1 // SPDX-License-Identifier: GPL-2.0-only
3 * kexec.c - kexec system call core code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/capability.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/panic_notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/objtool.h>
42 #include <linux/kmsg_dump.h>
45 #include <asm/sections.h>
47 #include <crypto/hash.h>
48 #include "kexec_internal.h"
50 atomic_t __kexec_lock
= ATOMIC_INIT(0);
52 /* Flag to indicate we are going to kexec a new kernel */
53 bool kexec_in_progress
= false;
55 bool kexec_file_dbg_print
;
58 * When kexec transitions to the new kernel there is a one-to-one
59 * mapping between physical and virtual addresses. On processors
60 * where you can disable the MMU this is trivial, and easy. For
61 * others it is still a simple predictable page table to setup.
63 * In that environment kexec copies the new kernel to its final
64 * resting place. This means I can only support memory whose
65 * physical address can fit in an unsigned long. In particular
66 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
67 * If the assembly stub has more restrictive requirements
68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
69 * defined more restrictively in <asm/kexec.h>.
71 * The code for the transition from the current kernel to the
72 * new kernel is placed in the control_code_buffer, whose size
73 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
74 * page of memory is necessary, but some architectures require more.
75 * Because this memory must be identity mapped in the transition from
76 * virtual to physical addresses it must live in the range
77 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
80 * The assembly stub in the control code buffer is passed a linked list
81 * of descriptor pages detailing the source pages of the new kernel,
82 * and the destination addresses of those source pages. As this data
83 * structure is not used in the context of the current OS, it must
86 * The code has been made to work with highmem pages and will use a
87 * destination page in its final resting place (if it happens
88 * to allocate it). The end product of this is that most of the
89 * physical address space, and most of RAM can be used.
91 * Future directions include:
92 * - allocating a page table with the control code buffer identity
93 * mapped, to simplify machine_kexec and make kexec_on_panic more
98 * KIMAGE_NO_DEST is an impossible destination address..., for
99 * allocating pages whose destination address we do not care about.
101 #define KIMAGE_NO_DEST (-1UL)
102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
104 static struct page
*kimage_alloc_page(struct kimage
*image
,
108 int sanity_check_segment_list(struct kimage
*image
)
111 unsigned long nr_segments
= image
->nr_segments
;
112 unsigned long total_pages
= 0;
113 unsigned long nr_pages
= totalram_pages();
116 * Verify we have good destination addresses. The caller is
117 * responsible for making certain we don't attempt to load
118 * the new image into invalid or reserved areas of RAM. This
119 * just verifies it is an address we can use.
121 * Since the kernel does everything in page size chunks ensure
122 * the destination addresses are page aligned. Too many
123 * special cases crop of when we don't do this. The most
124 * insidious is getting overlapping destination addresses
125 * simply because addresses are changed to page size
128 for (i
= 0; i
< nr_segments
; i
++) {
129 unsigned long mstart
, mend
;
131 mstart
= image
->segment
[i
].mem
;
132 mend
= mstart
+ image
->segment
[i
].memsz
;
134 return -EADDRNOTAVAIL
;
135 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
136 return -EADDRNOTAVAIL
;
137 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
138 return -EADDRNOTAVAIL
;
141 /* Verify our destination addresses do not overlap.
142 * If we alloed overlapping destination addresses
143 * through very weird things can happen with no
144 * easy explanation as one segment stops on another.
146 for (i
= 0; i
< nr_segments
; i
++) {
147 unsigned long mstart
, mend
;
150 mstart
= image
->segment
[i
].mem
;
151 mend
= mstart
+ image
->segment
[i
].memsz
;
152 for (j
= 0; j
< i
; j
++) {
153 unsigned long pstart
, pend
;
155 pstart
= image
->segment
[j
].mem
;
156 pend
= pstart
+ image
->segment
[j
].memsz
;
157 /* Do the segments overlap ? */
158 if ((mend
> pstart
) && (mstart
< pend
))
163 /* Ensure our buffer sizes are strictly less than
164 * our memory sizes. This should always be the case,
165 * and it is easier to check up front than to be surprised
168 for (i
= 0; i
< nr_segments
; i
++) {
169 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
174 * Verify that no more than half of memory will be consumed. If the
175 * request from userspace is too large, a large amount of time will be
176 * wasted allocating pages, which can cause a soft lockup.
178 for (i
= 0; i
< nr_segments
; i
++) {
179 if (PAGE_COUNT(image
->segment
[i
].memsz
) > nr_pages
/ 2)
182 total_pages
+= PAGE_COUNT(image
->segment
[i
].memsz
);
185 if (total_pages
> nr_pages
/ 2)
188 #ifdef CONFIG_CRASH_DUMP
190 * Verify we have good destination addresses. Normally
191 * the caller is responsible for making certain we don't
192 * attempt to load the new image into invalid or reserved
193 * areas of RAM. But crash kernels are preloaded into a
194 * reserved area of ram. We must ensure the addresses
195 * are in the reserved area otherwise preloading the
196 * kernel could corrupt things.
199 if (image
->type
== KEXEC_TYPE_CRASH
) {
200 for (i
= 0; i
< nr_segments
; i
++) {
201 unsigned long mstart
, mend
;
203 mstart
= image
->segment
[i
].mem
;
204 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
205 /* Ensure we are within the crash kernel limits */
206 if ((mstart
< phys_to_boot_phys(crashk_res
.start
)) ||
207 (mend
> phys_to_boot_phys(crashk_res
.end
)))
208 return -EADDRNOTAVAIL
;
216 struct kimage
*do_kimage_alloc_init(void)
218 struct kimage
*image
;
220 /* Allocate a controlling structure */
221 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
226 image
->entry
= &image
->head
;
227 image
->last_entry
= &image
->head
;
228 image
->control_page
= ~0; /* By default this does not apply */
229 image
->type
= KEXEC_TYPE_DEFAULT
;
231 /* Initialize the list of control pages */
232 INIT_LIST_HEAD(&image
->control_pages
);
234 /* Initialize the list of destination pages */
235 INIT_LIST_HEAD(&image
->dest_pages
);
237 /* Initialize the list of unusable pages */
238 INIT_LIST_HEAD(&image
->unusable_pages
);
240 #ifdef CONFIG_CRASH_HOTPLUG
241 image
->hp_action
= KEXEC_CRASH_HP_NONE
;
242 image
->elfcorehdr_index
= -1;
243 image
->elfcorehdr_updated
= false;
249 int kimage_is_destination_range(struct kimage
*image
,
255 for (i
= 0; i
< image
->nr_segments
; i
++) {
256 unsigned long mstart
, mend
;
258 mstart
= image
->segment
[i
].mem
;
259 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
260 if ((end
>= mstart
) && (start
<= mend
))
267 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
271 if (fatal_signal_pending(current
))
273 pages
= alloc_pages(gfp_mask
& ~__GFP_ZERO
, order
);
275 unsigned int count
, i
;
277 pages
->mapping
= NULL
;
278 set_page_private(pages
, order
);
280 for (i
= 0; i
< count
; i
++)
281 SetPageReserved(pages
+ i
);
283 arch_kexec_post_alloc_pages(page_address(pages
), count
,
286 if (gfp_mask
& __GFP_ZERO
)
287 for (i
= 0; i
< count
; i
++)
288 clear_highpage(pages
+ i
);
294 static void kimage_free_pages(struct page
*page
)
296 unsigned int order
, count
, i
;
298 order
= page_private(page
);
301 arch_kexec_pre_free_pages(page_address(page
), count
);
303 for (i
= 0; i
< count
; i
++)
304 ClearPageReserved(page
+ i
);
305 __free_pages(page
, order
);
308 void kimage_free_page_list(struct list_head
*list
)
310 struct page
*page
, *next
;
312 list_for_each_entry_safe(page
, next
, list
, lru
) {
313 list_del(&page
->lru
);
314 kimage_free_pages(page
);
318 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
321 /* Control pages are special, they are the intermediaries
322 * that are needed while we copy the rest of the pages
323 * to their final resting place. As such they must
324 * not conflict with either the destination addresses
325 * or memory the kernel is already using.
327 * The only case where we really need more than one of
328 * these are for architectures where we cannot disable
329 * the MMU and must instead generate an identity mapped
330 * page table for all of the memory.
332 * At worst this runs in O(N) of the image size.
334 struct list_head extra_pages
;
339 INIT_LIST_HEAD(&extra_pages
);
341 /* Loop while I can allocate a page and the page allocated
342 * is a destination page.
345 unsigned long pfn
, epfn
, addr
, eaddr
;
347 pages
= kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP
, order
);
350 pfn
= page_to_boot_pfn(pages
);
352 addr
= pfn
<< PAGE_SHIFT
;
353 eaddr
= (epfn
<< PAGE_SHIFT
) - 1;
354 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
355 kimage_is_destination_range(image
, addr
, eaddr
)) {
356 list_add(&pages
->lru
, &extra_pages
);
362 /* Remember the allocated page... */
363 list_add(&pages
->lru
, &image
->control_pages
);
365 /* Because the page is already in it's destination
366 * location we will never allocate another page at
367 * that address. Therefore kimage_alloc_pages
368 * will not return it (again) and we don't need
369 * to give it an entry in image->segment[].
372 /* Deal with the destination pages I have inadvertently allocated.
374 * Ideally I would convert multi-page allocations into single
375 * page allocations, and add everything to image->dest_pages.
377 * For now it is simpler to just free the pages.
379 kimage_free_page_list(&extra_pages
);
384 #ifdef CONFIG_CRASH_DUMP
385 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
388 /* Control pages are special, they are the intermediaries
389 * that are needed while we copy the rest of the pages
390 * to their final resting place. As such they must
391 * not conflict with either the destination addresses
392 * or memory the kernel is already using.
394 * Control pages are also the only pags we must allocate
395 * when loading a crash kernel. All of the other pages
396 * are specified by the segments and we just memcpy
397 * into them directly.
399 * The only case where we really need more than one of
400 * these are for architectures where we cannot disable
401 * the MMU and must instead generate an identity mapped
402 * page table for all of the memory.
404 * Given the low demand this implements a very simple
405 * allocator that finds the first hole of the appropriate
406 * size in the reserved memory region, and allocates all
407 * of the memory up to and including the hole.
409 unsigned long hole_start
, hole_end
, size
;
413 size
= (1 << order
) << PAGE_SHIFT
;
414 hole_start
= ALIGN(image
->control_page
, size
);
415 hole_end
= hole_start
+ size
- 1;
416 while (hole_end
<= crashk_res
.end
) {
421 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
423 /* See if I overlap any of the segments */
424 for (i
= 0; i
< image
->nr_segments
; i
++) {
425 unsigned long mstart
, mend
;
427 mstart
= image
->segment
[i
].mem
;
428 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
429 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
430 /* Advance the hole to the end of the segment */
431 hole_start
= ALIGN(mend
, size
);
432 hole_end
= hole_start
+ size
- 1;
436 /* If I don't overlap any segments I have found my hole! */
437 if (i
== image
->nr_segments
) {
438 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
439 image
->control_page
= hole_end
+ 1;
444 /* Ensure that these pages are decrypted if SME is enabled. */
446 arch_kexec_post_alloc_pages(page_address(pages
), 1 << order
, 0);
453 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
456 struct page
*pages
= NULL
;
458 switch (image
->type
) {
459 case KEXEC_TYPE_DEFAULT
:
460 pages
= kimage_alloc_normal_control_pages(image
, order
);
462 #ifdef CONFIG_CRASH_DUMP
463 case KEXEC_TYPE_CRASH
:
464 pages
= kimage_alloc_crash_control_pages(image
, order
);
472 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
474 if (*image
->entry
!= 0)
477 if (image
->entry
== image
->last_entry
) {
478 kimage_entry_t
*ind_page
;
481 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
485 ind_page
= page_address(page
);
486 *image
->entry
= virt_to_boot_phys(ind_page
) | IND_INDIRECTION
;
487 image
->entry
= ind_page
;
488 image
->last_entry
= ind_page
+
489 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
491 *image
->entry
= entry
;
498 static int kimage_set_destination(struct kimage
*image
,
499 unsigned long destination
)
501 destination
&= PAGE_MASK
;
503 return kimage_add_entry(image
, destination
| IND_DESTINATION
);
507 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
511 return kimage_add_entry(image
, page
| IND_SOURCE
);
515 static void kimage_free_extra_pages(struct kimage
*image
)
517 /* Walk through and free any extra destination pages I may have */
518 kimage_free_page_list(&image
->dest_pages
);
520 /* Walk through and free any unusable pages I have cached */
521 kimage_free_page_list(&image
->unusable_pages
);
525 void kimage_terminate(struct kimage
*image
)
527 if (*image
->entry
!= 0)
530 *image
->entry
= IND_DONE
;
533 #define for_each_kimage_entry(image, ptr, entry) \
534 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
535 ptr = (entry & IND_INDIRECTION) ? \
536 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
538 static void kimage_free_entry(kimage_entry_t entry
)
542 page
= boot_pfn_to_page(entry
>> PAGE_SHIFT
);
543 kimage_free_pages(page
);
546 void kimage_free(struct kimage
*image
)
548 kimage_entry_t
*ptr
, entry
;
549 kimage_entry_t ind
= 0;
554 #ifdef CONFIG_CRASH_DUMP
555 if (image
->vmcoreinfo_data_copy
) {
556 crash_update_vmcoreinfo_safecopy(NULL
);
557 vunmap(image
->vmcoreinfo_data_copy
);
561 kimage_free_extra_pages(image
);
562 for_each_kimage_entry(image
, ptr
, entry
) {
563 if (entry
& IND_INDIRECTION
) {
564 /* Free the previous indirection page */
565 if (ind
& IND_INDIRECTION
)
566 kimage_free_entry(ind
);
567 /* Save this indirection page until we are
571 } else if (entry
& IND_SOURCE
)
572 kimage_free_entry(entry
);
574 /* Free the final indirection page */
575 if (ind
& IND_INDIRECTION
)
576 kimage_free_entry(ind
);
578 /* Handle any machine specific cleanup */
579 machine_kexec_cleanup(image
);
581 /* Free the kexec control pages... */
582 kimage_free_page_list(&image
->control_pages
);
585 * Free up any temporary buffers allocated. This might hit if
586 * error occurred much later after buffer allocation.
588 if (image
->file_mode
)
589 kimage_file_post_load_cleanup(image
);
594 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
597 kimage_entry_t
*ptr
, entry
;
598 unsigned long destination
= 0;
600 for_each_kimage_entry(image
, ptr
, entry
) {
601 if (entry
& IND_DESTINATION
)
602 destination
= entry
& PAGE_MASK
;
603 else if (entry
& IND_SOURCE
) {
604 if (page
== destination
)
606 destination
+= PAGE_SIZE
;
613 static struct page
*kimage_alloc_page(struct kimage
*image
,
615 unsigned long destination
)
618 * Here we implement safeguards to ensure that a source page
619 * is not copied to its destination page before the data on
620 * the destination page is no longer useful.
622 * To do this we maintain the invariant that a source page is
623 * either its own destination page, or it is not a
624 * destination page at all.
626 * That is slightly stronger than required, but the proof
627 * that no problems will not occur is trivial, and the
628 * implementation is simply to verify.
630 * When allocating all pages normally this algorithm will run
631 * in O(N) time, but in the worst case it will run in O(N^2)
632 * time. If the runtime is a problem the data structures can
639 * Walk through the list of destination pages, and see if I
642 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
643 addr
= page_to_boot_pfn(page
) << PAGE_SHIFT
;
644 if (addr
== destination
) {
645 list_del(&page
->lru
);
653 /* Allocate a page, if we run out of memory give up */
654 page
= kimage_alloc_pages(gfp_mask
, 0);
657 /* If the page cannot be used file it away */
658 if (page_to_boot_pfn(page
) >
659 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
660 list_add(&page
->lru
, &image
->unusable_pages
);
663 addr
= page_to_boot_pfn(page
) << PAGE_SHIFT
;
665 /* If it is the destination page we want use it */
666 if (addr
== destination
)
669 /* If the page is not a destination page use it */
670 if (!kimage_is_destination_range(image
, addr
,
671 addr
+ PAGE_SIZE
- 1))
675 * I know that the page is someones destination page.
676 * See if there is already a source page for this
677 * destination page. And if so swap the source pages.
679 old
= kimage_dst_used(image
, addr
);
682 unsigned long old_addr
;
683 struct page
*old_page
;
685 old_addr
= *old
& PAGE_MASK
;
686 old_page
= boot_pfn_to_page(old_addr
>> PAGE_SHIFT
);
687 copy_highpage(page
, old_page
);
688 *old
= addr
| (*old
& ~PAGE_MASK
);
690 /* The old page I have found cannot be a
691 * destination page, so return it if it's
692 * gfp_flags honor the ones passed in.
694 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
695 PageHighMem(old_page
)) {
696 kimage_free_pages(old_page
);
702 /* Place the page on the destination list, to be used later */
703 list_add(&page
->lru
, &image
->dest_pages
);
709 static int kimage_load_normal_segment(struct kimage
*image
,
710 struct kexec_segment
*segment
)
713 size_t ubytes
, mbytes
;
715 unsigned char __user
*buf
= NULL
;
716 unsigned char *kbuf
= NULL
;
718 if (image
->file_mode
)
719 kbuf
= segment
->kbuf
;
722 ubytes
= segment
->bufsz
;
723 mbytes
= segment
->memsz
;
724 maddr
= segment
->mem
;
726 result
= kimage_set_destination(image
, maddr
);
733 size_t uchunk
, mchunk
;
735 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
740 result
= kimage_add_page(image
, page_to_boot_pfn(page
)
745 ptr
= kmap_local_page(page
);
746 /* Start with a clear page */
748 ptr
+= maddr
& ~PAGE_MASK
;
749 mchunk
= min_t(size_t, mbytes
,
750 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
751 uchunk
= min(ubytes
, mchunk
);
754 /* For file based kexec, source pages are in kernel memory */
755 if (image
->file_mode
)
756 memcpy(ptr
, kbuf
, uchunk
);
758 result
= copy_from_user(ptr
, buf
, uchunk
);
760 if (image
->file_mode
)
779 #ifdef CONFIG_CRASH_DUMP
780 static int kimage_load_crash_segment(struct kimage
*image
,
781 struct kexec_segment
*segment
)
783 /* For crash dumps kernels we simply copy the data from
784 * user space to it's destination.
785 * We do things a page at a time for the sake of kmap.
788 size_t ubytes
, mbytes
;
790 unsigned char __user
*buf
= NULL
;
791 unsigned char *kbuf
= NULL
;
794 if (image
->file_mode
)
795 kbuf
= segment
->kbuf
;
798 ubytes
= segment
->bufsz
;
799 mbytes
= segment
->memsz
;
800 maddr
= segment
->mem
;
804 size_t uchunk
, mchunk
;
806 page
= boot_pfn_to_page(maddr
>> PAGE_SHIFT
);
811 arch_kexec_post_alloc_pages(page_address(page
), 1, 0);
812 ptr
= kmap_local_page(page
);
813 ptr
+= maddr
& ~PAGE_MASK
;
814 mchunk
= min_t(size_t, mbytes
,
815 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
816 uchunk
= min(ubytes
, mchunk
);
817 if (mchunk
> uchunk
) {
818 /* Zero the trailing part of the page */
819 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
823 /* For file based kexec, source pages are in kernel memory */
824 if (image
->file_mode
)
825 memcpy(ptr
, kbuf
, uchunk
);
827 result
= copy_from_user(ptr
, buf
, uchunk
);
829 if (image
->file_mode
)
834 kexec_flush_icache_page(page
);
836 arch_kexec_pre_free_pages(page_address(page
), 1);
851 int kimage_load_segment(struct kimage
*image
,
852 struct kexec_segment
*segment
)
854 int result
= -ENOMEM
;
856 switch (image
->type
) {
857 case KEXEC_TYPE_DEFAULT
:
858 result
= kimage_load_normal_segment(image
, segment
);
860 #ifdef CONFIG_CRASH_DUMP
861 case KEXEC_TYPE_CRASH
:
862 result
= kimage_load_crash_segment(image
, segment
);
870 struct kexec_load_limit
{
871 /* Mutex protects the limit count. */
876 static struct kexec_load_limit load_limit_reboot
= {
877 .mutex
= __MUTEX_INITIALIZER(load_limit_reboot
.mutex
),
881 static struct kexec_load_limit load_limit_panic
= {
882 .mutex
= __MUTEX_INITIALIZER(load_limit_panic
.mutex
),
886 struct kimage
*kexec_image
;
887 struct kimage
*kexec_crash_image
;
888 static int kexec_load_disabled
;
891 static int kexec_limit_handler(const struct ctl_table
*table
, int write
,
892 void *buffer
, size_t *lenp
, loff_t
*ppos
)
894 struct kexec_load_limit
*limit
= table
->data
;
896 struct ctl_table tmp
= {
898 .maxlen
= sizeof(val
),
904 ret
= proc_dointvec(&tmp
, write
, buffer
, lenp
, ppos
);
911 mutex_lock(&limit
->mutex
);
912 if (limit
->limit
!= -1 && val
>= limit
->limit
)
916 mutex_unlock(&limit
->mutex
);
921 mutex_lock(&limit
->mutex
);
923 mutex_unlock(&limit
->mutex
);
925 return proc_dointvec(&tmp
, write
, buffer
, lenp
, ppos
);
928 static struct ctl_table kexec_core_sysctls
[] = {
930 .procname
= "kexec_load_disabled",
931 .data
= &kexec_load_disabled
,
932 .maxlen
= sizeof(int),
934 /* only handle a transition from default "0" to "1" */
935 .proc_handler
= proc_dointvec_minmax
,
936 .extra1
= SYSCTL_ONE
,
937 .extra2
= SYSCTL_ONE
,
940 .procname
= "kexec_load_limit_panic",
941 .data
= &load_limit_panic
,
943 .proc_handler
= kexec_limit_handler
,
946 .procname
= "kexec_load_limit_reboot",
947 .data
= &load_limit_reboot
,
949 .proc_handler
= kexec_limit_handler
,
953 static int __init
kexec_core_sysctl_init(void)
955 register_sysctl_init("kernel", kexec_core_sysctls
);
958 late_initcall(kexec_core_sysctl_init
);
961 bool kexec_load_permitted(int kexec_image_type
)
963 struct kexec_load_limit
*limit
;
966 * Only the superuser can use the kexec syscall and if it has not
969 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
972 /* Check limit counter and decrease it.*/
973 limit
= (kexec_image_type
== KEXEC_TYPE_CRASH
) ?
974 &load_limit_panic
: &load_limit_reboot
;
975 mutex_lock(&limit
->mutex
);
977 mutex_unlock(&limit
->mutex
);
980 if (limit
->limit
!= -1)
982 mutex_unlock(&limit
->mutex
);
988 * Move into place and start executing a preloaded standalone
989 * executable. If nothing was preloaded return an error.
991 int kernel_kexec(void)
995 if (!kexec_trylock())
1002 #ifdef CONFIG_KEXEC_JUMP
1003 if (kexec_image
->preserve_context
) {
1004 pm_prepare_console();
1005 error
= freeze_processes();
1008 goto Restore_console
;
1011 error
= dpm_suspend_start(PMSG_FREEZE
);
1013 goto Resume_console
;
1014 /* At this point, dpm_suspend_start() has been called,
1015 * but *not* dpm_suspend_end(). We *must* call
1016 * dpm_suspend_end() now. Otherwise, drivers for
1017 * some devices (e.g. interrupt controllers) become
1018 * desynchronized with the actual state of the
1019 * hardware at resume time, and evil weirdness ensues.
1021 error
= dpm_suspend_end(PMSG_FREEZE
);
1023 goto Resume_devices
;
1024 error
= suspend_disable_secondary_cpus();
1027 local_irq_disable();
1028 error
= syscore_suspend();
1034 kexec_in_progress
= true;
1035 kernel_restart_prepare("kexec reboot");
1036 migrate_to_reboot_cpu();
1040 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1041 * no further code needs to use CPU hotplug (which is true in
1042 * the reboot case). However, the kexec path depends on using
1043 * CPU hotplug again; so re-enable it here.
1045 cpu_hotplug_enable();
1046 pr_notice("Starting new kernel\n");
1050 kmsg_dump(KMSG_DUMP_SHUTDOWN
);
1051 machine_kexec(kexec_image
);
1053 #ifdef CONFIG_KEXEC_JUMP
1054 if (kexec_image
->preserve_context
) {
1059 suspend_enable_secondary_cpus();
1060 dpm_resume_start(PMSG_RESTORE
);
1062 dpm_resume_end(PMSG_RESTORE
);
1067 pm_restore_console();