1 // SPDX-License-Identifier: GPL-2.0+
3 * This file contains the functions which manage clocksource drivers.
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
23 static void clocksource_enqueue(struct clocksource
*cs
);
25 static noinline u64
cycles_to_nsec_safe(struct clocksource
*cs
, u64 start
, u64 end
)
27 u64 delta
= clocksource_delta(end
, start
, cs
->mask
);
29 if (likely(delta
< cs
->max_cycles
))
30 return clocksource_cyc2ns(delta
, cs
->mult
, cs
->shift
);
32 return mul_u64_u32_shr(delta
, cs
->mult
, cs
->shift
);
36 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
37 * @mult: pointer to mult variable
38 * @shift: pointer to shift variable
39 * @from: frequency to convert from
40 * @to: frequency to convert to
41 * @maxsec: guaranteed runtime conversion range in seconds
43 * The function evaluates the shift/mult pair for the scaled math
44 * operations of clocksources and clockevents.
46 * @to and @from are frequency values in HZ. For clock sources @to is
47 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
48 * event @to is the counter frequency and @from is NSEC_PER_SEC.
50 * The @maxsec conversion range argument controls the time frame in
51 * seconds which must be covered by the runtime conversion with the
52 * calculated mult and shift factors. This guarantees that no 64bit
53 * overflow happens when the input value of the conversion is
54 * multiplied with the calculated mult factor. Larger ranges may
55 * reduce the conversion accuracy by choosing smaller mult and shift
59 clocks_calc_mult_shift(u32
*mult
, u32
*shift
, u32 from
, u32 to
, u32 maxsec
)
65 * Calculate the shift factor which is limiting the conversion
68 tmp
= ((u64
)maxsec
* from
) >> 32;
75 * Find the conversion shift/mult pair which has the best
76 * accuracy and fits the maxsec conversion range:
78 for (sft
= 32; sft
> 0; sft
--) {
79 tmp
= (u64
) to
<< sft
;
82 if ((tmp
>> sftacc
) == 0)
88 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift
);
90 /*[Clocksource internal variables]---------
92 * currently selected clocksource.
93 * suspend_clocksource:
94 * used to calculate the suspend time.
96 * linked list with the registered clocksources
98 * protects manipulations to curr_clocksource and the clocksource_list
100 * Name of the user-specified clocksource.
102 static struct clocksource
*curr_clocksource
;
103 static struct clocksource
*suspend_clocksource
;
104 static LIST_HEAD(clocksource_list
);
105 static DEFINE_MUTEX(clocksource_mutex
);
106 static char override_name
[CS_NAME_LEN
];
107 static int finished_booting
;
108 static u64 suspend_start
;
113 #define WATCHDOG_INTERVAL (HZ >> 1)
114 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
117 * Threshold: 0.0312s, when doubled: 0.0625s.
119 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
122 * Maximum permissible delay between two readouts of the watchdog
123 * clocksource surrounding a read of the clocksource being validated.
124 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
125 * a lower bound for cs->uncertainty_margin values when registering clocks.
127 * The default of 500 parts per million is based on NTP's limits.
128 * If a clocksource is good enough for NTP, it is good enough for us!
130 * In other words, by default, even if a clocksource is extremely
131 * precise (for example, with a sub-nanosecond period), the maximum
132 * permissible skew between the clocksource watchdog and the clocksource
133 * under test is not permitted to go below the 500ppm minimum defined
134 * by MAX_SKEW_USEC. This 500ppm minimum may be overridden using the
135 * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option.
137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
138 #define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
140 #define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ)
144 * Default for maximum permissible skew when cs->uncertainty_margin is
145 * not specified, and the lower bound even when cs->uncertainty_margin
146 * is specified. This is also the default that is used when registering
147 * clocks with unspecifed cs->uncertainty_margin, so this macro is used
148 * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels.
150 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
152 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
153 static void clocksource_watchdog_work(struct work_struct
*work
);
154 static void clocksource_select(void);
156 static LIST_HEAD(watchdog_list
);
157 static struct clocksource
*watchdog
;
158 static struct timer_list watchdog_timer
;
159 static DECLARE_WORK(watchdog_work
, clocksource_watchdog_work
);
160 static DEFINE_SPINLOCK(watchdog_lock
);
161 static int watchdog_running
;
162 static atomic_t watchdog_reset_pending
;
163 static int64_t watchdog_max_interval
;
165 static inline void clocksource_watchdog_lock(unsigned long *flags
)
167 spin_lock_irqsave(&watchdog_lock
, *flags
);
170 static inline void clocksource_watchdog_unlock(unsigned long *flags
)
172 spin_unlock_irqrestore(&watchdog_lock
, *flags
);
175 static int clocksource_watchdog_kthread(void *data
);
177 static void clocksource_watchdog_work(struct work_struct
*work
)
180 * We cannot directly run clocksource_watchdog_kthread() here, because
181 * clocksource_select() calls timekeeping_notify() which uses
182 * stop_machine(). One cannot use stop_machine() from a workqueue() due
183 * lock inversions wrt CPU hotplug.
185 * Also, we only ever run this work once or twice during the lifetime
186 * of the kernel, so there is no point in creating a more permanent
189 * If kthread_run fails the next watchdog scan over the
190 * watchdog_list will find the unstable clock again.
192 kthread_run(clocksource_watchdog_kthread
, NULL
, "kwatchdog");
195 static void clocksource_change_rating(struct clocksource
*cs
, int rating
)
199 clocksource_enqueue(cs
);
202 static void __clocksource_unstable(struct clocksource
*cs
)
204 cs
->flags
&= ~(CLOCK_SOURCE_VALID_FOR_HRES
| CLOCK_SOURCE_WATCHDOG
);
205 cs
->flags
|= CLOCK_SOURCE_UNSTABLE
;
208 * If the clocksource is registered clocksource_watchdog_kthread() will
209 * re-rate and re-select.
211 if (list_empty(&cs
->list
)) {
216 if (cs
->mark_unstable
)
217 cs
->mark_unstable(cs
);
219 /* kick clocksource_watchdog_kthread() */
220 if (finished_booting
)
221 schedule_work(&watchdog_work
);
225 * clocksource_mark_unstable - mark clocksource unstable via watchdog
226 * @cs: clocksource to be marked unstable
228 * This function is called by the x86 TSC code to mark clocksources as unstable;
229 * it defers demotion and re-selection to a kthread.
231 void clocksource_mark_unstable(struct clocksource
*cs
)
235 spin_lock_irqsave(&watchdog_lock
, flags
);
236 if (!(cs
->flags
& CLOCK_SOURCE_UNSTABLE
)) {
237 if (!list_empty(&cs
->list
) && list_empty(&cs
->wd_list
))
238 list_add(&cs
->wd_list
, &watchdog_list
);
239 __clocksource_unstable(cs
);
241 spin_unlock_irqrestore(&watchdog_lock
, flags
);
244 static int verify_n_cpus
= 8;
245 module_param(verify_n_cpus
, int, 0644);
247 enum wd_read_status
{
253 static enum wd_read_status
cs_watchdog_read(struct clocksource
*cs
, u64
*csnow
, u64
*wdnow
)
255 int64_t md
= 2 * watchdog
->uncertainty_margin
;
256 unsigned int nretries
, max_retries
;
257 int64_t wd_delay
, wd_seq_delay
;
260 max_retries
= clocksource_get_max_watchdog_retry();
261 for (nretries
= 0; nretries
<= max_retries
; nretries
++) {
263 *wdnow
= watchdog
->read(watchdog
);
264 *csnow
= cs
->read(cs
);
265 wd_end
= watchdog
->read(watchdog
);
266 wd_end2
= watchdog
->read(watchdog
);
269 wd_delay
= cycles_to_nsec_safe(watchdog
, *wdnow
, wd_end
);
270 if (wd_delay
<= md
+ cs
->uncertainty_margin
) {
271 if (nretries
> 1 && nretries
>= max_retries
) {
272 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
273 smp_processor_id(), watchdog
->name
, nretries
);
275 return WD_READ_SUCCESS
;
279 * Now compute delay in consecutive watchdog read to see if
280 * there is too much external interferences that cause
281 * significant delay in reading both clocksource and watchdog.
283 * If consecutive WD read-back delay > md, report
284 * system busy, reinit the watchdog and skip the current
287 wd_seq_delay
= cycles_to_nsec_safe(watchdog
, wd_end
, wd_end2
);
288 if (wd_seq_delay
> md
)
292 pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
293 smp_processor_id(), cs
->name
, wd_delay
, WATCHDOG_MAX_SKEW
, wd_seq_delay
, nretries
, cs
->name
);
294 return WD_READ_UNSTABLE
;
297 pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
298 smp_processor_id(), watchdog
->name
, wd_seq_delay
);
299 pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
304 static u64 csnow_mid
;
305 static cpumask_t cpus_ahead
;
306 static cpumask_t cpus_behind
;
307 static cpumask_t cpus_chosen
;
309 static void clocksource_verify_choose_cpus(void)
311 int cpu
, i
, n
= verify_n_cpus
;
314 /* Check all of the CPUs. */
315 cpumask_copy(&cpus_chosen
, cpu_online_mask
);
316 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen
);
320 /* If no checking desired, or no other CPU to check, leave. */
321 cpumask_clear(&cpus_chosen
);
322 if (n
== 0 || num_online_cpus() <= 1)
325 /* Make sure to select at least one CPU other than the current CPU. */
326 cpu
= cpumask_first(cpu_online_mask
);
327 if (cpu
== smp_processor_id())
328 cpu
= cpumask_next(cpu
, cpu_online_mask
);
329 if (WARN_ON_ONCE(cpu
>= nr_cpu_ids
))
331 cpumask_set_cpu(cpu
, &cpus_chosen
);
333 /* Force a sane value for the boot parameter. */
338 * Randomly select the specified number of CPUs. If the same
339 * CPU is selected multiple times, that CPU is checked only once,
340 * and no replacement CPU is selected. This gracefully handles
341 * situations where verify_n_cpus is greater than the number of
342 * CPUs that are currently online.
344 for (i
= 1; i
< n
; i
++) {
345 cpu
= get_random_u32_below(nr_cpu_ids
);
346 cpu
= cpumask_next(cpu
- 1, cpu_online_mask
);
347 if (cpu
>= nr_cpu_ids
)
348 cpu
= cpumask_first(cpu_online_mask
);
349 if (!WARN_ON_ONCE(cpu
>= nr_cpu_ids
))
350 cpumask_set_cpu(cpu
, &cpus_chosen
);
353 /* Don't verify ourselves. */
354 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen
);
357 static void clocksource_verify_one_cpu(void *csin
)
359 struct clocksource
*cs
= (struct clocksource
*)csin
;
361 csnow_mid
= cs
->read(cs
);
364 void clocksource_verify_percpu(struct clocksource
*cs
)
366 int64_t cs_nsec
, cs_nsec_max
= 0, cs_nsec_min
= LLONG_MAX
;
367 u64 csnow_begin
, csnow_end
;
371 if (verify_n_cpus
== 0)
373 cpumask_clear(&cpus_ahead
);
374 cpumask_clear(&cpus_behind
);
377 clocksource_verify_choose_cpus();
378 if (cpumask_empty(&cpus_chosen
)) {
381 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs
->name
);
384 testcpu
= smp_processor_id();
385 pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs
->name
, testcpu
, cpumask_pr_args(&cpus_chosen
));
386 for_each_cpu(cpu
, &cpus_chosen
) {
389 csnow_begin
= cs
->read(cs
);
390 smp_call_function_single(cpu
, clocksource_verify_one_cpu
, cs
, 1);
391 csnow_end
= cs
->read(cs
);
392 delta
= (s64
)((csnow_mid
- csnow_begin
) & cs
->mask
);
394 cpumask_set_cpu(cpu
, &cpus_behind
);
395 delta
= (csnow_end
- csnow_mid
) & cs
->mask
;
397 cpumask_set_cpu(cpu
, &cpus_ahead
);
398 cs_nsec
= cycles_to_nsec_safe(cs
, csnow_begin
, csnow_end
);
399 if (cs_nsec
> cs_nsec_max
)
400 cs_nsec_max
= cs_nsec
;
401 if (cs_nsec
< cs_nsec_min
)
402 cs_nsec_min
= cs_nsec
;
406 if (!cpumask_empty(&cpus_ahead
))
407 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
408 cpumask_pr_args(&cpus_ahead
), testcpu
, cs
->name
);
409 if (!cpumask_empty(&cpus_behind
))
410 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
411 cpumask_pr_args(&cpus_behind
), testcpu
, cs
->name
);
412 if (!cpumask_empty(&cpus_ahead
) || !cpumask_empty(&cpus_behind
))
413 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
414 testcpu
, cs_nsec_min
, cs_nsec_max
, cs
->name
);
416 EXPORT_SYMBOL_GPL(clocksource_verify_percpu
);
418 static inline void clocksource_reset_watchdog(void)
420 struct clocksource
*cs
;
422 list_for_each_entry(cs
, &watchdog_list
, wd_list
)
423 cs
->flags
&= ~CLOCK_SOURCE_WATCHDOG
;
427 static void clocksource_watchdog(struct timer_list
*unused
)
429 int64_t wd_nsec
, cs_nsec
, interval
;
430 u64 csnow
, wdnow
, cslast
, wdlast
;
431 int next_cpu
, reset_pending
;
432 struct clocksource
*cs
;
433 enum wd_read_status read_ret
;
434 unsigned long extra_wait
= 0;
437 spin_lock(&watchdog_lock
);
438 if (!watchdog_running
)
441 reset_pending
= atomic_read(&watchdog_reset_pending
);
443 list_for_each_entry(cs
, &watchdog_list
, wd_list
) {
445 /* Clocksource already marked unstable? */
446 if (cs
->flags
& CLOCK_SOURCE_UNSTABLE
) {
447 if (finished_booting
)
448 schedule_work(&watchdog_work
);
452 read_ret
= cs_watchdog_read(cs
, &csnow
, &wdnow
);
454 if (read_ret
== WD_READ_UNSTABLE
) {
455 /* Clock readout unreliable, so give it up. */
456 __clocksource_unstable(cs
);
461 * When WD_READ_SKIP is returned, it means the system is likely
462 * under very heavy load, where the latency of reading
463 * watchdog/clocksource is very big, and affect the accuracy of
464 * watchdog check. So give system some space and suspend the
465 * watchdog check for 5 minutes.
467 if (read_ret
== WD_READ_SKIP
) {
469 * As the watchdog timer will be suspended, and
470 * cs->last could keep unchanged for 5 minutes, reset
473 clocksource_reset_watchdog();
474 extra_wait
= HZ
* 300;
478 /* Clocksource initialized ? */
479 if (!(cs
->flags
& CLOCK_SOURCE_WATCHDOG
) ||
480 atomic_read(&watchdog_reset_pending
)) {
481 cs
->flags
|= CLOCK_SOURCE_WATCHDOG
;
487 wd_nsec
= cycles_to_nsec_safe(watchdog
, cs
->wd_last
, wdnow
);
488 cs_nsec
= cycles_to_nsec_safe(cs
, cs
->cs_last
, csnow
);
489 wdlast
= cs
->wd_last
; /* save these in case we print them */
490 cslast
= cs
->cs_last
;
494 if (atomic_read(&watchdog_reset_pending
))
498 * The processing of timer softirqs can get delayed (usually
499 * on account of ksoftirqd not getting to run in a timely
500 * manner), which causes the watchdog interval to stretch.
501 * Skew detection may fail for longer watchdog intervals
502 * on account of fixed margins being used.
503 * Some clocksources, e.g. acpi_pm, cannot tolerate
504 * watchdog intervals longer than a few seconds.
506 interval
= max(cs_nsec
, wd_nsec
);
507 if (unlikely(interval
> WATCHDOG_INTERVAL_MAX_NS
)) {
508 if (system_state
> SYSTEM_SCHEDULING
&&
509 interval
> 2 * watchdog_max_interval
) {
510 watchdog_max_interval
= interval
;
511 pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
514 watchdog_timer
.expires
= jiffies
;
518 /* Check the deviation from the watchdog clocksource. */
519 md
= cs
->uncertainty_margin
+ watchdog
->uncertainty_margin
;
520 if (abs(cs_nsec
- wd_nsec
) > md
) {
525 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
526 smp_processor_id(), cs
->name
);
527 pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
528 watchdog
->name
, wd_nsec
, wdnow
, wdlast
, watchdog
->mask
);
529 pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
530 cs
->name
, cs_nsec
, csnow
, cslast
, cs
->mask
);
531 cs_wd_msec
= div_s64_rem(cs_nsec
- wd_nsec
, 1000 * 1000, &wd_rem
);
532 wd_msec
= div_s64_rem(wd_nsec
, 1000 * 1000, &wd_rem
);
533 pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
534 cs
->name
, cs_nsec
- wd_nsec
, cs_wd_msec
, watchdog
->name
, wd_nsec
, wd_msec
);
535 if (curr_clocksource
== cs
)
536 pr_warn(" '%s' is current clocksource.\n", cs
->name
);
537 else if (curr_clocksource
)
538 pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource
->name
, cs
->name
);
540 pr_warn(" No current clocksource.\n");
541 __clocksource_unstable(cs
);
545 if (cs
== curr_clocksource
&& cs
->tick_stable
)
548 if (!(cs
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
) &&
549 (cs
->flags
& CLOCK_SOURCE_IS_CONTINUOUS
) &&
550 (watchdog
->flags
& CLOCK_SOURCE_IS_CONTINUOUS
)) {
551 /* Mark it valid for high-res. */
552 cs
->flags
|= CLOCK_SOURCE_VALID_FOR_HRES
;
555 * clocksource_done_booting() will sort it if
556 * finished_booting is not set yet.
558 if (!finished_booting
)
562 * If this is not the current clocksource let
563 * the watchdog thread reselect it. Due to the
564 * change to high res this clocksource might
565 * be preferred now. If it is the current
566 * clocksource let the tick code know about
569 if (cs
!= curr_clocksource
) {
570 cs
->flags
|= CLOCK_SOURCE_RESELECT
;
571 schedule_work(&watchdog_work
);
579 * We only clear the watchdog_reset_pending, when we did a
580 * full cycle through all clocksources.
583 atomic_dec(&watchdog_reset_pending
);
586 * Cycle through CPUs to check if the CPUs stay synchronized
589 next_cpu
= cpumask_next(raw_smp_processor_id(), cpu_online_mask
);
590 if (next_cpu
>= nr_cpu_ids
)
591 next_cpu
= cpumask_first(cpu_online_mask
);
594 * Arm timer if not already pending: could race with concurrent
595 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
597 if (!timer_pending(&watchdog_timer
)) {
598 watchdog_timer
.expires
+= WATCHDOG_INTERVAL
+ extra_wait
;
599 add_timer_on(&watchdog_timer
, next_cpu
);
602 spin_unlock(&watchdog_lock
);
605 static inline void clocksource_start_watchdog(void)
607 if (watchdog_running
|| !watchdog
|| list_empty(&watchdog_list
))
609 timer_setup(&watchdog_timer
, clocksource_watchdog
, 0);
610 watchdog_timer
.expires
= jiffies
+ WATCHDOG_INTERVAL
;
611 add_timer_on(&watchdog_timer
, cpumask_first(cpu_online_mask
));
612 watchdog_running
= 1;
615 static inline void clocksource_stop_watchdog(void)
617 if (!watchdog_running
|| (watchdog
&& !list_empty(&watchdog_list
)))
619 del_timer(&watchdog_timer
);
620 watchdog_running
= 0;
623 static void clocksource_resume_watchdog(void)
625 atomic_inc(&watchdog_reset_pending
);
628 static void clocksource_enqueue_watchdog(struct clocksource
*cs
)
630 INIT_LIST_HEAD(&cs
->wd_list
);
632 if (cs
->flags
& CLOCK_SOURCE_MUST_VERIFY
) {
633 /* cs is a clocksource to be watched. */
634 list_add(&cs
->wd_list
, &watchdog_list
);
635 cs
->flags
&= ~CLOCK_SOURCE_WATCHDOG
;
637 /* cs is a watchdog. */
638 if (cs
->flags
& CLOCK_SOURCE_IS_CONTINUOUS
)
639 cs
->flags
|= CLOCK_SOURCE_VALID_FOR_HRES
;
643 static void clocksource_select_watchdog(bool fallback
)
645 struct clocksource
*cs
, *old_wd
;
648 spin_lock_irqsave(&watchdog_lock
, flags
);
649 /* save current watchdog */
654 list_for_each_entry(cs
, &clocksource_list
, list
) {
655 /* cs is a clocksource to be watched. */
656 if (cs
->flags
& CLOCK_SOURCE_MUST_VERIFY
)
659 /* Skip current if we were requested for a fallback. */
660 if (fallback
&& cs
== old_wd
)
663 /* Pick the best watchdog. */
664 if (!watchdog
|| cs
->rating
> watchdog
->rating
)
667 /* If we failed to find a fallback restore the old one. */
671 /* If we changed the watchdog we need to reset cycles. */
672 if (watchdog
!= old_wd
)
673 clocksource_reset_watchdog();
675 /* Check if the watchdog timer needs to be started. */
676 clocksource_start_watchdog();
677 spin_unlock_irqrestore(&watchdog_lock
, flags
);
680 static void clocksource_dequeue_watchdog(struct clocksource
*cs
)
682 if (cs
!= watchdog
) {
683 if (cs
->flags
& CLOCK_SOURCE_MUST_VERIFY
) {
684 /* cs is a watched clocksource. */
685 list_del_init(&cs
->wd_list
);
686 /* Check if the watchdog timer needs to be stopped. */
687 clocksource_stop_watchdog();
692 static int __clocksource_watchdog_kthread(void)
694 struct clocksource
*cs
, *tmp
;
698 /* Do any required per-CPU skew verification. */
699 if (curr_clocksource
&&
700 curr_clocksource
->flags
& CLOCK_SOURCE_UNSTABLE
&&
701 curr_clocksource
->flags
& CLOCK_SOURCE_VERIFY_PERCPU
)
702 clocksource_verify_percpu(curr_clocksource
);
704 spin_lock_irqsave(&watchdog_lock
, flags
);
705 list_for_each_entry_safe(cs
, tmp
, &watchdog_list
, wd_list
) {
706 if (cs
->flags
& CLOCK_SOURCE_UNSTABLE
) {
707 list_del_init(&cs
->wd_list
);
708 clocksource_change_rating(cs
, 0);
711 if (cs
->flags
& CLOCK_SOURCE_RESELECT
) {
712 cs
->flags
&= ~CLOCK_SOURCE_RESELECT
;
716 /* Check if the watchdog timer needs to be stopped. */
717 clocksource_stop_watchdog();
718 spin_unlock_irqrestore(&watchdog_lock
, flags
);
723 static int clocksource_watchdog_kthread(void *data
)
725 mutex_lock(&clocksource_mutex
);
726 if (__clocksource_watchdog_kthread())
727 clocksource_select();
728 mutex_unlock(&clocksource_mutex
);
732 static bool clocksource_is_watchdog(struct clocksource
*cs
)
734 return cs
== watchdog
;
737 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
739 static void clocksource_enqueue_watchdog(struct clocksource
*cs
)
741 if (cs
->flags
& CLOCK_SOURCE_IS_CONTINUOUS
)
742 cs
->flags
|= CLOCK_SOURCE_VALID_FOR_HRES
;
745 static void clocksource_select_watchdog(bool fallback
) { }
746 static inline void clocksource_dequeue_watchdog(struct clocksource
*cs
) { }
747 static inline void clocksource_resume_watchdog(void) { }
748 static inline int __clocksource_watchdog_kthread(void) { return 0; }
749 static bool clocksource_is_watchdog(struct clocksource
*cs
) { return false; }
750 void clocksource_mark_unstable(struct clocksource
*cs
) { }
752 static inline void clocksource_watchdog_lock(unsigned long *flags
) { }
753 static inline void clocksource_watchdog_unlock(unsigned long *flags
) { }
755 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
757 static bool clocksource_is_suspend(struct clocksource
*cs
)
759 return cs
== suspend_clocksource
;
762 static void __clocksource_suspend_select(struct clocksource
*cs
)
765 * Skip the clocksource which will be stopped in suspend state.
767 if (!(cs
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
))
771 * The nonstop clocksource can be selected as the suspend clocksource to
772 * calculate the suspend time, so it should not supply suspend/resume
773 * interfaces to suspend the nonstop clocksource when system suspends.
775 if (cs
->suspend
|| cs
->resume
) {
776 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
780 /* Pick the best rating. */
781 if (!suspend_clocksource
|| cs
->rating
> suspend_clocksource
->rating
)
782 suspend_clocksource
= cs
;
786 * clocksource_suspend_select - Select the best clocksource for suspend timing
787 * @fallback: if select a fallback clocksource
789 static void clocksource_suspend_select(bool fallback
)
791 struct clocksource
*cs
, *old_suspend
;
793 old_suspend
= suspend_clocksource
;
795 suspend_clocksource
= NULL
;
797 list_for_each_entry(cs
, &clocksource_list
, list
) {
798 /* Skip current if we were requested for a fallback. */
799 if (fallback
&& cs
== old_suspend
)
802 __clocksource_suspend_select(cs
);
807 * clocksource_start_suspend_timing - Start measuring the suspend timing
808 * @cs: current clocksource from timekeeping
809 * @start_cycles: current cycles from timekeeping
811 * This function will save the start cycle values of suspend timer to calculate
812 * the suspend time when resuming system.
814 * This function is called late in the suspend process from timekeeping_suspend(),
815 * that means processes are frozen, non-boot cpus and interrupts are disabled
816 * now. It is therefore possible to start the suspend timer without taking the
819 void clocksource_start_suspend_timing(struct clocksource
*cs
, u64 start_cycles
)
821 if (!suspend_clocksource
)
825 * If current clocksource is the suspend timer, we should use the
826 * tkr_mono.cycle_last value as suspend_start to avoid same reading
827 * from suspend timer.
829 if (clocksource_is_suspend(cs
)) {
830 suspend_start
= start_cycles
;
834 if (suspend_clocksource
->enable
&&
835 suspend_clocksource
->enable(suspend_clocksource
)) {
836 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
840 suspend_start
= suspend_clocksource
->read(suspend_clocksource
);
844 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
845 * @cs: current clocksource from timekeeping
846 * @cycle_now: current cycles from timekeeping
848 * This function will calculate the suspend time from suspend timer.
850 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
852 * This function is called early in the resume process from timekeeping_resume(),
853 * that means there is only one cpu, no processes are running and the interrupts
854 * are disabled. It is therefore possible to stop the suspend timer without
855 * taking the clocksource mutex.
857 u64
clocksource_stop_suspend_timing(struct clocksource
*cs
, u64 cycle_now
)
861 if (!suspend_clocksource
)
865 * If current clocksource is the suspend timer, we should use the
866 * tkr_mono.cycle_last value from timekeeping as current cycle to
867 * avoid same reading from suspend timer.
869 if (clocksource_is_suspend(cs
))
872 now
= suspend_clocksource
->read(suspend_clocksource
);
874 if (now
> suspend_start
)
875 nsec
= cycles_to_nsec_safe(suspend_clocksource
, suspend_start
, now
);
878 * Disable the suspend timer to save power if current clocksource is
879 * not the suspend timer.
881 if (!clocksource_is_suspend(cs
) && suspend_clocksource
->disable
)
882 suspend_clocksource
->disable(suspend_clocksource
);
888 * clocksource_suspend - suspend the clocksource(s)
890 void clocksource_suspend(void)
892 struct clocksource
*cs
;
894 list_for_each_entry_reverse(cs
, &clocksource_list
, list
)
900 * clocksource_resume - resume the clocksource(s)
902 void clocksource_resume(void)
904 struct clocksource
*cs
;
906 list_for_each_entry(cs
, &clocksource_list
, list
)
910 clocksource_resume_watchdog();
914 * clocksource_touch_watchdog - Update watchdog
916 * Update the watchdog after exception contexts such as kgdb so as not
917 * to incorrectly trip the watchdog. This might fail when the kernel
918 * was stopped in code which holds watchdog_lock.
920 void clocksource_touch_watchdog(void)
922 clocksource_resume_watchdog();
926 * clocksource_max_adjustment- Returns max adjustment amount
927 * @cs: Pointer to clocksource
930 static u32
clocksource_max_adjustment(struct clocksource
*cs
)
934 * We won't try to correct for more than 11% adjustments (110,000 ppm),
936 ret
= (u64
)cs
->mult
* 11;
942 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
943 * @mult: cycle to nanosecond multiplier
944 * @shift: cycle to nanosecond divisor (power of two)
945 * @maxadj: maximum adjustment value to mult (~11%)
946 * @mask: bitmask for two's complement subtraction of non 64 bit counters
947 * @max_cyc: maximum cycle value before potential overflow (does not include
950 * NOTE: This function includes a safety margin of 50%, in other words, we
951 * return half the number of nanoseconds the hardware counter can technically
952 * cover. This is done so that we can potentially detect problems caused by
953 * delayed timers or bad hardware, which might result in time intervals that
954 * are larger than what the math used can handle without overflows.
956 u64
clocks_calc_max_nsecs(u32 mult
, u32 shift
, u32 maxadj
, u64 mask
, u64
*max_cyc
)
958 u64 max_nsecs
, max_cycles
;
961 * Calculate the maximum number of cycles that we can pass to the
962 * cyc2ns() function without overflowing a 64-bit result.
964 max_cycles
= ULLONG_MAX
;
965 do_div(max_cycles
, mult
+maxadj
);
968 * The actual maximum number of cycles we can defer the clocksource is
969 * determined by the minimum of max_cycles and mask.
970 * Note: Here we subtract the maxadj to make sure we don't sleep for
971 * too long if there's a large negative adjustment.
973 max_cycles
= min(max_cycles
, mask
);
974 max_nsecs
= clocksource_cyc2ns(max_cycles
, mult
- maxadj
, shift
);
976 /* return the max_cycles value as well if requested */
978 *max_cyc
= max_cycles
;
980 /* Return 50% of the actual maximum, so we can detect bad values */
987 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
988 * @cs: Pointer to clocksource to be updated
991 static inline void clocksource_update_max_deferment(struct clocksource
*cs
)
993 cs
->max_idle_ns
= clocks_calc_max_nsecs(cs
->mult
, cs
->shift
,
994 cs
->maxadj
, cs
->mask
,
998 static struct clocksource
*clocksource_find_best(bool oneshot
, bool skipcur
)
1000 struct clocksource
*cs
;
1002 if (!finished_booting
|| list_empty(&clocksource_list
))
1006 * We pick the clocksource with the highest rating. If oneshot
1007 * mode is active, we pick the highres valid clocksource with
1010 list_for_each_entry(cs
, &clocksource_list
, list
) {
1011 if (skipcur
&& cs
== curr_clocksource
)
1013 if (oneshot
&& !(cs
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
))
1020 static void __clocksource_select(bool skipcur
)
1022 bool oneshot
= tick_oneshot_mode_active();
1023 struct clocksource
*best
, *cs
;
1025 /* Find the best suitable clocksource */
1026 best
= clocksource_find_best(oneshot
, skipcur
);
1030 if (!strlen(override_name
))
1033 /* Check for the override clocksource. */
1034 list_for_each_entry(cs
, &clocksource_list
, list
) {
1035 if (skipcur
&& cs
== curr_clocksource
)
1037 if (strcmp(cs
->name
, override_name
) != 0)
1040 * Check to make sure we don't switch to a non-highres
1041 * capable clocksource if the tick code is in oneshot
1042 * mode (highres or nohz)
1044 if (!(cs
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
) && oneshot
) {
1045 /* Override clocksource cannot be used. */
1046 if (cs
->flags
& CLOCK_SOURCE_UNSTABLE
) {
1047 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1049 override_name
[0] = 0;
1052 * The override cannot be currently verified.
1053 * Deferring to let the watchdog check.
1055 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1059 /* Override clocksource can be used. */
1065 if (curr_clocksource
!= best
&& !timekeeping_notify(best
)) {
1066 pr_info("Switched to clocksource %s\n", best
->name
);
1067 curr_clocksource
= best
;
1072 * clocksource_select - Select the best clocksource available
1074 * Private function. Must hold clocksource_mutex when called.
1076 * Select the clocksource with the best rating, or the clocksource,
1077 * which is selected by userspace override.
1079 static void clocksource_select(void)
1081 __clocksource_select(false);
1084 static void clocksource_select_fallback(void)
1086 __clocksource_select(true);
1090 * clocksource_done_booting - Called near the end of core bootup
1092 * Hack to avoid lots of clocksource churn at boot time.
1093 * We use fs_initcall because we want this to start before
1094 * device_initcall but after subsys_initcall.
1096 static int __init
clocksource_done_booting(void)
1098 mutex_lock(&clocksource_mutex
);
1099 curr_clocksource
= clocksource_default_clock();
1100 finished_booting
= 1;
1102 * Run the watchdog first to eliminate unstable clock sources
1104 __clocksource_watchdog_kthread();
1105 clocksource_select();
1106 mutex_unlock(&clocksource_mutex
);
1109 fs_initcall(clocksource_done_booting
);
1112 * Enqueue the clocksource sorted by rating
1114 static void clocksource_enqueue(struct clocksource
*cs
)
1116 struct list_head
*entry
= &clocksource_list
;
1117 struct clocksource
*tmp
;
1119 list_for_each_entry(tmp
, &clocksource_list
, list
) {
1120 /* Keep track of the place, where to insert */
1121 if (tmp
->rating
< cs
->rating
)
1125 list_add(&cs
->list
, entry
);
1129 * __clocksource_update_freq_scale - Used update clocksource with new freq
1130 * @cs: clocksource to be registered
1131 * @scale: Scale factor multiplied against freq to get clocksource hz
1132 * @freq: clocksource frequency (cycles per second) divided by scale
1134 * This should only be called from the clocksource->enable() method.
1136 * This *SHOULD NOT* be called directly! Please use the
1137 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1140 void __clocksource_update_freq_scale(struct clocksource
*cs
, u32 scale
, u32 freq
)
1145 * Default clocksources are *special* and self-define their mult/shift.
1146 * But, you're not special, so you should specify a freq value.
1150 * Calc the maximum number of seconds which we can run before
1151 * wrapping around. For clocksources which have a mask > 32-bit
1152 * we need to limit the max sleep time to have a good
1153 * conversion precision. 10 minutes is still a reasonable
1154 * amount. That results in a shift value of 24 for a
1155 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1156 * ~ 0.06ppm granularity for NTP.
1163 else if (sec
> 600 && cs
->mask
> UINT_MAX
)
1166 clocks_calc_mult_shift(&cs
->mult
, &cs
->shift
, freq
,
1167 NSEC_PER_SEC
/ scale
, sec
* scale
);
1171 * If the uncertainty margin is not specified, calculate it. If
1172 * both scale and freq are non-zero, calculate the clock period, but
1173 * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default.
1174 * However, if either of scale or freq is zero, be very conservative
1175 * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value
1176 * for the uncertainty margin. Allow stupidly small uncertainty
1177 * margins to be specified by the caller for testing purposes,
1178 * but warn to discourage production use of this capability.
1180 * Bottom line: The sum of the uncertainty margins of the
1181 * watchdog clocksource and the clocksource under test will be at
1182 * least 500ppm by default. For more information, please see the
1183 * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above.
1185 if (scale
&& freq
&& !cs
->uncertainty_margin
) {
1186 cs
->uncertainty_margin
= NSEC_PER_SEC
/ (scale
* freq
);
1187 if (cs
->uncertainty_margin
< 2 * WATCHDOG_MAX_SKEW
)
1188 cs
->uncertainty_margin
= 2 * WATCHDOG_MAX_SKEW
;
1189 } else if (!cs
->uncertainty_margin
) {
1190 cs
->uncertainty_margin
= WATCHDOG_THRESHOLD
;
1192 WARN_ON_ONCE(cs
->uncertainty_margin
< 2 * WATCHDOG_MAX_SKEW
);
1195 * Ensure clocksources that have large 'mult' values don't overflow
1198 cs
->maxadj
= clocksource_max_adjustment(cs
);
1199 while (freq
&& ((cs
->mult
+ cs
->maxadj
< cs
->mult
)
1200 || (cs
->mult
- cs
->maxadj
> cs
->mult
))) {
1203 cs
->maxadj
= clocksource_max_adjustment(cs
);
1207 * Only warn for *special* clocksources that self-define
1208 * their mult/shift values and don't specify a freq.
1210 WARN_ONCE(cs
->mult
+ cs
->maxadj
< cs
->mult
,
1211 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1214 clocksource_update_max_deferment(cs
);
1216 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1217 cs
->name
, cs
->mask
, cs
->max_cycles
, cs
->max_idle_ns
);
1219 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale
);
1222 * __clocksource_register_scale - Used to install new clocksources
1223 * @cs: clocksource to be registered
1224 * @scale: Scale factor multiplied against freq to get clocksource hz
1225 * @freq: clocksource frequency (cycles per second) divided by scale
1227 * Returns -EBUSY if registration fails, zero otherwise.
1229 * This *SHOULD NOT* be called directly! Please use the
1230 * clocksource_register_hz() or clocksource_register_khz helper functions.
1232 int __clocksource_register_scale(struct clocksource
*cs
, u32 scale
, u32 freq
)
1234 unsigned long flags
;
1236 clocksource_arch_init(cs
);
1238 if (WARN_ON_ONCE((unsigned int)cs
->id
>= CSID_MAX
))
1239 cs
->id
= CSID_GENERIC
;
1240 if (cs
->vdso_clock_mode
< 0 ||
1241 cs
->vdso_clock_mode
>= VDSO_CLOCKMODE_MAX
) {
1242 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1243 cs
->name
, cs
->vdso_clock_mode
);
1244 cs
->vdso_clock_mode
= VDSO_CLOCKMODE_NONE
;
1247 /* Initialize mult/shift and max_idle_ns */
1248 __clocksource_update_freq_scale(cs
, scale
, freq
);
1250 /* Add clocksource to the clocksource list */
1251 mutex_lock(&clocksource_mutex
);
1253 clocksource_watchdog_lock(&flags
);
1254 clocksource_enqueue(cs
);
1255 clocksource_enqueue_watchdog(cs
);
1256 clocksource_watchdog_unlock(&flags
);
1258 clocksource_select();
1259 clocksource_select_watchdog(false);
1260 __clocksource_suspend_select(cs
);
1261 mutex_unlock(&clocksource_mutex
);
1264 EXPORT_SYMBOL_GPL(__clocksource_register_scale
);
1267 * Unbind clocksource @cs. Called with clocksource_mutex held
1269 static int clocksource_unbind(struct clocksource
*cs
)
1271 unsigned long flags
;
1273 if (clocksource_is_watchdog(cs
)) {
1274 /* Select and try to install a replacement watchdog. */
1275 clocksource_select_watchdog(true);
1276 if (clocksource_is_watchdog(cs
))
1280 if (cs
== curr_clocksource
) {
1281 /* Select and try to install a replacement clock source */
1282 clocksource_select_fallback();
1283 if (curr_clocksource
== cs
)
1287 if (clocksource_is_suspend(cs
)) {
1289 * Select and try to install a replacement suspend clocksource.
1290 * If no replacement suspend clocksource, we will just let the
1291 * clocksource go and have no suspend clocksource.
1293 clocksource_suspend_select(true);
1296 clocksource_watchdog_lock(&flags
);
1297 clocksource_dequeue_watchdog(cs
);
1298 list_del_init(&cs
->list
);
1299 clocksource_watchdog_unlock(&flags
);
1305 * clocksource_unregister - remove a registered clocksource
1306 * @cs: clocksource to be unregistered
1308 int clocksource_unregister(struct clocksource
*cs
)
1312 mutex_lock(&clocksource_mutex
);
1313 if (!list_empty(&cs
->list
))
1314 ret
= clocksource_unbind(cs
);
1315 mutex_unlock(&clocksource_mutex
);
1318 EXPORT_SYMBOL(clocksource_unregister
);
1322 * current_clocksource_show - sysfs interface for current clocksource
1325 * @buf: char buffer to be filled with clocksource list
1327 * Provides sysfs interface for listing current clocksource.
1329 static ssize_t
current_clocksource_show(struct device
*dev
,
1330 struct device_attribute
*attr
,
1335 mutex_lock(&clocksource_mutex
);
1336 count
= sysfs_emit(buf
, "%s\n", curr_clocksource
->name
);
1337 mutex_unlock(&clocksource_mutex
);
1342 ssize_t
sysfs_get_uname(const char *buf
, char *dst
, size_t cnt
)
1346 /* strings from sysfs write are not 0 terminated! */
1347 if (!cnt
|| cnt
>= CS_NAME_LEN
)
1351 if (buf
[cnt
-1] == '\n')
1354 memcpy(dst
, buf
, cnt
);
1360 * current_clocksource_store - interface for manually overriding clocksource
1363 * @buf: name of override clocksource
1364 * @count: length of buffer
1366 * Takes input from sysfs interface for manually overriding the default
1367 * clocksource selection.
1369 static ssize_t
current_clocksource_store(struct device
*dev
,
1370 struct device_attribute
*attr
,
1371 const char *buf
, size_t count
)
1375 mutex_lock(&clocksource_mutex
);
1377 ret
= sysfs_get_uname(buf
, override_name
, count
);
1379 clocksource_select();
1381 mutex_unlock(&clocksource_mutex
);
1385 static DEVICE_ATTR_RW(current_clocksource
);
1388 * unbind_clocksource_store - interface for manually unbinding clocksource
1392 * @count: length of buffer
1394 * Takes input from sysfs interface for manually unbinding a clocksource.
1396 static ssize_t
unbind_clocksource_store(struct device
*dev
,
1397 struct device_attribute
*attr
,
1398 const char *buf
, size_t count
)
1400 struct clocksource
*cs
;
1401 char name
[CS_NAME_LEN
];
1404 ret
= sysfs_get_uname(buf
, name
, count
);
1409 mutex_lock(&clocksource_mutex
);
1410 list_for_each_entry(cs
, &clocksource_list
, list
) {
1411 if (strcmp(cs
->name
, name
))
1413 ret
= clocksource_unbind(cs
);
1416 mutex_unlock(&clocksource_mutex
);
1418 return ret
? ret
: count
;
1420 static DEVICE_ATTR_WO(unbind_clocksource
);
1423 * available_clocksource_show - sysfs interface for listing clocksource
1426 * @buf: char buffer to be filled with clocksource list
1428 * Provides sysfs interface for listing registered clocksources
1430 static ssize_t
available_clocksource_show(struct device
*dev
,
1431 struct device_attribute
*attr
,
1434 struct clocksource
*src
;
1437 mutex_lock(&clocksource_mutex
);
1438 list_for_each_entry(src
, &clocksource_list
, list
) {
1440 * Don't show non-HRES clocksource if the tick code is
1441 * in one shot mode (highres=on or nohz=on)
1443 if (!tick_oneshot_mode_active() ||
1444 (src
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
))
1445 count
+= snprintf(buf
+ count
,
1446 max((ssize_t
)PAGE_SIZE
- count
, (ssize_t
)0),
1449 mutex_unlock(&clocksource_mutex
);
1451 count
+= snprintf(buf
+ count
,
1452 max((ssize_t
)PAGE_SIZE
- count
, (ssize_t
)0), "\n");
1456 static DEVICE_ATTR_RO(available_clocksource
);
1458 static struct attribute
*clocksource_attrs
[] = {
1459 &dev_attr_current_clocksource
.attr
,
1460 &dev_attr_unbind_clocksource
.attr
,
1461 &dev_attr_available_clocksource
.attr
,
1464 ATTRIBUTE_GROUPS(clocksource
);
1466 static const struct bus_type clocksource_subsys
= {
1467 .name
= "clocksource",
1468 .dev_name
= "clocksource",
1471 static struct device device_clocksource
= {
1473 .bus
= &clocksource_subsys
,
1474 .groups
= clocksource_groups
,
1477 static int __init
init_clocksource_sysfs(void)
1479 int error
= subsys_system_register(&clocksource_subsys
, NULL
);
1482 error
= device_register(&device_clocksource
);
1487 device_initcall(init_clocksource_sysfs
);
1488 #endif /* CONFIG_SYSFS */
1491 * boot_override_clocksource - boot clock override
1492 * @str: override name
1494 * Takes a clocksource= boot argument and uses it
1495 * as the clocksource override name.
1497 static int __init
boot_override_clocksource(char* str
)
1499 mutex_lock(&clocksource_mutex
);
1501 strscpy(override_name
, str
, sizeof(override_name
));
1502 mutex_unlock(&clocksource_mutex
);
1506 __setup("clocksource=", boot_override_clocksource
);
1509 * boot_override_clock - Compatibility layer for deprecated boot option
1510 * @str: override name
1512 * DEPRECATED! Takes a clock= boot argument and uses it
1513 * as the clocksource override name
1515 static int __init
boot_override_clock(char* str
)
1517 if (!strcmp(str
, "pmtmr")) {
1518 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1519 return boot_override_clocksource("acpi_pm");
1521 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1522 return boot_override_clocksource(str
);
1525 __setup("clock=", boot_override_clock
);