_ENTER_EXT_ARG_REG)))
3338 return -EINVAL;
3341 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3342 * need only dereference our task private array to find it.
3344 if (flags & IORING_ENTER_REGISTERED_RING) {
3345 struct io_uring_task *tctx = current->io_uring;
3347 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3348 return -EINVAL;
3349 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3350 file = tctx->registered_rings[fd];
3351 if (unlikely(!file))
3352 return -EBADF;
3353 } else {
3354 file = fget(fd);
3355 if (unlikely(!file))
3356 return -EBADF;
3357 ret = -EOPNOTSUPP;
3358 if (unlikely(!io_is_uring_fops(file)))
3359 goto out;
3362 ctx = file->private_data;
3363 ret = -EBADFD;
3364 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3365 goto out;
3368 * For SQ polling, the thread will do all submissions and completions.
3369 * Just return the requested submit count, and wake the thread if
3370 * we were asked to.
3372 ret = 0;
3373 if (ctx->flags & IORING_SETUP_SQPOLL) {
3374 if (unlikely(ctx->sq_data->thread == NULL)) {
3375 ret = -EOWNERDEAD;
3376 goto out;
3378 if (flags & IORING_ENTER_SQ_WAKEUP)
3379 wake_up(&ctx->sq_data->wait);
3380 if (flags & IORING_ENTER_SQ_WAIT)
3381 io_sqpoll_wait_sq(ctx);
3383 ret = to_submit;
3384 } else if (to_submit) {
3385 ret = io_uring_add_tctx_node(ctx);
3386 if (unlikely(ret))
3387 goto out;
3389 mutex_lock(&ctx->uring_lock);
3390 ret = io_submit_sqes(ctx, to_submit);
3391 if (ret != to_submit) {
3392 mutex_unlock(&ctx->uring_lock);
3393 goto out;
3395 if (flags & IORING_ENTER_GETEVENTS) {
3396 if (ctx->syscall_iopoll)
3397 goto iopoll_locked;
3399 * Ignore errors, we'll soon call io_cqring_wait() and
3400 * it should handle ownership problems if any.
3402 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3403 (void)io_run_local_work_locked(ctx, min_complete);
3405 mutex_unlock(&ctx->uring_lock);
3408 if (flags & IORING_ENTER_GETEVENTS) {
3409 int ret2;
3411 if (ctx->syscall_iopoll) {
3413 * We disallow the app entering submit/complete with
3414 * polling, but we still need to lock the ring to
3415 * prevent racing with polled issue that got punted to
3416 * a workqueue.
3418 mutex_lock(&ctx->uring_lock);
3419 iopoll_locked:
3420 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3421 if (likely(!ret2)) {
3422 min_complete = min(min_complete,
3423 ctx->cq_entries);
3424 ret2 = io_iopoll_check(ctx, min_complete);
3426 mutex_unlock(&ctx->uring_lock);
3427 } else {
3428 struct ext_arg ext_arg = { .argsz = argsz };
3430 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3431 if (likely(!ret2)) {
3432 min_complete = min(min_complete,
3433 ctx->cq_entries);
3434 ret2 = io_cqring_wait(ctx, min_complete, flags,
3435 &ext_arg);
3439 if (!ret) {
3440 ret = ret2;
3443 * EBADR indicates that one or more CQE were dropped.
3444 * Once the user has been informed we can clear the bit
3445 * as they are obviously ok with those drops.
3447 if (unlikely(ret2 == -EBADR))
3448 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3449 &ctx->check_cq);
3452 out:
3453 if (!(flags & IORING_ENTER_REGISTERED_RING))
3454 fput(file);
3455 return ret;
3458 static const struct file_operations io_uring_fops = {
3459 .release = io_uring_release,
3460 .mmap = io_uring_mmap,
3461 .get_unmapped_area = io_uring_get_unmapped_area,
3462 #ifndef CONFIG_MMU
3463 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3464 #endif
3465 .poll = io_uring_poll,
3466 #ifdef CONFIG_PROC_FS
3467 .show_fdinfo = io_uring_show_fdinfo,
3468 #endif
3471 bool io_is_uring_fops(struct file *file)
3473 return file->f_op == &io_uring_fops;
3476 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3477 struct io_uring_params *p)
3479 struct io_rings *rings;
3480 size_t size, sq_array_offset;
3481 void *ptr;
3483 /* make sure these are sane, as we already accounted them */
3484 ctx->sq_entries = p->sq_entries;
3485 ctx->cq_entries = p->cq_entries;
3487 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3488 &sq_array_offset);
3489 if (size == SIZE_MAX)
3490 return -EOVERFLOW;
3492 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3493 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3494 else
3495 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3497 if (IS_ERR(rings))
3498 return PTR_ERR(rings);
3500 ctx->rings = rings;
3501 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3502 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3503 rings->sq_ring_mask = p->sq_entries - 1;
3504 rings->cq_ring_mask = p->cq_entries - 1;
3505 rings->sq_ring_entries = p->sq_entries;
3506 rings->cq_ring_entries = p->cq_entries;
3508 if (p->flags & IORING_SETUP_SQE128)
3509 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3510 else
3511 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3512 if (size == SIZE_MAX) {
3513 io_rings_free(ctx);
3514 return -EOVERFLOW;
3517 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3518 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3519 else
3520 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3522 if (IS_ERR(ptr)) {
3523 io_rings_free(ctx);
3524 return PTR_ERR(ptr);
3527 ctx->sq_sqes = ptr;
3528 return 0;
3531 static int io_uring_install_fd(struct file *file)
3533 int fd;
3535 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3536 if (fd < 0)
3537 return fd;
3538 fd_install(fd, file);
3539 return fd;
3543 * Allocate an anonymous fd, this is what constitutes the application
3544 * visible backing of an io_uring instance. The application mmaps this
3545 * fd to gain access to the SQ/CQ ring details.
3547 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3549 /* Create a new inode so that the LSM can block the creation. */
3550 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3551 O_RDWR | O_CLOEXEC, NULL);
3554 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3556 if (!entries)
3557 return -EINVAL;
3558 if (entries > IORING_MAX_ENTRIES) {
3559 if (!(p->flags & IORING_SETUP_CLAMP))
3560 return -EINVAL;
3561 entries = IORING_MAX_ENTRIES;
3564 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3565 && !(p->flags & IORING_SETUP_NO_MMAP))
3566 return -EINVAL;
3569 * Use twice as many entries for the CQ ring. It's possible for the
3570 * application to drive a higher depth than the size of the SQ ring,
3571 * since the sqes are only used at submission time. This allows for
3572 * some flexibility in overcommitting a bit. If the application has
3573 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3574 * of CQ ring entries manually.
3576 p->sq_entries = roundup_pow_of_two(entries);
3577 if (p->flags & IORING_SETUP_CQSIZE) {
3579 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3580 * to a power-of-two, if it isn't already. We do NOT impose
3581 * any cq vs sq ring sizing.
3583 if (!p->cq_entries)
3584 return -EINVAL;
3585 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3586 if (!(p->flags & IORING_SETUP_CLAMP))
3587 return -EINVAL;
3588 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3590 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3591 if (p->cq_entries < p->sq_entries)
3592 return -EINVAL;
3593 } else {
3594 p->cq_entries = 2 * p->sq_entries;
3597 p->sq_off.head = offsetof(struct io_rings, sq.head);
3598 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3599 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3600 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3601 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3602 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3603 p->sq_off.resv1 = 0;
3604 if (!(p->flags & IORING_SETUP_NO_MMAP))
3605 p->sq_off.user_addr = 0;
3607 p->cq_off.head = offsetof(struct io_rings, cq.head);
3608 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3609 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3610 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3611 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3612 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3613 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3614 p->cq_off.resv1 = 0;
3615 if (!(p->flags & IORING_SETUP_NO_MMAP))
3616 p->cq_off.user_addr = 0;
3618 return 0;
3621 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3622 struct io_uring_params __user *params)
3624 struct io_ring_ctx *ctx;
3625 struct io_uring_task *tctx;
3626 struct file *file;
3627 int ret;
3629 ret = io_uring_fill_params(entries, p);
3630 if (unlikely(ret))
3631 return ret;
3633 ctx = io_ring_ctx_alloc(p);
3634 if (!ctx)
3635 return -ENOMEM;
3637 ctx->clockid = CLOCK_MONOTONIC;
3638 ctx->clock_offset = 0;
3640 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3641 static_branch_inc(&io_key_has_sqarray);
3643 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3644 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3645 !(ctx->flags & IORING_SETUP_SQPOLL))
3646 ctx->task_complete = true;
3648 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3649 ctx->lockless_cq = true;
3652 * lazy poll_wq activation relies on ->task_complete for synchronisation
3653 * purposes, see io_activate_pollwq()
3655 if (!ctx->task_complete)
3656 ctx->poll_activated = true;
3659 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3660 * space applications don't need to do io completion events
3661 * polling again, they can rely on io_sq_thread to do polling
3662 * work, which can reduce cpu usage and uring_lock contention.
3664 if (ctx->flags & IORING_SETUP_IOPOLL &&
3665 !(ctx->flags & IORING_SETUP_SQPOLL))
3666 ctx->syscall_iopoll = 1;
3668 ctx->compat = in_compat_syscall();
3669 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3670 ctx->user = get_uid(current_user());
3673 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3674 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3676 ret = -EINVAL;
3677 if (ctx->flags & IORING_SETUP_SQPOLL) {
3678 /* IPI related flags don't make sense with SQPOLL */
3679 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3680 IORING_SETUP_TASKRUN_FLAG |
3681 IORING_SETUP_DEFER_TASKRUN))
3682 goto err;
3683 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3684 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3685 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3686 } else {
3687 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3688 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3689 goto err;
3690 ctx->notify_method = TWA_SIGNAL;
3693 /* HYBRID_IOPOLL only valid with IOPOLL */
3694 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3695 IORING_SETUP_HYBRID_IOPOLL)
3696 goto err;
3699 * For DEFER_TASKRUN we require the completion task to be the same as the
3700 * submission task. This implies that there is only one submitter, so enforce
3701 * that.
3703 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3704 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3705 goto err;
3709 * This is just grabbed for accounting purposes. When a process exits,
3710 * the mm is exited and dropped before the files, hence we need to hang
3711 * on to this mm purely for the purposes of being able to unaccount
3712 * memory (locked/pinned vm). It's not used for anything else.
3714 mmgrab(current->mm);
3715 ctx->mm_account = current->mm;
3717 ret = io_allocate_scq_urings(ctx, p);
3718 if (ret)
3719 goto err;
3721 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3722 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3724 ret = io_sq_offload_create(ctx, p);
3725 if (ret)
3726 goto err;
3728 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3729 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3730 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3731 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3732 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3733 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3734 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3735 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3737 if (copy_to_user(params, p, sizeof(*p))) {
3738 ret = -EFAULT;
3739 goto err;
3742 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3743 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3744 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3746 file = io_uring_get_file(ctx);
3747 if (IS_ERR(file)) {
3748 ret = PTR_ERR(file);
3749 goto err;
3752 ret = __io_uring_add_tctx_node(ctx);
3753 if (ret)
3754 goto err_fput;
3755 tctx = current->io_uring;
3758 * Install ring fd as the very last thing, so we don't risk someone
3759 * having closed it before we finish setup
3761 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3762 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3763 else
3764 ret = io_uring_install_fd(file);
3765 if (ret < 0)
3766 goto err_fput;
3768 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3769 return ret;
3770 err:
3771 io_ring_ctx_wait_and_kill(ctx);
3772 return ret;
3773 err_fput:
3774 fput(file);
3775 return ret;
3779 * Sets up an aio uring context, and returns the fd. Applications asks for a
3780 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3781 * params structure passed in.
3783 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3785 struct io_uring_params p;
3786 int i;
3788 if (copy_from_user(&p, params, sizeof(p)))
3789 return -EFAULT;
3790 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3791 if (p.resv[i])
3792 return -EINVAL;
3795 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3796 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3797 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3798 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3799 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3800 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3801 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3802 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3803 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3804 return -EINVAL;
3806 return io_uring_create(entries, &p, params);
3809 static inline bool io_uring_allowed(void)
3811 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3812 kgid_t io_uring_group;
3814 if (disabled == 2)
3815 return false;
3817 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3818 return true;
3820 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3821 if (!gid_valid(io_uring_group))
3822 return false;
3824 return in_group_p(io_uring_group);
3827 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3828 struct io_uring_params __user *, params)
3830 if (!io_uring_allowed())
3831 return -EPERM;
3833 return io_uring_setup(entries, params);
3836 static int __init io_uring_init(void)
3838 struct kmem_cache_args kmem_args = {
3839 .useroffset = offsetof(struct io_kiocb, cmd.data),
3840 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3841 .freeptr_offset = offsetof(struct io_kiocb, work),
3842 .use_freeptr_offset = true,
3845 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3846 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3847 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3848 } while (0)
3850 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3851 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3852 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3853 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3854 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3855 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3856 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3857 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3858 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3859 BUILD_BUG_SQE_ELEM(8, __u64, off);
3860 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3861 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3862 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3863 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3864 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3865 BUILD_BUG_SQE_ELEM(24, __u32, len);
3866 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3867 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3868 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3869 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3870 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3871 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3872 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3873 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3874 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3875 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3876 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3877 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3878 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3879 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3880 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3881 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3882 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3883 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3884 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3885 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3886 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3887 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3888 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3889 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3890 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3891 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3892 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3893 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3894 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3895 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3896 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3898 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3899 sizeof(struct io_uring_rsrc_update));
3900 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3901 sizeof(struct io_uring_rsrc_update2));
3903 /* ->buf_index is u16 */
3904 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3905 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3906 offsetof(struct io_uring_buf_ring, tail));
3908 /* should fit into one byte */
3909 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3910 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3911 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3913 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3915 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3917 /* top 8bits are for internal use */
3918 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3920 io_uring_optable_init();
3923 * Allow user copy in the per-command field, which starts after the
3924 * file in io_kiocb and until the opcode field. The openat2 handling
3925 * requires copying in user memory into the io_kiocb object in that
3926 * range, and HARDENED_USERCOPY will complain if we haven't
3927 * correctly annotated this range.
3929 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3930 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3931 SLAB_TYPESAFE_BY_RCU);
3932 io_buf_cachep = KMEM_CACHE(io_buffer,
3933 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3935 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3937 #ifdef CONFIG_SYSCTL
3938 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3939 #endif
3941 return 0;
3943 __initcall(io_uring_init);