1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
78 #include <uapi/linux/io_uring.h>
97 #include "uring_cmd.h"
104 #include "alloc_cache.h"
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124 #define IO_LOCAL_TW_DEFAULT_MAX 20
126 struct io_defer_entry
{
127 struct list_head list
;
128 struct io_kiocb
*req
;
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137 * No waiters. It's larger than any valid value of the tw counter
138 * so that tests against ->cq_wait_nr would fail and skip wake_up().
140 #define IO_CQ_WAKE_INIT (-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx
*ctx
,
145 struct io_uring_task
*tctx
,
148 static void io_queue_sqe(struct io_kiocb
*req
);
150 static __read_mostly
DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray
);
152 struct kmem_cache
*req_cachep
;
153 static struct workqueue_struct
*iou_wq __ro_after_init
;
155 static int __read_mostly sysctl_io_uring_disabled
;
156 static int __read_mostly sysctl_io_uring_group
= -1;
159 static struct ctl_table kernel_io_uring_disabled_table
[] = {
161 .procname
= "io_uring_disabled",
162 .data
= &sysctl_io_uring_disabled
,
163 .maxlen
= sizeof(sysctl_io_uring_disabled
),
165 .proc_handler
= proc_dointvec_minmax
,
166 .extra1
= SYSCTL_ZERO
,
167 .extra2
= SYSCTL_TWO
,
170 .procname
= "io_uring_group",
171 .data
= &sysctl_io_uring_group
,
172 .maxlen
= sizeof(gid_t
),
174 .proc_handler
= proc_dointvec
,
179 static inline unsigned int __io_cqring_events(struct io_ring_ctx
*ctx
)
181 return ctx
->cached_cq_tail
- READ_ONCE(ctx
->rings
->cq
.head
);
184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx
*ctx
)
186 return READ_ONCE(ctx
->rings
->cq
.tail
) - READ_ONCE(ctx
->rings
->cq
.head
);
189 static bool io_match_linked(struct io_kiocb
*head
)
191 struct io_kiocb
*req
;
193 io_for_each_link(req
, head
) {
194 if (req
->flags
& REQ_F_INFLIGHT
)
201 * As io_match_task() but protected against racing with linked timeouts.
202 * User must not hold timeout_lock.
204 bool io_match_task_safe(struct io_kiocb
*head
, struct io_uring_task
*tctx
,
209 if (tctx
&& head
->tctx
!= tctx
)
214 if (head
->flags
& REQ_F_LINK_TIMEOUT
) {
215 struct io_ring_ctx
*ctx
= head
->ctx
;
217 /* protect against races with linked timeouts */
218 spin_lock_irq(&ctx
->timeout_lock
);
219 matched
= io_match_linked(head
);
220 spin_unlock_irq(&ctx
->timeout_lock
);
222 matched
= io_match_linked(head
);
227 static inline void req_fail_link_node(struct io_kiocb
*req
, int res
)
230 io_req_set_res(req
, res
, 0);
233 static inline void io_req_add_to_cache(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
)
235 wq_stack_add_head(&req
->comp_list
, &ctx
->submit_state
.free_list
);
238 static __cold
void io_ring_ctx_ref_free(struct percpu_ref
*ref
)
240 struct io_ring_ctx
*ctx
= container_of(ref
, struct io_ring_ctx
, refs
);
242 complete(&ctx
->ref_comp
);
245 static __cold
void io_fallback_req_func(struct work_struct
*work
)
247 struct io_ring_ctx
*ctx
= container_of(work
, struct io_ring_ctx
,
249 struct llist_node
*node
= llist_del_all(&ctx
->fallback_llist
);
250 struct io_kiocb
*req
, *tmp
;
251 struct io_tw_state ts
= {};
253 percpu_ref_get(&ctx
->refs
);
254 mutex_lock(&ctx
->uring_lock
);
255 llist_for_each_entry_safe(req
, tmp
, node
, io_task_work
.node
)
256 req
->io_task_work
.func(req
, &ts
);
257 io_submit_flush_completions(ctx
);
258 mutex_unlock(&ctx
->uring_lock
);
259 percpu_ref_put(&ctx
->refs
);
262 static int io_alloc_hash_table(struct io_hash_table
*table
, unsigned bits
)
264 unsigned int hash_buckets
;
268 hash_buckets
= 1U << bits
;
269 table
->hbs
= kvmalloc_array(hash_buckets
, sizeof(table
->hbs
[0]),
278 table
->hash_bits
= bits
;
279 for (i
= 0; i
< hash_buckets
; i
++)
280 INIT_HLIST_HEAD(&table
->hbs
[i
].list
);
284 static __cold
struct io_ring_ctx
*io_ring_ctx_alloc(struct io_uring_params
*p
)
286 struct io_ring_ctx
*ctx
;
290 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
294 xa_init(&ctx
->io_bl_xa
);
297 * Use 5 bits less than the max cq entries, that should give us around
298 * 32 entries per hash list if totally full and uniformly spread, but
299 * don't keep too many buckets to not overconsume memory.
301 hash_bits
= ilog2(p
->cq_entries
) - 5;
302 hash_bits
= clamp(hash_bits
, 1, 8);
303 if (io_alloc_hash_table(&ctx
->cancel_table
, hash_bits
))
305 if (percpu_ref_init(&ctx
->refs
, io_ring_ctx_ref_free
,
309 ctx
->flags
= p
->flags
;
310 ctx
->hybrid_poll_time
= LLONG_MAX
;
311 atomic_set(&ctx
->cq_wait_nr
, IO_CQ_WAKE_INIT
);
312 init_waitqueue_head(&ctx
->sqo_sq_wait
);
313 INIT_LIST_HEAD(&ctx
->sqd_list
);
314 INIT_LIST_HEAD(&ctx
->cq_overflow_list
);
315 INIT_LIST_HEAD(&ctx
->io_buffers_cache
);
316 ret
= io_alloc_cache_init(&ctx
->apoll_cache
, IO_POLL_ALLOC_CACHE_MAX
,
317 sizeof(struct async_poll
));
318 ret
|= io_alloc_cache_init(&ctx
->netmsg_cache
, IO_ALLOC_CACHE_MAX
,
319 sizeof(struct io_async_msghdr
));
320 ret
|= io_alloc_cache_init(&ctx
->rw_cache
, IO_ALLOC_CACHE_MAX
,
321 sizeof(struct io_async_rw
));
322 ret
|= io_alloc_cache_init(&ctx
->uring_cache
, IO_ALLOC_CACHE_MAX
,
323 sizeof(struct uring_cache
));
324 spin_lock_init(&ctx
->msg_lock
);
325 ret
|= io_alloc_cache_init(&ctx
->msg_cache
, IO_ALLOC_CACHE_MAX
,
326 sizeof(struct io_kiocb
));
327 ret
|= io_futex_cache_init(ctx
);
330 init_completion(&ctx
->ref_comp
);
331 xa_init_flags(&ctx
->personalities
, XA_FLAGS_ALLOC1
);
332 mutex_init(&ctx
->uring_lock
);
333 init_waitqueue_head(&ctx
->cq_wait
);
334 init_waitqueue_head(&ctx
->poll_wq
);
335 spin_lock_init(&ctx
->completion_lock
);
336 spin_lock_init(&ctx
->timeout_lock
);
337 INIT_WQ_LIST(&ctx
->iopoll_list
);
338 INIT_LIST_HEAD(&ctx
->io_buffers_comp
);
339 INIT_LIST_HEAD(&ctx
->defer_list
);
340 INIT_LIST_HEAD(&ctx
->timeout_list
);
341 INIT_LIST_HEAD(&ctx
->ltimeout_list
);
342 init_llist_head(&ctx
->work_llist
);
343 INIT_LIST_HEAD(&ctx
->tctx_list
);
344 ctx
->submit_state
.free_list
.next
= NULL
;
345 INIT_HLIST_HEAD(&ctx
->waitid_list
);
347 INIT_HLIST_HEAD(&ctx
->futex_list
);
349 INIT_DELAYED_WORK(&ctx
->fallback_work
, io_fallback_req_func
);
350 INIT_WQ_LIST(&ctx
->submit_state
.compl_reqs
);
351 INIT_HLIST_HEAD(&ctx
->cancelable_uring_cmd
);
353 mutex_init(&ctx
->resize_lock
);
358 percpu_ref_exit(&ctx
->refs
);
360 io_alloc_cache_free(&ctx
->apoll_cache
, kfree
);
361 io_alloc_cache_free(&ctx
->netmsg_cache
, io_netmsg_cache_free
);
362 io_alloc_cache_free(&ctx
->rw_cache
, io_rw_cache_free
);
363 io_alloc_cache_free(&ctx
->uring_cache
, kfree
);
364 io_alloc_cache_free(&ctx
->msg_cache
, io_msg_cache_free
);
365 io_futex_cache_free(ctx
);
366 kvfree(ctx
->cancel_table
.hbs
);
367 xa_destroy(&ctx
->io_bl_xa
);
372 static void io_account_cq_overflow(struct io_ring_ctx
*ctx
)
374 struct io_rings
*r
= ctx
->rings
;
376 WRITE_ONCE(r
->cq_overflow
, READ_ONCE(r
->cq_overflow
) + 1);
380 static bool req_need_defer(struct io_kiocb
*req
, u32 seq
)
382 if (unlikely(req
->flags
& REQ_F_IO_DRAIN
)) {
383 struct io_ring_ctx
*ctx
= req
->ctx
;
385 return seq
+ READ_ONCE(ctx
->cq_extra
) != ctx
->cached_cq_tail
;
391 static void io_clean_op(struct io_kiocb
*req
)
393 if (req
->flags
& REQ_F_BUFFER_SELECTED
) {
394 spin_lock(&req
->ctx
->completion_lock
);
396 spin_unlock(&req
->ctx
->completion_lock
);
399 if (req
->flags
& REQ_F_NEED_CLEANUP
) {
400 const struct io_cold_def
*def
= &io_cold_defs
[req
->opcode
];
405 if ((req
->flags
& REQ_F_POLLED
) && req
->apoll
) {
406 kfree(req
->apoll
->double_poll
);
410 if (req
->flags
& REQ_F_INFLIGHT
)
411 atomic_dec(&req
->tctx
->inflight_tracked
);
412 if (req
->flags
& REQ_F_CREDS
)
413 put_cred(req
->creds
);
414 if (req
->flags
& REQ_F_ASYNC_DATA
) {
415 kfree(req
->async_data
);
416 req
->async_data
= NULL
;
418 req
->flags
&= ~IO_REQ_CLEAN_FLAGS
;
421 static inline void io_req_track_inflight(struct io_kiocb
*req
)
423 if (!(req
->flags
& REQ_F_INFLIGHT
)) {
424 req
->flags
|= REQ_F_INFLIGHT
;
425 atomic_inc(&req
->tctx
->inflight_tracked
);
429 static struct io_kiocb
*__io_prep_linked_timeout(struct io_kiocb
*req
)
431 if (WARN_ON_ONCE(!req
->link
))
434 req
->flags
&= ~REQ_F_ARM_LTIMEOUT
;
435 req
->flags
|= REQ_F_LINK_TIMEOUT
;
437 /* linked timeouts should have two refs once prep'ed */
438 io_req_set_refcount(req
);
439 __io_req_set_refcount(req
->link
, 2);
443 static inline struct io_kiocb
*io_prep_linked_timeout(struct io_kiocb
*req
)
445 if (likely(!(req
->flags
& REQ_F_ARM_LTIMEOUT
)))
447 return __io_prep_linked_timeout(req
);
450 static noinline
void __io_arm_ltimeout(struct io_kiocb
*req
)
452 io_queue_linked_timeout(__io_prep_linked_timeout(req
));
455 static inline void io_arm_ltimeout(struct io_kiocb
*req
)
457 if (unlikely(req
->flags
& REQ_F_ARM_LTIMEOUT
))
458 __io_arm_ltimeout(req
);
461 static void io_prep_async_work(struct io_kiocb
*req
)
463 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
464 struct io_ring_ctx
*ctx
= req
->ctx
;
466 if (!(req
->flags
& REQ_F_CREDS
)) {
467 req
->flags
|= REQ_F_CREDS
;
468 req
->creds
= get_current_cred();
471 req
->work
.list
.next
= NULL
;
472 atomic_set(&req
->work
.flags
, 0);
473 if (req
->flags
& REQ_F_FORCE_ASYNC
)
474 atomic_or(IO_WQ_WORK_CONCURRENT
, &req
->work
.flags
);
476 if (req
->file
&& !(req
->flags
& REQ_F_FIXED_FILE
))
477 req
->flags
|= io_file_get_flags(req
->file
);
479 if (req
->file
&& (req
->flags
& REQ_F_ISREG
)) {
480 bool should_hash
= def
->hash_reg_file
;
482 /* don't serialize this request if the fs doesn't need it */
483 if (should_hash
&& (req
->file
->f_flags
& O_DIRECT
) &&
484 (req
->file
->f_op
->fop_flags
& FOP_DIO_PARALLEL_WRITE
))
486 if (should_hash
|| (ctx
->flags
& IORING_SETUP_IOPOLL
))
487 io_wq_hash_work(&req
->work
, file_inode(req
->file
));
488 } else if (!req
->file
|| !S_ISBLK(file_inode(req
->file
)->i_mode
)) {
489 if (def
->unbound_nonreg_file
)
490 atomic_or(IO_WQ_WORK_UNBOUND
, &req
->work
.flags
);
494 static void io_prep_async_link(struct io_kiocb
*req
)
496 struct io_kiocb
*cur
;
498 if (req
->flags
& REQ_F_LINK_TIMEOUT
) {
499 struct io_ring_ctx
*ctx
= req
->ctx
;
501 spin_lock_irq(&ctx
->timeout_lock
);
502 io_for_each_link(cur
, req
)
503 io_prep_async_work(cur
);
504 spin_unlock_irq(&ctx
->timeout_lock
);
506 io_for_each_link(cur
, req
)
507 io_prep_async_work(cur
);
511 static void io_queue_iowq(struct io_kiocb
*req
)
513 struct io_kiocb
*link
= io_prep_linked_timeout(req
);
514 struct io_uring_task
*tctx
= req
->tctx
;
517 BUG_ON(!tctx
->io_wq
);
519 /* init ->work of the whole link before punting */
520 io_prep_async_link(req
);
523 * Not expected to happen, but if we do have a bug where this _can_
524 * happen, catch it here and ensure the request is marked as
525 * canceled. That will make io-wq go through the usual work cancel
526 * procedure rather than attempt to run this request (or create a new
529 if (WARN_ON_ONCE(!same_thread_group(tctx
->task
, current
)))
530 atomic_or(IO_WQ_WORK_CANCEL
, &req
->work
.flags
);
532 trace_io_uring_queue_async_work(req
, io_wq_is_hashed(&req
->work
));
533 io_wq_enqueue(tctx
->io_wq
, &req
->work
);
535 io_queue_linked_timeout(link
);
538 static void io_req_queue_iowq_tw(struct io_kiocb
*req
, struct io_tw_state
*ts
)
543 void io_req_queue_iowq(struct io_kiocb
*req
)
545 req
->io_task_work
.func
= io_req_queue_iowq_tw
;
546 io_req_task_work_add(req
);
549 static __cold
void io_queue_deferred(struct io_ring_ctx
*ctx
)
551 while (!list_empty(&ctx
->defer_list
)) {
552 struct io_defer_entry
*de
= list_first_entry(&ctx
->defer_list
,
553 struct io_defer_entry
, list
);
555 if (req_need_defer(de
->req
, de
->seq
))
557 list_del_init(&de
->list
);
558 io_req_task_queue(de
->req
);
563 void __io_commit_cqring_flush(struct io_ring_ctx
*ctx
)
565 if (ctx
->poll_activated
)
566 io_poll_wq_wake(ctx
);
567 if (ctx
->off_timeout_used
)
568 io_flush_timeouts(ctx
);
569 if (ctx
->drain_active
) {
570 spin_lock(&ctx
->completion_lock
);
571 io_queue_deferred(ctx
);
572 spin_unlock(&ctx
->completion_lock
);
575 io_eventfd_flush_signal(ctx
);
578 static inline void __io_cq_lock(struct io_ring_ctx
*ctx
)
580 if (!ctx
->lockless_cq
)
581 spin_lock(&ctx
->completion_lock
);
584 static inline void io_cq_lock(struct io_ring_ctx
*ctx
)
585 __acquires(ctx
->completion_lock
)
587 spin_lock(&ctx
->completion_lock
);
590 static inline void __io_cq_unlock_post(struct io_ring_ctx
*ctx
)
592 io_commit_cqring(ctx
);
593 if (!ctx
->task_complete
) {
594 if (!ctx
->lockless_cq
)
595 spin_unlock(&ctx
->completion_lock
);
596 /* IOPOLL rings only need to wake up if it's also SQPOLL */
597 if (!ctx
->syscall_iopoll
)
600 io_commit_cqring_flush(ctx
);
603 static void io_cq_unlock_post(struct io_ring_ctx
*ctx
)
604 __releases(ctx
->completion_lock
)
606 io_commit_cqring(ctx
);
607 spin_unlock(&ctx
->completion_lock
);
609 io_commit_cqring_flush(ctx
);
612 static void __io_cqring_overflow_flush(struct io_ring_ctx
*ctx
, bool dying
)
614 size_t cqe_size
= sizeof(struct io_uring_cqe
);
616 lockdep_assert_held(&ctx
->uring_lock
);
618 /* don't abort if we're dying, entries must get freed */
619 if (!dying
&& __io_cqring_events(ctx
) == ctx
->cq_entries
)
622 if (ctx
->flags
& IORING_SETUP_CQE32
)
626 while (!list_empty(&ctx
->cq_overflow_list
)) {
627 struct io_uring_cqe
*cqe
;
628 struct io_overflow_cqe
*ocqe
;
630 ocqe
= list_first_entry(&ctx
->cq_overflow_list
,
631 struct io_overflow_cqe
, list
);
634 if (!io_get_cqe_overflow(ctx
, &cqe
, true))
636 memcpy(cqe
, &ocqe
->cqe
, cqe_size
);
638 list_del(&ocqe
->list
);
642 * For silly syzbot cases that deliberately overflow by huge
643 * amounts, check if we need to resched and drop and
644 * reacquire the locks if so. Nothing real would ever hit this.
645 * Ideally we'd have a non-posting unlock for this, but hard
646 * to care for a non-real case.
648 if (need_resched()) {
649 io_cq_unlock_post(ctx
);
650 mutex_unlock(&ctx
->uring_lock
);
652 mutex_lock(&ctx
->uring_lock
);
657 if (list_empty(&ctx
->cq_overflow_list
)) {
658 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
);
659 atomic_andnot(IORING_SQ_CQ_OVERFLOW
, &ctx
->rings
->sq_flags
);
661 io_cq_unlock_post(ctx
);
664 static void io_cqring_overflow_kill(struct io_ring_ctx
*ctx
)
667 __io_cqring_overflow_flush(ctx
, true);
670 static void io_cqring_do_overflow_flush(struct io_ring_ctx
*ctx
)
672 mutex_lock(&ctx
->uring_lock
);
673 __io_cqring_overflow_flush(ctx
, false);
674 mutex_unlock(&ctx
->uring_lock
);
677 /* must to be called somewhat shortly after putting a request */
678 static inline void io_put_task(struct io_kiocb
*req
)
680 struct io_uring_task
*tctx
= req
->tctx
;
682 if (likely(tctx
->task
== current
)) {
685 percpu_counter_sub(&tctx
->inflight
, 1);
686 if (unlikely(atomic_read(&tctx
->in_cancel
)))
687 wake_up(&tctx
->wait
);
688 put_task_struct(tctx
->task
);
692 void io_task_refs_refill(struct io_uring_task
*tctx
)
694 unsigned int refill
= -tctx
->cached_refs
+ IO_TCTX_REFS_CACHE_NR
;
696 percpu_counter_add(&tctx
->inflight
, refill
);
697 refcount_add(refill
, ¤t
->usage
);
698 tctx
->cached_refs
+= refill
;
701 static __cold
void io_uring_drop_tctx_refs(struct task_struct
*task
)
703 struct io_uring_task
*tctx
= task
->io_uring
;
704 unsigned int refs
= tctx
->cached_refs
;
707 tctx
->cached_refs
= 0;
708 percpu_counter_sub(&tctx
->inflight
, refs
);
709 put_task_struct_many(task
, refs
);
713 static bool io_cqring_event_overflow(struct io_ring_ctx
*ctx
, u64 user_data
,
714 s32 res
, u32 cflags
, u64 extra1
, u64 extra2
)
716 struct io_overflow_cqe
*ocqe
;
717 size_t ocq_size
= sizeof(struct io_overflow_cqe
);
718 bool is_cqe32
= (ctx
->flags
& IORING_SETUP_CQE32
);
720 lockdep_assert_held(&ctx
->completion_lock
);
723 ocq_size
+= sizeof(struct io_uring_cqe
);
725 ocqe
= kmalloc(ocq_size
, GFP_ATOMIC
| __GFP_ACCOUNT
);
726 trace_io_uring_cqe_overflow(ctx
, user_data
, res
, cflags
, ocqe
);
729 * If we're in ring overflow flush mode, or in task cancel mode,
730 * or cannot allocate an overflow entry, then we need to drop it
733 io_account_cq_overflow(ctx
);
734 set_bit(IO_CHECK_CQ_DROPPED_BIT
, &ctx
->check_cq
);
737 if (list_empty(&ctx
->cq_overflow_list
)) {
738 set_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
);
739 atomic_or(IORING_SQ_CQ_OVERFLOW
, &ctx
->rings
->sq_flags
);
742 ocqe
->cqe
.user_data
= user_data
;
744 ocqe
->cqe
.flags
= cflags
;
746 ocqe
->cqe
.big_cqe
[0] = extra1
;
747 ocqe
->cqe
.big_cqe
[1] = extra2
;
749 list_add_tail(&ocqe
->list
, &ctx
->cq_overflow_list
);
753 static void io_req_cqe_overflow(struct io_kiocb
*req
)
755 io_cqring_event_overflow(req
->ctx
, req
->cqe
.user_data
,
756 req
->cqe
.res
, req
->cqe
.flags
,
757 req
->big_cqe
.extra1
, req
->big_cqe
.extra2
);
758 memset(&req
->big_cqe
, 0, sizeof(req
->big_cqe
));
762 * writes to the cq entry need to come after reading head; the
763 * control dependency is enough as we're using WRITE_ONCE to
766 bool io_cqe_cache_refill(struct io_ring_ctx
*ctx
, bool overflow
)
768 struct io_rings
*rings
= ctx
->rings
;
769 unsigned int off
= ctx
->cached_cq_tail
& (ctx
->cq_entries
- 1);
770 unsigned int free
, queued
, len
;
773 * Posting into the CQ when there are pending overflowed CQEs may break
774 * ordering guarantees, which will affect links, F_MORE users and more.
775 * Force overflow the completion.
777 if (!overflow
&& (ctx
->check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
)))
780 /* userspace may cheat modifying the tail, be safe and do min */
781 queued
= min(__io_cqring_events(ctx
), ctx
->cq_entries
);
782 free
= ctx
->cq_entries
- queued
;
783 /* we need a contiguous range, limit based on the current array offset */
784 len
= min(free
, ctx
->cq_entries
- off
);
788 if (ctx
->flags
& IORING_SETUP_CQE32
) {
793 ctx
->cqe_cached
= &rings
->cqes
[off
];
794 ctx
->cqe_sentinel
= ctx
->cqe_cached
+ len
;
798 static bool io_fill_cqe_aux(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
,
801 struct io_uring_cqe
*cqe
;
806 * If we can't get a cq entry, userspace overflowed the
807 * submission (by quite a lot). Increment the overflow count in
810 if (likely(io_get_cqe(ctx
, &cqe
))) {
811 WRITE_ONCE(cqe
->user_data
, user_data
);
812 WRITE_ONCE(cqe
->res
, res
);
813 WRITE_ONCE(cqe
->flags
, cflags
);
815 if (ctx
->flags
& IORING_SETUP_CQE32
) {
816 WRITE_ONCE(cqe
->big_cqe
[0], 0);
817 WRITE_ONCE(cqe
->big_cqe
[1], 0);
820 trace_io_uring_complete(ctx
, NULL
, cqe
);
826 static bool __io_post_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
,
831 filled
= io_fill_cqe_aux(ctx
, user_data
, res
, cflags
);
833 filled
= io_cqring_event_overflow(ctx
, user_data
, res
, cflags
, 0, 0);
838 bool io_post_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
, u32 cflags
)
843 filled
= __io_post_aux_cqe(ctx
, user_data
, res
, cflags
);
844 io_cq_unlock_post(ctx
);
849 * Must be called from inline task_work so we now a flush will happen later,
850 * and obviously with ctx->uring_lock held (tw always has that).
852 void io_add_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
, u32 cflags
)
854 if (!io_fill_cqe_aux(ctx
, user_data
, res
, cflags
)) {
855 spin_lock(&ctx
->completion_lock
);
856 io_cqring_event_overflow(ctx
, user_data
, res
, cflags
, 0, 0);
857 spin_unlock(&ctx
->completion_lock
);
859 ctx
->submit_state
.cq_flush
= true;
863 * A helper for multishot requests posting additional CQEs.
864 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
866 bool io_req_post_cqe(struct io_kiocb
*req
, s32 res
, u32 cflags
)
868 struct io_ring_ctx
*ctx
= req
->ctx
;
871 lockdep_assert(!io_wq_current_is_worker());
872 lockdep_assert_held(&ctx
->uring_lock
);
875 posted
= io_fill_cqe_aux(ctx
, req
->cqe
.user_data
, res
, cflags
);
876 ctx
->submit_state
.cq_flush
= true;
877 __io_cq_unlock_post(ctx
);
881 static void io_req_complete_post(struct io_kiocb
*req
, unsigned issue_flags
)
883 struct io_ring_ctx
*ctx
= req
->ctx
;
886 * All execution paths but io-wq use the deferred completions by
887 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
889 if (WARN_ON_ONCE(!(issue_flags
& IO_URING_F_IOWQ
)))
893 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
894 * the submitter task context, IOPOLL protects with uring_lock.
896 if (ctx
->task_complete
|| (ctx
->flags
& IORING_SETUP_IOPOLL
)) {
897 req
->io_task_work
.func
= io_req_task_complete
;
898 io_req_task_work_add(req
);
903 if (!(req
->flags
& REQ_F_CQE_SKIP
)) {
904 if (!io_fill_cqe_req(ctx
, req
))
905 io_req_cqe_overflow(req
);
907 io_cq_unlock_post(ctx
);
910 * We don't free the request here because we know it's called from
911 * io-wq only, which holds a reference, so it cannot be the last put.
916 void io_req_defer_failed(struct io_kiocb
*req
, s32 res
)
917 __must_hold(&ctx
->uring_lock
)
919 const struct io_cold_def
*def
= &io_cold_defs
[req
->opcode
];
921 lockdep_assert_held(&req
->ctx
->uring_lock
);
924 io_req_set_res(req
, res
, io_put_kbuf(req
, res
, IO_URING_F_UNLOCKED
));
927 io_req_complete_defer(req
);
931 * Don't initialise the fields below on every allocation, but do that in
932 * advance and keep them valid across allocations.
934 static void io_preinit_req(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
)
937 req
->buf_node
= NULL
;
938 req
->file_node
= NULL
;
940 req
->async_data
= NULL
;
941 /* not necessary, but safer to zero */
942 memset(&req
->cqe
, 0, sizeof(req
->cqe
));
943 memset(&req
->big_cqe
, 0, sizeof(req
->big_cqe
));
947 * A request might get retired back into the request caches even before opcode
948 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
949 * Because of that, io_alloc_req() should be called only under ->uring_lock
950 * and with extra caution to not get a request that is still worked on.
952 __cold
bool __io_alloc_req_refill(struct io_ring_ctx
*ctx
)
953 __must_hold(&ctx
->uring_lock
)
955 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
956 void *reqs
[IO_REQ_ALLOC_BATCH
];
959 ret
= kmem_cache_alloc_bulk(req_cachep
, gfp
, ARRAY_SIZE(reqs
), reqs
);
962 * Bulk alloc is all-or-nothing. If we fail to get a batch,
963 * retry single alloc to be on the safe side.
965 if (unlikely(ret
<= 0)) {
966 reqs
[0] = kmem_cache_alloc(req_cachep
, gfp
);
972 percpu_ref_get_many(&ctx
->refs
, ret
);
974 struct io_kiocb
*req
= reqs
[ret
];
976 io_preinit_req(req
, ctx
);
977 io_req_add_to_cache(req
, ctx
);
982 __cold
void io_free_req(struct io_kiocb
*req
)
984 /* refs were already put, restore them for io_req_task_complete() */
985 req
->flags
&= ~REQ_F_REFCOUNT
;
986 /* we only want to free it, don't post CQEs */
987 req
->flags
|= REQ_F_CQE_SKIP
;
988 req
->io_task_work
.func
= io_req_task_complete
;
989 io_req_task_work_add(req
);
992 static void __io_req_find_next_prep(struct io_kiocb
*req
)
994 struct io_ring_ctx
*ctx
= req
->ctx
;
996 spin_lock(&ctx
->completion_lock
);
998 spin_unlock(&ctx
->completion_lock
);
1001 static inline struct io_kiocb
*io_req_find_next(struct io_kiocb
*req
)
1003 struct io_kiocb
*nxt
;
1006 * If LINK is set, we have dependent requests in this chain. If we
1007 * didn't fail this request, queue the first one up, moving any other
1008 * dependencies to the next request. In case of failure, fail the rest
1011 if (unlikely(req
->flags
& IO_DISARM_MASK
))
1012 __io_req_find_next_prep(req
);
1018 static void ctx_flush_and_put(struct io_ring_ctx
*ctx
, struct io_tw_state
*ts
)
1022 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1023 atomic_andnot(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1025 io_submit_flush_completions(ctx
);
1026 mutex_unlock(&ctx
->uring_lock
);
1027 percpu_ref_put(&ctx
->refs
);
1031 * Run queued task_work, returning the number of entries processed in *count.
1032 * If more entries than max_entries are available, stop processing once this
1033 * is reached and return the rest of the list.
1035 struct llist_node
*io_handle_tw_list(struct llist_node
*node
,
1036 unsigned int *count
,
1037 unsigned int max_entries
)
1039 struct io_ring_ctx
*ctx
= NULL
;
1040 struct io_tw_state ts
= { };
1043 struct llist_node
*next
= node
->next
;
1044 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1047 if (req
->ctx
!= ctx
) {
1048 ctx_flush_and_put(ctx
, &ts
);
1050 mutex_lock(&ctx
->uring_lock
);
1051 percpu_ref_get(&ctx
->refs
);
1053 INDIRECT_CALL_2(req
->io_task_work
.func
,
1054 io_poll_task_func
, io_req_rw_complete
,
1058 if (unlikely(need_resched())) {
1059 ctx_flush_and_put(ctx
, &ts
);
1063 } while (node
&& *count
< max_entries
);
1065 ctx_flush_and_put(ctx
, &ts
);
1069 static __cold
void __io_fallback_tw(struct llist_node
*node
, bool sync
)
1071 struct io_ring_ctx
*last_ctx
= NULL
;
1072 struct io_kiocb
*req
;
1075 req
= container_of(node
, struct io_kiocb
, io_task_work
.node
);
1077 if (sync
&& last_ctx
!= req
->ctx
) {
1079 flush_delayed_work(&last_ctx
->fallback_work
);
1080 percpu_ref_put(&last_ctx
->refs
);
1082 last_ctx
= req
->ctx
;
1083 percpu_ref_get(&last_ctx
->refs
);
1085 if (llist_add(&req
->io_task_work
.node
,
1086 &req
->ctx
->fallback_llist
))
1087 schedule_delayed_work(&req
->ctx
->fallback_work
, 1);
1091 flush_delayed_work(&last_ctx
->fallback_work
);
1092 percpu_ref_put(&last_ctx
->refs
);
1096 static void io_fallback_tw(struct io_uring_task
*tctx
, bool sync
)
1098 struct llist_node
*node
= llist_del_all(&tctx
->task_list
);
1100 __io_fallback_tw(node
, sync
);
1103 struct llist_node
*tctx_task_work_run(struct io_uring_task
*tctx
,
1104 unsigned int max_entries
,
1105 unsigned int *count
)
1107 struct llist_node
*node
;
1109 if (unlikely(current
->flags
& PF_EXITING
)) {
1110 io_fallback_tw(tctx
, true);
1114 node
= llist_del_all(&tctx
->task_list
);
1116 node
= llist_reverse_order(node
);
1117 node
= io_handle_tw_list(node
, count
, max_entries
);
1120 /* relaxed read is enough as only the task itself sets ->in_cancel */
1121 if (unlikely(atomic_read(&tctx
->in_cancel
)))
1122 io_uring_drop_tctx_refs(current
);
1124 trace_io_uring_task_work_run(tctx
, *count
);
1128 void tctx_task_work(struct callback_head
*cb
)
1130 struct io_uring_task
*tctx
;
1131 struct llist_node
*ret
;
1132 unsigned int count
= 0;
1134 tctx
= container_of(cb
, struct io_uring_task
, task_work
);
1135 ret
= tctx_task_work_run(tctx
, UINT_MAX
, &count
);
1140 static inline void io_req_local_work_add(struct io_kiocb
*req
,
1141 struct io_ring_ctx
*ctx
,
1144 unsigned nr_wait
, nr_tw
, nr_tw_prev
;
1145 struct llist_node
*head
;
1147 /* See comment above IO_CQ_WAKE_INIT */
1148 BUILD_BUG_ON(IO_CQ_WAKE_FORCE
<= IORING_MAX_CQ_ENTRIES
);
1151 * We don't know how many reuqests is there in the link and whether
1152 * they can even be queued lazily, fall back to non-lazy.
1154 if (req
->flags
& (REQ_F_LINK
| REQ_F_HARDLINK
))
1155 flags
&= ~IOU_F_TWQ_LAZY_WAKE
;
1159 head
= READ_ONCE(ctx
->work_llist
.first
);
1163 struct io_kiocb
*first_req
= container_of(head
,
1167 * Might be executed at any moment, rely on
1168 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1170 nr_tw_prev
= READ_ONCE(first_req
->nr_tw
);
1174 * Theoretically, it can overflow, but that's fine as one of
1175 * previous adds should've tried to wake the task.
1177 nr_tw
= nr_tw_prev
+ 1;
1178 if (!(flags
& IOU_F_TWQ_LAZY_WAKE
))
1179 nr_tw
= IO_CQ_WAKE_FORCE
;
1182 req
->io_task_work
.node
.next
= head
;
1183 } while (!try_cmpxchg(&ctx
->work_llist
.first
, &head
,
1184 &req
->io_task_work
.node
));
1187 * cmpxchg implies a full barrier, which pairs with the barrier
1188 * in set_current_state() on the io_cqring_wait() side. It's used
1189 * to ensure that either we see updated ->cq_wait_nr, or waiters
1190 * going to sleep will observe the work added to the list, which
1191 * is similar to the wait/wawke task state sync.
1195 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1196 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1198 io_eventfd_signal(ctx
);
1201 nr_wait
= atomic_read(&ctx
->cq_wait_nr
);
1202 /* not enough or no one is waiting */
1203 if (nr_tw
< nr_wait
)
1205 /* the previous add has already woken it up */
1206 if (nr_tw_prev
>= nr_wait
)
1208 wake_up_state(ctx
->submitter_task
, TASK_INTERRUPTIBLE
);
1211 static void io_req_normal_work_add(struct io_kiocb
*req
)
1213 struct io_uring_task
*tctx
= req
->tctx
;
1214 struct io_ring_ctx
*ctx
= req
->ctx
;
1216 /* task_work already pending, we're done */
1217 if (!llist_add(&req
->io_task_work
.node
, &tctx
->task_list
))
1220 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1221 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1223 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1224 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
1225 struct io_sq_data
*sqd
= ctx
->sq_data
;
1228 __set_notify_signal(sqd
->thread
);
1232 if (likely(!task_work_add(tctx
->task
, &tctx
->task_work
, ctx
->notify_method
)))
1235 io_fallback_tw(tctx
, false);
1238 void __io_req_task_work_add(struct io_kiocb
*req
, unsigned flags
)
1240 if (req
->ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
1241 io_req_local_work_add(req
, req
->ctx
, flags
);
1243 io_req_normal_work_add(req
);
1246 void io_req_task_work_add_remote(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
,
1249 if (WARN_ON_ONCE(!(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)))
1251 io_req_local_work_add(req
, ctx
, flags
);
1254 static void __cold
io_move_task_work_from_local(struct io_ring_ctx
*ctx
)
1256 struct llist_node
*node
= llist_del_all(&ctx
->work_llist
);
1258 __io_fallback_tw(node
, false);
1259 node
= llist_del_all(&ctx
->retry_llist
);
1260 __io_fallback_tw(node
, false);
1263 static bool io_run_local_work_continue(struct io_ring_ctx
*ctx
, int events
,
1266 if (!io_local_work_pending(ctx
))
1268 if (events
< min_events
)
1270 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1271 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1275 static int __io_run_local_work_loop(struct llist_node
**node
,
1276 struct io_tw_state
*ts
,
1282 struct llist_node
*next
= (*node
)->next
;
1283 struct io_kiocb
*req
= container_of(*node
, struct io_kiocb
,
1285 INDIRECT_CALL_2(req
->io_task_work
.func
,
1286 io_poll_task_func
, io_req_rw_complete
,
1289 if (++ret
>= events
)
1296 static int __io_run_local_work(struct io_ring_ctx
*ctx
, struct io_tw_state
*ts
,
1297 int min_events
, int max_events
)
1299 struct llist_node
*node
;
1300 unsigned int loops
= 0;
1303 if (WARN_ON_ONCE(ctx
->submitter_task
!= current
))
1305 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1306 atomic_andnot(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1309 ret
= __io_run_local_work_loop(&ctx
->retry_llist
.first
, ts
, max_events
);
1310 if (ctx
->retry_llist
.first
)
1314 * llists are in reverse order, flip it back the right way before
1315 * running the pending items.
1317 node
= llist_reverse_order(llist_del_all(&ctx
->work_llist
));
1318 ret
+= __io_run_local_work_loop(&node
, ts
, max_events
- ret
);
1319 ctx
->retry_llist
.first
= node
;
1322 if (io_run_local_work_continue(ctx
, ret
, min_events
))
1325 io_submit_flush_completions(ctx
);
1326 if (io_run_local_work_continue(ctx
, ret
, min_events
))
1329 trace_io_uring_local_work_run(ctx
, ret
, loops
);
1333 static inline int io_run_local_work_locked(struct io_ring_ctx
*ctx
,
1336 struct io_tw_state ts
= {};
1338 if (!io_local_work_pending(ctx
))
1340 return __io_run_local_work(ctx
, &ts
, min_events
,
1341 max(IO_LOCAL_TW_DEFAULT_MAX
, min_events
));
1344 static int io_run_local_work(struct io_ring_ctx
*ctx
, int min_events
,
1347 struct io_tw_state ts
= {};
1350 mutex_lock(&ctx
->uring_lock
);
1351 ret
= __io_run_local_work(ctx
, &ts
, min_events
, max_events
);
1352 mutex_unlock(&ctx
->uring_lock
);
1356 static void io_req_task_cancel(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1358 io_tw_lock(req
->ctx
, ts
);
1359 io_req_defer_failed(req
, req
->cqe
.res
);
1362 void io_req_task_submit(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1364 io_tw_lock(req
->ctx
, ts
);
1365 if (unlikely(io_should_terminate_tw()))
1366 io_req_defer_failed(req
, -EFAULT
);
1367 else if (req
->flags
& REQ_F_FORCE_ASYNC
)
1373 void io_req_task_queue_fail(struct io_kiocb
*req
, int ret
)
1375 io_req_set_res(req
, ret
, 0);
1376 req
->io_task_work
.func
= io_req_task_cancel
;
1377 io_req_task_work_add(req
);
1380 void io_req_task_queue(struct io_kiocb
*req
)
1382 req
->io_task_work
.func
= io_req_task_submit
;
1383 io_req_task_work_add(req
);
1386 void io_queue_next(struct io_kiocb
*req
)
1388 struct io_kiocb
*nxt
= io_req_find_next(req
);
1391 io_req_task_queue(nxt
);
1394 static void io_free_batch_list(struct io_ring_ctx
*ctx
,
1395 struct io_wq_work_node
*node
)
1396 __must_hold(&ctx
->uring_lock
)
1399 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1402 if (unlikely(req
->flags
& IO_REQ_CLEAN_SLOW_FLAGS
)) {
1403 if (req
->flags
& REQ_F_REFCOUNT
) {
1404 node
= req
->comp_list
.next
;
1405 if (!req_ref_put_and_test(req
))
1408 if ((req
->flags
& REQ_F_POLLED
) && req
->apoll
) {
1409 struct async_poll
*apoll
= req
->apoll
;
1411 if (apoll
->double_poll
)
1412 kfree(apoll
->double_poll
);
1413 if (!io_alloc_cache_put(&ctx
->apoll_cache
, apoll
))
1415 req
->flags
&= ~REQ_F_POLLED
;
1417 if (req
->flags
& IO_REQ_LINK_FLAGS
)
1419 if (unlikely(req
->flags
& IO_REQ_CLEAN_FLAGS
))
1423 io_req_put_rsrc_nodes(req
);
1426 node
= req
->comp_list
.next
;
1427 io_req_add_to_cache(req
, ctx
);
1431 void __io_submit_flush_completions(struct io_ring_ctx
*ctx
)
1432 __must_hold(&ctx
->uring_lock
)
1434 struct io_submit_state
*state
= &ctx
->submit_state
;
1435 struct io_wq_work_node
*node
;
1438 __wq_list_for_each(node
, &state
->compl_reqs
) {
1439 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1442 if (!(req
->flags
& REQ_F_CQE_SKIP
) &&
1443 unlikely(!io_fill_cqe_req(ctx
, req
))) {
1444 if (ctx
->lockless_cq
) {
1445 spin_lock(&ctx
->completion_lock
);
1446 io_req_cqe_overflow(req
);
1447 spin_unlock(&ctx
->completion_lock
);
1449 io_req_cqe_overflow(req
);
1453 __io_cq_unlock_post(ctx
);
1455 if (!wq_list_empty(&state
->compl_reqs
)) {
1456 io_free_batch_list(ctx
, state
->compl_reqs
.first
);
1457 INIT_WQ_LIST(&state
->compl_reqs
);
1459 ctx
->submit_state
.cq_flush
= false;
1462 static unsigned io_cqring_events(struct io_ring_ctx
*ctx
)
1464 /* See comment at the top of this file */
1466 return __io_cqring_events(ctx
);
1470 * We can't just wait for polled events to come to us, we have to actively
1471 * find and complete them.
1473 static __cold
void io_iopoll_try_reap_events(struct io_ring_ctx
*ctx
)
1475 if (!(ctx
->flags
& IORING_SETUP_IOPOLL
))
1478 mutex_lock(&ctx
->uring_lock
);
1479 while (!wq_list_empty(&ctx
->iopoll_list
)) {
1480 /* let it sleep and repeat later if can't complete a request */
1481 if (io_do_iopoll(ctx
, true) == 0)
1484 * Ensure we allow local-to-the-cpu processing to take place,
1485 * in this case we need to ensure that we reap all events.
1486 * Also let task_work, etc. to progress by releasing the mutex
1488 if (need_resched()) {
1489 mutex_unlock(&ctx
->uring_lock
);
1491 mutex_lock(&ctx
->uring_lock
);
1494 mutex_unlock(&ctx
->uring_lock
);
1497 static int io_iopoll_check(struct io_ring_ctx
*ctx
, long min
)
1499 unsigned int nr_events
= 0;
1500 unsigned long check_cq
;
1502 lockdep_assert_held(&ctx
->uring_lock
);
1504 if (!io_allowed_run_tw(ctx
))
1507 check_cq
= READ_ONCE(ctx
->check_cq
);
1508 if (unlikely(check_cq
)) {
1509 if (check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
))
1510 __io_cqring_overflow_flush(ctx
, false);
1512 * Similarly do not spin if we have not informed the user of any
1515 if (check_cq
& BIT(IO_CHECK_CQ_DROPPED_BIT
))
1519 * Don't enter poll loop if we already have events pending.
1520 * If we do, we can potentially be spinning for commands that
1521 * already triggered a CQE (eg in error).
1523 if (io_cqring_events(ctx
))
1530 * If a submit got punted to a workqueue, we can have the
1531 * application entering polling for a command before it gets
1532 * issued. That app will hold the uring_lock for the duration
1533 * of the poll right here, so we need to take a breather every
1534 * now and then to ensure that the issue has a chance to add
1535 * the poll to the issued list. Otherwise we can spin here
1536 * forever, while the workqueue is stuck trying to acquire the
1539 if (wq_list_empty(&ctx
->iopoll_list
) ||
1540 io_task_work_pending(ctx
)) {
1541 u32 tail
= ctx
->cached_cq_tail
;
1543 (void) io_run_local_work_locked(ctx
, min
);
1545 if (task_work_pending(current
) ||
1546 wq_list_empty(&ctx
->iopoll_list
)) {
1547 mutex_unlock(&ctx
->uring_lock
);
1549 mutex_lock(&ctx
->uring_lock
);
1551 /* some requests don't go through iopoll_list */
1552 if (tail
!= ctx
->cached_cq_tail
||
1553 wq_list_empty(&ctx
->iopoll_list
))
1556 ret
= io_do_iopoll(ctx
, !min
);
1557 if (unlikely(ret
< 0))
1560 if (task_sigpending(current
))
1566 } while (nr_events
< min
);
1571 void io_req_task_complete(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1573 io_req_complete_defer(req
);
1577 * After the iocb has been issued, it's safe to be found on the poll list.
1578 * Adding the kiocb to the list AFTER submission ensures that we don't
1579 * find it from a io_do_iopoll() thread before the issuer is done
1580 * accessing the kiocb cookie.
1582 static void io_iopoll_req_issued(struct io_kiocb
*req
, unsigned int issue_flags
)
1584 struct io_ring_ctx
*ctx
= req
->ctx
;
1585 const bool needs_lock
= issue_flags
& IO_URING_F_UNLOCKED
;
1587 /* workqueue context doesn't hold uring_lock, grab it now */
1588 if (unlikely(needs_lock
))
1589 mutex_lock(&ctx
->uring_lock
);
1592 * Track whether we have multiple files in our lists. This will impact
1593 * how we do polling eventually, not spinning if we're on potentially
1594 * different devices.
1596 if (wq_list_empty(&ctx
->iopoll_list
)) {
1597 ctx
->poll_multi_queue
= false;
1598 } else if (!ctx
->poll_multi_queue
) {
1599 struct io_kiocb
*list_req
;
1601 list_req
= container_of(ctx
->iopoll_list
.first
, struct io_kiocb
,
1603 if (list_req
->file
!= req
->file
)
1604 ctx
->poll_multi_queue
= true;
1608 * For fast devices, IO may have already completed. If it has, add
1609 * it to the front so we find it first.
1611 if (READ_ONCE(req
->iopoll_completed
))
1612 wq_list_add_head(&req
->comp_list
, &ctx
->iopoll_list
);
1614 wq_list_add_tail(&req
->comp_list
, &ctx
->iopoll_list
);
1616 if (unlikely(needs_lock
)) {
1618 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1619 * in sq thread task context or in io worker task context. If
1620 * current task context is sq thread, we don't need to check
1621 * whether should wake up sq thread.
1623 if ((ctx
->flags
& IORING_SETUP_SQPOLL
) &&
1624 wq_has_sleeper(&ctx
->sq_data
->wait
))
1625 wake_up(&ctx
->sq_data
->wait
);
1627 mutex_unlock(&ctx
->uring_lock
);
1631 io_req_flags_t
io_file_get_flags(struct file
*file
)
1633 io_req_flags_t res
= 0;
1635 if (S_ISREG(file_inode(file
)->i_mode
))
1637 if ((file
->f_flags
& O_NONBLOCK
) || (file
->f_mode
& FMODE_NOWAIT
))
1638 res
|= REQ_F_SUPPORT_NOWAIT
;
1642 bool io_alloc_async_data(struct io_kiocb
*req
)
1644 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
1646 WARN_ON_ONCE(!def
->async_size
);
1647 req
->async_data
= kmalloc(def
->async_size
, GFP_KERNEL
);
1648 if (req
->async_data
) {
1649 req
->flags
|= REQ_F_ASYNC_DATA
;
1655 static u32
io_get_sequence(struct io_kiocb
*req
)
1657 u32 seq
= req
->ctx
->cached_sq_head
;
1658 struct io_kiocb
*cur
;
1660 /* need original cached_sq_head, but it was increased for each req */
1661 io_for_each_link(cur
, req
)
1666 static __cold
void io_drain_req(struct io_kiocb
*req
)
1667 __must_hold(&ctx
->uring_lock
)
1669 struct io_ring_ctx
*ctx
= req
->ctx
;
1670 struct io_defer_entry
*de
;
1672 u32 seq
= io_get_sequence(req
);
1674 /* Still need defer if there is pending req in defer list. */
1675 spin_lock(&ctx
->completion_lock
);
1676 if (!req_need_defer(req
, seq
) && list_empty_careful(&ctx
->defer_list
)) {
1677 spin_unlock(&ctx
->completion_lock
);
1679 ctx
->drain_active
= false;
1680 io_req_task_queue(req
);
1683 spin_unlock(&ctx
->completion_lock
);
1685 io_prep_async_link(req
);
1686 de
= kmalloc(sizeof(*de
), GFP_KERNEL
);
1689 io_req_defer_failed(req
, ret
);
1693 spin_lock(&ctx
->completion_lock
);
1694 if (!req_need_defer(req
, seq
) && list_empty(&ctx
->defer_list
)) {
1695 spin_unlock(&ctx
->completion_lock
);
1700 trace_io_uring_defer(req
);
1703 list_add_tail(&de
->list
, &ctx
->defer_list
);
1704 spin_unlock(&ctx
->completion_lock
);
1707 static bool io_assign_file(struct io_kiocb
*req
, const struct io_issue_def
*def
,
1708 unsigned int issue_flags
)
1710 if (req
->file
|| !def
->needs_file
)
1713 if (req
->flags
& REQ_F_FIXED_FILE
)
1714 req
->file
= io_file_get_fixed(req
, req
->cqe
.fd
, issue_flags
);
1716 req
->file
= io_file_get_normal(req
, req
->cqe
.fd
);
1721 static int io_issue_sqe(struct io_kiocb
*req
, unsigned int issue_flags
)
1723 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
1724 const struct cred
*creds
= NULL
;
1727 if (unlikely(!io_assign_file(req
, def
, issue_flags
)))
1730 if (unlikely((req
->flags
& REQ_F_CREDS
) && req
->creds
!= current_cred()))
1731 creds
= override_creds(req
->creds
);
1733 if (!def
->audit_skip
)
1734 audit_uring_entry(req
->opcode
);
1736 ret
= def
->issue(req
, issue_flags
);
1738 if (!def
->audit_skip
)
1739 audit_uring_exit(!ret
, ret
);
1742 revert_creds(creds
);
1744 if (ret
== IOU_OK
) {
1745 if (issue_flags
& IO_URING_F_COMPLETE_DEFER
)
1746 io_req_complete_defer(req
);
1748 io_req_complete_post(req
, issue_flags
);
1753 if (ret
== IOU_ISSUE_SKIP_COMPLETE
) {
1755 io_arm_ltimeout(req
);
1757 /* If the op doesn't have a file, we're not polling for it */
1758 if ((req
->ctx
->flags
& IORING_SETUP_IOPOLL
) && def
->iopoll_queue
)
1759 io_iopoll_req_issued(req
, issue_flags
);
1764 int io_poll_issue(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1766 io_tw_lock(req
->ctx
, ts
);
1767 return io_issue_sqe(req
, IO_URING_F_NONBLOCK
|IO_URING_F_MULTISHOT
|
1768 IO_URING_F_COMPLETE_DEFER
);
1771 struct io_wq_work
*io_wq_free_work(struct io_wq_work
*work
)
1773 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1774 struct io_kiocb
*nxt
= NULL
;
1776 if (req_ref_put_and_test(req
)) {
1777 if (req
->flags
& IO_REQ_LINK_FLAGS
)
1778 nxt
= io_req_find_next(req
);
1781 return nxt
? &nxt
->work
: NULL
;
1784 void io_wq_submit_work(struct io_wq_work
*work
)
1786 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1787 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
1788 unsigned int issue_flags
= IO_URING_F_UNLOCKED
| IO_URING_F_IOWQ
;
1789 bool needs_poll
= false;
1790 int ret
= 0, err
= -ECANCELED
;
1792 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1793 if (!(req
->flags
& REQ_F_REFCOUNT
))
1794 __io_req_set_refcount(req
, 2);
1798 io_arm_ltimeout(req
);
1800 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1801 if (atomic_read(&work
->flags
) & IO_WQ_WORK_CANCEL
) {
1803 io_req_task_queue_fail(req
, err
);
1806 if (!io_assign_file(req
, def
, issue_flags
)) {
1808 atomic_or(IO_WQ_WORK_CANCEL
, &work
->flags
);
1813 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1814 * submitter task context. Final request completions are handed to the
1815 * right context, however this is not the case of auxiliary CQEs,
1816 * which is the main mean of operation for multishot requests.
1817 * Don't allow any multishot execution from io-wq. It's more restrictive
1818 * than necessary and also cleaner.
1820 if (req
->flags
& REQ_F_APOLL_MULTISHOT
) {
1822 if (!io_file_can_poll(req
))
1824 if (req
->file
->f_flags
& O_NONBLOCK
||
1825 req
->file
->f_mode
& FMODE_NOWAIT
) {
1827 if (io_arm_poll_handler(req
, issue_flags
) != IO_APOLL_OK
)
1831 req
->flags
&= ~REQ_F_APOLL_MULTISHOT
;
1835 if (req
->flags
& REQ_F_FORCE_ASYNC
) {
1836 bool opcode_poll
= def
->pollin
|| def
->pollout
;
1838 if (opcode_poll
&& io_file_can_poll(req
)) {
1840 issue_flags
|= IO_URING_F_NONBLOCK
;
1845 ret
= io_issue_sqe(req
, issue_flags
);
1850 * If REQ_F_NOWAIT is set, then don't wait or retry with
1851 * poll. -EAGAIN is final for that case.
1853 if (req
->flags
& REQ_F_NOWAIT
)
1857 * We can get EAGAIN for iopolled IO even though we're
1858 * forcing a sync submission from here, since we can't
1859 * wait for request slots on the block side.
1862 if (!(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1864 if (io_wq_worker_stopped())
1870 if (io_arm_poll_handler(req
, issue_flags
) == IO_APOLL_OK
)
1872 /* aborted or ready, in either case retry blocking */
1874 issue_flags
&= ~IO_URING_F_NONBLOCK
;
1877 /* avoid locking problems by failing it from a clean context */
1879 io_req_task_queue_fail(req
, ret
);
1882 inline struct file
*io_file_get_fixed(struct io_kiocb
*req
, int fd
,
1883 unsigned int issue_flags
)
1885 struct io_ring_ctx
*ctx
= req
->ctx
;
1886 struct io_rsrc_node
*node
;
1887 struct file
*file
= NULL
;
1889 io_ring_submit_lock(ctx
, issue_flags
);
1890 node
= io_rsrc_node_lookup(&ctx
->file_table
.data
, fd
);
1892 io_req_assign_rsrc_node(&req
->file_node
, node
);
1893 req
->flags
|= io_slot_flags(node
);
1894 file
= io_slot_file(node
);
1896 io_ring_submit_unlock(ctx
, issue_flags
);
1900 struct file
*io_file_get_normal(struct io_kiocb
*req
, int fd
)
1902 struct file
*file
= fget(fd
);
1904 trace_io_uring_file_get(req
, fd
);
1906 /* we don't allow fixed io_uring files */
1907 if (file
&& io_is_uring_fops(file
))
1908 io_req_track_inflight(req
);
1912 static void io_queue_async(struct io_kiocb
*req
, int ret
)
1913 __must_hold(&req
->ctx
->uring_lock
)
1915 struct io_kiocb
*linked_timeout
;
1917 if (ret
!= -EAGAIN
|| (req
->flags
& REQ_F_NOWAIT
)) {
1918 io_req_defer_failed(req
, ret
);
1922 linked_timeout
= io_prep_linked_timeout(req
);
1924 switch (io_arm_poll_handler(req
, 0)) {
1925 case IO_APOLL_READY
:
1926 io_kbuf_recycle(req
, 0);
1927 io_req_task_queue(req
);
1929 case IO_APOLL_ABORTED
:
1930 io_kbuf_recycle(req
, 0);
1938 io_queue_linked_timeout(linked_timeout
);
1941 static inline void io_queue_sqe(struct io_kiocb
*req
)
1942 __must_hold(&req
->ctx
->uring_lock
)
1946 ret
= io_issue_sqe(req
, IO_URING_F_NONBLOCK
|IO_URING_F_COMPLETE_DEFER
);
1949 * We async punt it if the file wasn't marked NOWAIT, or if the file
1950 * doesn't support non-blocking read/write attempts
1953 io_queue_async(req
, ret
);
1956 static void io_queue_sqe_fallback(struct io_kiocb
*req
)
1957 __must_hold(&req
->ctx
->uring_lock
)
1959 if (unlikely(req
->flags
& REQ_F_FAIL
)) {
1961 * We don't submit, fail them all, for that replace hardlinks
1962 * with normal links. Extra REQ_F_LINK is tolerated.
1964 req
->flags
&= ~REQ_F_HARDLINK
;
1965 req
->flags
|= REQ_F_LINK
;
1966 io_req_defer_failed(req
, req
->cqe
.res
);
1968 if (unlikely(req
->ctx
->drain_active
))
1976 * Check SQE restrictions (opcode and flags).
1978 * Returns 'true' if SQE is allowed, 'false' otherwise.
1980 static inline bool io_check_restriction(struct io_ring_ctx
*ctx
,
1981 struct io_kiocb
*req
,
1982 unsigned int sqe_flags
)
1984 if (!test_bit(req
->opcode
, ctx
->restrictions
.sqe_op
))
1987 if ((sqe_flags
& ctx
->restrictions
.sqe_flags_required
) !=
1988 ctx
->restrictions
.sqe_flags_required
)
1991 if (sqe_flags
& ~(ctx
->restrictions
.sqe_flags_allowed
|
1992 ctx
->restrictions
.sqe_flags_required
))
1998 static void io_init_req_drain(struct io_kiocb
*req
)
2000 struct io_ring_ctx
*ctx
= req
->ctx
;
2001 struct io_kiocb
*head
= ctx
->submit_state
.link
.head
;
2003 ctx
->drain_active
= true;
2006 * If we need to drain a request in the middle of a link, drain
2007 * the head request and the next request/link after the current
2008 * link. Considering sequential execution of links,
2009 * REQ_F_IO_DRAIN will be maintained for every request of our
2012 head
->flags
|= REQ_F_IO_DRAIN
| REQ_F_FORCE_ASYNC
;
2013 ctx
->drain_next
= true;
2017 static __cold
int io_init_fail_req(struct io_kiocb
*req
, int err
)
2019 /* ensure per-opcode data is cleared if we fail before prep */
2020 memset(&req
->cmd
.data
, 0, sizeof(req
->cmd
.data
));
2024 static int io_init_req(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
2025 const struct io_uring_sqe
*sqe
)
2026 __must_hold(&ctx
->uring_lock
)
2028 const struct io_issue_def
*def
;
2029 unsigned int sqe_flags
;
2033 /* req is partially pre-initialised, see io_preinit_req() */
2034 req
->opcode
= opcode
= READ_ONCE(sqe
->opcode
);
2035 /* same numerical values with corresponding REQ_F_*, safe to copy */
2036 sqe_flags
= READ_ONCE(sqe
->flags
);
2037 req
->flags
= (__force io_req_flags_t
) sqe_flags
;
2038 req
->cqe
.user_data
= READ_ONCE(sqe
->user_data
);
2040 req
->tctx
= current
->io_uring
;
2041 req
->cancel_seq_set
= false;
2043 if (unlikely(opcode
>= IORING_OP_LAST
)) {
2045 return io_init_fail_req(req
, -EINVAL
);
2047 def
= &io_issue_defs
[opcode
];
2048 if (unlikely(sqe_flags
& ~SQE_COMMON_FLAGS
)) {
2049 /* enforce forwards compatibility on users */
2050 if (sqe_flags
& ~SQE_VALID_FLAGS
)
2051 return io_init_fail_req(req
, -EINVAL
);
2052 if (sqe_flags
& IOSQE_BUFFER_SELECT
) {
2053 if (!def
->buffer_select
)
2054 return io_init_fail_req(req
, -EOPNOTSUPP
);
2055 req
->buf_index
= READ_ONCE(sqe
->buf_group
);
2057 if (sqe_flags
& IOSQE_CQE_SKIP_SUCCESS
)
2058 ctx
->drain_disabled
= true;
2059 if (sqe_flags
& IOSQE_IO_DRAIN
) {
2060 if (ctx
->drain_disabled
)
2061 return io_init_fail_req(req
, -EOPNOTSUPP
);
2062 io_init_req_drain(req
);
2065 if (unlikely(ctx
->restricted
|| ctx
->drain_active
|| ctx
->drain_next
)) {
2066 if (ctx
->restricted
&& !io_check_restriction(ctx
, req
, sqe_flags
))
2067 return io_init_fail_req(req
, -EACCES
);
2068 /* knock it to the slow queue path, will be drained there */
2069 if (ctx
->drain_active
)
2070 req
->flags
|= REQ_F_FORCE_ASYNC
;
2071 /* if there is no link, we're at "next" request and need to drain */
2072 if (unlikely(ctx
->drain_next
) && !ctx
->submit_state
.link
.head
) {
2073 ctx
->drain_next
= false;
2074 ctx
->drain_active
= true;
2075 req
->flags
|= REQ_F_IO_DRAIN
| REQ_F_FORCE_ASYNC
;
2079 if (!def
->ioprio
&& sqe
->ioprio
)
2080 return io_init_fail_req(req
, -EINVAL
);
2081 if (!def
->iopoll
&& (ctx
->flags
& IORING_SETUP_IOPOLL
))
2082 return io_init_fail_req(req
, -EINVAL
);
2084 if (def
->needs_file
) {
2085 struct io_submit_state
*state
= &ctx
->submit_state
;
2087 req
->cqe
.fd
= READ_ONCE(sqe
->fd
);
2090 * Plug now if we have more than 2 IO left after this, and the
2091 * target is potentially a read/write to block based storage.
2093 if (state
->need_plug
&& def
->plug
) {
2094 state
->plug_started
= true;
2095 state
->need_plug
= false;
2096 blk_start_plug_nr_ios(&state
->plug
, state
->submit_nr
);
2100 personality
= READ_ONCE(sqe
->personality
);
2104 req
->creds
= xa_load(&ctx
->personalities
, personality
);
2106 return io_init_fail_req(req
, -EINVAL
);
2107 get_cred(req
->creds
);
2108 ret
= security_uring_override_creds(req
->creds
);
2110 put_cred(req
->creds
);
2111 return io_init_fail_req(req
, ret
);
2113 req
->flags
|= REQ_F_CREDS
;
2116 return def
->prep(req
, sqe
);
2119 static __cold
int io_submit_fail_init(const struct io_uring_sqe
*sqe
,
2120 struct io_kiocb
*req
, int ret
)
2122 struct io_ring_ctx
*ctx
= req
->ctx
;
2123 struct io_submit_link
*link
= &ctx
->submit_state
.link
;
2124 struct io_kiocb
*head
= link
->head
;
2126 trace_io_uring_req_failed(sqe
, req
, ret
);
2129 * Avoid breaking links in the middle as it renders links with SQPOLL
2130 * unusable. Instead of failing eagerly, continue assembling the link if
2131 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2132 * should find the flag and handle the rest.
2134 req_fail_link_node(req
, ret
);
2135 if (head
&& !(head
->flags
& REQ_F_FAIL
))
2136 req_fail_link_node(head
, -ECANCELED
);
2138 if (!(req
->flags
& IO_REQ_LINK_FLAGS
)) {
2140 link
->last
->link
= req
;
2144 io_queue_sqe_fallback(req
);
2149 link
->last
->link
= req
;
2156 static inline int io_submit_sqe(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
2157 const struct io_uring_sqe
*sqe
)
2158 __must_hold(&ctx
->uring_lock
)
2160 struct io_submit_link
*link
= &ctx
->submit_state
.link
;
2163 ret
= io_init_req(ctx
, req
, sqe
);
2165 return io_submit_fail_init(sqe
, req
, ret
);
2167 trace_io_uring_submit_req(req
);
2170 * If we already have a head request, queue this one for async
2171 * submittal once the head completes. If we don't have a head but
2172 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2173 * submitted sync once the chain is complete. If none of those
2174 * conditions are true (normal request), then just queue it.
2176 if (unlikely(link
->head
)) {
2177 trace_io_uring_link(req
, link
->last
);
2178 link
->last
->link
= req
;
2181 if (req
->flags
& IO_REQ_LINK_FLAGS
)
2183 /* last request of the link, flush it */
2186 if (req
->flags
& (REQ_F_FORCE_ASYNC
| REQ_F_FAIL
))
2189 } else if (unlikely(req
->flags
& (IO_REQ_LINK_FLAGS
|
2190 REQ_F_FORCE_ASYNC
| REQ_F_FAIL
))) {
2191 if (req
->flags
& IO_REQ_LINK_FLAGS
) {
2196 io_queue_sqe_fallback(req
);
2206 * Batched submission is done, ensure local IO is flushed out.
2208 static void io_submit_state_end(struct io_ring_ctx
*ctx
)
2210 struct io_submit_state
*state
= &ctx
->submit_state
;
2212 if (unlikely(state
->link
.head
))
2213 io_queue_sqe_fallback(state
->link
.head
);
2214 /* flush only after queuing links as they can generate completions */
2215 io_submit_flush_completions(ctx
);
2216 if (state
->plug_started
)
2217 blk_finish_plug(&state
->plug
);
2221 * Start submission side cache.
2223 static void io_submit_state_start(struct io_submit_state
*state
,
2224 unsigned int max_ios
)
2226 state
->plug_started
= false;
2227 state
->need_plug
= max_ios
> 2;
2228 state
->submit_nr
= max_ios
;
2229 /* set only head, no need to init link_last in advance */
2230 state
->link
.head
= NULL
;
2233 static void io_commit_sqring(struct io_ring_ctx
*ctx
)
2235 struct io_rings
*rings
= ctx
->rings
;
2238 * Ensure any loads from the SQEs are done at this point,
2239 * since once we write the new head, the application could
2240 * write new data to them.
2242 smp_store_release(&rings
->sq
.head
, ctx
->cached_sq_head
);
2246 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2247 * that is mapped by userspace. This means that care needs to be taken to
2248 * ensure that reads are stable, as we cannot rely on userspace always
2249 * being a good citizen. If members of the sqe are validated and then later
2250 * used, it's important that those reads are done through READ_ONCE() to
2251 * prevent a re-load down the line.
2253 static bool io_get_sqe(struct io_ring_ctx
*ctx
, const struct io_uring_sqe
**sqe
)
2255 unsigned mask
= ctx
->sq_entries
- 1;
2256 unsigned head
= ctx
->cached_sq_head
++ & mask
;
2258 if (static_branch_unlikely(&io_key_has_sqarray
) &&
2259 (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))) {
2260 head
= READ_ONCE(ctx
->sq_array
[head
]);
2261 if (unlikely(head
>= ctx
->sq_entries
)) {
2262 /* drop invalid entries */
2263 spin_lock(&ctx
->completion_lock
);
2265 spin_unlock(&ctx
->completion_lock
);
2266 WRITE_ONCE(ctx
->rings
->sq_dropped
,
2267 READ_ONCE(ctx
->rings
->sq_dropped
) + 1);
2270 head
= array_index_nospec(head
, ctx
->sq_entries
);
2274 * The cached sq head (or cq tail) serves two purposes:
2276 * 1) allows us to batch the cost of updating the user visible
2278 * 2) allows the kernel side to track the head on its own, even
2279 * though the application is the one updating it.
2282 /* double index for 128-byte SQEs, twice as long */
2283 if (ctx
->flags
& IORING_SETUP_SQE128
)
2285 *sqe
= &ctx
->sq_sqes
[head
];
2289 int io_submit_sqes(struct io_ring_ctx
*ctx
, unsigned int nr
)
2290 __must_hold(&ctx
->uring_lock
)
2292 unsigned int entries
= io_sqring_entries(ctx
);
2296 if (unlikely(!entries
))
2298 /* make sure SQ entry isn't read before tail */
2299 ret
= left
= min(nr
, entries
);
2300 io_get_task_refs(left
);
2301 io_submit_state_start(&ctx
->submit_state
, left
);
2304 const struct io_uring_sqe
*sqe
;
2305 struct io_kiocb
*req
;
2307 if (unlikely(!io_alloc_req(ctx
, &req
)))
2309 if (unlikely(!io_get_sqe(ctx
, &sqe
))) {
2310 io_req_add_to_cache(req
, ctx
);
2315 * Continue submitting even for sqe failure if the
2316 * ring was setup with IORING_SETUP_SUBMIT_ALL
2318 if (unlikely(io_submit_sqe(ctx
, req
, sqe
)) &&
2319 !(ctx
->flags
& IORING_SETUP_SUBMIT_ALL
)) {
2325 if (unlikely(left
)) {
2327 /* try again if it submitted nothing and can't allocate a req */
2328 if (!ret
&& io_req_cache_empty(ctx
))
2330 current
->io_uring
->cached_refs
+= left
;
2333 io_submit_state_end(ctx
);
2334 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2335 io_commit_sqring(ctx
);
2339 static int io_wake_function(struct wait_queue_entry
*curr
, unsigned int mode
,
2340 int wake_flags
, void *key
)
2342 struct io_wait_queue
*iowq
= container_of(curr
, struct io_wait_queue
, wq
);
2345 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2346 * the task, and the next invocation will do it.
2348 if (io_should_wake(iowq
) || io_has_work(iowq
->ctx
))
2349 return autoremove_wake_function(curr
, mode
, wake_flags
, key
);
2353 int io_run_task_work_sig(struct io_ring_ctx
*ctx
)
2355 if (io_local_work_pending(ctx
)) {
2356 __set_current_state(TASK_RUNNING
);
2357 if (io_run_local_work(ctx
, INT_MAX
, IO_LOCAL_TW_DEFAULT_MAX
) > 0)
2360 if (io_run_task_work() > 0)
2362 if (task_sigpending(current
))
2367 static bool current_pending_io(void)
2369 struct io_uring_task
*tctx
= current
->io_uring
;
2373 return percpu_counter_read_positive(&tctx
->inflight
);
2376 static enum hrtimer_restart
io_cqring_timer_wakeup(struct hrtimer
*timer
)
2378 struct io_wait_queue
*iowq
= container_of(timer
, struct io_wait_queue
, t
);
2380 WRITE_ONCE(iowq
->hit_timeout
, 1);
2381 iowq
->min_timeout
= 0;
2382 wake_up_process(iowq
->wq
.private);
2383 return HRTIMER_NORESTART
;
2387 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2388 * wake up. If not, and we have a normal timeout, switch to that and keep
2391 static enum hrtimer_restart
io_cqring_min_timer_wakeup(struct hrtimer
*timer
)
2393 struct io_wait_queue
*iowq
= container_of(timer
, struct io_wait_queue
, t
);
2394 struct io_ring_ctx
*ctx
= iowq
->ctx
;
2396 /* no general timeout, or shorter (or equal), we are done */
2397 if (iowq
->timeout
== KTIME_MAX
||
2398 ktime_compare(iowq
->min_timeout
, iowq
->timeout
) >= 0)
2400 /* work we may need to run, wake function will see if we need to wake */
2401 if (io_has_work(ctx
))
2403 /* got events since we started waiting, min timeout is done */
2404 if (iowq
->cq_min_tail
!= READ_ONCE(ctx
->rings
->cq
.tail
))
2406 /* if we have any events and min timeout expired, we're done */
2407 if (io_cqring_events(ctx
))
2411 * If using deferred task_work running and application is waiting on
2412 * more than one request, ensure we reset it now where we are switching
2413 * to normal sleeps. Any request completion post min_wait should wake
2414 * the task and return.
2416 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
2417 atomic_set(&ctx
->cq_wait_nr
, 1);
2419 if (!llist_empty(&ctx
->work_llist
))
2423 iowq
->t
.function
= io_cqring_timer_wakeup
;
2424 hrtimer_set_expires(timer
, iowq
->timeout
);
2425 return HRTIMER_RESTART
;
2427 return io_cqring_timer_wakeup(timer
);
2430 static int io_cqring_schedule_timeout(struct io_wait_queue
*iowq
,
2431 clockid_t clock_id
, ktime_t start_time
)
2435 if (iowq
->min_timeout
) {
2436 timeout
= ktime_add_ns(iowq
->min_timeout
, start_time
);
2437 hrtimer_setup_on_stack(&iowq
->t
, io_cqring_min_timer_wakeup
, clock_id
,
2440 timeout
= iowq
->timeout
;
2441 hrtimer_setup_on_stack(&iowq
->t
, io_cqring_timer_wakeup
, clock_id
,
2445 hrtimer_set_expires_range_ns(&iowq
->t
, timeout
, 0);
2446 hrtimer_start_expires(&iowq
->t
, HRTIMER_MODE_ABS
);
2448 if (!READ_ONCE(iowq
->hit_timeout
))
2451 hrtimer_cancel(&iowq
->t
);
2452 destroy_hrtimer_on_stack(&iowq
->t
);
2453 __set_current_state(TASK_RUNNING
);
2455 return READ_ONCE(iowq
->hit_timeout
) ? -ETIME
: 0;
2458 static int __io_cqring_wait_schedule(struct io_ring_ctx
*ctx
,
2459 struct io_wait_queue
*iowq
,
2465 * Mark us as being in io_wait if we have pending requests, so cpufreq
2466 * can take into account that the task is waiting for IO - turns out
2467 * to be important for low QD IO.
2469 if (current_pending_io())
2470 current
->in_iowait
= 1;
2471 if (iowq
->timeout
!= KTIME_MAX
|| iowq
->min_timeout
)
2472 ret
= io_cqring_schedule_timeout(iowq
, ctx
->clockid
, start_time
);
2475 current
->in_iowait
= 0;
2479 /* If this returns > 0, the caller should retry */
2480 static inline int io_cqring_wait_schedule(struct io_ring_ctx
*ctx
,
2481 struct io_wait_queue
*iowq
,
2484 if (unlikely(READ_ONCE(ctx
->check_cq
)))
2486 if (unlikely(io_local_work_pending(ctx
)))
2488 if (unlikely(task_work_pending(current
)))
2490 if (unlikely(task_sigpending(current
)))
2492 if (unlikely(io_should_wake(iowq
)))
2495 return __io_cqring_wait_schedule(ctx
, iowq
, start_time
);
2500 struct timespec64 ts
;
2501 const sigset_t __user
*sig
;
2507 * Wait until events become available, if we don't already have some. The
2508 * application must reap them itself, as they reside on the shared cq ring.
2510 static int io_cqring_wait(struct io_ring_ctx
*ctx
, int min_events
, u32 flags
,
2511 struct ext_arg
*ext_arg
)
2513 struct io_wait_queue iowq
;
2514 struct io_rings
*rings
= ctx
->rings
;
2518 if (!io_allowed_run_tw(ctx
))
2520 if (io_local_work_pending(ctx
))
2521 io_run_local_work(ctx
, min_events
,
2522 max(IO_LOCAL_TW_DEFAULT_MAX
, min_events
));
2525 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
)))
2526 io_cqring_do_overflow_flush(ctx
);
2527 if (__io_cqring_events_user(ctx
) >= min_events
)
2530 init_waitqueue_func_entry(&iowq
.wq
, io_wake_function
);
2531 iowq
.wq
.private = current
;
2532 INIT_LIST_HEAD(&iowq
.wq
.entry
);
2534 iowq
.cq_tail
= READ_ONCE(ctx
->rings
->cq
.head
) + min_events
;
2535 iowq
.cq_min_tail
= READ_ONCE(ctx
->rings
->cq
.tail
);
2536 iowq
.nr_timeouts
= atomic_read(&ctx
->cq_timeouts
);
2537 iowq
.hit_timeout
= 0;
2538 iowq
.min_timeout
= ext_arg
->min_time
;
2539 iowq
.timeout
= KTIME_MAX
;
2540 start_time
= io_get_time(ctx
);
2542 if (ext_arg
->ts_set
) {
2543 iowq
.timeout
= timespec64_to_ktime(ext_arg
->ts
);
2544 if (!(flags
& IORING_ENTER_ABS_TIMER
))
2545 iowq
.timeout
= ktime_add(iowq
.timeout
, start_time
);
2549 #ifdef CONFIG_COMPAT
2550 if (in_compat_syscall())
2551 ret
= set_compat_user_sigmask((const compat_sigset_t __user
*)ext_arg
->sig
,
2555 ret
= set_user_sigmask(ext_arg
->sig
, ext_arg
->argsz
);
2561 io_napi_busy_loop(ctx
, &iowq
);
2563 trace_io_uring_cqring_wait(ctx
, min_events
);
2565 unsigned long check_cq
;
2568 /* if min timeout has been hit, don't reset wait count */
2569 if (!iowq
.hit_timeout
)
2570 nr_wait
= (int) iowq
.cq_tail
-
2571 READ_ONCE(ctx
->rings
->cq
.tail
);
2575 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
2576 atomic_set(&ctx
->cq_wait_nr
, nr_wait
);
2577 set_current_state(TASK_INTERRUPTIBLE
);
2579 prepare_to_wait_exclusive(&ctx
->cq_wait
, &iowq
.wq
,
2580 TASK_INTERRUPTIBLE
);
2583 ret
= io_cqring_wait_schedule(ctx
, &iowq
, start_time
);
2584 __set_current_state(TASK_RUNNING
);
2585 atomic_set(&ctx
->cq_wait_nr
, IO_CQ_WAKE_INIT
);
2588 * Run task_work after scheduling and before io_should_wake().
2589 * If we got woken because of task_work being processed, run it
2590 * now rather than let the caller do another wait loop.
2592 if (io_local_work_pending(ctx
))
2593 io_run_local_work(ctx
, nr_wait
, nr_wait
);
2597 * Non-local task_work will be run on exit to userspace, but
2598 * if we're using DEFER_TASKRUN, then we could have waited
2599 * with a timeout for a number of requests. If the timeout
2600 * hits, we could have some requests ready to process. Ensure
2601 * this break is _after_ we have run task_work, to avoid
2602 * deferring running potentially pending requests until the
2603 * next time we wait for events.
2608 check_cq
= READ_ONCE(ctx
->check_cq
);
2609 if (unlikely(check_cq
)) {
2610 /* let the caller flush overflows, retry */
2611 if (check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
))
2612 io_cqring_do_overflow_flush(ctx
);
2613 if (check_cq
& BIT(IO_CHECK_CQ_DROPPED_BIT
)) {
2619 if (io_should_wake(&iowq
)) {
2626 if (!(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
))
2627 finish_wait(&ctx
->cq_wait
, &iowq
.wq
);
2628 restore_saved_sigmask_unless(ret
== -EINTR
);
2630 return READ_ONCE(rings
->cq
.head
) == READ_ONCE(rings
->cq
.tail
) ? ret
: 0;
2633 static void *io_rings_map(struct io_ring_ctx
*ctx
, unsigned long uaddr
,
2636 return __io_uaddr_map(&ctx
->ring_pages
, &ctx
->n_ring_pages
, uaddr
,
2640 static void *io_sqes_map(struct io_ring_ctx
*ctx
, unsigned long uaddr
,
2643 return __io_uaddr_map(&ctx
->sqe_pages
, &ctx
->n_sqe_pages
, uaddr
,
2647 static void io_rings_free(struct io_ring_ctx
*ctx
)
2649 if (!(ctx
->flags
& IORING_SETUP_NO_MMAP
)) {
2650 io_pages_unmap(ctx
->rings
, &ctx
->ring_pages
, &ctx
->n_ring_pages
,
2652 io_pages_unmap(ctx
->sq_sqes
, &ctx
->sqe_pages
, &ctx
->n_sqe_pages
,
2655 io_pages_free(&ctx
->ring_pages
, ctx
->n_ring_pages
);
2656 ctx
->n_ring_pages
= 0;
2657 io_pages_free(&ctx
->sqe_pages
, ctx
->n_sqe_pages
);
2658 ctx
->n_sqe_pages
= 0;
2660 vunmap(ctx
->sq_sqes
);
2664 ctx
->sq_sqes
= NULL
;
2667 unsigned long rings_size(unsigned int flags
, unsigned int sq_entries
,
2668 unsigned int cq_entries
, size_t *sq_offset
)
2670 struct io_rings
*rings
;
2671 size_t off
, sq_array_size
;
2673 off
= struct_size(rings
, cqes
, cq_entries
);
2674 if (off
== SIZE_MAX
)
2676 if (flags
& IORING_SETUP_CQE32
) {
2677 if (check_shl_overflow(off
, 1, &off
))
2682 off
= ALIGN(off
, SMP_CACHE_BYTES
);
2687 if (flags
& IORING_SETUP_NO_SQARRAY
) {
2688 *sq_offset
= SIZE_MAX
;
2694 sq_array_size
= array_size(sizeof(u32
), sq_entries
);
2695 if (sq_array_size
== SIZE_MAX
)
2698 if (check_add_overflow(off
, sq_array_size
, &off
))
2704 static void io_req_caches_free(struct io_ring_ctx
*ctx
)
2706 struct io_kiocb
*req
;
2709 mutex_lock(&ctx
->uring_lock
);
2711 while (!io_req_cache_empty(ctx
)) {
2712 req
= io_extract_req(ctx
);
2713 kmem_cache_free(req_cachep
, req
);
2717 percpu_ref_put_many(&ctx
->refs
, nr
);
2718 mutex_unlock(&ctx
->uring_lock
);
2721 static __cold
void io_ring_ctx_free(struct io_ring_ctx
*ctx
)
2723 io_sq_thread_finish(ctx
);
2725 mutex_lock(&ctx
->uring_lock
);
2726 io_sqe_buffers_unregister(ctx
);
2727 io_sqe_files_unregister(ctx
);
2728 io_cqring_overflow_kill(ctx
);
2729 io_eventfd_unregister(ctx
);
2730 io_alloc_cache_free(&ctx
->apoll_cache
, kfree
);
2731 io_alloc_cache_free(&ctx
->netmsg_cache
, io_netmsg_cache_free
);
2732 io_alloc_cache_free(&ctx
->rw_cache
, io_rw_cache_free
);
2733 io_alloc_cache_free(&ctx
->uring_cache
, kfree
);
2734 io_alloc_cache_free(&ctx
->msg_cache
, io_msg_cache_free
);
2735 io_futex_cache_free(ctx
);
2736 io_destroy_buffers(ctx
);
2737 io_free_region(ctx
, &ctx
->param_region
);
2738 mutex_unlock(&ctx
->uring_lock
);
2740 put_cred(ctx
->sq_creds
);
2741 if (ctx
->submitter_task
)
2742 put_task_struct(ctx
->submitter_task
);
2744 WARN_ON_ONCE(!list_empty(&ctx
->ltimeout_list
));
2746 if (ctx
->mm_account
) {
2747 mmdrop(ctx
->mm_account
);
2748 ctx
->mm_account
= NULL
;
2752 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
2753 static_branch_dec(&io_key_has_sqarray
);
2755 percpu_ref_exit(&ctx
->refs
);
2756 free_uid(ctx
->user
);
2757 io_req_caches_free(ctx
);
2759 io_wq_put_hash(ctx
->hash_map
);
2761 kvfree(ctx
->cancel_table
.hbs
);
2762 xa_destroy(&ctx
->io_bl_xa
);
2766 static __cold
void io_activate_pollwq_cb(struct callback_head
*cb
)
2768 struct io_ring_ctx
*ctx
= container_of(cb
, struct io_ring_ctx
,
2771 mutex_lock(&ctx
->uring_lock
);
2772 ctx
->poll_activated
= true;
2773 mutex_unlock(&ctx
->uring_lock
);
2776 * Wake ups for some events between start of polling and activation
2777 * might've been lost due to loose synchronisation.
2779 wake_up_all(&ctx
->poll_wq
);
2780 percpu_ref_put(&ctx
->refs
);
2783 __cold
void io_activate_pollwq(struct io_ring_ctx
*ctx
)
2785 spin_lock(&ctx
->completion_lock
);
2786 /* already activated or in progress */
2787 if (ctx
->poll_activated
|| ctx
->poll_wq_task_work
.func
)
2789 if (WARN_ON_ONCE(!ctx
->task_complete
))
2791 if (!ctx
->submitter_task
)
2794 * with ->submitter_task only the submitter task completes requests, we
2795 * only need to sync with it, which is done by injecting a tw
2797 init_task_work(&ctx
->poll_wq_task_work
, io_activate_pollwq_cb
);
2798 percpu_ref_get(&ctx
->refs
);
2799 if (task_work_add(ctx
->submitter_task
, &ctx
->poll_wq_task_work
, TWA_SIGNAL
))
2800 percpu_ref_put(&ctx
->refs
);
2802 spin_unlock(&ctx
->completion_lock
);
2805 static __poll_t
io_uring_poll(struct file
*file
, poll_table
*wait
)
2807 struct io_ring_ctx
*ctx
= file
->private_data
;
2810 if (unlikely(!ctx
->poll_activated
))
2811 io_activate_pollwq(ctx
);
2813 poll_wait(file
, &ctx
->poll_wq
, wait
);
2815 * synchronizes with barrier from wq_has_sleeper call in
2819 if (!io_sqring_full(ctx
))
2820 mask
|= EPOLLOUT
| EPOLLWRNORM
;
2823 * Don't flush cqring overflow list here, just do a simple check.
2824 * Otherwise there could possible be ABBA deadlock:
2827 * lock(&ctx->uring_lock);
2829 * lock(&ctx->uring_lock);
2832 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2833 * pushes them to do the flush.
2836 if (__io_cqring_events_user(ctx
) || io_has_work(ctx
))
2837 mask
|= EPOLLIN
| EPOLLRDNORM
;
2842 struct io_tctx_exit
{
2843 struct callback_head task_work
;
2844 struct completion completion
;
2845 struct io_ring_ctx
*ctx
;
2848 static __cold
void io_tctx_exit_cb(struct callback_head
*cb
)
2850 struct io_uring_task
*tctx
= current
->io_uring
;
2851 struct io_tctx_exit
*work
;
2853 work
= container_of(cb
, struct io_tctx_exit
, task_work
);
2855 * When @in_cancel, we're in cancellation and it's racy to remove the
2856 * node. It'll be removed by the end of cancellation, just ignore it.
2857 * tctx can be NULL if the queueing of this task_work raced with
2858 * work cancelation off the exec path.
2860 if (tctx
&& !atomic_read(&tctx
->in_cancel
))
2861 io_uring_del_tctx_node((unsigned long)work
->ctx
);
2862 complete(&work
->completion
);
2865 static __cold
bool io_cancel_ctx_cb(struct io_wq_work
*work
, void *data
)
2867 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
2869 return req
->ctx
== data
;
2872 static __cold
void io_ring_exit_work(struct work_struct
*work
)
2874 struct io_ring_ctx
*ctx
= container_of(work
, struct io_ring_ctx
, exit_work
);
2875 unsigned long timeout
= jiffies
+ HZ
* 60 * 5;
2876 unsigned long interval
= HZ
/ 20;
2877 struct io_tctx_exit exit
;
2878 struct io_tctx_node
*node
;
2882 * If we're doing polled IO and end up having requests being
2883 * submitted async (out-of-line), then completions can come in while
2884 * we're waiting for refs to drop. We need to reap these manually,
2885 * as nobody else will be looking for them.
2888 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
)) {
2889 mutex_lock(&ctx
->uring_lock
);
2890 io_cqring_overflow_kill(ctx
);
2891 mutex_unlock(&ctx
->uring_lock
);
2894 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
2895 io_move_task_work_from_local(ctx
);
2897 while (io_uring_try_cancel_requests(ctx
, NULL
, true))
2901 struct io_sq_data
*sqd
= ctx
->sq_data
;
2902 struct task_struct
*tsk
;
2904 io_sq_thread_park(sqd
);
2906 if (tsk
&& tsk
->io_uring
&& tsk
->io_uring
->io_wq
)
2907 io_wq_cancel_cb(tsk
->io_uring
->io_wq
,
2908 io_cancel_ctx_cb
, ctx
, true);
2909 io_sq_thread_unpark(sqd
);
2912 io_req_caches_free(ctx
);
2914 if (WARN_ON_ONCE(time_after(jiffies
, timeout
))) {
2915 /* there is little hope left, don't run it too often */
2919 * This is really an uninterruptible wait, as it has to be
2920 * complete. But it's also run from a kworker, which doesn't
2921 * take signals, so it's fine to make it interruptible. This
2922 * avoids scenarios where we knowingly can wait much longer
2923 * on completions, for example if someone does a SIGSTOP on
2924 * a task that needs to finish task_work to make this loop
2925 * complete. That's a synthetic situation that should not
2926 * cause a stuck task backtrace, and hence a potential panic
2927 * on stuck tasks if that is enabled.
2929 } while (!wait_for_completion_interruptible_timeout(&ctx
->ref_comp
, interval
));
2931 init_completion(&exit
.completion
);
2932 init_task_work(&exit
.task_work
, io_tctx_exit_cb
);
2935 mutex_lock(&ctx
->uring_lock
);
2936 while (!list_empty(&ctx
->tctx_list
)) {
2937 WARN_ON_ONCE(time_after(jiffies
, timeout
));
2939 node
= list_first_entry(&ctx
->tctx_list
, struct io_tctx_node
,
2941 /* don't spin on a single task if cancellation failed */
2942 list_rotate_left(&ctx
->tctx_list
);
2943 ret
= task_work_add(node
->task
, &exit
.task_work
, TWA_SIGNAL
);
2944 if (WARN_ON_ONCE(ret
))
2947 mutex_unlock(&ctx
->uring_lock
);
2949 * See comment above for
2950 * wait_for_completion_interruptible_timeout() on why this
2951 * wait is marked as interruptible.
2953 wait_for_completion_interruptible(&exit
.completion
);
2954 mutex_lock(&ctx
->uring_lock
);
2956 mutex_unlock(&ctx
->uring_lock
);
2957 spin_lock(&ctx
->completion_lock
);
2958 spin_unlock(&ctx
->completion_lock
);
2960 /* pairs with RCU read section in io_req_local_work_add() */
2961 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
2964 io_ring_ctx_free(ctx
);
2967 static __cold
void io_ring_ctx_wait_and_kill(struct io_ring_ctx
*ctx
)
2969 unsigned long index
;
2970 struct creds
*creds
;
2972 mutex_lock(&ctx
->uring_lock
);
2973 percpu_ref_kill(&ctx
->refs
);
2974 xa_for_each(&ctx
->personalities
, index
, creds
)
2975 io_unregister_personality(ctx
, index
);
2976 mutex_unlock(&ctx
->uring_lock
);
2978 flush_delayed_work(&ctx
->fallback_work
);
2980 INIT_WORK(&ctx
->exit_work
, io_ring_exit_work
);
2982 * Use system_unbound_wq to avoid spawning tons of event kworkers
2983 * if we're exiting a ton of rings at the same time. It just adds
2984 * noise and overhead, there's no discernable change in runtime
2985 * over using system_wq.
2987 queue_work(iou_wq
, &ctx
->exit_work
);
2990 static int io_uring_release(struct inode
*inode
, struct file
*file
)
2992 struct io_ring_ctx
*ctx
= file
->private_data
;
2994 file
->private_data
= NULL
;
2995 io_ring_ctx_wait_and_kill(ctx
);
2999 struct io_task_cancel
{
3000 struct io_uring_task
*tctx
;
3004 static bool io_cancel_task_cb(struct io_wq_work
*work
, void *data
)
3006 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
3007 struct io_task_cancel
*cancel
= data
;
3009 return io_match_task_safe(req
, cancel
->tctx
, cancel
->all
);
3012 static __cold
bool io_cancel_defer_files(struct io_ring_ctx
*ctx
,
3013 struct io_uring_task
*tctx
,
3016 struct io_defer_entry
*de
;
3019 spin_lock(&ctx
->completion_lock
);
3020 list_for_each_entry_reverse(de
, &ctx
->defer_list
, list
) {
3021 if (io_match_task_safe(de
->req
, tctx
, cancel_all
)) {
3022 list_cut_position(&list
, &ctx
->defer_list
, &de
->list
);
3026 spin_unlock(&ctx
->completion_lock
);
3027 if (list_empty(&list
))
3030 while (!list_empty(&list
)) {
3031 de
= list_first_entry(&list
, struct io_defer_entry
, list
);
3032 list_del_init(&de
->list
);
3033 io_req_task_queue_fail(de
->req
, -ECANCELED
);
3039 static __cold
bool io_uring_try_cancel_iowq(struct io_ring_ctx
*ctx
)
3041 struct io_tctx_node
*node
;
3042 enum io_wq_cancel cret
;
3045 mutex_lock(&ctx
->uring_lock
);
3046 list_for_each_entry(node
, &ctx
->tctx_list
, ctx_node
) {
3047 struct io_uring_task
*tctx
= node
->task
->io_uring
;
3050 * io_wq will stay alive while we hold uring_lock, because it's
3051 * killed after ctx nodes, which requires to take the lock.
3053 if (!tctx
|| !tctx
->io_wq
)
3055 cret
= io_wq_cancel_cb(tctx
->io_wq
, io_cancel_ctx_cb
, ctx
, true);
3056 ret
|= (cret
!= IO_WQ_CANCEL_NOTFOUND
);
3058 mutex_unlock(&ctx
->uring_lock
);
3063 static __cold
bool io_uring_try_cancel_requests(struct io_ring_ctx
*ctx
,
3064 struct io_uring_task
*tctx
,
3067 struct io_task_cancel cancel
= { .tctx
= tctx
, .all
= cancel_all
, };
3068 enum io_wq_cancel cret
;
3071 /* set it so io_req_local_work_add() would wake us up */
3072 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
3073 atomic_set(&ctx
->cq_wait_nr
, 1);
3077 /* failed during ring init, it couldn't have issued any requests */
3082 ret
|= io_uring_try_cancel_iowq(ctx
);
3083 } else if (tctx
->io_wq
) {
3085 * Cancels requests of all rings, not only @ctx, but
3086 * it's fine as the task is in exit/exec.
3088 cret
= io_wq_cancel_cb(tctx
->io_wq
, io_cancel_task_cb
,
3090 ret
|= (cret
!= IO_WQ_CANCEL_NOTFOUND
);
3093 /* SQPOLL thread does its own polling */
3094 if ((!(ctx
->flags
& IORING_SETUP_SQPOLL
) && cancel_all
) ||
3095 (ctx
->sq_data
&& ctx
->sq_data
->thread
== current
)) {
3096 while (!wq_list_empty(&ctx
->iopoll_list
)) {
3097 io_iopoll_try_reap_events(ctx
);
3103 if ((ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) &&
3104 io_allowed_defer_tw_run(ctx
))
3105 ret
|= io_run_local_work(ctx
, INT_MAX
, INT_MAX
) > 0;
3106 ret
|= io_cancel_defer_files(ctx
, tctx
, cancel_all
);
3107 mutex_lock(&ctx
->uring_lock
);
3108 ret
|= io_poll_remove_all(ctx
, tctx
, cancel_all
);
3109 ret
|= io_waitid_remove_all(ctx
, tctx
, cancel_all
);
3110 ret
|= io_futex_remove_all(ctx
, tctx
, cancel_all
);
3111 ret
|= io_uring_try_cancel_uring_cmd(ctx
, tctx
, cancel_all
);
3112 mutex_unlock(&ctx
->uring_lock
);
3113 ret
|= io_kill_timeouts(ctx
, tctx
, cancel_all
);
3115 ret
|= io_run_task_work() > 0;
3117 ret
|= flush_delayed_work(&ctx
->fallback_work
);
3121 static s64
tctx_inflight(struct io_uring_task
*tctx
, bool tracked
)
3124 return atomic_read(&tctx
->inflight_tracked
);
3125 return percpu_counter_sum(&tctx
->inflight
);
3129 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3130 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3132 __cold
void io_uring_cancel_generic(bool cancel_all
, struct io_sq_data
*sqd
)
3134 struct io_uring_task
*tctx
= current
->io_uring
;
3135 struct io_ring_ctx
*ctx
;
3136 struct io_tctx_node
*node
;
3137 unsigned long index
;
3141 WARN_ON_ONCE(sqd
&& sqd
->thread
!= current
);
3143 if (!current
->io_uring
)
3146 io_wq_exit_start(tctx
->io_wq
);
3148 atomic_inc(&tctx
->in_cancel
);
3152 io_uring_drop_tctx_refs(current
);
3153 if (!tctx_inflight(tctx
, !cancel_all
))
3156 /* read completions before cancelations */
3157 inflight
= tctx_inflight(tctx
, false);
3162 xa_for_each(&tctx
->xa
, index
, node
) {
3163 /* sqpoll task will cancel all its requests */
3164 if (node
->ctx
->sq_data
)
3166 loop
|= io_uring_try_cancel_requests(node
->ctx
,
3171 list_for_each_entry(ctx
, &sqd
->ctx_list
, sqd_list
)
3172 loop
|= io_uring_try_cancel_requests(ctx
,
3182 prepare_to_wait(&tctx
->wait
, &wait
, TASK_INTERRUPTIBLE
);
3184 io_uring_drop_tctx_refs(current
);
3185 xa_for_each(&tctx
->xa
, index
, node
) {
3186 if (io_local_work_pending(node
->ctx
)) {
3187 WARN_ON_ONCE(node
->ctx
->submitter_task
&&
3188 node
->ctx
->submitter_task
!= current
);
3193 * If we've seen completions, retry without waiting. This
3194 * avoids a race where a completion comes in before we did
3195 * prepare_to_wait().
3197 if (inflight
== tctx_inflight(tctx
, !cancel_all
))
3200 finish_wait(&tctx
->wait
, &wait
);
3203 io_uring_clean_tctx(tctx
);
3206 * We shouldn't run task_works after cancel, so just leave
3207 * ->in_cancel set for normal exit.
3209 atomic_dec(&tctx
->in_cancel
);
3210 /* for exec all current's requests should be gone, kill tctx */
3211 __io_uring_free(current
);
3215 void __io_uring_cancel(bool cancel_all
)
3217 io_uring_cancel_generic(cancel_all
, NULL
);
3220 static struct io_uring_reg_wait
*io_get_ext_arg_reg(struct io_ring_ctx
*ctx
,
3221 const struct io_uring_getevents_arg __user
*uarg
)
3223 unsigned long size
= sizeof(struct io_uring_reg_wait
);
3224 unsigned long offset
= (uintptr_t)uarg
;
3227 if (unlikely(offset
% sizeof(long)))
3228 return ERR_PTR(-EFAULT
);
3230 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3231 if (unlikely(check_add_overflow(offset
, size
, &end
) ||
3232 end
> ctx
->cq_wait_size
))
3233 return ERR_PTR(-EFAULT
);
3235 return ctx
->cq_wait_arg
+ offset
;
3238 static int io_validate_ext_arg(struct io_ring_ctx
*ctx
, unsigned flags
,
3239 const void __user
*argp
, size_t argsz
)
3241 struct io_uring_getevents_arg arg
;
3243 if (!(flags
& IORING_ENTER_EXT_ARG
))
3245 if (flags
& IORING_ENTER_EXT_ARG_REG
)
3247 if (argsz
!= sizeof(arg
))
3249 if (copy_from_user(&arg
, argp
, sizeof(arg
)))
3254 static int io_get_ext_arg(struct io_ring_ctx
*ctx
, unsigned flags
,
3255 const void __user
*argp
, struct ext_arg
*ext_arg
)
3257 const struct io_uring_getevents_arg __user
*uarg
= argp
;
3258 struct io_uring_getevents_arg arg
;
3261 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3262 * is just a pointer to the sigset_t.
3264 if (!(flags
& IORING_ENTER_EXT_ARG
)) {
3265 ext_arg
->sig
= (const sigset_t __user
*) argp
;
3269 if (flags
& IORING_ENTER_EXT_ARG_REG
) {
3270 struct io_uring_reg_wait
*w
;
3272 if (ext_arg
->argsz
!= sizeof(struct io_uring_reg_wait
))
3274 w
= io_get_ext_arg_reg(ctx
, argp
);
3278 if (w
->flags
& ~IORING_REG_WAIT_TS
)
3280 ext_arg
->min_time
= READ_ONCE(w
->min_wait_usec
) * NSEC_PER_USEC
;
3281 ext_arg
->sig
= u64_to_user_ptr(READ_ONCE(w
->sigmask
));
3282 ext_arg
->argsz
= READ_ONCE(w
->sigmask_sz
);
3283 if (w
->flags
& IORING_REG_WAIT_TS
) {
3284 ext_arg
->ts
.tv_sec
= READ_ONCE(w
->ts
.tv_sec
);
3285 ext_arg
->ts
.tv_nsec
= READ_ONCE(w
->ts
.tv_nsec
);
3286 ext_arg
->ts_set
= true;
3292 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3293 * timespec and sigset_t pointers if good.
3295 if (ext_arg
->argsz
!= sizeof(arg
))
3298 if (!user_access_begin(uarg
, sizeof(*uarg
)))
3300 unsafe_get_user(arg
.sigmask
, &uarg
->sigmask
, uaccess_end
);
3301 unsafe_get_user(arg
.sigmask_sz
, &uarg
->sigmask_sz
, uaccess_end
);
3302 unsafe_get_user(arg
.min_wait_usec
, &uarg
->min_wait_usec
, uaccess_end
);
3303 unsafe_get_user(arg
.ts
, &uarg
->ts
, uaccess_end
);
3306 if (copy_from_user(&arg
, uarg
, sizeof(arg
)))
3309 ext_arg
->min_time
= arg
.min_wait_usec
* NSEC_PER_USEC
;
3310 ext_arg
->sig
= u64_to_user_ptr(arg
.sigmask
);
3311 ext_arg
->argsz
= arg
.sigmask_sz
;
3313 if (get_timespec64(&ext_arg
->ts
, u64_to_user_ptr(arg
.ts
)))
3315 ext_arg
->ts_set
= true;
3325 SYSCALL_DEFINE6(io_uring_enter
, unsigned int, fd
, u32
, to_submit
,
3326 u32
, min_complete
, u32
, flags
, const void __user
*, argp
,
3329 struct io_ring_ctx
*ctx
;
3333 if (unlikely(flags
& ~(IORING_ENTER_GETEVENTS
| IORING_ENTER_SQ_WAKEUP
|
3334 IORING_ENTER_SQ_WAIT
| IORING_ENTER_EXT_ARG
|
3335 IORING_ENTER_REGISTERED_RING
|
3336 IORING_ENTER_ABS_TIMER
|
3337 IORING_ENTER_EXT_ARG_REG
)))
3341 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3342 * need only dereference our task private array to find it.
3344 if (flags
& IORING_ENTER_REGISTERED_RING
) {
3345 struct io_uring_task
*tctx
= current
->io_uring
;
3347 if (unlikely(!tctx
|| fd
>= IO_RINGFD_REG_MAX
))
3349 fd
= array_index_nospec(fd
, IO_RINGFD_REG_MAX
);
3350 file
= tctx
->registered_rings
[fd
];
3351 if (unlikely(!file
))
3355 if (unlikely(!file
))
3358 if (unlikely(!io_is_uring_fops(file
)))
3362 ctx
= file
->private_data
;
3364 if (unlikely(ctx
->flags
& IORING_SETUP_R_DISABLED
))
3368 * For SQ polling, the thread will do all submissions and completions.
3369 * Just return the requested submit count, and wake the thread if
3373 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
3374 if (unlikely(ctx
->sq_data
->thread
== NULL
)) {
3378 if (flags
& IORING_ENTER_SQ_WAKEUP
)
3379 wake_up(&ctx
->sq_data
->wait
);
3380 if (flags
& IORING_ENTER_SQ_WAIT
)
3381 io_sqpoll_wait_sq(ctx
);
3384 } else if (to_submit
) {
3385 ret
= io_uring_add_tctx_node(ctx
);
3389 mutex_lock(&ctx
->uring_lock
);
3390 ret
= io_submit_sqes(ctx
, to_submit
);
3391 if (ret
!= to_submit
) {
3392 mutex_unlock(&ctx
->uring_lock
);
3395 if (flags
& IORING_ENTER_GETEVENTS
) {
3396 if (ctx
->syscall_iopoll
)
3399 * Ignore errors, we'll soon call io_cqring_wait() and
3400 * it should handle ownership problems if any.
3402 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
3403 (void)io_run_local_work_locked(ctx
, min_complete
);
3405 mutex_unlock(&ctx
->uring_lock
);
3408 if (flags
& IORING_ENTER_GETEVENTS
) {
3411 if (ctx
->syscall_iopoll
) {
3413 * We disallow the app entering submit/complete with
3414 * polling, but we still need to lock the ring to
3415 * prevent racing with polled issue that got punted to
3418 mutex_lock(&ctx
->uring_lock
);
3420 ret2
= io_validate_ext_arg(ctx
, flags
, argp
, argsz
);
3421 if (likely(!ret2
)) {
3422 min_complete
= min(min_complete
,
3424 ret2
= io_iopoll_check(ctx
, min_complete
);
3426 mutex_unlock(&ctx
->uring_lock
);
3428 struct ext_arg ext_arg
= { .argsz
= argsz
};
3430 ret2
= io_get_ext_arg(ctx
, flags
, argp
, &ext_arg
);
3431 if (likely(!ret2
)) {
3432 min_complete
= min(min_complete
,
3434 ret2
= io_cqring_wait(ctx
, min_complete
, flags
,
3443 * EBADR indicates that one or more CQE were dropped.
3444 * Once the user has been informed we can clear the bit
3445 * as they are obviously ok with those drops.
3447 if (unlikely(ret2
== -EBADR
))
3448 clear_bit(IO_CHECK_CQ_DROPPED_BIT
,
3453 if (!(flags
& IORING_ENTER_REGISTERED_RING
))
3458 static const struct file_operations io_uring_fops
= {
3459 .release
= io_uring_release
,
3460 .mmap
= io_uring_mmap
,
3461 .get_unmapped_area
= io_uring_get_unmapped_area
,
3463 .mmap_capabilities
= io_uring_nommu_mmap_capabilities
,
3465 .poll
= io_uring_poll
,
3466 #ifdef CONFIG_PROC_FS
3467 .show_fdinfo
= io_uring_show_fdinfo
,
3471 bool io_is_uring_fops(struct file
*file
)
3473 return file
->f_op
== &io_uring_fops
;
3476 static __cold
int io_allocate_scq_urings(struct io_ring_ctx
*ctx
,
3477 struct io_uring_params
*p
)
3479 struct io_rings
*rings
;
3480 size_t size
, sq_array_offset
;
3483 /* make sure these are sane, as we already accounted them */
3484 ctx
->sq_entries
= p
->sq_entries
;
3485 ctx
->cq_entries
= p
->cq_entries
;
3487 size
= rings_size(ctx
->flags
, p
->sq_entries
, p
->cq_entries
,
3489 if (size
== SIZE_MAX
)
3492 if (!(ctx
->flags
& IORING_SETUP_NO_MMAP
))
3493 rings
= io_pages_map(&ctx
->ring_pages
, &ctx
->n_ring_pages
, size
);
3495 rings
= io_rings_map(ctx
, p
->cq_off
.user_addr
, size
);
3498 return PTR_ERR(rings
);
3501 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
3502 ctx
->sq_array
= (u32
*)((char *)rings
+ sq_array_offset
);
3503 rings
->sq_ring_mask
= p
->sq_entries
- 1;
3504 rings
->cq_ring_mask
= p
->cq_entries
- 1;
3505 rings
->sq_ring_entries
= p
->sq_entries
;
3506 rings
->cq_ring_entries
= p
->cq_entries
;
3508 if (p
->flags
& IORING_SETUP_SQE128
)
3509 size
= array_size(2 * sizeof(struct io_uring_sqe
), p
->sq_entries
);
3511 size
= array_size(sizeof(struct io_uring_sqe
), p
->sq_entries
);
3512 if (size
== SIZE_MAX
) {
3517 if (!(ctx
->flags
& IORING_SETUP_NO_MMAP
))
3518 ptr
= io_pages_map(&ctx
->sqe_pages
, &ctx
->n_sqe_pages
, size
);
3520 ptr
= io_sqes_map(ctx
, p
->sq_off
.user_addr
, size
);
3524 return PTR_ERR(ptr
);
3531 static int io_uring_install_fd(struct file
*file
)
3535 fd
= get_unused_fd_flags(O_RDWR
| O_CLOEXEC
);
3538 fd_install(fd
, file
);
3543 * Allocate an anonymous fd, this is what constitutes the application
3544 * visible backing of an io_uring instance. The application mmaps this
3545 * fd to gain access to the SQ/CQ ring details.
3547 static struct file
*io_uring_get_file(struct io_ring_ctx
*ctx
)
3549 /* Create a new inode so that the LSM can block the creation. */
3550 return anon_inode_create_getfile("[io_uring]", &io_uring_fops
, ctx
,
3551 O_RDWR
| O_CLOEXEC
, NULL
);
3554 int io_uring_fill_params(unsigned entries
, struct io_uring_params
*p
)
3558 if (entries
> IORING_MAX_ENTRIES
) {
3559 if (!(p
->flags
& IORING_SETUP_CLAMP
))
3561 entries
= IORING_MAX_ENTRIES
;
3564 if ((p
->flags
& IORING_SETUP_REGISTERED_FD_ONLY
)
3565 && !(p
->flags
& IORING_SETUP_NO_MMAP
))
3569 * Use twice as many entries for the CQ ring. It's possible for the
3570 * application to drive a higher depth than the size of the SQ ring,
3571 * since the sqes are only used at submission time. This allows for
3572 * some flexibility in overcommitting a bit. If the application has
3573 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3574 * of CQ ring entries manually.
3576 p
->sq_entries
= roundup_pow_of_two(entries
);
3577 if (p
->flags
& IORING_SETUP_CQSIZE
) {
3579 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3580 * to a power-of-two, if it isn't already. We do NOT impose
3581 * any cq vs sq ring sizing.
3585 if (p
->cq_entries
> IORING_MAX_CQ_ENTRIES
) {
3586 if (!(p
->flags
& IORING_SETUP_CLAMP
))
3588 p
->cq_entries
= IORING_MAX_CQ_ENTRIES
;
3590 p
->cq_entries
= roundup_pow_of_two(p
->cq_entries
);
3591 if (p
->cq_entries
< p
->sq_entries
)
3594 p
->cq_entries
= 2 * p
->sq_entries
;
3597 p
->sq_off
.head
= offsetof(struct io_rings
, sq
.head
);
3598 p
->sq_off
.tail
= offsetof(struct io_rings
, sq
.tail
);
3599 p
->sq_off
.ring_mask
= offsetof(struct io_rings
, sq_ring_mask
);
3600 p
->sq_off
.ring_entries
= offsetof(struct io_rings
, sq_ring_entries
);
3601 p
->sq_off
.flags
= offsetof(struct io_rings
, sq_flags
);
3602 p
->sq_off
.dropped
= offsetof(struct io_rings
, sq_dropped
);
3603 p
->sq_off
.resv1
= 0;
3604 if (!(p
->flags
& IORING_SETUP_NO_MMAP
))
3605 p
->sq_off
.user_addr
= 0;
3607 p
->cq_off
.head
= offsetof(struct io_rings
, cq
.head
);
3608 p
->cq_off
.tail
= offsetof(struct io_rings
, cq
.tail
);
3609 p
->cq_off
.ring_mask
= offsetof(struct io_rings
, cq_ring_mask
);
3610 p
->cq_off
.ring_entries
= offsetof(struct io_rings
, cq_ring_entries
);
3611 p
->cq_off
.overflow
= offsetof(struct io_rings
, cq_overflow
);
3612 p
->cq_off
.cqes
= offsetof(struct io_rings
, cqes
);
3613 p
->cq_off
.flags
= offsetof(struct io_rings
, cq_flags
);
3614 p
->cq_off
.resv1
= 0;
3615 if (!(p
->flags
& IORING_SETUP_NO_MMAP
))
3616 p
->cq_off
.user_addr
= 0;
3621 static __cold
int io_uring_create(unsigned entries
, struct io_uring_params
*p
,
3622 struct io_uring_params __user
*params
)
3624 struct io_ring_ctx
*ctx
;
3625 struct io_uring_task
*tctx
;
3629 ret
= io_uring_fill_params(entries
, p
);
3633 ctx
= io_ring_ctx_alloc(p
);
3637 ctx
->clockid
= CLOCK_MONOTONIC
;
3638 ctx
->clock_offset
= 0;
3640 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
3641 static_branch_inc(&io_key_has_sqarray
);
3643 if ((ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) &&
3644 !(ctx
->flags
& IORING_SETUP_IOPOLL
) &&
3645 !(ctx
->flags
& IORING_SETUP_SQPOLL
))
3646 ctx
->task_complete
= true;
3648 if (ctx
->task_complete
|| (ctx
->flags
& IORING_SETUP_IOPOLL
))
3649 ctx
->lockless_cq
= true;
3652 * lazy poll_wq activation relies on ->task_complete for synchronisation
3653 * purposes, see io_activate_pollwq()
3655 if (!ctx
->task_complete
)
3656 ctx
->poll_activated
= true;
3659 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3660 * space applications don't need to do io completion events
3661 * polling again, they can rely on io_sq_thread to do polling
3662 * work, which can reduce cpu usage and uring_lock contention.
3664 if (ctx
->flags
& IORING_SETUP_IOPOLL
&&
3665 !(ctx
->flags
& IORING_SETUP_SQPOLL
))
3666 ctx
->syscall_iopoll
= 1;
3668 ctx
->compat
= in_compat_syscall();
3669 if (!ns_capable_noaudit(&init_user_ns
, CAP_IPC_LOCK
))
3670 ctx
->user
= get_uid(current_user());
3673 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3674 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3677 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
3678 /* IPI related flags don't make sense with SQPOLL */
3679 if (ctx
->flags
& (IORING_SETUP_COOP_TASKRUN
|
3680 IORING_SETUP_TASKRUN_FLAG
|
3681 IORING_SETUP_DEFER_TASKRUN
))
3683 ctx
->notify_method
= TWA_SIGNAL_NO_IPI
;
3684 } else if (ctx
->flags
& IORING_SETUP_COOP_TASKRUN
) {
3685 ctx
->notify_method
= TWA_SIGNAL_NO_IPI
;
3687 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
&&
3688 !(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
))
3690 ctx
->notify_method
= TWA_SIGNAL
;
3693 /* HYBRID_IOPOLL only valid with IOPOLL */
3694 if ((ctx
->flags
& (IORING_SETUP_IOPOLL
|IORING_SETUP_HYBRID_IOPOLL
)) ==
3695 IORING_SETUP_HYBRID_IOPOLL
)
3699 * For DEFER_TASKRUN we require the completion task to be the same as the
3700 * submission task. This implies that there is only one submitter, so enforce
3703 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
&&
3704 !(ctx
->flags
& IORING_SETUP_SINGLE_ISSUER
)) {
3709 * This is just grabbed for accounting purposes. When a process exits,
3710 * the mm is exited and dropped before the files, hence we need to hang
3711 * on to this mm purely for the purposes of being able to unaccount
3712 * memory (locked/pinned vm). It's not used for anything else.
3714 mmgrab(current
->mm
);
3715 ctx
->mm_account
= current
->mm
;
3717 ret
= io_allocate_scq_urings(ctx
, p
);
3721 if (!(p
->flags
& IORING_SETUP_NO_SQARRAY
))
3722 p
->sq_off
.array
= (char *)ctx
->sq_array
- (char *)ctx
->rings
;
3724 ret
= io_sq_offload_create(ctx
, p
);
3728 p
->features
= IORING_FEAT_SINGLE_MMAP
| IORING_FEAT_NODROP
|
3729 IORING_FEAT_SUBMIT_STABLE
| IORING_FEAT_RW_CUR_POS
|
3730 IORING_FEAT_CUR_PERSONALITY
| IORING_FEAT_FAST_POLL
|
3731 IORING_FEAT_POLL_32BITS
| IORING_FEAT_SQPOLL_NONFIXED
|
3732 IORING_FEAT_EXT_ARG
| IORING_FEAT_NATIVE_WORKERS
|
3733 IORING_FEAT_RSRC_TAGS
| IORING_FEAT_CQE_SKIP
|
3734 IORING_FEAT_LINKED_FILE
| IORING_FEAT_REG_REG_RING
|
3735 IORING_FEAT_RECVSEND_BUNDLE
| IORING_FEAT_MIN_TIMEOUT
;
3737 if (copy_to_user(params
, p
, sizeof(*p
))) {
3742 if (ctx
->flags
& IORING_SETUP_SINGLE_ISSUER
3743 && !(ctx
->flags
& IORING_SETUP_R_DISABLED
))
3744 WRITE_ONCE(ctx
->submitter_task
, get_task_struct(current
));
3746 file
= io_uring_get_file(ctx
);
3748 ret
= PTR_ERR(file
);
3752 ret
= __io_uring_add_tctx_node(ctx
);
3755 tctx
= current
->io_uring
;
3758 * Install ring fd as the very last thing, so we don't risk someone
3759 * having closed it before we finish setup
3761 if (p
->flags
& IORING_SETUP_REGISTERED_FD_ONLY
)
3762 ret
= io_ring_add_registered_file(tctx
, file
, 0, IO_RINGFD_REG_MAX
);
3764 ret
= io_uring_install_fd(file
);
3768 trace_io_uring_create(ret
, ctx
, p
->sq_entries
, p
->cq_entries
, p
->flags
);
3771 io_ring_ctx_wait_and_kill(ctx
);
3779 * Sets up an aio uring context, and returns the fd. Applications asks for a
3780 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3781 * params structure passed in.
3783 static long io_uring_setup(u32 entries
, struct io_uring_params __user
*params
)
3785 struct io_uring_params p
;
3788 if (copy_from_user(&p
, params
, sizeof(p
)))
3790 for (i
= 0; i
< ARRAY_SIZE(p
.resv
); i
++) {
3795 if (p
.flags
& ~(IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
|
3796 IORING_SETUP_SQ_AFF
| IORING_SETUP_CQSIZE
|
3797 IORING_SETUP_CLAMP
| IORING_SETUP_ATTACH_WQ
|
3798 IORING_SETUP_R_DISABLED
| IORING_SETUP_SUBMIT_ALL
|
3799 IORING_SETUP_COOP_TASKRUN
| IORING_SETUP_TASKRUN_FLAG
|
3800 IORING_SETUP_SQE128
| IORING_SETUP_CQE32
|
3801 IORING_SETUP_SINGLE_ISSUER
| IORING_SETUP_DEFER_TASKRUN
|
3802 IORING_SETUP_NO_MMAP
| IORING_SETUP_REGISTERED_FD_ONLY
|
3803 IORING_SETUP_NO_SQARRAY
| IORING_SETUP_HYBRID_IOPOLL
))
3806 return io_uring_create(entries
, &p
, params
);
3809 static inline bool io_uring_allowed(void)
3811 int disabled
= READ_ONCE(sysctl_io_uring_disabled
);
3812 kgid_t io_uring_group
;
3817 if (disabled
== 0 || capable(CAP_SYS_ADMIN
))
3820 io_uring_group
= make_kgid(&init_user_ns
, sysctl_io_uring_group
);
3821 if (!gid_valid(io_uring_group
))
3824 return in_group_p(io_uring_group
);
3827 SYSCALL_DEFINE2(io_uring_setup
, u32
, entries
,
3828 struct io_uring_params __user
*, params
)
3830 if (!io_uring_allowed())
3833 return io_uring_setup(entries
, params
);
3836 static int __init
io_uring_init(void)
3838 struct kmem_cache_args kmem_args
= {
3839 .useroffset
= offsetof(struct io_kiocb
, cmd
.data
),
3840 .usersize
= sizeof_field(struct io_kiocb
, cmd
.data
),
3841 .freeptr_offset
= offsetof(struct io_kiocb
, work
),
3842 .use_freeptr_offset
= true,
3845 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3846 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3847 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3850 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3851 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3852 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3853 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3854 BUILD_BUG_ON(sizeof(struct io_uring_sqe
) != 64);
3855 BUILD_BUG_SQE_ELEM(0, __u8
, opcode
);
3856 BUILD_BUG_SQE_ELEM(1, __u8
, flags
);
3857 BUILD_BUG_SQE_ELEM(2, __u16
, ioprio
);
3858 BUILD_BUG_SQE_ELEM(4, __s32
, fd
);
3859 BUILD_BUG_SQE_ELEM(8, __u64
, off
);
3860 BUILD_BUG_SQE_ELEM(8, __u64
, addr2
);
3861 BUILD_BUG_SQE_ELEM(8, __u32
, cmd_op
);
3862 BUILD_BUG_SQE_ELEM(12, __u32
, __pad1
);
3863 BUILD_BUG_SQE_ELEM(16, __u64
, addr
);
3864 BUILD_BUG_SQE_ELEM(16, __u64
, splice_off_in
);
3865 BUILD_BUG_SQE_ELEM(24, __u32
, len
);
3866 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t
, rw_flags
);
3867 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags
);
3868 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32
, rw_flags
);
3869 BUILD_BUG_SQE_ELEM(28, __u32
, fsync_flags
);
3870 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16
, poll_events
);
3871 BUILD_BUG_SQE_ELEM(28, __u32
, poll32_events
);
3872 BUILD_BUG_SQE_ELEM(28, __u32
, sync_range_flags
);
3873 BUILD_BUG_SQE_ELEM(28, __u32
, msg_flags
);
3874 BUILD_BUG_SQE_ELEM(28, __u32
, timeout_flags
);
3875 BUILD_BUG_SQE_ELEM(28, __u32
, accept_flags
);
3876 BUILD_BUG_SQE_ELEM(28, __u32
, cancel_flags
);
3877 BUILD_BUG_SQE_ELEM(28, __u32
, open_flags
);
3878 BUILD_BUG_SQE_ELEM(28, __u32
, statx_flags
);
3879 BUILD_BUG_SQE_ELEM(28, __u32
, fadvise_advice
);
3880 BUILD_BUG_SQE_ELEM(28, __u32
, splice_flags
);
3881 BUILD_BUG_SQE_ELEM(28, __u32
, rename_flags
);
3882 BUILD_BUG_SQE_ELEM(28, __u32
, unlink_flags
);
3883 BUILD_BUG_SQE_ELEM(28, __u32
, hardlink_flags
);
3884 BUILD_BUG_SQE_ELEM(28, __u32
, xattr_flags
);
3885 BUILD_BUG_SQE_ELEM(28, __u32
, msg_ring_flags
);
3886 BUILD_BUG_SQE_ELEM(32, __u64
, user_data
);
3887 BUILD_BUG_SQE_ELEM(40, __u16
, buf_index
);
3888 BUILD_BUG_SQE_ELEM(40, __u16
, buf_group
);
3889 BUILD_BUG_SQE_ELEM(42, __u16
, personality
);
3890 BUILD_BUG_SQE_ELEM(44, __s32
, splice_fd_in
);
3891 BUILD_BUG_SQE_ELEM(44, __u32
, file_index
);
3892 BUILD_BUG_SQE_ELEM(44, __u16
, addr_len
);
3893 BUILD_BUG_SQE_ELEM(46, __u16
, __pad3
[0]);
3894 BUILD_BUG_SQE_ELEM(48, __u64
, addr3
);
3895 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd
);
3896 BUILD_BUG_SQE_ELEM(56, __u64
, __pad2
);
3898 BUILD_BUG_ON(sizeof(struct io_uring_files_update
) !=
3899 sizeof(struct io_uring_rsrc_update
));
3900 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update
) >
3901 sizeof(struct io_uring_rsrc_update2
));
3903 /* ->buf_index is u16 */
3904 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring
, bufs
) != 0);
3905 BUILD_BUG_ON(offsetof(struct io_uring_buf
, resv
) !=
3906 offsetof(struct io_uring_buf_ring
, tail
));
3908 /* should fit into one byte */
3909 BUILD_BUG_ON(SQE_VALID_FLAGS
>= (1 << 8));
3910 BUILD_BUG_ON(SQE_COMMON_FLAGS
>= (1 << 8));
3911 BUILD_BUG_ON((SQE_VALID_FLAGS
| SQE_COMMON_FLAGS
) != SQE_VALID_FLAGS
);
3913 BUILD_BUG_ON(__REQ_F_LAST_BIT
> 8 * sizeof_field(struct io_kiocb
, flags
));
3915 BUILD_BUG_ON(sizeof(atomic_t
) != sizeof(u32
));
3917 /* top 8bits are for internal use */
3918 BUILD_BUG_ON((IORING_URING_CMD_MASK
& 0xff000000) != 0);
3920 io_uring_optable_init();
3923 * Allow user copy in the per-command field, which starts after the
3924 * file in io_kiocb and until the opcode field. The openat2 handling
3925 * requires copying in user memory into the io_kiocb object in that
3926 * range, and HARDENED_USERCOPY will complain if we haven't
3927 * correctly annotated this range.
3929 req_cachep
= kmem_cache_create("io_kiocb", sizeof(struct io_kiocb
), &kmem_args
,
3930 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
|
3931 SLAB_TYPESAFE_BY_RCU
);
3932 io_buf_cachep
= KMEM_CACHE(io_buffer
,
3933 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
);
3935 iou_wq
= alloc_workqueue("iou_exit", WQ_UNBOUND
, 64);
3937 #ifdef CONFIG_SYSCTL
3938 register_sysctl_init("kernel", kernel_io_uring_disabled_table
);
3943 __initcall(io_uring_init
);